
�

Design and Implementation of JPEG Image
Compression and Decompression

K. Deepthi
M.Tech (VLSI System Design)

CVSR College of Engineering, Hyderabad, Andhra Pradesh, India

R. Ramprakash
Assistant Professor, Department of ECE

CVSR College of Engineering, Hyderabad, Andhra Pradesh, India

Abstract - Image compression is very important for efficient transmission and storage of images. Demand for
communication of multimedia data through the telecommunications network and accessing the multimedia data
through Internet is growing explosively. With the use of digital cameras, requirements for storage, manipulation, and
transfer of digital images, has grown explosively. These image files can be very large and can occupy a lot of memory.
A gray scale image that is 256 x 256 pixels have 65, 536 elements to store and a typical 640 x 480 color image have
nearly a million. The basic objective of image compression is to find an image representation in which pixels are less
correlated. Architecture and VHDL design of 2-D DCT, combined with quantization and zig-zag arrangement, is
described in this paper. The output of DCT module needs to be multiplied with post-scalar value to get the real DCT
coefficients. Post-scaling process is done together with quantization process. The decompression has to revert the
transformations applied by the compression to the image data. The decoder therefore takes the compressed image
data as its input. It then subsequently applies a Run length decoding [RLD], Inverse zigzag scan [ZZ], dequantization
[DQ], inverse discrete cosine transform [IDCT], a color conversion and reordering to it. It then obtains the
reconstructed image.

Key words: JPEG, DCT, IDCT.

I .INTRODUCTION

1.1 JPEG Image Compression
Data compression method is different depending on the type of data. For information in the form of images,
one of the most popular compression method is JPEG. JPEG stands for Joint Photographic Expert Group.
Accordingly widely used in JPEG image included on the internet web pages. Use JPEG create a web page with
a picture can be accessed faster than a web page with an image without compression. Color image JPEG
compression consists of five steps [1]. This is shown in figure 1. The steps are: color space conversion, down
sampling, 2-D DCT, quantization and entropy coding. Grayscale image compression uses only last three steps

Figure 1. JPEG compression steps of color images
However, this paper’s main interest is only on hardware implementation of 2-D DCT combined with
quantization and zig-zag process. To achieve high throughput, this paper uses pipelined architecture, rather
than single clock architecture designed.

II. DISCRETE COSINE TRANSFORM (DCT)

Using DCT-2D, pixel values of a spatial image in the region will be transformed into a set of DCT coefficients
in the frequency region. Before compression, image data in memory is divided into several blocks MCU
(minimum code units). Each block consists of 8x8 pixels. Compression operations including DCT-2D in it will
be done on each block [5].
Two dimensional DCT, because of its advantage in image compression, is an interesting research subject that
invite many researcher [1] ,[2], [3], [4], [7] and others to participate in. That makes many algorithms of DCT is
developed.
2.1. 1-D Discrete Cosine Transform (DCT)

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 90 ISSN: 2319 – 1058

�

Step 1: a0 = x0 + x7
a1 = x1 + x6
a2 = x3 – x4
a3 = x1 - x6
a4 = x2 + x5
a5 = x3 + x4
a6 = x2 – x5
a7 = x0 – x7

ep 2: b0 = a0 + a5
b1 = a1 - a4
b2 = a2 + a6
b3 = a1 + a4
b4 = a0 - a5
b5 = a3 + a7
b6 = a3 + a6
b7 = a7

Step 3: d0 = b0 + b3;
d1 = b0 - b3;
d2 = b2;
d3 = b1 + b4;
d4 = b2 - b5;
d5 = b4;
d6 = b5;
d7 = b6;
d8 = b7;

Step 4: e0 = d0;
e1 = d1;
e2 = m3 * d2;
e3 = m1 * d7;
e4 = m4 * d6;
e5 = d5;
e6 = m1 * d3;
e7 = m2 * d4;
e8 = d8;

Step 5: f0 = e0;
f1 = e1;
f2 = e5 + e6;

f3 = e5 - e6; f4
= e3 + e8; f5 =

There are several ways to compute 1-D DCT. It can be computed with straightforward computation – just
multiply input vector by raw DCT coefficients without any algorithm. This method is fast but need large logic
utilization, especially multiplier. The other ways is computing DCT with multiplier reduction algorithm
[1],[2],[4]. Reduced multiplier means reduced complexity. FPGA chip usually has only a few multipliers. In
this case, Spartan-3E XCS500E has only 20 multipliers. This paper adopts the work of Agostini [1] that
implemented Arai scaled 1-D DCT algorithm [2]. It means the DCT coefficients produced by the algorithm are
not the real coefficients. To get the real coefficients, the scaled ones must be multiplied with post-scaler value.
Equation (1) is showing scaled 1-D DCT process.

