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Abstract - Image compression is very important for efficient transmission and storage of images. Demand for 
communication of multimedia data through the telecommunications network and accessing the multimedia data 
through Internet is growing explosively. With the use of digital cameras, requirements for storage, manipulation, and 
transfer of digital images, has grown explosively. These image files can be very large and can occupy a lot of memory. 
A gray scale image that is 256 x 256 pixels have 65, 536 elements to store and a typical 640 x 480 color image have 
nearly a million. The basic objective of image compression is to find an image representation in which pixels are less 
correlated. Architecture and VHDL design of 2-D DCT, combined with quantization and zig-zag arrangement, is 
described in this paper. The output of DCT module needs to be multiplied with post-scalar value to get the real DCT 
coefficients. Post-scaling process is done together with quantization process. The decompression has to revert the 
transformations applied by the compression to the image data. The decoder therefore takes the compressed image 
data as its input. It then subsequently applies a Run length decoding [RLD], Inverse zigzag scan [ZZ], dequantization 
[DQ], inverse discrete cosine transform [IDCT], a color conversion and reordering to it. It then obtains the 
reconstructed image. 
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I .INTRODUCTION 

1.1 JPEG Image Compression 
Data compression method is different depending on the type of data. For information in the form of images, 
one of the most popular compression method is JPEG. JPEG stands for Joint Photographic Expert Group. 
Accordingly widely used in JPEG image included on the internet web pages. Use JPEG create a web page with 
a picture can be accessed faster than a web page with an image without compression. Color image JPEG  
compression  consists  of  five steps [1]. This is shown in figure 1. The steps are: color space conversion, down 
sampling, 2-D DCT, quantization and entropy coding. Grayscale image compression uses only last three steps 

            

                
 

Figure 1. JPEG compression steps of color images 
However, this paper’s main interest is only on hardware implementation of 2-D DCT combined with 
quantization and zig-zag process. To achieve high throughput, this paper uses pipelined architecture, rather 
than single clock architecture designed. 

 
II. DISCRETE COSINE TRANSFORM (DCT) 

Using DCT-2D, pixel values of a spatial image in the region will be transformed into a set of DCT coefficients 
in the frequency region. Before compression, image data in memory is divided into several blocks MCU 
(minimum code units). Each block consists of 8x8 pixels. Compression operations including DCT-2D in it will 
be done on each block [5]. 
Two dimensional DCT, because of its advantage in image compression, is an interesting research subject that 
invite many researcher [1] ,[2], [3], [4], [7] and others to participate in. That makes many algorithms of DCT is 
developed. 
2.1. 1-D Discrete Cosine Transform (DCT) 

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 90 ISSN: 2319 – 1058



�  

Step 1: a0  = x0  + x7 
a1  = x1  + x6 
a2  = x3  – x4 
a3  = x1  - x6 
a4  = x2  + x5 
a5  = x3 + x4 
a6  = x2  – x5 
a7 = x0 – x7

ep 2: b0  = a0  + a5 
b1  = a1  - a4 
b2  = a2  + a6 
b3  = a1  + a4 
b4  = a0  - a5 
b5  = a3  + a7 
b6  = a3  + a6 
b7 = a7

Step 3: d0  = b0  + b3; 
d1  = b0  - b3; 
d2  = b2; 
d3  = b1  + b4; 
d4  = b2  - b5; 
d5  = b4; 
d6  = b5; 
d7  = b6; 
d8 = b7; 

Step 4: e0  = d0; 
e1  = d1; 
e2  = m3  * d2; 
e3  = m1  * d7; 
e4  = m4  * d6; 
e5  = d5; 
e6  = m1  * d3; 
e7  = m2  * d4; 
e8 = d8;

Step 5: f0 = e0; 
f1 = e1; 
f2 = e5 + e6; 

f3 = e5 - e6; f4 
= e3 + e8; f5 = 

There are several ways to compute 1-D DCT. It can be computed   with   straightforward   computation   –   just 
multiply input vector by raw DCT coefficients without any algorithm. This method is fast but need large logic 
utilization, especially multiplier. The other ways is computing DCT with multiplier reduction algorithm 
[1],[2],[4]. Reduced multiplier means reduced complexity. FPGA chip usually has only a few multipliers. In 
this case, Spartan-3E XCS500E has only 20 multipliers. This paper adopts the work of Agostini [1] that 
implemented Arai scaled 1-D DCT algorithm [2]. It means the DCT coefficients produced by the algorithm are 
not the real coefficients. To get the real coefficients, the scaled ones must be multiplied with post-scaler value. 
Equation (1) is showing scaled 1-D DCT process. 

