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Abstract | i

Abstract

With the wide spread of wireless technology, the time for 4G has arrived, and 5G will appear not so far
in the future. However, no matter whether it is 4G or 5G, low latency is a mandatory requirement for
baseband processing at base stations for modern cellular standards. In particular, in a future 5G
wireless system, with massive MIMO and ultra-dense cells, the demand for low round trip latency
between the mobile device and the base station requires a baseband processing delay of 1 ms. This is
10 percentage of today’s LTE-A round trip latency, while at the same time massive MIMO requires
large-scale matrix computations. This is especially true for channel estimation and MIMO detection at
the base station. Therefore, it is essential to ensure low latency for the user data traffic.

In this master’s thesis, LTE/LTE-A uplink physical layer processing is examined, especially the
process of channel estimation and MIMO detection. In order to analyze this processing we compare
two conventional algorithms’ performance and complexity for channel estimation and MIMO detection.
The key aspect which affects the algorithms’ speed is identified as the need for “massive complex
matrix inversion”. A parallel coding scheme is proposed to implement a matrix inversion kernel
algorithm on a single instruction multiple data stream (SIMD) vector processor.

The major contribution of this thesis is implementation and evaluation of a parallel massive
complex matrix inversion algorithm. Two aspects have been addressed: the selection of the algorithm
to perform this matrix computation and the implementation of a highly parallel version of this
algorithm.

Keywords. channel estimation, MIMO detection, massive complex matrix inversion, SIMD
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Sammanfattning

Med den breda spridningen av trddlos teknik, har tiden for 4G kommit, och 5G kommer inom en
overskadlig framtid. Men oavsett om det giller 4G eller 5G, 1ag latens ar ett obligatoriskt krav for
basbandsbehandling vid basstationer for moderna mobila standarder. I synnerhet i ett framtida
tradlost 5G-system, med massiva MIMO och ultratita celler, behovs en basbandsbehandling
fordréjning pa 1 ms for att klara efterfrigan pa en lag rundresa latens mellan den mobila enheten och
basstationen. Detta ar 10 procent av dagens LTE-E rundresa latens, medan massiva MIMO samtidigt
kraver storskaliga matrisberdakningar. Detta dr sarskilt viktigt for kanaluppskattning och MIMO-
detektion vid basstationen. Darfor dr det viktigt att se till att det ar 1ag latens f6r anviandardatatrafik.

I detta examensarbete, skall LTE/LTE-A upplédnk fysiska lagret bearbetning undersokas, och da
sarskilt processen for kanaluppskattning och MIMO-detektion. For att analysera denna processing
jamfor vi tva konventionella algoritmers prestationer och komplexitet for kanaluppskattning och
MIMO-detektion. Den viktigaste aspekten som paverkar algoritmernas hastighet identifieras som
behovet av "massiva komplex matrisinversion". Ett parallellt kodningsschema foreslds for att
implementera en "matrisinversion kernel-algoritmen" pa singelinstruktion multidatastrom (SIMD)
vektorprocessor.

Det storsta bidraget med denna avhandling dr genomforande och utviardering av en parallell
massiva komplex matrisinversion kernel-algoritmen. Tva aspekter har tagits upp: valet av algoritm for
att utfora denna matrisberdkning och implementationen av en hogst parallell version av denna
algoritm.

Nyckelord: kanaluppskattning, MIMO-detektion, massiva komplex matrisinversion, SIMD
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1 Introduction

This chapter presents a brief general introduction to the research area explored in this thesis. Next, it
describes the specific problem that this thesis addresses. Next, the goals of this thesis project are stated.
The chapter ends with an outline of the structure of this thesis.

1.1 General introduction to the area

With the development of communication technology, wireless communication technology has evolved
from the second generation wireless telephone system (2G), which utilized circuit-switched
communication, through the deployment of third generation of mobile telecommunication
technology (3G),utilizing high speed data networks, to the fourth generation of mobile
telecommunication technology (4G) which supports almost any application and fulfills all of a user’s
requirements for wireless services[1].Today, the fifth generation 5G of wireless communications
standards is emerging. The 5G will integrate both existing standards and introduce new wireless
technologies. Figure 1-1 illustrates this evolution of wireless communication technologies.

1990 2000 2010 2020
e L ssem D
= - e

5 o Yo
ac . vraovAncD

56 | Newtechnologies

Figure 1-1: The evolution of wireless communication (Inspired by Figure 1 on page 2 of [2])

For mobile operators, cost has become increasingly important in recent years. Simultaneously, the
rising demands of users place greater demands on the mobile operators’ networks. Future
communication technologies need to reduce power consumption, decrease latency, increase
performance, and increase the compatibility of today’s different standards.

Latency significantly affects the experience of users, terminals, and applications [3].The rapid
increase in the use of mobile applications that require low network latency is a key factor for mobile
operators, hence leading to a change the market [4].Today, all telecommunications equipment vendors
have schemes to evolve their network technologies in order to reduce network latency. However, the
physical layer can introduce additional network latency [3]. This latency is due to the unreliability of
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the wireless communication link due to time-vary channel fading and multiple-propagation paths. The
key to realize low latency at the physical layer is to select appropriate technologies to combat the
drawbacks of wireless channels.

The Long Term Evolution (LTE) baseband system exploits many techniques, such as
synchronization, channel coding, interleaving, demodulation, channel estimation, multiple input
multiple output (MIMO) detection, and so on. Channel estimation for a multi-antenna receiver system
introduces many redundancies; these redundancies lower the channel’s utilization, require additional
processing power, and increase latency. The conventional method to address these problems is to
decrease the length of the cyclic prefix (CP) and add pilot signals. In baseband processing, control and
data correlation can be minimized by selecting appropriate algorithms and then optimizing these
algorithms.

1.2 Problem definition

In the transition from LTE to LTE-Advanced (LTE-A), the uplink baseband processing had little
alteration other than introducing additional MIMO technologies. However, MIMO has influenced both
the channel estimation algorithm and the detection algorithm. Channel estimation and detection are
two key aspects of baseband processing of the physical layer at the receiver. Many people have worked
on channel estimation and detection with profound results, expressed as formulas.

In a variety of mobile communication systems, especially LTE and LTE-A systems, most receiver
procedures, such as turbo decoding and detection, need to know beforehand the channel’s impulse
response (CIR). The actual value used for CIR is the result of channel estimation. The performance of
the receiver depends upon the accuracy of the estimated channel parameters produced by the
estimator. For this reason, channel estimation has become one of most important technologies in these
wireless systems.

In addition to channel estimation, in LTE-A systems research on MIMO detection algorithms is a
crucial area. Ideally, the MIMO detection algorithm (realized by the base station) should improve the
accuracy of decoding, thus leading to an enhanced data transmission rate from a cellular terminal.

Much research has already been done to achieve high performance and low complexity of the
channel estimation algorithm and MIMO detection algorithm. As a result, a large number of channel
estimation algorithms and MIMO detection algorithms have been proposed. After painstaking reading
and investigation, these algorithms can be classified into three types: (1) algorithms with low
performance and low complexity; (2) algorithms with better performance and medium complexity;
and (3) algorithms with high performance and high complexity. Today the LTE-A uplink receiver
baseband processing is already quite sophisticated. Currently no channel estimation algorithm for
LTE-A offers both low power consumption and low latency.

The developments of wireless system are underway for both 4G and 5G. In 5G, low latency will be a
major requirement. We expect that 5G will use massive MIMO with 128 or 256 antennas at a base
station. Unfortunately, the ultra-high latency computation of massive matrices is the ultimate
bottleneck to realize low latency channel estimation and MIMO detection. Optimizing the channel
estimation and MIMO detection algorithms in order to obtain low latency would be significant for the
development of future 4G and 5G base stations. For this reason, this thesis project researched existing
channel estimation and MIMO detection algorithms for the case of massive MIMO, with the aim of
reducing the computational cost of the massive matrix computations. The approach is to utilize the
features of an efficient hardware platform- under development by the Beijing Institute of Technology
(BIT) Application Specific Instruction-set Processor (ASIP) laboratory -in order to realize ultra-low
latency processing.
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1.3 Goals

The ASIP research team of BIT is developing a set of multi-cluster single instruction-multiple data
(SIMD) vector processors. These processors will be applied to LTE-A and 5G systems to replace the use
of application specific integrated circuits (ASIC).In future LTE-A and 5G systems, the coverage area of
a base station will be smaller and the number of antennas at each base station will increase. The
baseband processing should fulfill the requirement for ultra-low latency. To achieve low latency, SIMD
processors were selected as a candidate hardware platform for future radio base stations in China. The
computations involved in channel estimation and MIMO detection are mainly matrix manipulation
(including matrix multiplication and inversion). These matrix computations suit the characteristics of
a SIMD processor; hence this thesis project targeted a SIMD vector processor as its implementation
platform.

Moving from general to specific goals, the goals of this thesis project are:
e Gain experience in LTE/LTE-A uplink baseband processing at the physical layer.
e Research channel estimation and MIMO detection in an LTE/LTE-A uplink system.

¢ Investigate existing conventional channel estimation and MIMO detection algorithms used
in LTE/LTE-A, analyze the advantages and disadvantages of each, and implement a
simulation platform to verify their performance.

e Combine 5G trends to analyze channel estimation and MIMO detection algorithms, find
the core issues that affect the algorithms of channel estimation/MIMO detection.

e Propose a parallel implementation to improve the performance of a kernel algorithm for
4G/5G baseband processing system when using SIMD.

1.4 Structure of the thesis

The thesis consists of five chapters. This first chapter briefly introduced this area, the problems, and
goals to be addressed. Chapter 2 presents related work and background information relevant to this
thesis project, including previous work in the area and related technologies. Chapter 3 describes the
methodology used for the measurements made and introduces the tools and methods used in this
thesis project. A detailed analysis of channel estimation, MIMO detection, and conventional
algorithms are given. The chapter concludes by presenting the proposed algorithm’s design and
implementation on a parallel processor. In the fourth chapter, the analysis that was performed is
presented and the results obtained are interpreted in detail. The thesis project’s conclusions are stated
in the fifth chapter, along with a discussion of potential future work.






Background | 5

2 Background

This chapter provides the reader with background information in order to better understand the rest of
this thesis. Section 2.1 begins by introducing relevant concepts in the field of LTE and LTE-A, and
presents the key technologies used in an LTE and that continue to be used in LTE-A systems. As this
thesis project focuses on LTE/LTE-A uplink baseband processing, Section 2.2 describes the
LTE/LTE-A physical layer, then the LTE/LTE-A uplink system flow and model. Section 2.3 describes
some 5G trends. Finally, Section2.4 provides relevant background knowledge concerning SIMD.

2.1 LTE/LTE-A Basic Concepts

LTE is a 3.9G technology. According to the standard, the peak data rate of LTE is from 100 to
326.4 Mbps over the downlink and 50 to 86.4 Mbps over the uplink. LTE uses orthogonal frequency-
division multiple access (OFDMA) and single carrier frequency-division multiple access (SC-FDMA) in
downlink and uplink respectively [5][6]. The targets of LTE are to ensure the continued
competitiveness of 3G systems for the future and to offer high user data rates and low-latency.

LTE-A is a 4th generation mobile telecommunication technology. LTE-A was finalized by the 3rd
Generation Partnership Project (3GPP) in March 2011. LTE-A is not a completely new technology,
rather it is an enhancement to LTE. The main objective of LTE-A is to increase the peak data rate to
1 Gbps on the downlink and 500 Mbps on the uplink, improve spectral efficiency from a maximum of
16 bps/Hz in R8 to 30 bps/Hz in R10, increase the number of simultaneously active subscribers, and
improve performance at cell edges [7].Many technologies employed in LTE continue to be used in
LTE-A, such as orthogonal frequency division multiplexing (OFDM), OFDMA, MIMO, and SC-FDMA.
The main new technologies introduced in LTE-A are carrier aggregation (CA), enhanced use of
multiple antenna techniques, and relay nodes (RN).Because this thesis focuses only on physical layer
transmission, the enhanced MIMO technique is the only one of these techniques considered in this
thesis. Detailed information about CA and RN can be found in [8] and [9].

2.1.1 Orthogonal Frequency Division Multiplexing

Orthogonal frequency division multiplexing (OFDM) is a well-known method of encoding digital data
on multiple carrier frequencies. OFDM systems spilt the available bandwidth into many narrower
sub-carriers. Data is transmitted as parallel streams over these sub-carriers. Each sub-carrier is
modulated with varying levels of modulation schemes, such as: Quadrature Phase Shift Keying
(QPSK), Quadrature Amplitude Modulation (QAM), and 64-state QAM (64-QAM). The main merits of
OFDM are low implementation complexity; good tolerance for inter-symbol interference (ISI) induced
by multipath, and high spectral efficiency. However, ODFM has two weaknesses: large peak-to-average
power ratio (PAPR) and high sensitivity to carrier frequency errors. [10][11]

2.1.2 OFDMA/SC-FDMA

LTE/LTE-A employs OFDMA and SC-FDMA as the multiplexing scheme for the downlink and uplink
respectively. The requirements of LTE uplink and downlink differ in several ways. Since power
consumption is a key consideration for User Equipment (UE), i.e., terminals. Because of OFDM’s high
PAPR and related loss of efficiency, an alternative to OFDM was desirable for the LTE uplink.
SC-FDMA is a suitable scheme for the LTE uplink. The basic transmitter and receiver architecture of
SC-FDMA is quite similar to OFDMA, and SC-FDMA provides the same degree of multipath
protection. The major advantage of SC-FDMA is its low PAPR [11].Figure 2-1depicts the basic
SC-FDMA and OFDMA signal processing chains of the transmitter and receiver. In this figure, S/P
stands for serial to parallel conversion, while P/S stands for parallel to serial conversion.
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Figure 2-1: The basic SC-FDMA and OFDMA chain in transmitter/receiver

As can be seen in Figure 2-1, the OFDMA and SC-FDMA chains have a highly similar functional
structure. In SC-FDMA, the subcarrier mapping (SC Mapping), N-point Inverse fast Fourier
transforms (IFFT), and cyclic prefix adding (Add CP) are the same as OFDMA. The difference is that,
for the data streams, before they are mapped to subcarriers, anMgc-point discrete Fourier transform
(DFT) is performed to reduce the PAPR. This DFT can also be considered to be precoding.

