IJECCE

International Journal of Electronics Communication and Computer Engineering
Volume 5, Issue (4) July, Technovision-2014, ISSN 2249-071X

Technovision-2014: 1% International Conference at SITS, Narhe, Pune on April 5-6, 2014

Design and Development of a Segmentation Unit on PLD

Dipannita. S. Neogi
E&TC Department,
Sinhgad College of Engineering,
Vadgaon (BK), Pune-41, India
Email: neogi_dipannita@yahoo.co.in

Abstract — Virtual Memory has hardware support in
modern processors now days. In this work address
translation mechanism is explored as a hardware
implementation. A segmentation unit is designed and
developed which maps virtual to linear address. In this
scheme, the values present in the relocation register is added
to each and every address generated by a user process at the
time when it is sent to memory. The user program generally
deals with logical addresses rather than real physical
addresses. The actual logical address to physical address
translation is done within the MMU. The segmentation unit
is implemented designing the descriptor tables. In segment
translation scheme the virtual address space is divided into
different logical segments where each is a part of physical
memory.

Keywords — Design and Development, Segmentation Unit,
PLD, Virtual Memory, MMU, Hardware.

I. INTRODUCTION

Virtual memory refers to the technology in which some
space in hard disk is used as an extension of main memory
so that a user program need not worry if its size extends
the size of the main memory. If that does happen, at any
time only a part of the program will reside in main
memory, and other parts will otherwise remain on hard
disk and may be switched into memory later if needed. In
this work a virtual address also called as logical address is
translated into linear address using segment translation
unit.

A. Problem Statement

To design and develop segmentation unit which can
translate virtual address requested externally to linear
address so that large program can be handled in the
memory itself. The segmentation unit needs to be
implemented in software using VHDL and ISE /ModelSim
Simulator Software’s and later on fitted into PLD.

B. Block Diagram

Fig.1 shows the overall block diagram of a segmentation
unit where the virtual address also termed as logical
addresses are externally given and logical addresses get
translated to linear addresses. The virtual address fields
contain segment and offset where the segment id indicates
the base address of the segment table. The segment table
consists of limit and base fields. The limit field marks the
size of the segment and the base field indicates the
segment base output address. This segment base out gets
added to the offset and generates the linear address.

Prof. U. R. More
E & TC Department,
Sinhgad College of Engineering,
Vadgaon (BK), Pune-41, India
Email: umashankar.more@gmail.com

Prof. J. B. Jagtap
E & TC Department,
K.B.P Polytechnic College of Engineering,
Satara, Pune-001,India
Email: jagtapsir@gmail.com

VIRTUAL ADDRESS SEGMENTlTABLE PHYSICAL MEMORY
P |
| ¥ LIMIT BASE]
SEGMENT | OFFSET
YES
NO
PROTECTION FAULT

Fig.1. Block Diagram of Segmentation Unit

I1. LITERATURE REVIEW

In today’s CMOS VLSI technology makes it possible to
combine a very powerful processor onto a single chip.
Although component-level analysis was well understood,
system level models were difficult to develop. The
behavior of the system under real workloads was
extremely difficult to predict and model. However, it is not
easy to predict the impact of a memory-component failure
on the computer system. This depends on behavioral
aspects such as the contents of the memory, the usage of
the memory, and the operating system recovery
techniques. The memory-access behavior of programs to
determine the likelihood of an error causing a failure was
studied [1]. It was found that the access behavior could
account for an important number of unobserved faults. It
suggested that traditional memory reliability analysis can
be fairly pessimistic in regard to field experience.

In 1995, scientists worked upon micro architecture of
HAL’s memory management unit [2].The HAL MMU is
responsible for the functions such as address space
translations and hardware handling, protection violation
checking, data movement controls and bus interfaces
among, exception handling memory coherency among
caches and memories, diagnostic and the functions for
caches and memories.