 y' = C x (1)
Variable x is 8 point vector. C is Arai's DCT matrix and y' is vector of scaled DCT coefficients. To get the
real DCT coefficients, y' must be element by element multiplicated with post-scaling factor. It is shown in(2).

 y = s .* y' (2)
Constant s is vector of post-scaling factor. Element by element multiplication is shown with “.*'
operator adopted from MATLAB. Output vector y is the real DCT coefficients. The DCT matrix C will not be
discussed in this paper.
The complete 1D-DCT algorithm is presented in Table. 1, where
• m1 = cos(4�/16) • m3 = cos(2�/16) – cos(6�/16)
• m2 = cos(6�/16) • m4 = cos(2�/16)+ cos(6� /16

Table 1. 1D – DCT Algorithm from Agostini et.al.[1]

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 91 ISSN: 2319 – 1058

�

 c7/c6
 c6/c4
s = c5/c2
 c4 (3)
 c3/c2
 c2/c4
 c1/c6

2.2. Two Dimensional Discrete Cosine Transform (2D- DCT)
2D-DCT is made from two 1D-DCT. Using DCT matrix, scaled 2D-DCT operation was shown in (4).

 Y'= [C] [X] [C]T (4)

X = 8x8 input matrix
Y' =Scaled 2D-DCT 8x8 output matrix
C = DCT matrix, same as matrix in equ. 1.

To get 2D-DCT real value, Y' must be element by element multiplied by post-scaler as shown in (5).
Now, the post-scaler is in matrix form.

 Y = [S].*[Y'] (5)

with S = post scaler matrix and Y = real DCT coefficients. Post scaler matrix S is computed in (6).

 S = s sT (6)

2.3. Quantization
Quantized output is made by divide each DCT coefficient by quantization value. It is done by doing
element by element matrix multiplication between DCT output and Quantization matrix as shown in (7) and
(8).

Yq = [Q] .*[Y] (7)
Yq = Q .* [S].*[Y'] (8)

Since the image used in this paper is only grayscale picture, the quantization matrix applied is only for the
luminance. The matrix was modified from [6] and post- scaled by matrix S then multiplied with 212 to
produce integer number in order to be applied in VHDL.

2.4. Zig-zag process
Quantized output is sent sequentially byte-by-byte in zig-zag pattern. Zig-zag operation is done for every 8X8
block. The pattern is shown in figure 2 [6].

Figure 2. Zig-zag process

2.5. Run Length Encoding

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 92 ISSN: 2319 – 1058

�

Run-length encoding for a data sequence having frequent runs of zeros. Each time a zero is encountered in the
input data, two values are written to the output file. The first of these values is a zero, a flag to indicate that run-
length compression is beginning. The second value is the number of zeros in the run. If the average run-length is
longer than two, compression will take place. On the other hand, many single zeros in the data can make the
encoded file larger than the original.

Figure 3. Run Length Encoding process

III. DECOMPRESSION

Compres
-ssed Image

Figure 4. Decompression process

The decoder therefore takes the compressed image data as its input. It then subsequently applies a Run length
decoding [RLD], Inverse zigzag [ZZ], dequantization [DQ], inverse discrete cosine transform [IDCT], then
obtains the reconstructed image.
1.2 Run Length Decoding
 Run Length Decoding will perform the reverse process of run length encoding, which takes the run length
encoded data as its input and produces the original data stream as its output.
For example, the input: ‘1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16’ will yield the output:
‘1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,1,11,1,12,1,13,1,14,1,15,1,16,1’.
1.3 Inverse Zig-Zag Order
 This will perform the Inverse zig- zag operation . Inverse zig-zag operation is done for every 8X8 block.
1.4 Inverse Quantization
Dequantization (inverse quantization) can be referred as,

Y = QO x QS

where QO is the quantized value, QS is the step size, and Y is the dequantized value.
3.4. Inverse Discrete Cosine Transform
The IDCT unit in the image processor should realize the inverse discrete cosine transform. It therefore takes one
block as its input. It then applies an inverse discrete transformation with an 8-bit precision to it. The
mathematical definition of the IDCT is given in appendix B.1. After computation of the IDCT, the signed output
samples are level-shifted. This level shifting converts the output to an unsigned representation. For 8-bit
precision, the level shift is performed by adding 128 to every element of the block that came out of the IDCT.