2.1.3 MIMO

In a wireless communication system, MIMO is a smart antenna technology that makes use of multiple
antennas at both the transmitter and receiver to enhance communication performance. The
advantages of MIMO technology are to realize high data throughput and increase link range without
requiring additional bandwidth or transmit power. MIMO improves spectral efficiency (i.e., more bits
per second per Hertz of bandwidth). Diversity coding enhances the link’s reliability (i.e., reduces
fading). Spatial multiplexing improves data throughput. From an encoding point of view, two types of
encoding methods can be used for MIMO systems: open-loop and closed-loop. The difference between
open-loop and closed-loop is that the closed-loop approach requires channel information and uses
weights computed from this channel estimation to perform precoding.

MIMO increases the overall data rates by transmitting two (or more) different data streams on two
(or more) different antennas, while receiving them using two or more antennas. However, due to the
increasing volume of mobile traffic over the years, the use of MIMO in LTE could not satisfy the
requirements of LTE-A for advanced MIMO channel transmission and higher peak efficiency [12].
Therefore, two major enhancements of MIMO in LTE-A were made [13] [14]:

For downlink LTE supports a maximum of four spatial layers of transmission (4 x 4),
whereas to improve single user peak data rates LTE-A specifies up to eight
spatial layers. This allows 8 x 8spatial multiplexing of the downlink with eight
receiver antennas at the UE.

For uplink The single input, multiple output system adopted for LTE uplink supports a
maximum of one data stream per UE(i.e.,1 x2), whereas LTE-A (R10)
supports up to four spatial layers of transmissions for up to 4 x 4 transmission
over the uplink when combined with four receiver antennas at the eNodesB.
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2.2 LTE-A uplink physical layer

LTE-A physical layer protocols are mainly defined in the following 3GPP standards:

TS 36.201 General description of Long Term Evolution (LTE) physical layer[15]
TS 36.211 Physical channels and modulation[16]

TS 36.212 Multiplexing and channel coding[17]

TS 36.213 Physical layer procedures[18]

TS 36.214 Physical layer measurements[19]

TS 36.216 Physical layer for relaying operation[20]

TS 36.201 is the general description documentation, the rest are specific documents. As this thesis
only considers physical (PHY) layer transmission, the relevant content of TS 36.211 is described in the
following sub-sections. Although LTE-A is an improvement of LTE, there seems to be little
enhancement from LTE to LTE-A at the PHY layer. Section 2.1 introduced the essential techniques of
LTE/LTE-A used in the PHY layer, specifically OFDM, OFDMA, SC-FDMA, and MIMO. The LTE PHY
downlink and uplink are quite different because of the very different structures and capabilities of the
evolved NodeB (eNodeB) and UE. Since this thesis focuses only on LTE uplink processing, especially
uplink channel estimation and the MIMO detection algorithm, an overview of LTE uplink PHY layer
processing flow between the UE and eNodesB will be presented, hence the LTE downlink system flow
will be neglected.

2.2.1 Generic Frame Structure

One element shared by the LTE downlink and uplink is the generic frame structure. There are two

types of frame structures defined in the LTE specifications (depending on the duplexing scheme). Type

one is for frequency division duplexing (FDD) and type two is for time division duplexing (TDD).

Figure 2-1shows the generic type 1 frame structure of LTE.
I

- 1 Frame (10 msec) >

]
I
] 1
—_— «—— 1 Sub-Frame (1.0 msec) — +<—1 Slot (0.5 msec)
I
1

- r -

[0|1|2|3|4|5|6 |o|1|2|3|4|5|s
1 R~J|\

7 OFDM Symbols
! (short cyclic prefix)

!
’,
~
A

cyclic prefixes

Figure 2-2: Generic Frame Structure type 1

The duration for one radio frame is 10 ms. There are 20 slots in a frame. These slots are numbered
from 0 to 19. The duration of one slot is 0.5 ms. A subframe is defined as two consecutive slots. There
are 10 subframes in a frame. There are 7 or 6 OFDM Symbols in each slot depending on which kind of
CP (normal or extended) is used. The CP is inserted in front of every symbol.
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Figure 2-3presents the frame structure type 2. Each radio frame is 10 ms in duration. A frame
consists of two half frames of 5 ms each. Each half frame is comprised of five sub-frames of length 1 ms.
In common with Type 1, the length of a sub-frame is also 1 ms. The difference between Type 1 and
type 2 is that type 2 includes three different sub-frames: uplink transmission subframe, downlink
subframe, and special subframe.

One radio frame (10ms)

Y

One half-frame (5ms)

One
Sub-frame

Figure 2-3: Generic Frame Structure type 2

2.2.2  Uplink physical channel

Uplink physical channels are used to transmit the user’s data and control messages. There are two
types of physical channels defined for the uplink: Physical Uplink Shared channel (PUSCH) and
Physical uplink control channel (PUCCH). This thesis only considers PUSCH, as the purpose of
PUSCH is to transmit user data. The modulation schemes used by PUSCH are QPSK, 16-state QAM(16-
QAM), or 64-QAM depending on channel conditions.

2.2.3 LTE-A Uplink physical layer processing

As mentioned earlier, this thesis focuses only on LTE-A’s uplink PHY layer processing, especially
channel estimation and MIMO detection at the eNodeB. To help a reader without extensive knowledge
of uplink PHY layer processing, every stage of baseband signal processing procedures between the UE
and eNodeB in PHY layer will be briefly described. First, a more detailed description of channel
estimation and MIMO detection will be given later in this chapter. Although SC-FDMA and FDMA are
the two multiple access schemes for LTE uplink and LTE downlink respectively, most of their
baseband signal processing modules are similar.

Assuming that raw bits are ready to be transmitted from an UE to an eNodeB. The LTE-A uplink
baseband signal is produced through the stages described below. Figure 2-4depicts the LTE-A uplink
PHY layer model. The procedures of the PHY layer can be divided into processing at the UE (Table 2-1)
and at the eNodeB (Table 2-2).
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processing mapping Interleaver mapping >
YY. 4
< < R irce < 2
DAC & RF Addce IFFT element i Precoding
&PS ¥ 2 Insertion |_
% * < Mapping /SP < <
e —
L estimation
v
LY) RF & ADC B o ™ FFT ™ Relmuﬂ:le ™ He -l—) Eq::::\z:ct)ion
element
Extraction
—>| RemoveCP | ] —>| De-Mapping/SP [ combination

Base Station

l

Rx bit rate Channel I De- 1 Soft | IFFT
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Figure 2-4: LTE-A uplink physical layer model
Table 2-1: Physical layer processes at UE
Transmitter (Tx) bit This stage includes transport block cyclic redundancy check (CRC)

rate processing

attachment, code block segmentation &code block CRC attachment, channel
coding, rate matching, and code block concatenation. A detailed description
of these operations can be found in [17].

Scrambling

A number of bits are scrambled with a UE-specific scrambling sequence prior
to modulation. The main reason for scrambling is to decrease the interference
from adjacent cells.

Modulation mapper

This stage maps the binary bits into complex value symbols. The modulation
schemes are QPSK, 16-QAM, and 64-QAM.

Layer mapping

The complex-valued modulation symbols for each of the codewords to be
transmitted are mapped onto one, two, three, or four PHY layers. Two kinds
of layer mapping are supported in LTE/LTE-A: spatial multiplexing and
transmit diversity.

DFT

Performing a DFT converts the signal from the time domain to the frequency
domain.

Precoding

Precoding maps the complex-valued modulation symbols from the layers to
multiple antennas.

Pilot Insertion

Pilot symbols are generated and inserted into the complex-values modulation
symbols on each antenna port. Pilots provide a known message for channel
estimation.

Resource element
mapping

This stage generates pilots, while mapping pilots and the complex-valued
modulation symbols to the physical resource blocks at every antenna port.
The mapping is in increasing order of first resource block index k over the
assigned physical resource blocks and then the index 1, starting with the first
slot in a subframe.

IFFT N-point IFFTs are performed to convert the signal from the frequency
domain to the time domain after the resource element mapping starting from
symbol index 1=0.

Add CP & PS Attach CP into every symbol and then perform parallel to serial conversion.

Digital/Analog Convert the digital signal to an analog signal and then transmit on the

Converter& Radio appropriate radio frequency.

Frequency
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Table 2-2:

Procedures at eNodeB

Radio frequency

The base station receives an analog RF signal, and then converts this analog

(RF)& analog/digital signal to a digital signal.
converter (ADC)
Serial/Parallel Perform serial to parallel conversion and then remove CP

converter& Remove
(0134

Fast Fourier
Transform(FFT)

N-point FFTs are performed to convert the signal from time domain to
frequency domain.

Reference signal/Data
signal separation

The reference signal and data signal are separated. The reference signal is
used to perform channel estimation. Every user’s symbol data will be
extracted from the different subcarriers according to their physical resource
block configurations.

Channel estimation

Based on the pilot symbols extracted from the frame, estimate the channel
matrix H during the period the channel state information (CSI) is valid.

MIMO detection

Based on the estimated channel matrix H, perform equalization on the whole
slot.

Remove pilot

Remove pilot symbol from the modulated symbol frame.

Resource element

Demap the complex-valued modulated symbol frame into blocks.

demapping

IFFT PerformM-point IFFTs to convert the data from the frequency domain to the
time domain.

Soft slicer Convert the received SC-FDMA symbols into soft bits according to the
modulation scheme employed.

Descrambler/Channel | The inverse stage of scrambling uses a de- interleaver for rank indication bits,

De-interleaver

Hybrid Automatic Repeat Request ACK (HARQ-ACK) information bits, and
PUSCH/Channel Quality Indication (CQI) multiplexing bits.

Receiver (Rx) bit rate
processing

This stage is the inverse processing of Tx bit rate processing. It involves Code
block deconcatenation, rate dematching, turbo decoding, code block CRC
removal, code block de-segmentation, and transport block CRC removal.

2.3 5G trends

The fifth generation (5G) cellular network is expected to be launched by 2020. It is a unified global
standard that will combine evolved versions of currently existing wireless technologies with
complementary new technologies [2][21]. The peak download and upload speeds will beyond 1 Gbps.
The resulting 5G systems are supposed to provide great service in a crowd; an amazing user experience
due to the ultra high data rate; support ubiquitous things communicating at low energy, low cost, and
for extremely large numbers of devices; and realize super real-time and reliable connections with very
low latency [22]. The potential technologies that could used in 5G are ultra-densification,
device-centric architectures, millimeter wave (mmWave), massive MIMO, smart devices, and native
support for machine-to-machine (M2M) communication [23][24].

2.4 SIMD

Single Input Multiple Data (SIMD) instruction processing is one of the earliest forms of parallel
processing in Flynn’s taxonomy. The basic idea of SIMD is to apply the same instruction sequence
simultaneously to a large number of discrete data streams[25].In this way several parallel
computations take place simultaneously for a single instruction. SIMD is particularly applicable to
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applications such as low-level vision/image processing, discrete particle simulation, database searches,
multimedia, and genetic sequence matching.

In a SIMD processor, one instruction uses several processing elements (PEs) to execute the
instruction on several data items simultaneously. Figure 2-sillustrates the principle of a SIMD
processor.

Data items

S 1

Instructions —>»| PE PE PE - PE

oo '

Figure 2-5: Principle of a SIMD processor [26]

The classical representatives of SIMD processors are array processors and wector processors. An
array processor operates on multiple data elements at the same time for each instruction. A vector
processor applies an instruction to multiple data elements in consecutive time steps. [27]

A vector processor implements an instruction set that operates on a one-dimensional array, i.e., a
vector [28]. This is in contrast to a scalar processor, whose instructions operate on single data items.
The advantages of a vector processor are: lower instruction fetching bandwidth, easier addressing of
main memory, elimination of memory waste, simplification of control hazards, provision of a scalable
platform, and reduced code size.
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3 Method

This project has several goals, as listed in Section 1.3 on page 3. This chapter describes how the author
fulfilled these goals step by step.

Section odescribes the research on4G channel estimation algorithms, beginning by introducing in
detail the channel estimation procedure and relevant concepts, then analyzing the difference between
channel estimation in LTE uplink and LTE-A uplink. After this the section proposes how to adapt these
channel estimation algorithms to single user-multiple input multiple output(SU-MIMO)2 x 2 and uses
simulation to compare these algorithms. Section 3.2 introduces the MIMO detection procedure and
existing conventional MIMO detection algorithms. This section compares MIMO detection algorithms
using simulation. In accordance with 5G’s approach of using massive MIMO we need to address the
matrix inversion due to the use of massive MIMO. Section 3.3presents the design and implement of a
scheme to realize fast massive matrix inversion algorithms by means of a SIMD processor.

Before jumping into the specific methods used in this project, we summarize the scientific
methodologies used in this thesis:

Quantitative methods Qualitative methods deal with non-numeric data, while quantitative
methods deal with numeric measurable data [29]. This thesis project
deals with various measurable data, numerical analysis, and
experiments from which numeric results will be observed. The data
directly indicates the performance of algorithms. Hence, the quantitative
research method is used in this thesis project rather than qualitative
methods.

Induction approach The primary goal of this thesis is to research and select suitable
algorithms for channel estimation and MIMO detection in LTE-A uplink
baseband processing, then evaluate them by comparing their
performance. In accordance with the current situation and anticipated
future trends, we address the key aspects of these algorithms, and design
a scheme to rapidly execute these algorithms by means of a SIMD
processor in order realize low latency physical baseband processing. The
key relevant aspects of these algorithms were found by researching
algorithms and summarizing the characteristics of channel estimation
and MIMO detection in light of the current situation and 5G trends.
Based upon this analysis some conclusions were drawn that enabled the
design of a SIMD-based scheme to realize a fast kernel algorithm for
baseband processing.

Experiment tools Matlab and Microsoft’s Visual Studio were used. Matlab provides a
simulation platform that has been used in many fields. Microsoft’s
Visual Studio is used for programming a massive complex matrix
inversion” and fixed point verification.