In recent research in high-speed network interfaces for
commodity networks has focused on removing the
operating system from the critical path for sending and

All copyrights Reserved by Technovision-2014, Department of Electronics and Telecommunication Engineering,

Sinhgad Institute of Technology and Science, Narhe Pune
Published by IJECCE (www.ijecce.org)

72

www.ijecce.org
mailto:neogi_dipannita@yahoo.co.in
mailto:more@gmail.com
mailto:jagtapsir@gmail.com

IJECCE

International Journal of Electronics Communication and Computer Engineering
Volume 5, Issue (4) July, Technovision-2014, ISSN 2249-071X

Technovision-2014: 1% International Conference at SITS, Narhe, Pune on April 5-6, 2014

receiving messages. An effective solution is to provide
user-level messaging so user applications can directly
access the hardware of the network while keeping the
remaining protected from one another. This allows
messages to be sent from and received into user space
without kernel intervention. Implementation difficulties
arise in the mapping between the virtual addresses of
message buffers specified by applications and the physical
addresses required for actual transmission and reception.
The network interface must be able to translate the virtual
buffer addresses to physical addresses, and the translations
must be coordinated with the operating system’s virtual
memory subsystem.

Intellectual Property (IP) core-based hardware-software
systems has emerged as a result of a new design paradigm
of System-on-Chip (SoC). SoC is usually defined as an
integration of complex functional modules or cores, where
each core is complex enough to be a complete IC in itself.
In order for these IP cores to be as highly reusable as
possible, the cores must be soft cores in a synthesizable
Hardware Description. Language (HDL) form and can be
targeted for different semiconductor process technology.
The traditional approach to system design involves
combining a microprocessor and other devices on a single
chip as in circuit board. Currently advanced submicron
technologies enable a complete design on a single chip.
Increasing density and speed of Field Programmable Gate
Arrays (FPGAs) leads to adoption of IP core-based
System-on-Chip (SoC) designs. Since processors are
common in system design, integrating them with other
functions into single device is the result of these advances.
RISC instruction sets gradually have moved to CISC sets
during the 1980s. After twenty years and invention of SoC
processors, RISC machines are gaining more importance
due to the fact that only 25% of the instructions of a
complex instruction set are frequently used about 95% of
the time [3]. A RISC instruction set generally contains less
than 100 instructions with fixed-length format such as 32
bits. Only three to five addressing modes are used. Most
instructions are register-based. Memory access is done by
load store instructions SoC approach encourages design
engineers to adopt existing IP cores. This promotes reuse.
Modern IP core library typically includes features for
specific applications such as communication ports, image
processing units, and Floating Point Units (FPUs).
Nowadays, object-oriented software applications are
getting dynamic memory intensive[4]. This creates the
need of high-performance memory allocator and
deallocator as a core extension. For example, Active
Memory Management Unit (AMMU) provides high
performance in memory management [5S]. AMMU uses
hardware accelerated dynamic memory management
algorithm based on modified buddy system [6].

ITI. EXPERIMENTATION

The segmentation unit is provided with an input of
virtual address which is responsible for generating the
linear address. A descriptor table is implemented of 512K
out of which 256 K is global descriptor table which stores
all the drivers information and rest 256 K is used as a local
descriptor table which is used to store application codes
like notepad etc.

A. Segment Translation

Figure 2. shows in detail the way system converts a logical
address into a linear address. The virtual address also
called as logical address is divided into selector and offset.
The selector used is a 16 bit selector and offset used is a
32 bit offset address. In the work out of 8192 descriptors
used by Intel[7] only 512 descriptors have been used due
to hardware restrictions. Segment descriptors are stored in
either of two kinds of descriptor table one is global
descriptor table (GDT) responsible for storing the system
code and drivers and other is a local descriptor table
(LDT) responsible for storing the application code like
notepad. Out of 512 descriptors 0 to 255 is used as Global
Descriptor Table and 256 to 511 is used as Local
Descriptor Table. These descriptors are created by
applications programmers.

VIRTUAL ADDRESS

15 l 0 3 0
SELECTOR
SEGMENT

DESCRIPTOR TABLE

}

512K LDT
LDT

Lot BASE v

255K LDT Ny
T LF

> p— ADDRESS

GDT

GDT

0K GDT

OFFSET

LINEAR ADDRESS

Fig.2. Virtual to Physical Address Translation

B. Algorithm

e Start

¢ Create descriptor table for storing segment descriptors

e Set table selection bit to 0 for accessing GDT and 1 for
accessing LDT

e For rising clock edge and write enable initialized to
value 1 update selected descriptor.

e For falling clock edge and write enable initialized to
value 0 get requested descriptor.

