

New York University

 Tandon School of Engineering

Department of Aerospace and Mechanical Engineering

 ME-GY 6933

Advanced Mechatronics

 Final Project

Design and Development of World Wide

Controlled Pet Feeding Robot

Submitted to

Prof. Vikram Kapila

Aswath Suresh

Bhavik Dilip Doshi

Shreyance Singhvi

Design and Development of World Wide

Controlled Pet Feeding Robot
Aswath Suresh, Bhavik Doshi and Shreyance Singhvi

as10616@nyu.edu,bdd271@nyu.edu

Department of Aerospace and Mechanical Engineering, New York University, USA

Abstract— This paper describes a pet feeding robot which can be

controlled from anywhere on the world. The robot features a

differential drive mechanism, collision free distance sensing,

wireless NRF SPI control, User-End GUI and Camera Vision.

The robot hardware includes Arduino Microcontroller,

Raspberry Pi 3, HD Camera, Sabretooth Motor Driver and 4s

Lipo Battery. Inspired from nature, a reflex mechanism has also

been integrated into the rover design to minimize damage, by

automated safety reflexes using ultrasonic distance sensor. The

four wheeled mechanism ensures that it can traverse stairs easily.

The mechanism provides traction due to its body weight. The

robot finds applications in feeding any kinds of pet from

anywhere, remote explore the house for any potential theft and

fake robbers to believe someone is at home. Also includes

personalize daily meal portions, stay connected with real time

alerts, know your pet’s ok when you’re away, stores up to 7lbs,

keeps food fresh and keep your pet healthy. The robot also enables

a user to prevent a pet from eating a specific food while still

allowing access to that food by other pets. Thus, making it user

friendly for users having more than one pet.

Keywords: Arduino, Camera, Drive Mechanism, Raspberry Pi, SPI

I. INTRODUCTION

We choose this project because pet keeping is a time-

consuming responsibility and we want to provide convenience

to owners by helping them feed their pets easily and smartly

from anywhere on the world.

Keeping pets takes many commitments. This includes keeping

them company, showing your concerns and of course, feeding

them on time and in the correct way. However, not everyone is

a pet expert, taking care of your pet’s diet can be hard and time

consuming. One of the top health concerns of pets are

overeating and obesity. Especially at younger age, they are

usually satisfied with however much is given to them. Many

adult pets are fed unscientifically that later may cause short

lifespan. Another problem of feeding pets is that owners might

not always be home regularly as they have to travel to another

country as a vacation or for a business trip. Being occupied by

personal plans knowing that they still have a starving little

fellow at home to be taken care of is always a concern that

bothers owners. The third concern that we want to deal with is

the fact that there hasn’t been any product on the market right

now that is able to dispense food for pets monitored by its

owner real-time. However, pets themselves might not

necessarily recognize the potential health problems of eating

the wrong food. There are products like Petnet, AutoPetFeeder,

Automation Pet Feeder [1-4] which can be scheduled to

dispense food at certain interval of time but it lacks real time

monitoring and mobility. Therefore, we want to take care of

owners’ concern of feeding by building a phone/laptop

controlled real-time semi-automatic pet feeder that can

dispense the desired food as per the user by live camera

feedback.

II.MECHANICAL DESIGN

The four-wheel mechanism ensure that it can traverse over a

considerable height greater than the chassis height which could

be as much as twice the diameter of the wheels. The advantage

of this design is that it can still run even if it gets toppled

allowing the robot to overcome obstacles and traverse over a

highly-rugged terrain like stairs. The robot gets traction only

due to its body weight without having to compromise the

strength of the chassis. The Fig.1 shows the prototype of the

four wheeled mechanism.

Fig.1 Prototype

III.PET FEEDING ROBOT SYSTEM

The Fig.2 shows the working principle of the complete system.

At the user end there will be a GUI developed using the tkinter

GUI python toolkit. The GUI helps in the movements of the pet

feeding robot. The user-end device will be connected to the

internet i.e. mobile or laptop. The Real VNC application is used

to access the Raspberry Pi 3 at home which is connected to

internet all the time. The Raspberry Pi 3 is connected to Arduino

Uno which is on the robot using Serial Peripheral

Interface(SPI). The SPI connection between Arduino Uno and

Raspberry Pi 3 is made wireless using NRF24L01 with a range

of 1 mile. The NRF24L01 is a highly integrated, ultra-low

power (ULP) 2Mbps RF transceiver IC for the 2.4GHz ISM

(Industrial, Scientific and Medical) band. With peak RX/TX

currents lower than 14mA, a sub μA power down mode,

advanced power management, and a 1.9 to 3.6V supply range,

the NRF24L01 provides a true ULP solution enabling months

to years of battery lifetime when running on coin cells or

AA/AAA batteries.