“Note that for the purposes of this thesis we use the term "massive complex matrix inversion” to describe the inversion of a 8 x 8 to 256x 256
matrix (see Section 3.3). This should be contrasted with the inversion of matrices that are thousands of elements by thousands of elements.
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3.1 Channel estimation

Channel estimation estimates system parameters based on the observed (measured) data. In an LTE-A
system, the enodeB performs many procedures, including channel estimation, MIMO detection,
channel quality detection, and so on. These procedures need to know the channel impulse response
(CIR) — reflecting the channel that the signal went through. In other words, they must know the
coefficients of the channel (in advance). Most receiver algorithms are premised on the accuracy of
channel estimation, thus the accuracy of channel estimation has a direct influence on accuracy of the
other processes. Channel estimation is quite a significant part of the receiver processes. There are two
common methods to realize channel estimation: decision-directed estimation and pilot-aided
estimation [30]. Pilot-aided estimation is used in LTE/LTE-A systems. Because this thesis focuses on
the kernel algorithms in the LTE-A uplink only details of channel estimation for the uplink are given.

Moving from a general introduction to the specifics of channel estimation in LTE/LTE-A system,
channel estimation is realized by comparing transmitted pilot signals and received pilot signals. A pilot
provides a demodulation reference signal (DMRS) used by both transmitters and receivers [31].The
channel estimator takes the received pilots as inputs and produces estimated values of the CIR. The
pilot design is an important part of channel estimation; hence the types, position, and size of the pilot
have been carefully determined and specified by the standards for LTE/LTE-A systems.

There are two basic types of pilot arrangements for LTE/LTE-A systems: block-type pilot and
comb-type pilot [31]. The block-type pilot is used in the LTE/LTE-A uplink. Pilots are periodically
inserted in the time domain with the pilots occupy all of the subcarriers in the frequency domain.

3.1.1 Reference signals in LTE/LTE-A uplink

Pilot signals provide a reference signal known by both the base station and UE. These pilot signals are
used to estimate the channel’s current condition [32].There are two types of reference signals used in
LTE/LTE-A uplink. One is the DMRS used for data reception, the other is a sounding reference signal
(SRS) used for scheduling and link adaptation [33]. This thesis will only focus on DMRS for the
PUSCH.

The demodulation reference signal has the same size as the assigned resource element. It is used to
estimate the channel for data demodulation. DMRS signal generation is different from the data
streams, as the DMRS signal is directly mapped to the subcarriers, without performing the M-point
DFT [3.4].For example, in the frame structure 1 introduced in Section 2.2.1, a subframe was defined as
two consecutive slots. The two-dimensional time-frequency resources are partitioned into resource
blocks (RBs) and each RB corresponds to one slot in the time domain and 180 kHz in the frequency
domain. For convenience, we assume the normal cyclic prefix (CP) case and each slot contains 7
SC-FDMA symbols, thus there are 14 SC-FDMA symbols in one subframe. In the LTE uplink, the
DMRS for PUSCH is mapped to the same set of physical resource blocks used for the corresponding
PUSCH transmission with the same length expressed in the number of subcarriers; this means that
each RB occupies 12 subcarriers in the frequency domain [33]. The DMRS is located in the 4th
SC-FDMA symbol in each slot for the normal CP case in the time domain. It occupies the same
numbers of subcarriers of PUSCH in the frequency domain, MEYSCH = MEYSCH . NRB - where MEYSCHis
the number of RBs that the system assigns to PUSCH. Note thatM{35¢Hcannot be selected arbitrarily,
but it should satisfy [16]:

MEFSCH = 2013%25% < Ngi (3.1)

Wherea,,a,,asis a set of non-negative integers, and NY} is largest uplink bandwidth configuration.
Figure 3-1 shows the DMRS in one subframe in an LTE/LTE-A uplink.
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Figure 3-1: DMRS in one subframe

3.1.2 DMRS sequence generation

In an LTE-A uplink, the DMRS sequences of different data streams overlap with each other in the same
time-frequency grid, and they are distinguished by having different sequence lengths. A DMRS
sequence t(k)is defined by a cyclic shift (CS) a of a base sequence (k) according to

(k) = e/ -7, ,(n), 0 < n < MES (3.2

WhereMB = mNREP is the length of the DMRS sequence, m is the number of RBs, and NR? is the
subcarrier number within each RB.

IfM,. > 3NRE, then the Zadoff-Chu(ZC) sequence[34] is used, otherwise a computer generated

constant amplitude Zero autocorrelation(CG-CAZAC) sequence[16] is used.

When M, > 3NEP, the base DMRS sequence ©(k) is defined as the cyclic extension of a ZC
sequence, i.e.,

F(k) = x,(nmodN§E), 0< n < ME (3.3)
Wherex, (k) is the ZC sequence defined as:
xq(k) = e~ makGD/NEE 0 < |k = NES -1 (34)

NZESis the length of the ZC sequence, which is the largest prime number smaller than M&S. The root
index of the ZC sequence, q is determined by the sequence-group number p and the base sequence
number v in [16] when group hopping and sequence hopping are enabled by higher layers. Since the
value of q does not affect the performance of the channel estimation discussed in this thesis, we do not
consider group hopping and sequence hopping.

WhenM,, < 3NEE, the base DMRS sequencer(k)is defined as:
F(k)=e/PtOmn/4 o < k < MES (3.5)

Wherep (k) isdefined in Table 5.5.1.2-1 & Table 5.5.1.2-2 of [16] forM&S = NEB and MES = 2NRB,
respectively.



16|

The DMRS sequences for different data streams are derived from the base sequence by adding
different phase ramps. For the mt data stream, m = 0,1,...,N; — 1, the DMRS sequence r, (k) equals:

(k) = e/ -7(k), 0 <k <ME -1 (3.6)
Whereain a slot equals:
a= 2mN ;g m/12 (3.7)
and ng ,, defines the ramp of the phase for the mt data stream. In [16], ng, is defined as
Nesm = (Mes,o + jv—i -m)mod 12,0 <m < N, — 1 (3.8)

Table 3-1summarizes the selection of the n ,, for different numbers of transmit antennas.

Table 3-1: The cyclic shift for different transmit antenna
Nes,0 Nes g Nes,2 Neg 3
N, =2 0 6
N, =4 0 6 3 9

3.1.3 Analysis of LTE/LTE-A channel estimation

After presenting general and related knowledge of channel estimation, the specific channel estimation
procedure will be presented and analyzed. Assuming m represents the transmit antennas’ sequence, n
stands for receive antennas’ sequence. The sequence of subcarriers and SC-FDMA symbols are k and 1,
respectively.

The LTE/LTE-A uplink receiver operates using equalization in the frequency domain. Assuming
that the transmitted signal of the mt transmitting antenna is X(k,1), k, < k < ko+12MEY5#in one
PUSCH, k is the first position of subcarriers of PUSCH,12MEY5¢"is subcarriers which DMRS occupied
in the frequency domain, 0 <1 < 14 (14 is the number of SC-FDMA symbols in one sub-frame in the
LTE-A uplink), so the received signal can be expressed as:

Nt
Yo(k,1) = Z Hym (6, 1) - X (K, 1) + Nk, D) (3.9)

m=1
Where H,, ,,(k, 1) is the channel frequency response (CFR) and N,, (k, [) is additive white Gaussian noise
(AWGN) with zero mean and variances? for the kth subcarriers and 1th SC-FDMA symbol. H,, ,,(k, ) can
be written as:

G-1

Ham(k,D) = D" (g, 1) - e/2mka/Nerr (310)
g=0

hpm(g Dis the gth multipath of the 1" SC-FDMA symbol from the mt transmit antenna to the nth

receive antenna. DMRS are mapped onX,,, (k, 3)and X,,(k, 10),ky < k < ko + 12MEYSCH,

X (k, 3)=Xpy (k, 10)=10 . (k) (3.12)

rl(,%%CH(k) corresponds to the DMRS sequence of the mth transmit antenna. On a given receive antenna,
the received signal is the signal superposition of the different transmit antennas.

To sum up, channel estimation has two tasks. The first task is based on the received Y,,(k, 3) and
Y, (k, 10)(n=1,...,N;) to estimate H,,,,(k,3) and H,, ,(k, 10)(n=1,...,Ny) in the frequency-domain; where
N; and N; are the number of receive and transmit antennas respectively. The second task is to use
interpolation to estimate channel values of other data symbols according to H,, ,,, (k, 3)(and A, ,, (k, 10)
in the time-domain. This thesis concentrates only on the first task, i.e.,channel estimation in the
frequency domain.
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3.1.4 Comparison of LTE/LTE-A uplink channel estimation

LTE supports a maximum of one spatial layer per UE, whereas LTE-A supports up to four layers of
transmission — thus allowing the possibility of 4 x 4 transmissions on the uplink when combined with
four eNodeB receiver antennas [35].

In LTE, the process of uplink transmission uses a single antenna to transmit one signal, so there is
no interference between pilots of different antennas. However, if every user uses two antennas to
transmit with the frequency-time pilots in same position, then the pilot of different antennas will
interfere.

Before MIMO was introduced in the LTE uplink, the theory of channel estimation was basically the
same for both uplink and downlink. After the MIMO was introduced in LTE, the situation changed in
terms of downlink and uplink channel estimation. Figure 3-2 presents the case of DMRS mapping of
an LTE-A downlink for two antennas.

R‘;I Rs R | =%
R i | || = R =y R
RQI Rg R, || R, [l
-

AntennaO Antennal

- Unused Resource Element
@ DMRS from Antenna 0

E DMRS from Antenna 1l

Figure 3-2: DMRS mapping of LTE-A downlink for two antennas

The UE must accurately estimate CIR for each transmitting antenna. Therefore, when a reference
signal is transmitted from one antenna port, the other antenna ports in the cell should be idle.
Reference signals are sent in every sixth subcarrier. As shown in Figure 3-2, the pilot’s position of the
two transmitting antennas are different, so the algorithms used in LTE downlink can continued to be
used for the LTE-A downlink.

In contrast with the downlink, the DMRS mapping of the LTE-A uplink is different. Figure 3-3
depicts the DMRS mapping of an LTE-A uplink for two antennas.
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Figure 3-3: DMRS mapping of LTE-A uplink for two antennas
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Figure 3-3 shows that the DMRS of two antennas are at the same position. As mentioned in
Section 3.1.1, pilots occupy the 4t SC-FDMA symbol in each slot for the normal CP case. As a result,
the LTE uplink algorithms cannot be used for an LTE-A uplink.

In an LTE-A uplink system, the overall processes of channel estimation are the same as for an LTE
system uplink, i.e., pilot channel estimation and data symbol interpolation. This thesis focuses only on
pilot channel estimation for the PUSCH.

According to analysis above and numerous references, the classic algorithms used for the LTE
uplink system are unsuitable for the LTE-A uplink. Therefore, these algorithms should be modified to
separate the different signals from the different antennas.

For example, consider the case of a UE with two antennas, we refer to these two antennas as
antenna 1 and antenna 2, the pilot of antenna 1isS, ;, the pilot of antenna 2 is §’; ;, so the pilot signal at
the receiver is:

Ry = HySppe+ H' 1S 1k + Ny = HyeSie + H' S ee?®™ + Ny (3.12)

Whereais the cycle shiftofS’; ,relative toS),; N ,is noise;H, andH’; ,are the CIRs of antennas 1 & 2
respectively. According to this formula, using the least square algorithm for receiver antenna 1 leads to:

Hyje = RSty = (HuSie + H'1eSue?™™ + Nyg) X Sy
=Hy S X St + H'1eSppee?®™ X Sfy + Ny X Sy,
=Hyy + H' e/ + Ny X S[x (3.13)

We see that this introduces an extra term,H’; ,e/*", the channel correlation function of antenna 2.
Therefore, we cannot rely simply on the least square algorithm and minimum mean square error
algorithm to estimate the channel impulse response in the frequency domain; hence, we must separate
the channel impulse response of the different antennas in the time-domain. The next subsection gives
details of these two algorithms.

3.1.5 Channel estimation algorithm

In this section, we present two typical algorithms for channel estimation that can be used for the LTE
uplink, and describe modified algorithms based on these two algorithms for the LTE-A uplink. These
two algorithms are:

Least square (LS) is the simplest algorithm for channel estimation. LS is characterized by low
complexity. This algorithm minimizes || XH,; — Y [I?, where Y is a frequency domain received pilot
signal; X is a frequencydomain transmitted pilot signal; H,, is a frequency domain estimated channel
matrix [14]. The LS channel estimation algorithm in the frequency domain is [36]:

Hese = Hys = (XPX)TIXAY = X7ty (3.14)

where ()Hdenotes Hermitian transposition. The LS algorithm estimates the CIR based on the received
and transmitted symbols. As this algorithm ignores noise, the performance of the LS estimator is not
good.

Minimum mean square error (MMSE) is a better algorithm as it considers the effect of noise.
This algorithm is widely used in practice. However, the major drawback of the MMSE algorithm is its
high computational complexity; especially as it is difficult to collect statistical information of the
channel from a small number of observations. This algorithm minimizesE{|l H — H,g,; 1}, where H is a
channel matrix in the frequency-domain [14]. MMSE channel estimation can be obtained by filtering
the LS based estimate, as the frequency domain estimation of MMSE is based on the following [36]:

Hese = Humse = Rnn, Ru,n, + 051 Hys (3.15)



Method | 19

th,hpis the autocorrelation matrix of the channel at the pilot symbol positions; Ry, is the cross

correlation matrix between the channel at the data symbol positions and the channel at the pilot
symbol position and I is the identity matrix.

The following sections summarize two typical algorithms for channel estimation for LTE-A uplink
with MIMO.

3.1.5.1 LS channel estimation for LTE-A uplink

1. Use LS to estimate received pilot signal,

Hys = H,(k, 1) = Y(k,1) - conj(r) (3.16)
Wherer, is received pilot signal and k,1 denotes kth subcarrier of the 1th SC-FDMA symbol =3, 10.

