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Abstract— The concept of effective bandwidth can be utilized
to estimate the amount of bandwidth that should be allocated to
a source in order to meet a QoS requirement. Several different
effective bandwidth estimators have been defined in literature;
however it is necessary to ensure that these estimators are
practically implementable and feasiblein realistic network envi-
ronments. This necessity serves as our motivation to implement
several estimators in a realistic network in order to evaluate the
use of online measurement-based resource allocation schemes.

In this paper, we describe our implementation of three resource
allocation schemes within the Realtime Traffic Flow Measure-
ment architecture. We compare our results of emulation to
previous simulation results in order to compare the accuracy and
performance of the schemes. Finally, we demonstrate that these
schemes are feasible to be implemented in network hardware to
be utilized in self-sizing high-speed networks.

I. I NTRODUCTION AND MOTIVATION

The goal of self-sizing multiclass networks is to provide
efficient utilization of network resources while ensuring ap-
propriate quality of service (QoS) for each class of traffic.
The use of effective bandwidths, which estimate the amount of
bandwidth that should be allocated to a class of traffic in order
to meet a QoS requirement, is a natural fit into the self-sizing
architecture. This allows for maximum utilization of available
resources while still guaranteeing that QoS requirements are
met.

Since arriving traffic is not knowna priori, a measurement-
based resource allocation scheme must be utilized. This allows
the network to follow the transient nature of the traffic in a
realtime manner, adapting to its changing characteristics. It is
also imperative that this scheme be practically implementable
and scalable within a high-speed network with a large number
of concurrent classes. These factors serve as our motivation to
investigate the viability of using effective bandwidth estima-
tors within a self-sizing framework.

We emulate a realistic network by implementing our re-
source allocation schemes within the Realtime Traffic Flow
Measurement (RTFM) architecture, which is defined in [1]
as an IETF standard for traffic accounting and measurement.
Since previous work is limited to simulations only, and of

a single queue model at that, we study here the viability of
these resource allocation schemes in a real network which
utilizes IETF-standardized measurement tools. By abstracting
away the details of the measurement architecture, we are able
to independently evaluate the ability of the allocation schemes
to conserve network resources while still meeting the QoS
constraints of the traffic.

The paper is organized as follows: In Section II, we study
the realization and feasibility of three different effective band-
width estimators. In Section III, we discuss our modifications
to an implementation of the Realtime Traffic Flow Measure-
ment architecture. In Section IV, we provide a description
of our tests along with the results, which demonstrate the
ability to provide adequate quality of service to network traffic
while still conserving available bandwidth. We summarize our
findings and discuss future work in Section V.

II. EFFECTIVE BANDWIDTH ESTIMATORS

Effective bandwidth is generally defined in [2] by:

eb(s, t) =
1
st

log E
[
esX[0,t]

]
(1)

whereX[0, t] represents the amount of work that arrives from
a source in the interval[0, t].

The s parameter in (1) cannot be directly estimated from
measurements. It must be calculated using the Large Devia-
tions Theory and making a large buffer assumption. There-
fore, the direct application of (1) in an online measurement
resource allocation scheme is not practical. Numerous ways of
evaluating (1) have been defined in literature; however, most
of the approaches rely on unrealistic assumptions or invalid
approximations. Therefore, without loss of generality, we limit
our analysis to empirical approaches to estimating the effective
bandwidth, which are discussed in [3].

A comparison of several different empirical estimators is de-
scribed in [4]. Three algorithms investigated in [4] are chosen
for further analysis because of their computational complexity,
performance, and memory requirements. The Gaussian, Cour-
coubetis, and Norros allocation algorithms are briefly defined



below, and in greater detail in [5], [6], and [7], respectively.
Note that all of the reviewed formulae are derived independent
of the effective bandwidth formula (1).

A. Gaussian Approximation

The Gaussian Approximation is defined in [5] as:

CEB = µ+ σ
√
−2 ln ε− ln 2π (2)

whereµ is the mean arrival rate of the traffic,σ is the standard
deviation of the arriving traffic, andε is the QoS parameter
(packet loss percentage).

The Gaussian Approximation assumes a bufferless link, and
is therefore an appropriateupper bound. It is computationally
simple and easy to implement.

B. Courcoubetis Approximation

The Courcoubetis Approximation is defined in [6] as:

CEB = µ+
IDs

2B
(3)

whereµ is the mean arrival rate of the traffic,ID is the
index of dispersion,s is the space parameter, andB is the
buffer size of the queue. Thes parameter is calculated from
an asymptotically exponential decrease assumption:

P (B < Q) = e−sB (4)

The index of dispersion is defined in [6] as:

ID = lim
n→∞

1
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 (5)

A limitation of the Courcoubetis Approximation is that it
does not address long range dependant traffic.