The Arduino gives commands to the motor using a motor driver

called Sabretooth for required robot movement. The Arduino

cannot handle the high voltage and high current requirement of

the motors. So we used the high current (upto 60A) and high

voltage (upto 32V) motor driver. So when the button is pressed

in the GUI at the User End a specific function is called in the

python program in the raspberry pi 3 based on which button is

pressed. The function sends set of string value (Speed,

Direction) to the Arduino through SPI Communication. The

Arduino decodes the string value and based on the received

value controls the motor driver for required robotic movements.

The camera feed from the HD IP Camera is always available at

the user end via internet. This system makes it really easy to

find the pet and feed it on time.

Fig.2 System Representation

A. GRAPHICAL USER INTERFACE

The Tkinter module is used in python to develop the GUI as

shown in Fig.3. Tkinter is Python's de-facto standard GUI

(Graphical User Interface) package. It is a thin object-oriented

layer on top of Tcl/Tk. Tkinter is not the only GUI

Programming toolkit for Python. It is however the most

commonly used one.

A window named Control Panel is created with four buttons

namely Forward, Backwards, Right and Left. If the button

forward is pressed the robot will move forward, if right is

pressed it moves towards right and so on. The GUI developed

in python can be accessed using real VNC from anywhere on

the world where internet is available.

Fig.3 GUI

B. RASPBERRY PI –ARDUINO SPI

COMMUNICATION

Fig.4 SPI Communication

The Serial Peripheral Interface (SPI) bus was developed by

Motorola to provide full-duplex synchronous serial

communication between master and slave devices. The SPI bus

is commonly used for communication with flash memory,

sensors, real-time clocks (RTCs), analog-to-digital converters,

and more. Standard SPI masters communicate with slaves using

the serial clock (SCK), Master Out Slave In (MOSI), Master In

Slave Out (MISO), and Slave Select (SS) lines. The wiring for

SPI communication between Arduino and Raspberry Pi along

with NRF24L01 is done as shown in the Fig.4.

C. CAMERA FEEDBACK

Fig.5 Camera Setup

The IP Camera on the pet feeding robot is connected to a

wireless router using Wi-Fi Protected Setup(WPS). The router

is always connected to internet and the user can access the HD

camera using the camera IP address over the internet cloud. The

user will be receiving the live feedback of 1080p live footage of

what the pet feeding robot see. This helps the user to navigate

the robot to the required destination. The Fig.5 shows the

camera setup to get live feedback at the user end.

D. MECHANICAL LAYER AND POWER

MANAGEMENT

Fig.6 Mechanical and Power Management

The pet robot uses four high torque 7A motor for travelling in

any sort of rugged terrain with ease. The four-wheel mechanism

is developed in such a way that the robot can move even if it

gets toppled. This advantage allows it to climb up and down the

stairs without any issue. The signal received from Arduino to

the Sabertooth motor driver drives the 28A 12V motor system

in the required direction. The robot uses a 5000mah 12V high

power lithium polymer batter. The Arduino and HD camera is

powered from the 5v regulated supply available from the

sabretooth motor driver. Back current and short is taken care

using diode and protection circuit which makes the system

totally safe. The Fig.6 shows the power management and

mechanical layer of the system.

IV.RESULT AND DISCUSSION

The result was tested as a scenario of a person sitting at office

and feeding his/her pet at home. The different scenario till the

result is achieved is as shown in Fig.7.1-7.3.

Fig.7.1 User Sitting in the Office

The Fig.7.1 shows a person sitting in the office with the GUI of

the pet feeding robot trying to feed his/her pet at home.

Fig.7.2 Pet Feeding Robot at Home

The Fig 7.2 shows the pet feeding robot loaded with food at

home controlled from the office. Fig.7.3 shows the robot on its

way to the target and also the top left shows the camera

feedback which the user sees while controlling the robot.

Fig.7.3 Pet Feeding Robot reaching target

Fig.8 Pet Feeding Robot Stair Case Test

It is observed that the pet feeding robot at home is capable of

doing the real time pet feeding task without any difficulty from

the office which is far away and the performance is good. The

four wheeled mechanism for climbing up and down was tested

and led to satisfactory result. The Fig.8 shows the stairs case

test of the pet feeding robot.