2. Then multiply pseudo inverse of afast Fourier transform with A, (k, [) to get the channel in the time
domain.

gn(t, D) = FYH, (k1) (3.17)
3. After that, separate the time domain channel for different data streams from the different antennas
based on value of n.g ,, (Shownin Table 3-1),

2N, 2N,

NesmNFFT —NFFT Nppr (3.18)
hn,m(t, l):{gn (mOd (t + T NFFT)) ) +1<t <
0 otherwise

Wherel = 3, 10, m=1,..., N;

4. Perform afast Fourier transform of h,, ,,, (¢, 1) to get the frequency domain channel response of the
different data streams from the different antennas.

o (k, 1) = FFT [y (8, 1)] (3.19)
3.1.5.2 MMSE channel estimation for LTE-A uplink
1. Use MM SE to estimate the received pilot signal:

Humse = Run, Ruyn, + 051D Hys (3.20)
Wherery, is received pilot signa 1=3, 10, because the LTE-A uplink uses the block-pilot channel
esti mationRh,hp = Rpn,» hence Equation 3.18 can be written as:

Humse = Ruyn, (Ruyn, + 061D Hy(k, 1) (3.21)
2. This step is same as step 2 of LS, multiply the pseudo inverse of the fast Fourier transform by
Hyuse to get the channel in the time domain:

In(t, ) = F*Hyysg (3.22)
3. After that, separate the time domain channel for different data streams from the different antennas
based on the value of ng 1, (shownin Table 3-1),

n(mod (¢ rrge ) m e s e <
0 otherwise .

hn,m(t' l):{

Wherel = 3, 10, m=1,...,N;.
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4. Perform afast Fourier transform of h,, ,,, (¢, 1) to get the frequency domain channel response of the
different data streams from the different antennas.

Hom (e, 1) = FFT[Ry (£, D] (3.24)
3.1.5.3 Simulation of channel estimation algorithms

Simulation was used to compare the performance of two typical algorithms in terms of Mean Square
Error (MSE) and Signal to noise ratio (SNR). Owing to the limitations of the LTE-A system simulation
platform, we focus on comparing the two frequency domain channel estimation algorithms. This
simulation focuses only on the LTE PHY layer. All the coding and simulation of the LTE-A uplink
channel estimation were done in Matlab (R2012b) on a personal computer.

Because this simulation focuses only on channel estimation in the frequency domain, the modules
DMRS, Resource element mapping, IFFT/FFT, Demapping, and channel estimation are considered,
while processing of the MAC layer and some physical link features (such as modulation, layer mapping,
precoding, and demodulation) are not considered in this simulation. The simulation code can be found
in Appendix A. The simulation performs the following processing:

1. Generate symbolsand DMRS

Perform DFT

Resource element mapping (including pilot insertion)

Perform IFFT, adding CP

Convolve the symbols with Rayleigh fading channel and add White Gaussian Noise
Remove CP, then perform FFT

Perform resource element demapping

Compute the LS and MM SE channel estimation at the receiver

© © N oo g & W D

Compute the minimum square error of ZF or MM SE channel estimation

10. Repeat for multiple values of SNR.

The simulation parameters are shown in Table 3-2.

Table 3-2: Simulation Parameters

Parameters Value(s)
Bandwidth(MHz) 20
IFFT/FFT size 2048
OFDM CP Normal
Channel Rayleigh fading channel
Channel estimation algorithms LS, MMSE
Number of resource blocks 10
NRE 12
Number of base station antennas 2
Number of UE antennas 2
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To evaluate the performance of the LS and MMSE algorithms, we compare them in terms of MSE
and SNR. Here, MSE expression simplifies toE{(£ — x)?}, where denotes the estimated frequency
channel response at each of the pilot’s positions, x is the ideal frequency channel response. The cost in
time of this simulation depends on numbers of symbols, using 1000-2000 symbols simulation takes 1-
2 minutes. If we use more symbols, such as 10000-20000, the simulation takes 5-10 minutes on a
personal computer in the ASIP lab.

Figure 3-4presents the MSE and SNR of these two algorithms. I compared my result with
references [36] and [38]. Although we used different parameters and modules for our simulation, the
simulation data are quite similar. LS performance of [37] and my results are better than [36], because
we used the same channel model Rayleigh fading channel, and [36] used a more complicated channel
model (specifically Ped-B). LS will suffer more noise effect when using the Ped-B channel model. The
reason why MMSE performance of [36] and my result are better than [37] is that the simulation
operated on fewer symbols, so that the influence of random factors results in a small difference from
our data. It is clear that both of these two algorithms’ MSE decrease with increased SNR. This means
that the larger the SNR, the better the performance of these two algorithms. The simulation result also
shows the MMSE algorithm is better than LS.

The Comparison of LS/MMSE algorithms
.................  E— =mal

MSE

= | |
10
5 10 15 25
SNR(dB)
Figure 3-4: The comparison of SNR vs. MSE for LS and MMSE

3.2 MIMO detection

In MIMO detection the detector calculates an estimate of the transmitted signal as an output of the
detector based on the received signal and the estimated channel matrix. This section starts by
describing a MIMO-OFDM system. Following this the traditional MIMO detection algorithm is
introduced and simulated. The section ends with a discussion of MIMO detection.

After estimating and calculating the channel matrix, the LTE-A system recovers the transmitted
signal from the received signal as an output of the detector [38].

Consider a MIMO-OFDM with N, transmit antennas and N, receive antennas,x, [k, (] is a transmit
signal in the frequency domain, y,[k,[]is a received signal in the frequency domain, h,, [k, 1] is the
frequency domain channel matrix, n,[k,[] denotes the additive complex Gaussian noise in the
frequency domain, so the MIMO system can be represented as:

Nt

valk, 11 = > gyl Uy e 1 + g [k 1 (3.25)
p=1
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Where [k,]] is the kth subcarrier of the Ith OFDM symbol, p and q denote the number of transmit
antennas and receive antennas respectively. For the sake of convenience, we consider a MIMO-OFDM
system with two transmit and two receive antennas. Two different data streams are transmitted via the
two transmit antennas, then received by the two receive antennas, using the same frequency and time,
separated only by the use of different reference signals. Figure 3-5 shows this simple MIMO-OFDM

system model.

Data ' _
X RX
Data
Figure 3-5: MIMO-OFDM system model (2 x 2)

According to Figure 3-5, the system equation can be written as:

Y[k, 1] = H[k, 1]X[k, 1] + n[k, ] (3.26)
Where X[k, 1] = {x;[k, 1], x, [k, I}, Y[k, 1] = {y1[k, 1], y. [k, 1},
+_ [haalk 1, Ry [k, 1] (3.27)
Al = {hz,l [k, 1, by o K, l]}

Equation (3.27) is a2 x 2 vector matrix, the matrix size depends on the numbers of antennas: N, and N,..

In summary, the MIMO detection algorithm uses a known channel matrixH [k, [], received signal
Y[k, 1], and additive noise n[k, [] to detect the transmitted signalX[k, []. However, the receiver does not
know the actual channel matrix H [k,1], hence H[Kk,l]is calculated by channel estimation (as described
in the previous section).

3.2.1 MIMO detection algorithms

Nowadays, there are several simple linear filter and complex algorithms for MIMO detection. In
general, the detection algorithm can be classified into three types: linear equalization algorithms,
non-linear equalization algorithms, and optimal detection algorithms.

Linear equalization algorithms include Zero forcing (ZF) and MMSE algorithms. Of these, ZF is the
simplest detection algorithm with the lowest computational complexity. MMSE is a high complexity
algorithm, but offers high performance. Optimal detection algorithms include Maximum Likelihood
(ML) and Sphere Decoding. They have preferable performance, but have the highest complexity.
Non-linear equalization algorithms include Successive interference cancellation (SIC), Parallel
interference cancellation (PIC), Vertical Bell Labs layered space-time (V-BLAST), QR decomposition
algorithm, and others. They have lower complexity than the optimum detection algorithms and better
performance than linear equalization algorithms. Because ZF and MMSE are classical algorithms
which used in LTE/LTE-A uplink layer, this thesis focuses only on ZF and MMSE. More information
about the other algorithms can be found in [39, 40, 41].
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3.2.1.1 Algorithm description and simulation

ZF detection is the simplest algorithm and has the lowest computational complexity. This detector
begins by multiplying the received symbol vector by the channel matrix pseudo-inverse W [42, 43].
This pseudo-inverse of the channel matrix is:

WZF — H'l' — (HHH)_]'HH (328)
Where(.) 'and(. )" represent inverse matrix and Hermitian-transpose, respectively. After this, the
estimated transmit symbol from the ZF detection is written as:

Xzp = Wzp = (H"H)"'H"y (3:29)
A disadvantage of ZF detection is that it suffers from sudden noise enhancement; hence the
performance of ZF degrades without considering the noise.

MMSE detection addresses the issues of ZF. MMSE tries to find a coefficient W to minimize the
mean square error E(|| Wy —x ||?), where E (.) means the expectation of a random variable. The
minimum mean square error equalization matrix is represented as follows:

Wumsg = (HPH+(02/a2) D™1HH (3.30)
The estimated transmitted symbol of the MMSE detection is written as:

Xumsg = Guuse = (H'H+ao7 [a2))" HYy (3.31)
In comparison with ZF detection, MMSE detection considers the noise variance and decreases

noise enhancement, while the computational complexity of MMSE detection is greater than that of ZF
detection.

3.2.1.2 Simulation of MIMO detection algorithms

This simulation also utilized Matlab(2012b).The simulation code can be found in Appendix A. For the
sake of simplicity, the simulation performs the following processing operations:

1. Generate arandom binary sequence

2. Perform Binary Phase Shift Keying(BPSK) modulation.

3. Convolve the symbols with a Rayleigh fading channel and add White Gaussian
Noise
Compute the MM SE and ZF detection at the receiver
Demodulate and convert to bits
Count the number of bit errors of ZF or MM SE detection
Repeat for multiple values of Eb/No (i.e., energy per bit to noise power spectral
density ratio)

No o ks

Figure 3-6 presents the simulation results of the performance of ZF and MMSE detection. The bit
error ratio (BER) is the number of bit errors divided by the total number of transferred bits during a
studied time interval. I repeated the simulation fourth times, each simulation completed in two
minutes. Because we used the almost same parameters, such as the Eb/No, 2 transmit antennas, 2
receive antennas, BPSK modulation, Rayleigh channel, the numerical value from [44] are quite similar
to my simulation results.

As shown in Figure 3-6 both algorithms show decreasing BER with increased SNR —as would be
expected. In comparison with MMSE, ZF detection suffers ~4 dB of additional degradation. The
performance of ZF is worse than MMSE detection due to ZF ignoring noise. However, the MMSE'’s
improvement in performance comes at a cost of increased computational complexity.
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The comparison of ZF and MMSE for MIMO 2x2

R e —o—7F
—&— MMSE

BER

5 10 15 20 25
SNR(dB)

Figure 3-6: The comparison of ZF and MMSE detection in terms of BER vs. SNR

3.2.2 Discussion of MIMO detection

Even though ZF and MMSE detectors suffer from performance loss in slow fading channels, they have
very low implementation cost compared to more advanced MIMO detection algorithms. This is the
reason why they are suitable for low-cost real-time implementations and are used widely in industry.
According to Eq. (3.30) and Eq. (3.31), the computation involved in ZF and MMSE is mainly matrix
operations, including matrix multiplication and matrix inversion. Here the H matrixes can be a
complex-valued matrix of a size that depends on the number of transmit and receive antennas. In
practice, the size of H is typical between 2 x2 and 4 x4 for an LTE-A uplink, hence the
implementation can still operate in real-time and the cost is still acceptable. However, larger matrices
such as 8 x 8,16 x 16,32 x 32, or even matrices of64 x 64, 128 x 128,256 x 256 will be used in 5G in
the future. When using larger matrices the cost of real-time implementation will be much higher. An
analysis of the several algorithms are presented in Table 3-3.

Table 3-3: The analysis of algorithms
Functionalities Algorithms WG
Inversions
LS 1
o estimati (xix)ixty
Channel estimation MMSE 5
Rpn, (Rn,n, + 051) " Hys
ZF 1
. (H'm~1H"y
MIMO detection MMSE 1
(H"H+ (03 /o)) "H"y

As can be seen from the table above, the performance of algorithms depends upon the cost of
matrix inversion. For this reason we will propose a scheme to perform rapid matrix inversion for
massive MIMO by exploiting a SIMD processor.
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3.3 Massive MIMO matrix inversion design and implementation

The previous sections examined channel estimation and MIMO detection. The bottleneck computation
was found to be matrix inversion. In order to perform complex matrix inversion of a massive MIMO
matrix (8 X 8 to 256 X 256), it is essential to use specified SIMD instruction set to implement a fast
complex matrix inversion algorithm. In this thesis project, we assume that this computation will be
realized using the ASIP architecture.

First, we have to find and select a suitable algorithm for matrix inverse for these matrices. This
algorithm should be suitable for SIMD architecture. Following a great deal of reading of references and
investigation, several conventional algorithms were selected that could be used to compute the matrix
inverse for the desired complex matrix. The conventional methods used to perform matrix inverse are
Gauss-Jordan Elimination [45], Gaussian Elimination [46], LU Decomposition [47], and QR
Decomposition [48].

In our team, I was requested to use Gauss-Jordan Elimination method to realize a complex matrix
inverse, while Gaussian Elimination, LU decomposition, and QR decomposition were assigned to other
members of our team to research. The Gauss-Jordan Elimination algorithm is a stable algorithm for
matrix inversion. In comparison with the other algorithms, it has low computational complexity and
good accuracy, while its data access and storage modes are quite suitable for SIMD’s parallelism.

I began by writing a C program to invert complex matrices (for matrices of size 8x8 to 256x256)
using Microsoft’s Visual Studio. This code can be found in Appendix B.