C. Norros Approximation

The Norros Approximation is defined in [7] as:

CEB = µ+
[
BH−1κ (H)

√
−2aµ ln ε

] 1
H

(6)

whereκ (H) = HH(1−H)1−H , µ is the mean arrival rate of
the traffic,B is the buffer size of the queue,H is the Hurst
parameter of the traffic ,a is the coefficient of variation of the
traffic, andε is the QoS parameter (packet loss percentage) of
the traffic flow. The coefficient of variation is approximated by
(5); this approximation is only valid when the arriving traffic
is short range dependant.

The Norros Approximation is the only formula we con-
sidered that uses the Hurst parameter in its calculations;
therefore, it is the only formula that takes self-similarity into
consideration. It is also the only formula that addresses long
range dependant traffic.

Fig. 1. Logical Diagram of RTFM Architecture

III. RTFM A RCHITECTURE

A. Architecture Overview

There are 3 main components within the RTFM architecture:
the meter, reader, and manager. Figure 1 shows a logical
diagram depicting the RTFM architecture. The meter serves to
collect statistics on network flows that pass through links that
are connected to it. The reader retrieves the statistics from the
meter at a regular interval via SNMP. The manager controls
which flows are monitored by downloading aruleset to the
meter. There can be many meters and readers under the control
of a single manager.

The EB functionality will be added to the meter component.
Figure 2 shows the details of a meter within the RTFM
architecture.

Fig. 2. Logical Diagram of Meter within RTFM Architecture

The meter is the only element of the RTFM architecture
that actually handles packets. When a packet is received on the
wire, a copy of the packet is passed to the meter application via
a low-level packet library (thelibpcap library is used for this
purpose on the Linux operating system). The packet then goes
into the packet matching engine, which determines whether
the packet is of interest to the meter. This is determined
by comparing the packet’s properties to the ruleset that the
manager has downloaded to the meter. If the packet does not
match a valid rule within the ruleset, the packet is ignored and
the meter waits for another packet. However, if the packet does
match a rule within the current ruleset, the meter attempts to
look up an entry in the flow table, which keeps statistics for
flows that are specified within the ruleset. Appropriate fields
are stored or updated, and the packet is discarded.



B. Modifications to RTFM Architecture

In our experiments, we are interested in the number of
arriving bytes in a given time period (tslot) for a particular
traffic flow. This value is provided to us by thetoOctets
field defined in [1]. We utilize a sliding window system in
our online implementation in order to keep the calculations
as efficient as possible. The size of the sliding window is
defined asN slots. The program computes the change in the
toOctetsfield for the flow between the last value oftslot,
since the toOctets field is a running 64-bit counter. This
value, (∆toOctets), is then used to recompute the mean and
variance, and if necessary, the index of dispersion. A flow
chart describing the effective bandwidth calculation is seen in
Figure 3.
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Fig. 3. Flowchart Describing Effective Bandwidth Calculation Process

The mean, variance, and index of dispersion are recalculated
after everytslot. Since the sliding window size is known, we
can remove the data received N slots ago, and replace it with
the newly measured data (∆toOctets). We then recompute
the mean, variance, and index of dispersion of the data stored
within the sliding window system.

The variabletime to realloc represents the number of mea-
surements that need to be taken before the effective bandwidth
is recalculated. Sincetime to realloc is decremented each
time a entry is made into the sliding window system, we
should recompute the effective bandwidth according to the
specified method iftime to realloc = 0. We then reset the
value of time to realloc to N . Otherwise,time to realloc
is decremented, and control proceeds back to thetslot delay
block.

Once the new effective bandwidth has been computed, the
program utilizes thetc utility under Linux in order to change
the bandwidth allocated to that particular flow. When the
network flow is detected in the meter, a queue is created for the
network flow. This allows us to set the service rate individually
for each flow Also, since some of the approximation formulae
require a buffer size parameter, we set the length of the queue
to be 150,000 bytes. Once the reallocation is complete, control
defaults back to thetslot delay block.

IV. EXPERIMENTS

A. Overview

We used an implementation of the RTFM architecture
called NeTraMet, which is available athttp://www2.
auckland.ac.nz/net/NeTraMet/ . The network envi-
ronment can be seen in Figure 4. The computerscarolina,
ncstate,andwolfpackrepresent three separate networks. Each
of the computers is running Linux, and all links in the network
are 100mbps Ethernet.ingressis the router, which is serving
as the meter and manager/reader. The NeTraMet code running
on ingress is dynamically allocating bandwidth for flows
originating from carolina, ncstate,and wolfpack which are
destined for thecore1computer, which represents a destination
network.
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Fig. 4. Network Diagram of Simulation Environment

We used the Sup-FRP traffic model defined in [8] to gener-
ate the traffic which is sent through the network. This model
generates traffic from the aggregation of ON-OFF sources.
This model is widely accepted for use as a self-similar traffic
generator.