N = round(T´ Y T) + 128

IV.FPGA IMPLEMENTATION

4.1. Compression and Decompression

Run
Length
Decoder

Inverse
Zig-Zag

Inverse
Quantizer

Inverse
DCT

Reconst
ructed
Image

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 93 ISSN: 2319 – 1058

�

 Figure 5. Block representation of entire system

Block diagram of entire system to be implemented in FPGA is shown in figure 3. Input data is inserted into the
system every 8 bit sequentially. Actually, many DCT designs insert the input to the DCT in parallel. For
example is 8 x 8 bit [1],[3],[4]. This is ideal for DCT computing because it only consumes a clock cycle to
insert data to 1D-DCT unit. With sequential manner, it takes 8 clock cycles to insert a set of data (8 points) to
the DCT unit. The sequential architecture is chosen to save I/O port in FPGA chip. Some 2D-DCT intellectual
property designs from Xilinx also use 8-bit input.

4.2. System Architecture

Figure 6. System Architecture

The 2D-DCT architecture, combined with zigzag and quantization used in this paper is shown in Fig. 4. The 2D-
DCT module construction is modified from [7], that also put the data sequentially into the module. Thus, the
architecture of 2D-DCT was divided into two 1D DCT modules and one transpose buffer. The two 1D
DCT modules are similar but the bit widths at each module are different. The transpose buffer operates like a
temporal barrier between the first and the second 1D DCT. It made from static RAM with two sets of data and
address bus. One for read process and the other for write.

4.3. 1D- DCT pipeline process

Algorithm defined in table 1 from [1] is used to compute 1D-DCT. The algorithm itself has 6 steps. Since the
DCT input/output has 8 points and data has to be entered and released in sequential manner, it takes 8
clock cycles for each input and output process. Totally, 8 points 1D-DCT computation needs 22 clock cycles.
Design for data input and output in this paper is inspired by design from [7]. The input and output process
visualization is shown in figure 5. The difference from system [1] is that it computes every single operation
in a clock cycle, so every step needs 8 – 9 clock cycles. In this paper, system computes every
step in a clock cycle, so DCT computation can be done faster.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 94 ISSN: 2319 – 1058

�

Figure 7. DCT pipelining process

1D-DCT computation is done in pipeline process. The pipeline p r oc es s i s made in three stages. Thus,
on e pipeline stage is done in 8 clock cycles

4.4. Transpose Buffer

Transpose buffer is static RAM, designed with two set of data and address bus. It has input and output data-
address buses. The module block symbol is shown in fig. Data input come from output of first 1D-DCT.
Address in, out, and WE (write enable) are generated from controller module. Input address is generated in
normal sequence (0,1,2,3,4,5,6, …, 63) but output address is generated in transposed sequence
(0,8,16,24,32,40,48,56,1,9,17,..,55, 63).

Figure 8. Transpose Buffer

4.5. Quantizer

Originally, quantization process in JPEG compression is done by divide every 2D-DCT coefficient by quantizing
value from quantization table. To apply the operation in VHDL, division is converted into multiplication. The
modified quantization table will be post-scaled with some post-scaling table. The post-scaled quantization table,
written in matrix form in (9), is the table that will be applied to the VHDL code.

To implement the quantization process, the output of 2D-DCT is multiplied by quantization value. The
value is generated by quantization ROM that made for store the quantizing-post scaling value. Block Diagram of
the implementation is shown.
F. Zig - Zag Buffer
Like transpose buffer, zigzag buffer is made from static RAM. Its construction is like transpose buffer. It has
two sets of data – address bus. Input address bus is accessed by normal sequence, but output address is given
some zigzag sequence described in figure 2. Zigzag address is generated by a zigzag ROM. The sequence is

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 95 ISSN: 2319 – 1058

�

stored or preprogrammed in the ROM. When the ROM address bus is accessed by normal address sequence,
ROM data bus will emit zigzag value.