The design and implementation of matrix inverse algorithm included the following:

1. Theanalysis of the algorithm

Precision evaluation of the matrix inversion algorithm

SIMD instruction mapping for matrix inverse computation

Analyses of data access modes

Data allocation scheme for realization of the algorithm

Computing cost estimation and overhead estimation when executing on a SIMD
processor

o ks wWwN

3.3.1 The complex matrix inversion algorithm

We use the Gauss-Jordan Elimination algorithm to realize our matrix inversion (with a maximum size
of 256x256).the algorithm for performing complex matrix inverse can be described as follows:
1. Select pivot, record the located row and column of pivot.
2. Perform row interchange and column interchange
3. Compute the reciprocal of the pivot, then perform linear transformation of
row/column
4. Interchange row and Interchange column, and resume pivot position selection (i.e.
loop)

3.3.2 Precision evaluation

Before designing the SIMD instruction mapping of the complex matrix inversion algorithm, we need to
verify the effect of the finite word size on the algorithm to make ensure it can be implemented on a
16-bit fixed-point processor in the future. This verification was accomplished by using matlab and
running a fixed-point simulation program.
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This verification procedure was:

1)

2)

3)

4)

Use matlab to create a program, this program produces a random complex matrix (of a
defined size: 8, 16, 32, 64,128, or 256), and calculates the inverse of this random complex
matrix. We record these complex matrices and the inverse of these complex matrices.

A fixed-point simulation program will use these recorded complex matrices produced by
matlab to output the results of the complex matrix inversion.

Average effective bits and average effective fractional bits are used to compare and verify the
effect of using finite precision.

The fixed point simulation program inserts “truncate” functions into the original code of
complex matrix inversion algorithm. The simulation use the notation “Qi.f” to indicate a fixed
point format that has i integer bits and f fractional bits. For each matrix size, a two’s
complement fixed point format “Qi.f” is assigned to the fixed point numbers in computation.
The truncate function can convert the precision of double precision operands according to
fixed point format used. The method of error analysis is to count the average effective bits and
average effective fractional bits in the result by comparing with the reference result produced
by matlab. The equation of average effective bits and average effective fractional bits are
computed as follows:

N
. ) 1 result[i] referenceli]
average_ef fective_bits = N Z(— log, s Sibits (3.32)
i=1
average_ef fective_fractional_bits = average_ef fective_bits — ibits (3.33)

The Table 3-4 depicts the fixed point format, average effective bits, average effective fractional bits for matrices of size
8,16,32,64,128, and 256.

Table 3-4: The verification result
8x8 16x16 32x32 64x64 128x128 | 256x256

Fixed point Q3.12 Q3.12 Q5.10 Q6.9 Q8.7 Q9.6
format
effective bits 13.6 13.8 12.3 12.0 11.3 11.9
(average)
Effective 10.6 10.8 7.3 6.0 3.3 2.9
fractional bits
(average)

From the table 3-4, it can be seen that the designated fixed point formats are assigned to
corresponding matrix. We investigated the dynamic data range involved in every single arithmetic
operation of the reference matrix inversion program for each matrix size. These fixed point formats
can cover the dynamic range of each matrix inversion computation. The average effective bits and
effective fractional bits show the accuracy of 16-bit computation. Even though the matrix dimension is
256, the average effective bits and the average effective fractional bits are 11.9 bits and 2.9 fractional
bits respectively. The accuracy of program is satisfying and acceptable, so that it can be implemented
on a 16-bit fixed-point processor.

3.3.3

SIMD instruction mapping

After analyzing how the complex matrix inverse algorithm works and verifying the algorithm’s
precision when using 16-bit values, the next was to map this algorithm to SIMD instructions.
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The target SIMD processor platform*for this research has the following features: 4/8/16-way
parallel fixed-point instructions with 16-bit x N element vector operands. Complex arithmetic
instructions include addition, subtraction, multiplication, multiply-accumulation, etc. Other
instructions include comparison, shifting, logic instructions, etc. The memory subsystem is based on a
vector memory of Scratch Pad Memory (SPM), which supports parallel conflict-free access to multiple
bank storage units.

The following describes the SIMD instruction mapping of each computation of the matrix inverse
algorithm. These instructions are described in further detail in Chapter 4.
1. Select pivot: For this step of origina algorithm, we can calculate complex modules
S0 as to select the pivot.

The algorithm selects the element which is the maximal value of complex elements in
each row as the pivot. For the complex numberZ = a + bi, the module is:

|Z] = Va2 + b2 (3:34)
The pivot is the maximum|z|, thus we can calculate the module squared as an
alternative, in order to avoid the square root computation:

1Z|2 = a? + b2 (3.35)
We can create aye. = [ag, by, a1, b1, a3, by, as, b3] a vector operand,a; and b; are the real
part of a complex number and the imaginary part of a complex number respectively.
We can use the specialized multiply-accumulate instruction TMAC2:

Z_Sqyec = TMAC2(ayec, Apec) (3.36)
The result is |z|2, vectorz_sqyec = [ag? + bo®, a2 + b1 %, a2 + by%, az? + b3*].The
pivot’s |z|? value is maximum value which can result from using the tmax instruction
many times.

2. Reciprocal: we can utilize the method of parallel polynomia estimation to
compute the reciprocal of a complex number. Take a complex number z = a + bi
for example, itsreciprocal is:

1 __a N —=b ; (3.37)
Z a*+b?> a?+b?

The denominator of this formula is |z|?, which was calculated in the former step.

The polynomial estimation method uses an N-order polynomial to estimate the value

of a function at a point. The expression is shown as follow:

Y =8 (X=%,)" + 8 (X=X,)" + 8, (X= %) +85(X=%,)" + ...+ 8, (X=%,)" (3.38)
This formula can be described by the following operations: first calculate various
squares of x — x,, second do multiply-accumulate operations with the set of
coefficients a, to a,,.Considering the trade-offs of the accuracy and operands, we
utilized n=4, which is sufficient to satisfy the accuracy of 16-bits.

3. The row and column linear transformation: we can use multiplication and
subtraction of the parallel complex humbers.The CMAC and CMUL instructions

are used in this step. The basic operation of Gaussian-Jordan elimination isto useb
row/column of matrix to multiply coefficient ¢ (this coefficient is the reciprocal

“This processor is massive matrix processor that is being designed by ASIP laboratory. It is based on the processor described in [49]
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resulted from step 2),then use another column/row a to subtract b - ¢.This step can
be expressed as follow:

i=i—b-c (339)
here the multiplication and subtraction of complex number are SIMD computation
with the parallelism of the matrix’s degree N.

3.3.4 Data access modes

We designed 4 types of data access modes that can be used for the matrix inverse algorithm. Mode 1
corresponds to step 1 of Section 3.3.1. The mode 2 corresponds to steps 2&4 of Section 3.3.1. Mode 3
and mode 4 correspond to step 3 of Section 3.3.1. Each of these data access modes is described in the
following paragraphs.

3.3.4.1 Dataaccess mode 1

When selectinga pivot, the processor performs an ergodic access. This means that the processor will
access every element from the first row to the end, in order to select the pivot of every row. Figure
3-7shows the processor accessing matrix data starting from the first row.

v ......

Figure 3-7: Ordered data access

3.3.4.2 Dataaccess mode 2

When performing arow/column interchange, depending upon the exact pivot position, the processor
could access the specific matrix row or matrix column. This mode helps processor to save timewhen
accessing matrix columns/rows. Figure 3-8 depicts the processor’s accesses to rows 2, 4, and 5.
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rows_to_access=[2, 4, 5]

Figure 3-8: The specific row/column data access

3.3.4.3 Data access mode 3

At each iteration the complex matrix inversion algorithm eliminates outermost loop of computation,
hence the processor will hop kth row to perform a row access, which means processor will not access
the row of current pivot. Figure 3-9shows the matrix row access when hopping forward one row.

pivot
(k, k)

\f

Figure 3-9: Hopping row data access
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3.3.4.4 Data access mode 4

In the inner loop, when the processor is performing a row data access, it will skip the k™ element in
every row, this k™ element is located in the column element of current pivot. Figure 3-10 depicts this
data access mode.

o7 -

(0, k)

(1, k)

pivot
(k, k)

(k+1,
k)

(k+2,
k)

Figure 3-10: The hop skips some element data access

3.3.5 Data allocation scheme

This subsection introduces a SIMD data allocation scheme to support the complex matrix inversion
algorithm.

3.3.5.1 Overall data allocation

The computational data of the matrix inversion is mainly assigned in two vector memories of the SIMD
processor. Some computational intermediate data such as reciprocal, complex number multiplication,
and subtraction needed to be stored in vector registers. The overall data allocation in the memory and
the data flow of the computational process are shown in Figure 3-11.
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vector data

vector memory 2 .
vector memory 1 y register
polynomial data for 1/x caculation
coefficients '
»{ pivot selection J
intermediate results
reference row -
. . - data buff for
1nput matrix
row/column
> (permuted) .
exchanging
data buff for - output matrix
gauss elimination (in-order)
>

A

main memory

Figure 3-11: Data allocation architecture

From Figure 3-11, we see that the data allocation consists of 10 entities. The functions of these 10

entities are described in Table 3-5.



32|

Table 3-5: The Data entities

Main memory

Store original input matrix data and output matrix data

Input matrix

Input matrix is stored in local vector memory after out-of-order
permutation.

Pivot selection

The vector computational area which used to compute the square of
complex number module, and select pivot.

Polynomial coefficients

The place where store the polynomial coefficients of reciprocal.

Data buff for row/column
exchanging

The matrix storage area after row/column exchanging.

Data for 1/x calculation

The register buffer area which used to calculate complex number
reciprocal.

Intermediate results

The register area used to store intermediate results

Reference row

The reference memory area for Gaussian-Jordan elimination

Data buff for gauss
elimination

the place which used to store results of elimination of every row

Output matrix

the final result after row/column exchange, recover position

3.3.5.2

Input data permutation

In row and column exchange stage, it is necessary to perform both row-based and column-based
access. The input matrix data thus must be permuted, so than it can satisfy conflict-free data accessto

both row and column data.

The scheme of conflict-free permutation adopts a circular shift realization. For example consider

the8 x 8 matrix shown below:

& 8y - 8y
A|B0 A o By
a70 a?l a'77

The storage method used in the 4-bankvector memory is depicted in Figure 3-12. When accessing a
row, one loads the adjacent two row vectors successively in memory. When accessing a column, we
load the memory in a conflict-free method as shown in Figure 3-12.With regard to higher dimensional
matrices, the same approach can be used to facilitate data access.
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oo Aol Aoz Ao

Aos dos Ao dor

air A ais ais

Az das dzo Azl

Az dar A4 dzs

Figure 3-12: Permuted matrix A in a 4-bank vector memory

There is an across interconnect network between the vector memory and processor’s data path.
When accessing vectors, this interconnection network can permute vector data. Figure 3-13shows this
interconnection permutation network. The processor can use this feature to eliminate the overhead of
data rearrangement when accessing vector memory.

permutation
network

dos dis das dss

Figure 3-13: The inter connection permutation network
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3.3.5.3 Parallel reciprocal computation

When performing the parallel reciprocal computation, the calculation of 2th to nth square of x uses
scalar arithmetic, while the computation of the coefficient uses multiply-accumulate vector arithmetic.
This is the reason that why we arrange the parallel reciprocal computation to operate on data registers
which can execute both scalar instructions and vector instructions.

3.3.5.4 Parallel linear transformation

The elimination requires performing multiply and subtract with a reference row. In this stage, two
vectors operands are taken from the jth row of the matrix and the reference row respectively. When
executing the last outermost loop, the result vectors are permuted, using the method described in the
input data permutation step, to maintain conflict-free row/column exchange.

3.3.5.5 Output datare-ordering

The matrix after Gaussian-Jordan elimination undergoes a final row and column exchange, to become
an in-order output matrix. The exchange process is the inverse of the input data permutation, but the
permutation vector mode is same.
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4 Results and Analysis

In this chapter, the computational cost estimation concerning the SIMD implementation is presented
and analyzed statistically. Section 4.1 presents the computational cost of the Gauss-Jordan algorithm
and the Gauss-Jordan algorithm with the proposed SIMD extension. This section also presents an
analysis of these results. Section 4.2 compares the results of this thesis project with previous relevant
work.

4.1 Computational cost statistics

In this project, three types of data were measured.

In general, the measurements of complex matrix inversion algorithm can be categorized into six
parts in terms of computational complexity: add/subtract, multiplies, conjugate/reciprocals,
row/column exchanges, comparison and absolute values. All the parts were measured through code
analysis and estimation.

For the original algorithm, the computational complexity was computed from analysis and
statistics of the computation for an NxN matrix. For instance, to calculate the computational
complexity of multiplication, we selected the code used for multiplications (shown below with size = N).

for(int j=0; j<size;j++)
{

if (j1=k) {

datalk*size+jl=datalk*size+jl*datalk*sizetk]; multiplication
}
}

Figure 4-1: A multiplication

for(inti=0;i<size;i++)
{
if (i!=k)
{
for(int j=0; j<{size;j++)
{
if(j!=k) {
datal[i*size+jl=data[i*size+j]-datali*size+k]*datalk*size+j]; multiplication
}
}

}

Figure 4-2: B multiplication

for(inti=0;i<size;i++)
{
if (i!=k) {
datal[i*sizetk]=—data[i*sizetk]*datalk*size+k]; multiplication
!
1

Figure 4-3: C multiplication
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First, we count the operations in the A multiplication. A is located between two loop, the number
of operations of the inner loop is (N-1), the number of operations of the outermost loop is N, so the
total operands of is N(N-1). We calculate the number of operations for the other two examples of
multiplication, the operations of B multiplication is N(N — 1)2, the operations of C multiplication is
N(N — 1). Therefore, the total number of operations to perform multiplication is the sum of these three
multiplications: N3 — 2N% + N. We used the same method to calculate the number of operations for
add/subtract conjugate/reciprocals/....

The computational cost of the original complex matrix inversion algorithms is shown in Table 4-1.
This table presents the computational complexity of matrices 8x8, 16x16, 32x32, 64x64, 128x128,
256x128 in terms of add/subtract, multiples, conjugate/reciprocals, row/column exchanges,
comparison, absolute values. For simplicity, the cost of each of the operations is given a weighted value
of 1. The total computational complexity can be seen to be the total execution cycles of Gauss-Jordan
algorithm on a single instruction single data processor, if we assume that each operation on the
processor consumes only 1 cycle. It is clear that the computational complexity of matrix inversion
increases rapidly with increasing matrix size.