                             y' = C x                                                                               (1) 
Variable x is 8 point vector. C is Arai's DCT matrix and y' is vector of scaled DCT coefficients. To get the 
real DCT coefficients, y' must be element by element multiplicated with post-scaling factor. It is shown in(2). 
 

                              y = s .* y'                                                                          (2) 
Constant s is vector of post-scaling factor. Element by element   multiplication   is   shown   with   “.*'   
operator adopted from MATLAB. Output vector y is the real DCT coefficients. The DCT matrix C will not be 
discussed in this paper.  
The complete 1D-DCT algorithm is presented in Table. 1, where 
• m1 = cos(4�/16)  • m3 = cos(2�/16) – cos(6�/16) 
• m2 = cos(6�/16)  • m4 = cos(2�/16)+ cos(6� /16 
 

Table 1. 1D – DCT Algorithm from Agostini et.al.[1] 
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 c7/c6 
                             c6/c4 
s = c5/c2 
 c4                                                                                                                        (3) 
 c3/c2 
 c2/c4 
 c1/c6 
  
 
 
2.2.   Two Dimensional Discrete Cosine Transform (2D- DCT)  
2D-DCT is made from two 1D-DCT. Using DCT matrix, scaled 2D-DCT operation was shown in (4). 
 
          Y'= [C] [X] [C]T                                                                                          (4) 
 
X = 8x8 input matrix 
Y' =Scaled 2D-DCT 8x8 output matrix 
C = DCT matrix, same as matrix in equ. 1. 
 
To get  2D-DCT  real  value,  Y'  must  be  element  by  element multiplied by post-scaler as shown in (5). 
Now, the post-scaler is in matrix form. 
 
                    Y = [S].*[Y']                                                                                           (5) 
 
with S =  post  scaler   matrix  and  Y  =   real  DCT coefficients. Post scaler matrix S is computed in (6). 
 
                    S = s sT                                                                                           (6) 

            

 
2.3. Quantization 
Quantized output is made by divide each DCT coefficient by quantization value.  It is done by doing 
element by element matrix multiplication between DCT output and Quantization matrix as shown in (7) and 
(8). 
 
Yq = [Q] .*[Y]                                                                                                                         (7)
Yq = Q .* [S].*[Y']                                                                                                                (8)

Since the image used in this paper is only grayscale picture, the quantization matrix applied is only for the 
luminance. The matrix was modified from [6] and post- scaled by matrix S then multiplied with 212   to  
produce integer number in order to be applied in  VHDL.  
 
2.4.   Zig-zag process 
Quantized output is sent sequentially byte-by-byte in zig-zag pattern. Zig-zag operation is done for every 8X8 
block. The pattern is shown in figure 2 [6].  

 
Figure 2.  Zig-zag process  

2.5. Run Length Encoding 
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Run-length encoding for a data sequence having frequent runs of zeros. Each time a zero is encountered in the 
input data, two values are written to the output file. The first of these values is a zero, a flag to indicate that run-
length compression is beginning. The second value is the number of zeros in the run. If the average run-length is 
longer than two, compression will take place. On the other hand, many single zeros in the data can make the 
encoded file larger than the original. 
 

 
Figure 3. Run Length Encoding process 

 

III. DECOMPRESSION 
 
 
 
 
Compres 
-ssed Image 
 
 
 
 
                          

Figure 4. Decompression process 
 
 

The decoder therefore takes the compressed image data as its input. It then subsequently applies a Run length 
decoding [RLD], Inverse zigzag [ZZ], dequantization [DQ], inverse discrete cosine transform [IDCT], then 
obtains the reconstructed image. 
1.2 Run Length Decoding 
   Run Length Decoding will perform the reverse process of run length encoding, which takes the run length 
encoded data as its input and produces the original data stream as its output. 
For example, the input: ‘1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16’ will yield the output: 
‘1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,1,11,1,12,1,13,1,14,1,15,1,16,1’.  
1.3  Inverse Zig-Zag Order 
   This will perform the Inverse zig- zag operation . Inverse zig-zag operation is done for every 8X8 block. 
1.4  Inverse Quantization 
Dequantization (inverse quantization) can be referred as,

Y = QO x QS 

where QO is the quantized value, QS is the step size, and Y is the dequantized value.  
3.4. Inverse Discrete Cosine Transform 
The IDCT unit in the image processor should realize the inverse discrete cosine transform. It therefore takes one 
block as its input. It then applies an inverse discrete transformation with an 8-bit precision to it. The 
mathematical definition of the IDCT is given in appendix B.1. After computation of the IDCT, the signed output 
samples are level-shifted. This level shifting converts the output to an unsigned representation. For 8-bit 
precision, the level shift is performed by adding 128 to every element of the block that came out of the IDCT. 
    