Figure 9. describes zigzag buffer and ROM construction in the system.

is accessed by normal address sequence, ROM data bus will emit zigzag value. Figure 9 describe zigzag
buffer and ROM construction in the system.
 Implementation Result
The 2-D DCT architecture was described in VHDL. This VHDL was synthesized into an Xilinx Spartan 3E
family FPGA [8]. Nevertheless, there is a requirement to use this architecture. The FPGA must have at least 11
multipliers, because the system utilizes only internal multiplier. System is tested with real photographic image.
Simulation results give the quantized 2D DCT coefficients. To verify the
numerical result, the system is given by data from grayscale picture. Data from the picture was converted to
VHDL test bench. The result then compared to the result from MATLAB computation.

Generally, mean squared error between VHDL and non- rounded MATLAB result is 0.060552 for 64 data.
The complete synthesis results to Spartan-3E FPGA are presented, whose hardware was fit in an XCS500E
device. System designed in [3] uses Virtex FPGA and straightforward multiplication without special
algorithm.

V. SIMULATION RESULTS

1. Encoder

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 96 ISSN: 2319 – 1058

�

2. Decoder

VI. SYNTHESIS RESULTS

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 97 ISSN: 2319 – 1058

�

VII. CONCLUSION AND FUTURE SCOPE

2D-DCT combined with quantization and zigzag buffer is designed using VHDL. System is tested with real
grayscale image. In this paper, a new fully parallel architecture based on row-column decomposition has been
proposed for the computation of the 2D DCT. The system involves no memory transposition, and is highly
modular and utilizes a highly parallel structure to achieve high-speed performance. Due to its widely identical
units, it will be relatively easy to implement and very suited to VLSI implementation. It uses two identical units
for the computation of the row and column transforms and arrays of shift registers to perform the transposition
operation. As compared to a pipelined regular architecture, the proposed architecture achieves the same
throughput rate at much lower hardware cost and communication complexities. It is also worth mentioning that
in the proposed design, the same architecture can be used for the computation of both the forward and the
inverse 2D DCT.

The aforementioned attributes of the DCT have led to its widespread deployment in virtually every image/video
processing standard of the last decade, for example, JPEG (classical), MPEG-1, MPEG-2, MPEG-4, MPEG-4
FGS, H.261, and H.263. Nevertheless, the DCT still offers new research directions that are being explored in the
current and upcoming image/video coding standards.

REFERENCES
[1] L. Agostini, S. Bampi, “Pipelined Fast 2-D DCT Architecture for JPEG Image Compression” Proceedings of the 14th Annual

Symposium on Integrated Circuits and Systems Design, Pirenopolis, Brazil. IEEE Computer Society 2001. pp 226-231.
[2] Y. Arai, T. Agui, M. Nakajima. “A Fast DCT-SQ Scheme for Images”. Transactions of IEICE, vol. E71, nÂ. 11, 1988, pp.

1095-1097.
[3] D. Trang, N. Bihn, “A High-Accuracy and High-Speed 2-D 8x8 Discrete Cosine Transform Design”. Proceedings of ICGC-

RCICT 2010, vol. 1, 2010, pp. 135-138
[4] I. Basri, B. Sutopo, “Implementasi 1D-DCT Algoritma Feig- Winograd di FPGA Spartan-3E (Indonesian)”. Proceedings of

CITEE 2009, vol. 1, 2009, pp. 198-203
[5] E. Magli, “The JPEG Family of Coding Standard,” Part of “Document and Image Compression”, New York: Taylor and

Francis, 2004.
[6] Wallace, G. K. ,''The JPEG Still Picture Compression Standard'', Communications of the ACM, Vol. 34, Issue 4, pp.30-44. 1991.
[7] Sun, M., Ting C., and Albert M., ‘‘VLSI Implementation of a 16 X 16 Discrete Cosine Transform’’, IEEE Transactions on Circuits

and Systems, Vol. 36, No. 4, April 1989.
[8] Xilinx, Inc., “Spartan-3E FPGA Family : Data Sheet ”, Xilinx Corporation, 2009.
[9] Omnivision, Inc., “OV9620/9120 Camera Chip Data Sheet ”, Xilinx Corporation, 2002.
[10] Xilinx, Inc., “2D Discrete Cosine Transform (DCT) V2.0 ”, Logicore Product Specification, Xilinx Corporation, 2002.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 98 ISSN: 2319 – 1058