Table 4-1: The architecture independent computational cost of the Gauss-Jordan algorithm
Complex matrix Conjugate/ e Absolute
inri/ers'on add/subtract multiplies Recil rgcals Column Comparisons o Total
P exchanges
Computational 3 on2 3 2 1 . 1 . 7 4
complexity N 2N“+ N N N N 2N EN EN ~§N +N

8x 8 392 504 8 ~128 86 86 ~1203
16x 16 3600 4080 16 ~512 683 683 ~9574
32x 32 30752 32736 32 ~2048 5462 5462 ~76490
64x 64 254016 262080 64 ~8192 43692 43692 ~611734
128x 128 2064512 2097024 128 ~32768 349526 349526 ~4893483
256x 256 16646400 16776960 256 ~131072 2796203 2796203 ~39147094

After computing the cost of the original complex matrix algorithm, we need to estimate the cost of
this algorithm with SIMD extensions, so that we could evaluate the enhancement from the original
algorithm to original algorithm with SIMD extensions. Since our targeted SIMD vector processor
involves 4/8/16-way parallel fixed-point instructions, we will estimate its SIMD cost when using
4/8/16-way respectively. There are 6 SIMD computation instructions utilized in my scheme. Table 4-2
shows these SIMD instructions, their equivalent operation counts corresponding to a 4/8/16-way
parallel processor.

Table 4-2 presents the instructions that correspond to relevant operation counts. For instance, an
ADD instruction can perform 4, 8, or 16 additions in a 4, 8, or 16-way parallel processor respectively.
This parallelism is the reason why a SIMD processor can accelerate the execution of the matrix
inversion algorithm.

All the SIMD instructions, their type, functionalities, and cost statistics are shown in Table 4-3.
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Table 4-2: The SIMD computation instructions
Instruction Description Equivalent operation counts
4-way 8-way 16-way
ADD vector addition 4 additions 8 additions 16 additions
MUL vector multiplication | 4 multiplications | 8 multiplications | 16 multiplications
CMUL complex vector 4 complex 8 complex 16 complex
multiplication multiplications multiplications multiplications
TMAC2 triangular multiply 4 multiplications, | 8 multiplications, | 16 multiplications,
and accumulation of | 2 additions 4 additions 8 additions
2 elements
CMAC complex multiply and | 4 complex 8 complex 16 complex
accumulation multiplications, 4 | multiplications, 8 | multiplications, 16
complex complex complex additions
additions additions
TMAX triangular maximum 3 comparisons, 3 | 7 comparisons, 7 | 15 comparisons, 15
value of vector selections selections selections
Table 4-3: The statistical instructions of SIMD implementation scheme
Type instruction Functionalities Statistic
AINIT Initialize address | 3+15*N 3+22*N
registers
AMOD Modify address 4*N
Control registers
CMP compareandset | N
flags
JMP Jump 2*N
WAIT Wait until all 10+16*N 10+40*N
previous
instruction
I TS pipelines finish
execution
NOP no operation 24*N
MOV Data move A4*N?/P + 2*N 4*N?/P+10*N
between vector
memories
Data move RLOAD Load data to 4*N
register
RSTORE Store register 4*N
data
TMAC2 N**(N- (N**(2N-
1)/(2*P)+N 1)+N*(N-
TMAX N>*(N-1)/(2*P) | 1))/P+6N
Compute ADD N
MUL 4*N
CMUL (N*+N*(N-1))/P
CMAC N?*(N-1)/P
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N stands for matrix dimension; P presents the 4/8/16-way parallel processor. The SIMD overhead
consist of 3 entities: control, data movement, and dependency. The total cost of SIMD execution
involves overhead and computation part. Based on the total costs shown in Table 4-3, the SIMD
computational cost estimation were estimated as shown in Error! Reference source not found..

Table 4-4: SIMD cost estimation (in cycles)
4-way 8-way 16-way

8x8 955 796 717

16x16 3561 2411 1756

32x32 19909 11209 6619

64 x64 140157 72581 38233

128x128 1074925 542461 275029

256x%x256 8474061 4247021 2131021

From the Table 4-4, it can be seen that the cost is the lowest when using 16-way parallel fixed-
point instructions, because such an instruction can perform up to 16 operations in a single SIMD
instruction.

A cost comparison of the original Gauss-Jordan algorithm and Gauss-Jordan algorithm with SIMD
extension are depicted in Figure 4-4.

100000000

10000000 -

1000000 -
=
2 ——0 |
& 100000 - e
2 —— 4-way
]
10000 - Ewey
——16-way
1000 -
100 -
8 16 32 64 128 256
Matrices size
Figure 4-4: Cost comparison of original and SIMD extended Gauss-Jordan algorithm — with the cost given in

instruction cycles

Obviously, the cost of the algorithm with SIMD extension is smaller than the cost of the algorithm
with the original algorithm. With increasing matrix size, the SIMD instructions become more and
more useful, as one instruction acts on many operands simultaneously. Especially, when the matrix
size reaches 256, the SIMD vector processor with 4-way parallel instruction reduces the cost by nearly
a factor of four in comparison with the cost of the original algorithm. Moreover, the performance of a
SIMD vector processor with 8/16-way parallel instruction are even better than when using a 4-way
parallel instruction.

The SIMD processing overhead is shown in Table 4-5. The percentage is the ratio of total overhead
to total estimated cost. It is clear that the percentage of overhead decreases with increasing matrix size.
The lower the percentage, the higher the proportion of the actual computation of the Gauss-Jordan
algorithm is running on the SIMD processor.
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Table 4-5: SIMD computational overhead estimation (in cycles)
plzsagﬁzfi;)ril Matrix control mosgzent dependency total Percentage
8x8 179 144 330 653 68.4%
16X 16 355 416 650 1421 39.9%
32x32 707 1344 1290 3341 16.8%
4-way 64%64 1411 4736 2570 8717 6.22%
128%x128 2819 17664 5130 25613 2.38%
256%256 5635 68096 10250 83981 1.01%
8x8 179 112 330 621 78.0%
16%16 355 288 650 1293 53.6%
32x32 707 832 1290 2829 25.2%
8-way 64%64 1411 2688 2570 6669 9.19%
128x128 2819 9472 5130 17421 3.21%
256 %256 5635 35328 10250 51213 1.21%
8x8 179 96 330 605 84.4%
16%16 355 144 650 1149 65.4%
32x32 707 336 1290 2333 35.2%
16-way 64x64 1411 1104 2570 5085 13.3%
128%x128 2819 4176 5130 12125 4.41%
256%256 5635 16464 10250 32349 1.52%

To emphasis the ultra low latency which SIMD vector processor brings in, we assume a defined
bandwidth 200MHz, and transfer cycles into seconds. Table 4-6 compares the execution time of the
original algorithm with SIMD extended Gauss-Jordan algorithm when using 16-way fixed point

computations.
Table 4-6: The execution time comparison
Matrix size Original algorithm (us) 16-way SIMD extended
algorithm (us)
8x8 6.015 3.585
16x%16 47.87 8.78
32%32 382.45 33.095
64 %64 3058.67 191.165
128 %128 24467.415 1375.145
256 % 256 195735.47 10655.105
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Table 4-6 shows that the execution time of 16-way SIMD extended algorithm for a 8 x8 matrix is
3.585 s, the acceleration is not quite distinct. With increasingly large matrices, the effective of
acceleration improves considerably. For a 256 x 256 matrix, the execution time of original algorithm is
almost 20 times faster when using a 16-way SIMD vector processor. The SIMD vector processor
realizes ultra low latency with the increased matrix dimensions.

To sum up, Gauss-Jordan algorithm with SIMD extension reduces the cost of matrix inversion,
especially for large matrices. As matrix inversion is a key aspect of both the channel estimation and
MIMO detection algorithms. The matrix inversion computational cost have been reduced, the
algorithm computational cost of channel estimation and MIMO detection are decreased, so the
execution time of the algorithm decreases, hence the ultimate goal of low latency is realized.

4.2 Discussion

In this section, the results from this thesis project will be compared with previous related work. This
comparison can be made in terms of the key technologies of baseband processing and those of SIMD.

The first aspect is the comparison of key technologies in baseband processing. There have been
many papers that discussed channel estimation and MIMO detection in LTE/LTE-A uplink. For
channel estimation, many references discuss how to propose optimize channel estimation method to
achieve good performance. [32] also used the method proposed by other paper to further discuss how
to optimize it when different number of resource blocks are allocated. Several papers evaluated the
different algorithms in different channel model such as [35] investigate algorithms in flat Rayleigh
fading. [50] investigated the channel estimation for LTE uplink when the moving speed of the UE is
high. For MIMO detection, [43] propose two low-complexity detection schemes based on MMSE for
MIMO systems. [44] evaluated the performance of different detection algorithms over Rayleigh
wireless channel. Because channel estimation and MIMO detection are two sophisticated procedures
in LTE-A uplink. All of these references only concentrated on one procedure of channel
estimation/MIMO detection. Meanwhile they only research channel estimation/MIMO detection
algorithm for multi-antennas 2 or maximum 4. They didn’t consider the future massive MIMO-system.

The research object of Su Xin, et al.[51] is similar to this thesis project. Both focus on investigating
and analyzing key technologies (Channel estimation and MIMO detection) in large-Scale MIMO. Our
general orientation is to improve wireless system’s performance in large-Scale MIMO.

However, there are some differences. Su Xin, et al. focus on the analysis of the sum rate upper
bound in large-scale MIMO system, their result show that sum rate improves due to the number of BS
antennas grows, then it will be stable when the number of BS antennas continues to grow. After that
they research channel estimation, MIMO detection, downlink precoding to give suggestions what
should be consider in large-scale MIMO system. A more efficient pilot pattern needs to be designed
and the pilot overhead should be considered for frequency division duplex (FDD) systems. Linear
precoding methods, low-complexity detectors, and pilot contamination should be addressed in large-
scale MIMO systems for time division duplex (TDD).

Our research focuses on the analysis of algorithms of channel estimation and MIMO detection. As
mentioned in Su Xin, et al. [51], some matrix operation become simple and can be completed rapidly
by using a series of extension techniques. This thesis project aimed to identify those operations that
would have a direct affect upon the latency of baseband processing. Matrix inversion is one important
determinant of latency. To speed up this computation we use SIMD techniques to simplify and
accelerate matrix inversion, so that the kernel algorithm of channel estimation and MIMO detection
will be computed quickly, hence allowing low latency to be realized on the uplink.

The second aspect is the SIMD implementation of the matrix inversion algorithm. The
comparisons with this thesis can be summarized in three directions: research scope, exploitation of
parallelism and programming method.



Research scope

Exploitation of
parallelism mode

Programming
method
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This thesis project focused on complex matrix inversion algorithm of massive
MIMO channel matrices in wireless communication systems that are likely to
be deployed in the future. The selected algorithm is Gaussian-Jordan
Elimination with the sizes of matrices ranging from 8x8 to 256x256. The
references [52][53] explored matrix computation on matrices larger than
512x512 using LU decomposition and Gauss-Jordan-Floyd-Warshall method
respectively. The application of the research described in this thesis is biased
toward the use of the ASIP baseband processor in wireless communication
systems. In contrast their target application is media processing, specifically
using a heterogeneous chip-multi-processor designed to be the main processor
for the Sony Play station 3 video game console and graphics processors
(GPUs). Our instruction set design is distinct due to the two different
application targets.

In [54] [55], the design and implementation of a parallel algorithm exploits
multi-core task-level parallelism, another form of coarse-grained parallelism.
In contrast, this thesis project aims to design and implement fine-grained
parallel algorithm on a single processor core, by exploiting SIMD data-level
parallelism. Multi-core processors accelerate algorithm execution by running
multiple parallelizable tasks on several cores. However, such a multi-core
processor will have trouble for the application considered in this thesis due to
the need for communication and synchronization between the different cores.
The overhead of this communication and synchronization prevent the low
latency that can be achieved by implementing a fine-grained matrix inversion
algorithm.

The above references adopt programming based upon a high-level language,
such as C language and domain-specific language (DSL). The target of this
research is implemented using application-specific assembly language. But it
could just as easily have been done in C or a higher level language with
optimized matrix mathematics routines.
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5 Conclusions and Future work

This chapter begins by drawing conclusions about this thesis project. In Section 5.2, some suggestions
are made for future work that could improve upon the results of this thesis work. The chapter ends
with some reflections upon economic, social, and ethical aspects related to this thesis project.

5.1 Conclusions

In accordance with the goals defined in Section 1.3, the main research question of this project was to
find important factors which affects 4G/5G baseband processing, then design a parallel
implementation to improve the performance of a relevant kernel algorithm for 4G/5G baseband
processing system when using a SIMD vector processor.

The ultimate goal of this thesis project was fulfilled by proposing an entire work flow to optimize
the performance of the required baseband signal processing. This work flow consisted mainly of three
steps: a literature study, research and analysis of channel estimation and MIMO detection, and design
and evaluation of a parallel scheme for complex matrix inversion algorithm adapted to the SIMD
vector processor being developed by the BIT ASIP lab.

The literature study includes the basic concepts of LTE/LTE-A, LTE-A uplink physical layer, 5G
trends, and SIMD. Study of the details of the LTE-A uplink PHY layer helped me learn about and
understand the specific baseband processing of the LTE-A uplink system. The 5G trends presented
helped to characterize the characteristics of future wireless systems. The introduction to SIMD
examined its advantages in the context of channel estimation and MIMO detection.

Two essential procedures of LTE/LTE-A baseband processing (channel estimation and MIMO
detection) were researched. The relevant entities and the processes of channel estimation and MIMO
detection were specified. An analysis and comparison of LTE/LTE-A channel estimation showed the
difference in the processing of these two wireless systems. Two conventional algorithms of each of the
two procedures: LS& MMSE and ZF& MMSE were introduced. Based on a simplified uplink model, the
performances of these traditional approaches have been measured in terms of MSE and BER. The
results of a theoretical analysis and numerical simulation indicate that MMSE has better performance
with a higher complexity in comparison with LS/ZF which has worse performance & lower complexity.
The channel estimation and MIMO detection algorithms are analyzed in combination with 5G trends.
The analytical result of the implementation of a traditional and a SIMD extended version of both
algorithms shows the importance of complex matrix inversion in massive MIMO.