V.CONCLUSION AND FUTURE DISCUSSION

Over the last semester, design team have accomplished a

massive amount of research, learning and coding, we feel that

we have produced a great success. About what worked

correctly, most of our design goals were met. We received a live

feed from camera mounted on robot, over internet. We were

also able to control the pet-feeder precisely through GUI for

smart devices. Also, the all-terrain vehicle used for prototype,

what set our product apart from any other on the market, works

flawlessly. The only goals that were not fulfilled were to

provide an easy user interface and to provide future meals at a

predictable time. This is because now, there is no timekeeping

and multi-feeder system. If we were to take this design further,

we could change few things. First, we would change the

material of feeder body. Next, we would implement it as a part

of smart home system using Raspberry Pi and Arduino. These

changes would help us to better meet the goals that we had

originally laid out for our design.

ACKNOWLEDGMENT

The authors would like to thank Makerspace and NYU Tandon

School of Engineering for providing support to carry out the

research and experiments.

REFERENCES

1. Rachel Heil, Kristine McCarthy, Filip Rege, Alexis Rodriguez-Carlson,

“The Smart Pet Feeder: A Proposal to Design and Build an Automated Pet

Feeder Capable of Preventing One Pet from Eating Another Pet’s Food”,

January 30,2008

2. Zhuokai Zhao, Ziyun He, Fan Ling, “Automatic Pet Feeder Project”,

February 10, 2016

3. Online Available: http://petnet.io/smartfeeder

4. Online Available: http://www.autopetfeeder.com/

APPENDIX

RASPBERRY PI 3 TRANSMITTER PYTHON CODE

import RPi.GPIO as GPIO

from lib_nrf24 import NRF24

import time

import spidev

import tkinter as tk

master = tk()

GPIO.setmode(GPIO.BCM)

pipes = [[0xE8, 0xE8, 0xF0, 0xF0, 0xE1], [0xF0, 0xF0, 0xF0, 0xF0,

0xE1]]

radio = NRF24(GPIO, spidev.SpiDev())

radio.begin(0,17)

radio.setPayloadSize(6)

radio.setChannel(0x76)

radio.setDataRate(NRF24.BR_1MBPS)

radio.setPALevel(NRF24.PA_MIN)

radio.setAutoAck(True)

radio.enableDynamicPayloads()

radio.enableAckPayload()

radio.openWritingPipe(pipes[0])

radio.printDetails()

 def Forward:

 message = list(“1”)

 start = time.time()

 radio.write(message)

 print(format(message))

def Reverse:

 message = list(“2”)

 start = time.time()

 radio.write(message)

 print(format(message))

def Left:

 message = list(“3”)

 start = time.time()

 radio.write(message)

 print(format(message))

def Right:

 message = list(“4”)

 start = time.time()

 radio.write(message)

 print(format(message))

B = Button(master, text = “FORWARD”, command = Forward, bg =

‘white’, fg = ‘black’ bd = 10, activebackground = ‘red’)

B.pack()

C = Button(master, text = “REVERSE”, command = Reverse, bg =

‘white’, fg = ‘black’ bd = 10, activebackground = ‘red’)

C.pack()

D = Button(master, text = “LEFT”, command = Left, bg = ‘white’, fg

= ‘black’ bd = 10, activebackground = ‘red’)

D.pack()

E = Button(master, text = “RIGHT”, command = Right, bg = ‘white’,

fg = ‘black’ bd = 10, activebackground = ‘red’)

E.pack()

ARDUINO RECEIVER CODE

#include<Wire.h>

#include<SPI.h>

#include<RF24.h>

#include <Servo.h>

Servo myservo1;

Servo myservo2;

int k=1000;

RF24 radio(9,10);

void setup()

{

 myservo1.attach(5);

 myservo2.attach(6);

 while(!Serial);

 Serial.begin(9600);

 radio.begin();

radio.setPALevel(RF

24_PA_MAX);

radio.setChannel(0x7

6);

 const uint64_t pipe =

0xE8E8F0F0E1LL;

radio.openReadingPi

pe(1,pipe);

radio.enableDynamic

Payloads();

 radio.powerUp();

 delay(100);

 }

void loop()

{

radio.startListening();

char

receivedMessage[10]

= {0};

 if(radio.available())

 {

radio.read(receivedM

essage,

sizeof(receivedMessa

ge));

 int

msg=(int)(receivedM

essage[0]-'0');

 Serial.println(msg);

radio.stopListening();

 delay(15);

 //1-F

 if(msg==1)

 {

myservo1.write(110);

 myservo2.write(70);

 delay(k);

 }

 //2-B

 else if(msg==4)

 {

myservo1.write(70);

myservo2.write(70);

 delay(k);

 }

 //3-L

 else if(msg==3)

 {

myservo1.write(110);

myservo2.write(110);

 delay(k);

 }

 //4-R

 else if(msg==2)

 {

myservo1.write(70);

myservo2.write(110);

 delay(k);

 }

myservo1.write(90);

myservo2.write(90);

 delay(k);

 Serial.flush();

}}