N = round(T´ Y T) + 128 

IV.FPGA IMPLEMENTATION 
 
4.1. Compression and Decompression  
 

 

Run 
Length 
Decoder 

Inverse  
Zig-Zag  

Inverse   
Quantizer 

Inverse 
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Reconst
ructed 
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                                                      Figure 5. Block representation of entire system 

 
Block diagram of entire system to be implemented in FPGA is shown in figure 3. Input data is inserted into the 
system every 8 bit sequentially. Actually, many DCT designs insert  the  input  to  the  DCT  in  parallel.  For 
example is 8 x 8 bit [1],[3],[4]. This is ideal for DCT computing because it only  consumes  a  clock  cycle  to 
insert data to 1D-DCT unit. With sequential manner, it takes 8 clock cycles to insert a set of data (8 points) to 
the DCT unit.  The sequential architecture is chosen to save I/O port in FPGA chip. Some 2D-DCT intellectual 
property designs from Xilinx also use 8-bit input. 

4.2.   System Architecture  

 

 

 

 

 

 

 

 
Figure 6. System Architecture 

The 2D-DCT architecture, combined with zigzag and  quantization used in this paper is shown in Fig. 4. The 2D-                             
DCT module construction is modified from [7], that also put the data sequentially into the module. Thus, the 
architecture of 2D-DCT was divided into two 1D DCT modules and  one  transpose  buffer.  The  two  1D  
DCT modules are similar but the bit widths at each module are different. The transpose buffer operates like a 
temporal barrier between the first and the second 1D DCT. It made from static RAM with two sets of data and 
address bus. One for read process and the other for write. 
 
4.3. 1D- DCT pipeline process 

Algorithm defined in table 1 from [1] is used to compute 1D-DCT. The algorithm itself has 6 steps. Since the 
DCT input/output has 8 points and data has to be entered  and  released  in  sequential  manner,  it  takes  8 
clock cycles for each input and output process. Totally, 8 points 1D-DCT computation needs 22 clock cycles. 
Design for data input and output in this paper is inspired by design from [7]. The input and output process 
visualization is shown in figure 5. The difference from system [1] is that it computes every single operation 
in a clock cycle, so every step needs 8 – 9 clock cycles. In this paper, system computes every 
step in a clock cycle, so DCT computation can be done faster. 
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Figure 7. DCT pipelining process

1D-DCT computation is done in pipeline process. The pipeline p r oc es s  i s   made  in  three  stages.  Thus, 
on e  pipeline stage is done in 8 clock cycles 
 
4.4.   Transpose Buffer 

Transpose buffer is static RAM, designed with two set of data and address bus. It has input and output data- 
address buses. The module block symbol is shown in fig. Data  input  come  from  output  of  first  1D-DCT. 
Address in, out, and WE (write enable) are generated from controller module. Input address is generated in 
normal sequence (0,1,2,3,4,5,6, …, 63) but output address is generated in transposed sequence  
(0,8,16,24,32,40,48,56,1,9,17,..,55,  63).  

 

 
 

 
Figure 8.  Transpose Buffer 

 
4.5. Quantizer 

Originally, quantization process in JPEG compression is done by divide every 2D-DCT coefficient by quantizing 
value from quantization table. To apply the operation in VHDL, division is converted into multiplication. The 
modified quantization table will be post-scaled with some post-scaling table. The post-scaled quantization table, 
written in matrix form in (9), is the table that will be applied to the VHDL code.  

To implement the quantization process, the output of 2D-DCT is multiplied by quantization value. The 
value is generated by quantization ROM that made for store the quantizing-post scaling value. Block Diagram of 
the implementation is shown. 
F. Zig - Zag Buffer 
Like transpose buffer, zigzag buffer is  made  from static RAM. Its construction is like transpose buffer. It has 
two sets of data – address bus. Input address bus is accessed by normal sequence, but output address is given 
some zigzag sequence described in figure 2. Zigzag address is generated by a zigzag ROM. The sequence is 
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stored or preprogrammed in the ROM. When the ROM address bus is  accessed  by  normal  address  sequence, 
ROM data bus will emit zigzag value.  