Complex matrix inversion is the core of the kernel baseband algorithm for both channel estimation
and MIMO detection. The SIMD extension can speed up these two complex matrix inversion based
algorithms. A parallel Gauss-Jordan Elimination algorithm has been designed and evaluated for a
SIMD vector processor.

During the design of a matrix inverse algorithm for a SIMD vector processor, the computing
process of the Gaussian-Jordan elimination algorithm was analyzed. The accuracy of the Gaussian-
Jordan elimination algorithm was computed by calculating the average effective bits. The numerical
result shows that the accuracy of the algorithm is acceptable. After the SIMD instruction mapping,
data access modes and data allocation scheme were described.

Computational costs and analysis were presented. Based upon a comparison of the computational
cost of the original algorithm and SIMD overhead, SIMD offers a speed up the complex matrix
inversion algorithm. The speed of this kernel algorithm has been improved because keys aspects of the
massive matrix inversion computing have been accelerated.

Allin all, I gained a lot of knowledge through this project.
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5.2 Future work

This project sought to design and evaluate a parallel scheme to improve the performance of a
kernel algorithm for 4G/5G baseband processing system using a SIMD instruction set of an SIMD
vector processor. Unfortunately, this matrix processor is still being developed; therefore we cannot
implement this scheme on the target hardware. Therefore, we designed the algorithm to exploit the
SIMD instruction set and used this information to estimate the overall cost of actually running the
algorithm on this processor. When the ASIP team completes the matrix processor, we will use it to
perform further work. Moreover, the Gauss-Jordan algorithm is the most sophisticated matrix
inversion and its cost estimation can be seen as an evaluation criteria. Other algorithms (such as LU
decomposition, Gaussian Elimination, and QR decomposition) will be designed to exploit the
parallelism offered by an SIMD vector processor. We will compare the performance of the sequential
and the parallel implementations. Finally, we suggests some optimization of this SIMD vector
processor based on results found in this thesis project and related work.

Furthermore, we also researched several algorithms for channel estimation and MIMO detection.
According to our investigation and experiments, we found methods to reduce the complexity of these
algorithms by optimizing algorithms; hence we were able to realize low latency. There remain many
open research issues in wireless communication system that we also need to consider. For instance,
capacity analysis in practical systems, better channel models, scheduling schemes for more than
simply user pairing, and large-Scale MIMO systems with a TDD model (mentioned in [51]). All of these
topics are worth studying in more detail.

5.3 Required reflections

This project studied LTE/LTE-A uplink baseband processing at the PHY layer. The author researched
the conventional algorithms’ computing of channel estimation and MIMO detection, and then
proposed a parallel implementation scheme to speed up the algorithm for both channel estimation and
MIMO detection when using an SIMD vector processor. This SIMD implementation is vital for mobile
equipment manufacturers; as it offers a scheme to realize lower latency. Moreover, the mobile operator
market will benefit with lower latency. Latency is a significant element affecting the experience of users.
Therefore, if this problem is properly addressed, then users will experience increased communication
speed. Considering the limitations in this work, future work will also provide new problems that could
motivate and pave the way for continuous study of this rapidly changing area within communications
systems.
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Appendix A: Matlab Main code

Channel estimation

Close all
Clear all
clc

TX Num= 2;

RX Num =2;

M _RB_PUSCH=10;

N_sc RB=12;

DFT Size =M _RB_PUSCH*N_ sc_RB;
FFT _Size = 2048;

CP_Size =160;

n_cs=[0 6];

alpha=2*pi*n cs/12;
sg2=sqrt (2) ;

h pdp=[1,0.5,0.25,0.125,0.0625] *sq2;

L=length (h pdp) ;

F=zeros (DFT_Size,FFT Size);

fori=1:DFT Size

for j=1:FFT_Size
F(i,j)=exp(-1j*2*pi*(i-1)*(j-1)/FFT _Size);
end

end

L TWD=floor (1.2*L) ;
index=zeros (1, TX Num*L TWD) ;

for n=1:TX Num

index ((n-1)*L TWD+1l:n*L TWD)=n cs(n)*FFT Size/12+(1:L_TWD);
end

SNR=[0:5:30] ;
Len SNR=length (SNR) ;

pilot = Gen cazac for pilot (N_sc RB,M RB PUSCH) ;

tx syms map=zeros (TX Num, FFT Size) ;
for n=1:TX Num

tx syms map(n,1:DFT Size)=exp(lj*alpha(n)*[0:DFT Size-1]).*pilot.';
end

tx syms=zeros (TX Num, FFT Size);

for n=1:TX Num

tx syms(n,:)=ifft (tx syms map(n,:),FFT_Size);

end

tx syms ACP=[tx syms(:,FFT_Size-CP_Size+l:end) tx_ syms];

MSE=zeros (2,Len_ SNR) ;

Num_ syms=1000;

fornsnr=1:Len SNR

forsym dex=1:Num_ syms
h=zeros (RX_ Num*TX Num,L) ;

H ideal=zeros (RX_Num,TX Num*DFT Size) ;

sig fad=zeros (RX Num,FFT Size+CP_Size);

for n=1:RX Num

for m=1:TX Num

temp=h pdp.*[randn(1l,L)+lj*randn(1,L)]/sq2;
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sig fad(n,:)=sig fad(n, :)+filter(temp,1l,tx syms ACP(m, :)) ;
h((n-1)*TX Num+m, :)=temp;
H=fft (temp, FFT_Size) ;
H ideal(n, (m-1)*DFT Size+1:m*DFT Size)=H(1:DFT Size);
end
end
sig rx=zeros (RX Num, FFT Size+CP_Size);
sigma=zeros (1,RX Num) ;
for n=1:RX Num
sig rx(n, :)=awgn(sig fad(n, :),SNR(nsnr), 'measured') ;
sigma (n) =abs (norm(sig rx(n,:))"2-norm(sig fad(n,:))"2);
end
sig rx RCP=sig rx(:,CP_Size+l:end);
SigRxed Fre=fft (sig rx RCP,FFT Size,2);
Y=SigRxed Fre(:,1:DFT Size);
H LS=zeros (RX Num,DFT Size);
for m=1:RX Num
H LS(m,1:DFT_Size)=Y(m, :).*conj (pilot."');
end
foralg=1:2
H est=zeros (RX_ Num, TX Num*DFT_Size) ;
for m=1:RX Num
if (alg==1)
g=pinv(F(:,index))*H LS(m, :)."';
else
g=inv (F(:,index) '*F (:, index) +sigma (m) *eye (TX Num*L TWD)) *F (:,index) '*H LS (m
DI
end
for n=1:TX Num
temp=g((n-1)*L TWD+1l:n*L TWD).';
H=fft (temp, FFT_Size) ;
H est(m, (n-1)*DFT_Size+1:n*DFT Size)=H(1:DFT Size);
end
end
MSE (alg, nsnr) =MSE (alg, nsnr) +sum(sum(abs (H_ideal- H_est).AZ))/(
RX_Num*TX Num*DFT Size) ;
end

end

end

MSE=MSE/Num_syms ;
figure

semilogy (SNR, MSE)

axis ([0 25 10"-5 0.5])

gridon
xlabel ('SNR (dB) ')
ylabel ('MSE")

legend ('LS'", "MMSE")
title('Channel estimation algorithms for 2X2 SU-MIMO') ;
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function Output = Gen cazac_for pilot (N _sc RB,M RB_PUSCH)

u=0;
v=1;
N _sc RB temp=N _sc RB*M RB PUSCH;
switch M_RB_PUSCH
case 1 $pilot sequences = N _sc RB
phi=Table5 5 1 2 1(u);
r u_v=exp(sqrt(-1)*pi*phi/4);
case 2 $pilot sequence = 2*N_sc_ RB
phi=Table5 5 1 2 2(u);
r u _v=exp(sqrt(-1)*pi*phi/4);
otherwise%pilot sequence >= 3*N sc RB
M_SC RS=N sc RB temp;
N RS ZC=max(primes (M _SC RS));
X _g=zeros (N RS ZC,1);
r u v=zeros(M_SC RS,1);
g_temp=N_RS ZC* (u+l)/31;
g=floor (g temp+0.5)+v*(-1) “floor(2*g temp) ;
for m=0:1:N RS ZC-1
x _g(m+l)=exp(-li*pi*g*m* (m+1) /N RS ZC);
end
for n=0:1:M_SC RS-1
r u v(n+l,1l)=x g(mod(n,N RS ZC)+1) ;
end
end

Output=r u v;

function phi=Table5 5 1 2 1(u)

matrix=[-1 13 -3 331131-33;11333-11-3-31-323;11-3 -3 -3
-1-3 -31-31-14-171111-1-3-31-33-1;-131-11-1-3-11-11
3,1 -33-1-111-1-13-31;-13 -3 -3 -331-1323-31;-3-1-1-11
-33-11-331;1-331-1-1-1113~-11;1-3-133-1-311111;-
13-111-3-3-1-3-33-1;31-1-133-3131323;1-311-3111
-3 -3 -31;33-33-3113-1-3323;-31-1-3-1313323-11;3 -1
-3-1-1171131-1-3;1731-11333-1-13-1;-3113 -33 -3 -33
3 -1;-3311-31-3-3-1-11-3;-13131-1-13-3-1-3-1;-1 -3
$11131-21-3 -1;-13-11-3-3-3-3-31-1-3;11-3-3 -3 -3 -1
-31-33;11-1-3-1-31-113-11;1213133-11-1-3-31;1 -3
31331-3-1-13;13-3-33-31-1-13-1-3;-3-1-3-1-331-11
3 -3 -3;-13-33-133-333-1-1;3-3-3-1-1-3-13-331-1];

W W R R

phi=matrix(u+l,:)"';
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function phi=Table5 5 1 2 2(u)

matrix=[-13 1 -3 3 -113-3313-3311-113-33-3-1-3;-33 -3 -
3 -31-3-33-111131-13-3-3 1311-3;3-13311-32323233
1-1 3-111-1-3-1-11323;,-1-3113-311-3-1-113131-13
11-3-1-3-1;-1-1-1-3-3-11133-13-11-1-31-1-3-31-3 -
1-1;-3113-1131-31-311-1-13-1-33-3-3-311;11-1-13
-3 -33-31-1r-11-211-1-3-11-13-1-3;-333-1-1-3-1313
1311-231-113-3-1-11;-313-31-1-33-33-1-1-1-11 -3
-3 -31-3-3-31-3;11-333-1-3-13-3333-111-31-111 -3
11;-11 -3 -33-13-1-1-3-3-3-1-3-31-1133-11-123;133 -3
-3131-1-3-3-333-333-1-33-11-31;133111-1-11-3323
-111-333-1-33-3-1-3-1;3-1-1-1-1-3-1331-1132323-11
1-313-1-33;-3-33131-33131133-1-1-31-3-131123;-1
-11-313-31-1-3-1213131-1-3-3-1-1-3 -3 -3 -1;-1 -3 3 -1 -1
-1 -1211-331331-11-31-311-3-1;13 -133-1-31-1-3 33
3-1113-1-3-13-1-1-1;721111-13-1-3113-31-3-111-3
-3311-3;2331-1-33-1333-31-11-1-3-113-13 -3 -3;-1-
33-3-3-3-1-1-3-1-3313-3-13-11-13-31=-1;-3 -311-11
-11-131-3-117-117-1-133-3-11-3;,-3-1-331-1-3-1-3-33
-33-3-1131-3133-1-3;-1-1-1-1333133-313-13-1323
-331-13 3;1-133-1-33-3-1-13-13-1-11111-1-1 -3 -1
3. -11-13-1311-1-1-311-313-311-3-3-1-1;-3-11311
-3-1-1-33-331-33-31-11-3111;-1-333113-1-3-1-1-1
31-3-3-13-3-1-3-1-3-1;-1-3-1-11-3-1-11-1-311-31 -3
-3311-13-1-1;721-1-1-3-13-13-1131-13123-3-31-1-1
1 3];

phi=matrix(u+l,:)"';

MIMO detection

clear

N = 10°5;

Eb NO dB = [0:30];
nTx = 2;

nkRx = 2;

for ii = 1l:length(Eb NO_dB)

ip = rand(1,N)>0.5;
s = 2*ip-1;

sMod = kron(s,ones (nRx,1)) ;

sMod = reshape (sMod, [nRx,nTx,N/nTx]) ;
h = 1/sgrt(2)* [randn (nRx,nTx,N/nTx) + j*randn (nRx,nTx,N/nTx)];
n = 1/sqgrt(2)* [randn (nRx,N/nTx) + j*randn (nRx,N/nTx)];

y = squeeze (sum(h.*sMod,2)) + lOA(—Eb_NO_dB(ii)/2O)*n;

hCof = zeros(2,2,N/nTx) ;

hCof (1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1);

hCof (2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1);

hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1);

hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1);

hDen = ((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:)));
hDen = reshape (kron (reshape (hDen,1,N/nTx),ones(2,2)),2,2,N/nTx) ;

hInv = hCof./hDen;

hMod = reshape (conj (h),nRx,N) ;

yMod = kron(y,ones(1,2));

yMod = sum(hMod.*yMod, 1) ;

yMod = kron (reshape (yMod, 2,N/nTx) ,ones(1,2)) ;
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yHat = sum(reshape (hInv,2,N).*yMod, 1) ;
ipHat = real (yHat)>0;

nErr (ii) = size(find([ip- ipHatl]),2);
end
simBer = nErr/N;