e Calculate linear address as sum of base address and
offset

e End

All copyrights Reserved by Technovision-2014, Department of Electronics and Telecommunication Engineering,

Sinhgad Institute of Technology and Science, Narhe Pune
Published by IJECCE (www.ijecce.org)

73

www.ijecce.org

IJECCE

International Journal of Electronics Communication and Computer Engineering
Volume 5, Issue (4) July, Technovision-2014, ISSN 2249-071X

Technovision-2014: 1% International Conference at SITS, Narhe, Pune on April 5-6, 2014

C. Flowchart

Fig.3. Segmentation Flowchart

IV. RESULTS AND DISCUSSIONS

The results of the segmentation unit is discussed in this
chapter and various levels of RTL are shown. The
segmentation unit is a unit where the logical or virtual
address is translated to linear address. The input to the unit
is a 32 bit logical address where the selector is of 16 bit
and offset is 32 bit which is later on added to the segment
output base address. The MSB 12 bits of selector is
selector index which indicates the appropriate segment
from the segment descriptor table. The third bit of selector
indicates the table selection bit and if this bit is one then it
refers to local descriptor table and if zero to global
descriptor table.

A. Initialization of the system

The contents of the selector starts varying from
x“0000”, x“0010”, x“0020” so on and the contents of
offset are x“00000000” to x“00000100”. 8K is the
maximum number of descriptor entries that can be
accessed through selector but only 512 descriptors are
used due to hardware restrictions. The memory depth of
descriptor table is 512 words and width is 64 bits. The
input to the descriptor table is a 16 bit selector and a 64 bit
descIn which is two 32 bit segment base inputs

consolidated to form a 64 bit input given to the descriptor
table. Table selection bit is set to be the most significant
bit in address therefore base of GDT is 0x000 and base of
LDT is 0x100 and also due to maximum number of entries
it is not possible to access out of range descriptors so there
is no need to define limits. When selector is x“0010”,
offset is x“00000000” and segbasein is x“10000000” then
segbaseout is x“18000000” then the linAddr obtained is a
summation of segment base out and offset i.e
x“18000000”. Similarly when selector is x“0008” ,offset is
x“00000100” and segbasein is x“180000000” then
segbaseout is x“18000000” then the linAddr obtained is
again a summation of segment base out and offset i.e
x“18000100”after two clock cycles.
B. Top Level RTL Schematic

In the Figure 4. all the inputs given to segment
translation is translating virtual address to linear address
which is obtained here on output linAddr as 32 bit address.

SegmentTranslation

J

offset(31:0) linAddr{31:0)

segBaseln(3 101
segDplinCLoy
seglLmting %—
segT;-'peIn(di‘u_
selector(1.0]__|
clock |
aeg-ﬁ.\.'lln_.
segGmin_ |
segClptIn_'

segPain

Wren SagBaseCut(31:0)

|

SegmentTranslation

Fig.4. Top Level RTL Schematic

C. Second Hierarchy of RTL

Figure 5 shows the second hierarchy of segmentation
unit that converts logical or virtual address to linear
address. The descriptor table is implemented which is
responsible for storing all the segment descriptors.

All copyrights Reserved by Technovision-2014, Department of Electronics and Telecommunication Engineering,

Sinhgad Institute of Technology and Science, Narhe Pune
Published by IJECCE (www.ijecce.org)

74

www.ijecce.org

IJECCE

International Journal of Electronics Communication and Computer Engineering
Volume 5, Issue (4) July, Technovision-2014, ISSN 2249-071X

Technovision-2014: 1% International Conference at SITS, Narhe, Pune on April 5-6, 2014

SegrentTrznsiation 1

iy fle

wen_m1

lacd_sBasa0uf*1] offset[31] add_19 OUT! fd

et Mg

Iacd_sBas20u1)_offeet[31] add_19_OUT!