 
Figure 9. describes zigzag buffer and ROM construction in the system.

 
is accessed  by  normal  address  sequence, ROM data bus will emit zigzag value. Figure 9 describe zigzag 
buffer and ROM construction in the system.
 Implementation Result 
The 2-D DCT architecture was described in VHDL. This VHDL was synthesized into an Xilinx Spartan 3E 
family FPGA [8]. Nevertheless, there is a requirement to use this architecture. The FPGA must have at least 11 
multipliers, because the system utilizes only internal multiplier. System is tested with real photographic image. 
Simulation results give the quantized 2D DCT coefficients. To verify the 
numerical result, the system is given by data from grayscale picture. Data from the picture was converted to 
VHDL test bench. The result then compared to the result from MATLAB computation. 

 
Generally, mean squared error between VHDL and non- rounded MATLAB result is 0.060552 for 64 data. 
The complete synthesis results to Spartan-3E FPGA are presented, whose hardware was fit in an XCS500E 
device. System designed in [3] uses Virtex FPGA and straightforward multiplication without special 
algorithm. 

 
V.  SIMULATION RESULTS 

 
1. Encoder 
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2. Decoder 

VI. SYNTHESIS RESULTS 
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VII.  CONCLUSION AND FUTURE SCOPE 
 
2D-DCT combined with quantization and zigzag buffer is designed using VHDL. System is tested with real 
grayscale  image. In this paper, a new fully parallel architecture based on row-column decomposition has been 
proposed for the computation of the 2D DCT. The system involves no memory transposition, and is highly 
modular and utilizes a highly parallel structure to achieve high-speed performance. Due to its widely identical 
units, it will be relatively easy to implement and very suited to VLSI implementation. It uses two identical units 
for the computation of the row and column transforms and arrays of shift registers to perform the transposition 
operation. As compared to a pipelined regular architecture, the proposed architecture achieves the same 
throughput rate at much lower hardware cost and communication complexities. It is also worth mentioning that 
in the proposed design, the same architecture can be used for the computation of both the forward and the 
inverse 2D DCT. 

The aforementioned attributes of the DCT have led to its widespread deployment in virtually every image/video 
processing standard of the last decade, for example, JPEG (classical), MPEG-1, MPEG-2, MPEG-4, MPEG-4 
FGS, H.261, and H.263. Nevertheless, the DCT still offers new research directions that are being explored in the 
current and upcoming image/video coding standards. 

REFERENCES 
[1] L. Agostini, S. Bampi, “Pipelined Fast 2-D DCT Architecture for JPEG  Image  Compression”   Proceedings  of  the  14th  Annual 

Symposium   on    Integrated   Circuits   and   Systems   Design, Pirenopolis, Brazil. IEEE Computer Society 2001. pp 226-231. 
[2] Y. Arai, T. Agui, M. Nakajima. “A Fast  DCT-SQ  Scheme for Images”. Transactions  of  IEICE,  vol.  E71,  nÂ.  11,  1988,  pp. 

1095-1097. 
[ 3 ] D. Trang, N. Bihn, “A High-Accuracy and  High-Speed 2-D 8x8 Discrete  Cosine  Transform  Design”.  Proceedings   of  ICGC- 

RCICT 2010, vol. 1, 2010, pp. 135-138 
[4] I.  Basri,  B.  Sutopo,  “Implementasi  1D-DCT  Algoritma  Feig- Winograd  di  FPGA  Spartan-3E  (Indonesian)”.  Proceedings  of 

CITEE 2009, vol. 1, 2009, pp. 198-203 
[5] E.  Magli,  “The  JPEG  Family  of  Coding  Standard,”  Part  of “Document  and  Image  Compression”,  New  York:  Taylor  and 

Francis, 2004. 
[6] Wallace, G. K. ,''The JPEG Still Picture Compression Standard'', Communications of the ACM, Vol. 34, Issue 4, pp.30-44. 1991. 
[7] Sun, M., Ting C., and Albert M., ‘‘VLSI Implementation of a 16 X 16 Discrete Cosine Transform’’, IEEE Transactions on Circuits 

and Systems, Vol. 36, No. 4, April 1989. 
[8] Xilinx, Inc., “Spartan-3E FPGA Family : Data  Sheet ”, Xilinx Corporation, 2009. 
[9] Omnivision,  Inc.,  “OV9620/9120  Camera  Chip  Data  Sheet  ”, Xilinx Corporation, 2002. 
[10] Xilinx,  Inc.,  “2D  Discrete  Cosine  Transform  (DCT)  V2.0  ”, Logicore Product Specification, Xilinx Corporation, 2002. 
 

 

 

 
 

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 98 ISSN: 2319 – 1058