A logical diagram depicting the traffic flow through the
ingressrouter can be seen in Figure 5. We measure the QoS
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Fig. 5. Logical Diagram of Experimental Environment

parameter, packet loss probability, at thecore1computer. The
traffic sent across the network in all tests last 1000 seconds.

The goal of these experiments is to investigate the fea-
sibility of a realistic implementation of effective bandwidth
estimators within an online measurement system. Previous
work is limited to simulations of the environment shown in
Figure 4; therefore, we consider the viability of these resource
allocation schemes in a real network which utilizes the IETF-
standardized RTFM architecture.



Figures 6, 8, and 10 show a plot of the traffic trace sent
across the network along with the actual bandwidth that was
allocated to that network stream. These plots, along with
their corresponding packet loss probability, shows that we can
allocate bandwidths which are less than the peak rate while
still ensuring that our QoS constraints are met.

B. Single Flow Experiments

In these tests, we sent a single network flow from the
carolina computer to thecore1 computer in order to test
the functionality of each approximation algorithm. Figure 6
shows a plot of the traffic trace sent, along with the computed
effective bandwidth for each algorithm.
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Fig. 6. Throughput vs. Effective Bandwidth - Single Flow

Figure 7 shows that the effective bandwidth allocates the
appropriate amount of bandwidth to ensure that the QoS
constraint is met, while still preserving bandwidth over a peak-
rate allocation scheme.
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Fig. 7. Packet Loss Probability - Single Flow

The values shown in Figure 6 appear to match the results
seen in simulation trials described in [4]. This confirms that

our implementation is operating as expected.
We repeat the above tests, changing only the traffic trace,

in which the mean arrival rate is doubled between the interval
(400, 800) seconds. The purpose of this test is to observe the
ability of the online measurement system to track significant
changes in the traffic and act accordingly to ensure that the
QoS constraint is met. Figure 8 shows a plot of the traffic
trace sent, along with the computed effective bandwidth for
each algorithm.
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Fig. 8. Throughput vs. Effective Bandwidth - Single Flow with Increased
Mean Arrival Rate

Figure 9 shows that when the mean arrival rate is doubled,
only the Gaussian approximation of the effective bandwidth
allocates the appropriate amount of bandwidth to ensure that
the QoS constraint is met, while still preserving bandwidth
over a peak-rate allocation scheme. Both of the Courcoubetis
and Norros Approximations experienced significant packet
loss when the mean arrival rate of the traffic doubled.
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Fig. 9. Packet Loss Probability - Single Flow with Increased Mean Arrival
Rate

The measurement time scale is relative to the traffic char-
acteristics; therefore, a statictslot value fails to accurately



capture the characteristics of the traffic. Iftslot is too small,
then the confidence intervals of the measured statistics of the
traffic become larger, and the system tends to over allocate
resources. In the opposite case, whentslot is too large, the
estimated EB will tend towards the mean arrival rate, due to
the law of large numbers. This causes in an under-allocation
of resources, which causes the QoS of the traffic to degrade.
This is the phenomenon observed in Figure 9; thetslot value
is too large for the Courcoubetis and Norros algorithms to
estimate the effective bandwidth of the changing traffic which
still maintains the required QoS.

The use of a dynamic time scale within these algorithms is
discussed in [4], [9], and [10]. Simulation results have shown
that dynamically changing the length oftslot at the completion
of N window slots allows the system to accurately track large
changes in the characteristics of the traffic. With a dynamic
tslot, QoS constraints can be met even when dramatic changes
in the traffic characteristics are observed.

C. Multiple Flow Experiments

In these tests, we sent three network flows from thecarolina,
ncstate,and wolfpack computers to thecore1 computer in
order to test the scalability of our implementation. Figure
10 shows a plot of the traffic trace sent, along with the
computed effective bandwidth for each flow for the Gaussian
Approximation.
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Figure 11 shows that the effective bandwidth allocates the
appropriate amount of bandwidth to ensure that the QoS
constraint is met, while still preserving bandwidth over a peak-
rate allocation scheme.

The tests using the Courcoubetis and Norros approximations
showed the same results as the Gaussian Approximation:
the effective bandwidth allocated the appropriate amount of
bandwidth to ensure that the QoS constraint is met, while still
preserving bandwidth over a peak-rate allocation scheme.
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Fig. 11. Packet Loss Probability - Multiple Flows, Gaussian Approximation

V. CONCLUSIONS

In this paper, we described our implementation of three
online measurement-based resource allocation schemes for use
in self-sizing multiclass networks. We discussed the Realtime
Traffic Flow Measurement architecture, and how we utilized
it in our effective bandwidth estimation. We presented a
description of our testing environment, as well as results from
multiple tests showing the robustness of our implementation.

We are currently working on adding the ability to utilize a
dynamic time scale in our implementation. The objective of
this work is to prove the robustness of a self-sizing network
which can provide differentiated services to multiple classes
of network traffic.
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