ond . Mram cescTable!
XST G0

Mram ces:Tabled

Fig.5. Second Hierarchy RTL

D. Simulation Results

Initialization of segment descriptor tables with present
field set to zero is done so that access to any segment by
program fails to access invalid segment descriptor. This is
done by getting into write mode with wren signal
initialized as “1” and setting segpstin bit to “0”. This
clears all the entries of Global Descriptor Table (GDT)
and Local Descriptor Table (LDT). Then getting back to
read mode with wren bit initialized to “0” some entries are
checked in order to identify whether all the entries have
been cleared. Getting back to write mode some entries are
created which checked later and so for creating GDT
descriptor 1 the third bit of selector signal is set to “0”,
segGrnln bit set to ,,0“ to indicate granularity set to byte,
segPstIn bit to '1' indicating segment is present, segBaseln
is initialized to x"18000000" with segTypeln set to
"01000" which is set to indicate segment is of type 8
(system program) ,segDplln set to "11" set to indicate
segment privilege level to 3,seglmtln set segment to limit
1K bytes. Similarly creating LDT Descriptor 0" again
selector(3) bit is set to 'l',segGrnln bit is set to'l' to set
granularity to 4K byte, segPstln set to 'l' to indicate
segment is present,segBaseln is set to value of
x"10000000" with segTypeln set to "00100" indicating
type 4(application program), segDplln set to
"01";indicating privilege level to 1,seglmtln set to limit
IM(4K x 256) bytes.Getting back to read mode both the

entries are checked. The output is given by linAddr which
is linear address where the segBaseout is added to offset.
Thus segmentation of virtual to linear address is obtained
and in the waveform different values for linAddr output
for different segBaseln values are seen.

AL

Fig.6. Simulation Result

E. Synthesis Result

As seen in the Table 1. the number of slice registers
used is 32 out of 93120 so nearly it’s a 0% utilization.
Similarly number of slice LUT’s used is 32 out of 46560
and so 0% utilization is done. But 100 % utilization is
there for number of fully used LUTFF pairs all 32 FF’s are
used. The number of bonded IOBs is used around 70% and
block RAM/FIFO utilization is just 1 % and number of
BUFG/BUFGCTRLs is 3%.

Table 1: Device Utilization for Segmentation Unit for

VIRTEX 6

Device Utilization Summary (Estimated Values)
Logic Utilization Used | Available | Utilization
e | 32| 93120 | 0%
NumbLe[rI%i Slice 32 46560 0%
usNegnﬁLI)}ﬂT-oFfFﬁSzli:ls 32 32 100%
Nl.l]]]bell;)&)é:)mlded 170 240 70%
BUFE%EE;&T?ITRLS 1 32 3%
REFERENCES
[1] N.S. Bowen, D.K. Pradhan, “Program fault tolerance based on

memory access behavior”, 21
Computing, 1991 June, pp.

[2] David Chih-Wei Chang, David Lyon, Charles Chen, Leon Peng,
Mehran Massoumi, Matthew Hakimi, Satish Iyengar, Ellen Li,
Roque Remedios “Microarchitecture of HalL“a memory
management unit,1995

[3] K. Hwang, “Advanced Computer Architecture: Parallelism,
Scalability, and Programmability”, McCraw-Hill, 1993

Sf Symp. Fault-Tolerant

All copyrights Reserved by Technovision-2014, Department of Electronics and Telecommunication Engineering,

Sinhgad Institute of Technology and Science, Narhe Pune
Published by IJECCE (www.ijecce.org)

75

www.ijecce.org

International Journal of Electronics Communication and Computer Engineering
Volume 5, Issue (4) July, Technovision-2014, ISSN 2249-071X

IJECCE

Technovision-2014: 1% International Conference at SITS, Narhe, Pune on April 5-6, 2014

[4] J. M. Chang, W. H. Lee, “A study on memory allocations in
C++”, Proceedings of 4th International Conference on Advance
Science and Technology, Naperville, Illinois, April 4-5, 1998.
pp. 53-62.

[51 W. Srisa-an, C. D. Loo, and J. M. Chang “A Performance
Analysis of the Active Memory Module (AMM)”, to appear in
Proceedings of IEEE International Conference on Computer
Design, Austin, Texas, Sep. 23-26, 2001,

[6] J. M. Chang, E. F. Gehringer, “A High-performance memory
allocator for object-oriented systems”, IEEE Transaction

[71 Reference manual by Intel for 80386 .

All copyrights Reserved by Technovision-2014, Department of Electronics and Telecommunication Engineering,
Sinhgad Institute of Technology and Science, Narhe Pune
Published by IIECCE (www.ijecce.org) 76

www.ijecce.org