EbNOLin = 10." (Eb NO dB/10) ;

theoryBer nRxl = 0.5.%(1-1*%(1+1./EbNOLin)."(-0.5));
p=1/2 - 1/2*(1+1./EbNOLin) .*(-1/2) ;
theoryBerMRC nRx2 = p. " 2.% (1+2*%(1-p));

close all

figure

semilogy (Eb NO dB, simBer, 'bo-") ;
hold on

for ii = 1l:length(Eb NO_dB)

ip = rand(1,N)>0.5;
s = 2*ip-1;
sMod = kron(s,ones (nRx,1)) ;
sMod reshape (sMod, [nRx,nTx,N/nTx]) ;

h = 1/sqrt(2)*[randn (nRx,nTx,N/nTx) + j*randn (nRx,nTx,N/nTx)];
n = 1/sqrt(2)*[randn (nRx,N/nTx) + Jj*randn (nRx,N/nTx)];
y = squeeze(sum(h.*sMod,2)) + 1OA(—Eb_NO_dB(ii)/2O)*n;

hCof = zeros(2,2,N/nTx) ;

hCof (1,1,:) = sum(h(:,2,:).*conj (h(:,2,:)),1) + lOA(—Eb_NO_dB(ii)/lO);
hCof (2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1) + 1OA(—Eb_NO_dB(ii)/1O);
hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1);

hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1);

hDen = ((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:)));

hDen = reshape (kron (reshape (hDen,1,N/nTx) ,ones(2,2)),2,2,N/nTx) ;
hInv = hCof./hDen;

hMod = reshape (conj (h),nRx,N) ;

yMod = kron(y,ones(1,2));

yMod = sum(hMod.*yMod, 1) ;

yMod = kron (reshape (yMod, 2,N/nTx) ,ones(1,2));
yHat = sum(reshape (hInv,2,N).*yMod, 1) ;

ipHat = real (yHat) >0;
nErr (ii) = size(find([ip- ipHatl),2);

end

simBer = nErr/N;

EbNOLin = 10." (Eb _NO dB/10) ;

theoryBer nRxl = 0.5.%(1-1*%(1+1./EbNOLin)."(-0.5));
semilogy (Eb NO dB, simBer, 'ro-'");

axis ([0 25 10"-5 0.5])

gridon

holdoff

legend ('ZF', ' MMSE');

xlabel ('SNR (dB) ') ;

ylabel ('BER') ;

title('The comparison of ZF and MMSE for MIMO 2x2');
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Appendix B: C Main Code

Martix inversion

include<iostream>
include<math. h>
include<fstream>
include<sstream>
include<complex>
#tdefine MAX SIZE 512

H OH H H H

usingnamespace std;

void printmatrix(complex<double> *data, int size) {
cout<<endl;
for(int i=0;i<size;i++) {
for(int j=0; j<size;j++) {
cout<{<{datali*size+j]<<” 7;
}
cout<<endl;
}
!
//(3) AINIT
//(3) WAIT
void matrixinv(complex<{double> *data, int size )
{
int js[MAX SIZE]={0};
int is[MAX SIZE]={0};
for (int m=0;m<size;m++)
is[m]=js[m]=m;
double d=0;
for (int k=0;k<size;k++)
{
cout<<"k="<<k<<endl;
for(int i=k;i<size;i++)
{
for(int j=k; j<size;j++)
{
if (abs(datali*size+j]) >d)
// (N#Nsk (N=1) / (2%P) ) TMAC2
// (N#Nsk (N=1) / (2P) ) TMAX
{
d=abs (datali*size+j]) ;
//(N)  JMP
// (3%N) NOP
// (N) MOV
islk]=i;
jslkl=j;

}

}
if (d+1. 0==1.0)
//(2%N) AMOD




56 | Appendix B: C Main Code

// (5N)  (CMP+3%NOP+JMP)
{
cout<<"No inverse!”<<endl;
return;
1
if(is[k]!=k)
{ complex<double> mi;
for(int j=0; j<{size;j++)
{
mi=datalk*size+j];
datalk*size+jl=datalis[k]*size+j];
datalis[k]*size+j]=mi;
// (N%N/P) MOV

}

//printmatrix(data, size) ;

if (jsl[k]!=k)
{
complex <double> mi;
for(int i=0;i<size;i++)
{
mi=data[i*size+k];
datali*sizetk]=datal[i*size+js[k]];
datali*size+jslk]]=mi;
// (N#N/P) MOV

}

//printmatrix(data, size) ;

// (3%N) AINIT

// (4%N) RLOAD

// (4%N) WATT

data[k*sizetk]=(complex<double>(1.0,0.0))/datalk*size+k];

/ /N (ADD+3#NOP+MUL+3#NOP+MUL+3*NOP+MUL+3*NOP+MUL+3#NOP+TMAC2+3NOP+MOV)
//=(25%N)

// (4%N) RSTORE

//printmatrix (data, size) ;

// (3%N) AINIT
// (3%N) WAIT
for (int j=0; j<size; j++)
{
if (j1=k) {
cout<<” j="<<{j<<endl;
datalk*size+j]=datalk*size+j]*datalk*sizetk];
// (N%N/P) CMUL
// (2%N) AMOD
}
}
cout<<endl;
//printmatrix(data, size) ;
// (3%N) AINIT
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//(3%N) WAIT

for(int i=0;i<size;i++)
{
if(il=k)  {
cout<<”i="<<i<<endl;
for (int j=0; j<size; j++)

{
if(jl=k) {
cout<<”j="<<{j<<end];
datali*sizetj]=datali*size+j]-datali*sizetk]*datalk*size+j];
// (NN (N-1) /P) CMAC
}
1
}
}
cout<<endl;

//printmatrix(data, size) ;
//(3%N) AINIT
// (3%N) WAIT
for(int i=0;i<size;i++)
{
if (i!=k) {
cout<<”i="<<i<<endl;
datali*sizetk]=—data[i*size+tk]*datalk*size+k];
// (N (N-1) /P) CMUL
1
}
cout<<endl;

//printmatrix (data, size) ;
}
//printmatrix (data, size) ;

//(3%N) AINIT
// (3%N) WAIT
for(int k=size—1:k>=0:k—)
{
complex<double> mi;
for (int j=0; j<size; j++)
{
if (jslk]!=k)
{
mi=datalk*sizet+j];
datalk*size+jl=dataljs[k]*size+j];
dataljsl[kl*size+jl=mi;
// (N¥N/P) MOV
1
}

//printmatrix (data, size) ;

for(int i=0;i<size;i++)

{
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if (is[k]!=k)

{
mi=data[i*size+k];
datali*sizetk]=datali*size+is[k]];
datali*size+is[k]]=mi;
// (NN/P) MOV

}
1
//printmatrix (data, size) ;
}
//printmatrix (data, size) ;
//T*WATT
if (d=0)
{
cout<<"error”<<endl;
1
printmatrix(data, size) ;
1
void main()
{
int size;

stringstream ssize;

string size str;
cout<<”Input Matrix Size:”;
cin>> size;

ssize << size;
ssize >> size str;

” ”

string filename = size str + ", txt”;
string filename out = “inv” + filename;

ifstream readfile(filename.c str());
complex<double>* data = new complex<{double>[size*size];

if(readfile. is open())
{
for(int i=0; i<size;i++)
{
for(int j=0; j<size;j++)
{

readfile >> datali*size+j];
}
matrixinv(data, size) ;
ofstream writefile(filename out.c str());
if (writefile. is_open())

{

for (int i=0; i<size; i++)
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for (int j=0; j<size; j++)
{

writefile << datali*size+j];

writefile << :

}
writefile << endl;

}

Verification

include<iostream>
include<math. h>

include<{fstream>
include<sstream>

H H H = H

include<complex>
#tdefine MAX SIZE 512

using namespace std;

void printmatrix(complex<double> *data, int size) {
cout<<endl;
for(int i=0;i<size;i++) {
for(int j=0;j<size;j++) {
cout<{<{dataliksize+j]<<” 7;

}
cout<<endl;

}

complex<double> truncate 16 (complex<double> in, int gbits) {
double re in, im in;
double re res, im res;
complex<double> res;
re in=real (in) ;
im in=imag(in) ;

if((re_in >pow (2.0, (16-1-gbits))) | | (re_in<-pow (2.0, (16-1-gbits))))

cout<<"value out of fixed point range!”<<endl;

if ((re_in >pow(2.0, (16-1-ghits))) || (re_in<-pow(2.0, (16-1-gbits))))

cout<<"value out of fixed point range!”<<endl;

re res=(floor (re inkpow (2.0, gbits)+0.5)) /pow (2.0, gbits);
im_res=(floor (im_in*pow (2. 0, gbits)+0.5)) /pow (2.0, gbits) ;

res = complex<double> (re res, im res);
return res;

}

complex<double> truncate 32 (complex<double> in, int gbits) {
double re in, im in;
double re res, im res;
complex<double> res;
re_in=real (in) ;
im_in=imag(in) ;

if ((re_in >pow (2.0, (16-1-gbits))) || (re_in<-pow (2.0, (16-1-gbits))))

cout<<"value out of fixed point range!”<<endl;
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if ((re_in >pow (2.0, (16-1-gbits))) | | (re_in<{-pow (2.0, (16-1-gbits))))
cout<<”value out of fixed point range!”<<endl;

re res=(floor (re in*pow (2.0, (qgbits+16))+0.5)) /pow (2.0, (gbits+16)) ;

im_res=(floor (im_in*pow (2. 0, (gbits+16))+0.5)) /pow (2.0, (ghits+16)) ;

res = complex<double> (re res, im res);

return res;

}

double compare result (complex<double> *data, complex{double> *ref, int size, int gbits) {
double effective bits=0;
double effective bits average=0;
double data scaled r,ref scaled r,data scaled i, ref scaled i;
for (int i=0;i<size*size;i++) {
data scaled r=real (datal[i])/pow (2.0, (16-1-gbits)) ;
ref scaled r=real (ref[i]) /pow (2.0, (16-1-qgbits));
if(data scaled r-ref scaled r==0) {
effective bits = 16;

}
else{

effective bits= —log(abs(data_scaled r-ref scaled r))/log(2.0);
}

if (effective bits<0) {
effective bits=0;
}
else if(effective bits>16) {
effective bits=16;
}

effective bits average=effective bits averageteffective bits;

}

for(int i=0;i<size*size;i++) {
data_scaled i=imag(datali])/pow (2.0, (16-1-gbits));
ref scaled i=imag(ref[i])/pow (2.0, (16-1-qgbits));
if(data scaled i-ref scaled i==0) {
effective bits = 16;

}
else{
effective bits= —log(abs(data_scaled i-ref scaled i))/log(2.0);
}
if (effective bits<0) {
effective bits=0;
}

else if (effective bits>16) {
effective bits=16;
}

effective bits average=effective bits averageteffective bits;

}
effective bits average=effective bits average/(2%sizexsize) ;
return effective bits average;

void matrixinv(complex<double> *data, int size, int gbits)

int js[MAX SIZE]={0}:
int is[MAX SIZE]={0}:
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for (int m=0:m<size;m++)
is[m]=js[m]=m;

double d=0;
for(int k=0:k<size:;k++)
{
for (int i=k;i<size;i++)
{
for(int j=k;j<{size;j++)
{
if (abs(datali*size+j])>d)
{
d=abs (datali*size+j]);
islk]=i;
jslkl=j;
}
}
1
if (d+1.0==1.0)
{
cout<<”No inverse!”<<endl;
return;
}

if (is[k]!=k)
{ complex<double> mi;
for (int j=0; j<size; j++)

{
mi=datal[k*size+j];
datalk*sizetjl=datalis[k]*size+j];
datalis[k]*size+j]=mi;
}
}
if (js[k]!=k)
{
complex <double> mi;
for(int i=0;i<size;i++)
{
mi=data[i*size+k];
datal[i*sizetk]=data[i*size+js[k]];
datali*sizetjslk]]=mi;
!
}

datalk*size+k]=truncate 32((complex<double>(1.0,0.0))/datalk*size+k]
gbits);

for (int j=0;j<size; j++)
{
if(j1=k) {

datal[kksize+jl=truncate 16 (datalk+*size+j]*datalk*size+k], gbits):
}
}
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cout<<endl;

for(int i=0;i<size;i++)
{
if (i!=k)
{
for(int j=0; j<{size;j++)
{
if(j!1=k) {
data[i*size+j]=truncate 16(datali*size+j]-
(datali*sizet+k]*datalk*size+j]), gbits);
}
}

cout<<endl;

for(int i=0;i<size;i++)
{
if (i!=k) {
datal[i*size+k]=truncate 16(-
datal[i*size+k]*data[k*size+k], gbits) ;
}
1
cout<<endl;

}

for (int k=size-1;k>=0;k—)

{
complex<double> mi;
for(int j=0;j<size;j++)

{
if(js[k]!=k)
{
mi=datalk*size+j];
datalk*sizetjl=dataljslk]*size+j];
dataljs[k]*size+j]=mi;
1
}
for(int i=0;i<size;i++)
{
if (is[k]!=k)
{
mi=data[i*size+k];
datali*sizetk]=datal[i*size+is[k]];
datali*size+is[k]]=mi;
}
1

if (d=0)




Appendix B: C Main Code | 63

cout<<"error”<<endl;

void main()
{
int size;
int gbits;
double eb;
stringstream ssize;
string size str;
cout<<”Input Matrix Size:”;
cin>> size;
cout<<endl;
cout<<”Fixed Point Format (fractional bits):”;
cin>>gbits;

ssize << size;
ssize >> size str;

” ” ”

string filename = “input” + size str + "x” + size str + 7. txt
string filename ref = “result” + size str + "x” + size str + 7. txt”;
string filename out = “output” + size str + “"x” + size str + 7. txt”;

ifstream readfile(filename.c str());
complex<double>* data = new complex<double>[size*size];

if (readfile. is open())

{

for (int i=0; i<size;i++)

{
for(int j=0; j<size;j++)
{

readfile >> datali*size+j];
}
1
}

ifstream readref(filename ref.c str());
complex<double>* ref = new complex<double>[size*size];
if (readref. is_open())

{
for(int i=0; i<size;i++)
{
for (int j=0; j<size;j++)
{

readref >> ref[iksize+j];
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matrixinv(data, size, gbits);

ofstream writefile(filename out.c str());
if (writefile. is open())

{
for(int i=0; i<size; i++)
{
for(int j=0; j<size; j++)
{
writefile << datali*size+j];
writefile << 7 7;
}
writefile << endl;
1

}

eb=compare_result (data, ref, size, gbits) ;
cout<<endl<<”Average effective bits:”<<eb;
cout<<endl;
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