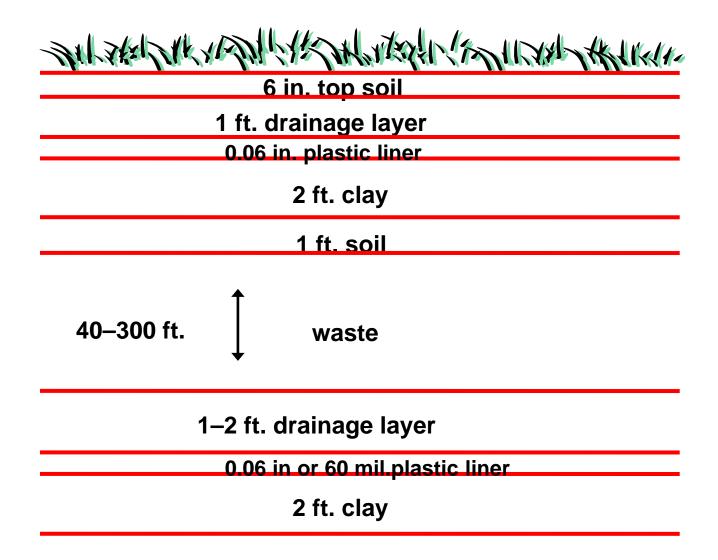

# **Design and Operation of Landfills**

- Soils and hydrogeology
- Site selection criteria
- Site layout and landfill operations
- Liner design
- Water balance
- Biological reactions in landfills
- Leachate quality
- Gas production
- Groundwater & Post-Closure monitoring
- Regulation


# Landfill Site Plan (simplified)



# Landfill Cross Section (simplified)



#### **Conceptual Landfill Liner System**



#### Definition - Sanitary Landfill

- At a minimum wastes are compacted and covered on a daily basis
- Historically
  - Open dump or burning pit
  - Problems with rodents and insects, odors, leachate

#### An open dump in Sudan (UNEP)



### Definition - Sanitary Landfill

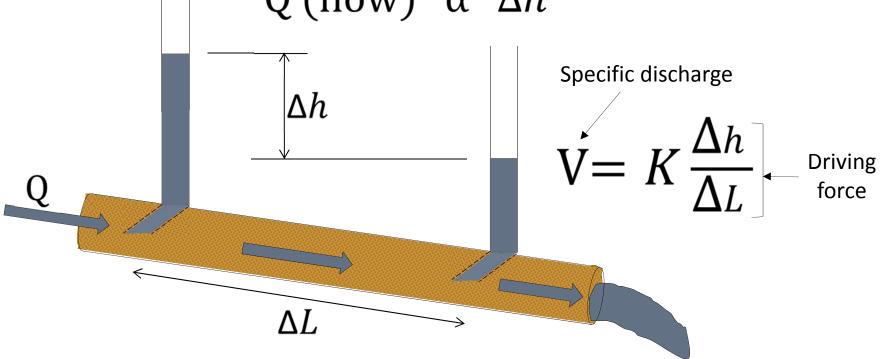
- Today a highly engineered facility for isolation of waste from the environment
  - Operational plan
  - Gas collection
  - Leachate collection and treatment
  - Groundwater monitoring
  - Closure plan
  - Post- closure monitoring program

# The Design Process

- 1 Solid waste management planning
  - Is a landfill needed?
    - Local or regional?
- 2 Site identification
  - Assess available land and eliminate unlikely candidates (wetlands, archaeology,floodplain, airport, politics)
  - Technical feasibility study start spending money
- 3 Site design and preparation of permit application

## The Design Process

- 4 Receipt of permit
- 5 Preparation of construction drawings and specifications
  - Request for bids
- 6 Construction
  - Certify construction QA/QC
- 7 Obtain operating permit


#### 8 Operation

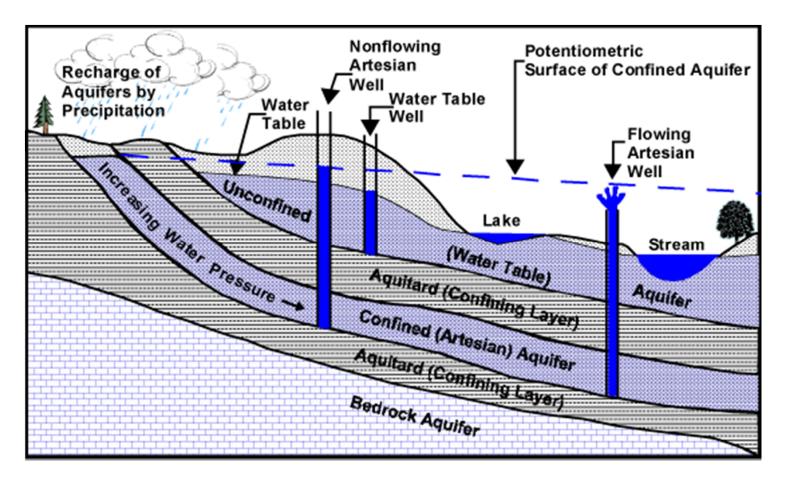
# **Groundwater and Soil Properties**

- How water moves underground
  - must be able to understand potential impacts of a landfill on groundwater
  - direction of groundwater flow
  - changes in groundwater quality
- How are soils classified
- What soils are appropriate as liners, daily cover, drainage layers

# Darcy's Law

• Defines the flow of fluids through porous media (soil) Q (flow)  $\alpha \Delta h$ 




#### Typical Values of Hydraulic Conductivity

| Gravel             | 1 - 10 <sup>-2</sup> cm/sec            |
|--------------------|----------------------------------------|
| -Stone (#57)       | 1                                      |
| -Pea gravel        | <b>1</b> 0 <sup>-1</sup>               |
| Sand               | 10 <sup>-2</sup> - 10 <sup>-4</sup>    |
| - clean coarse sar | nd <b>10</b> <sup>-2</sup>             |
| - well graded      | 10-4                                   |
| Silt               | 10 <sup>-5</sup> - 10 <sup>-6</sup>    |
| Clay               | < 10 <sup>-6</sup>                     |
| Refuse             | 10 <sup>-3</sup> - 10 <sup>-8</sup> ?? |

# Groundwater Flow in Aquifers

- <u>Aquifer</u>
  - transmits significant quantities of water under normal hydraulic gradients
- Confined Aquifer
  - an aquifer between 2 low conductivity layers
- Unconfined Aquifer
  - water table forms the upper boundary

#### Groundwater Flow in Aquifers



http://www.in.gov/dnr/water/7258.htm

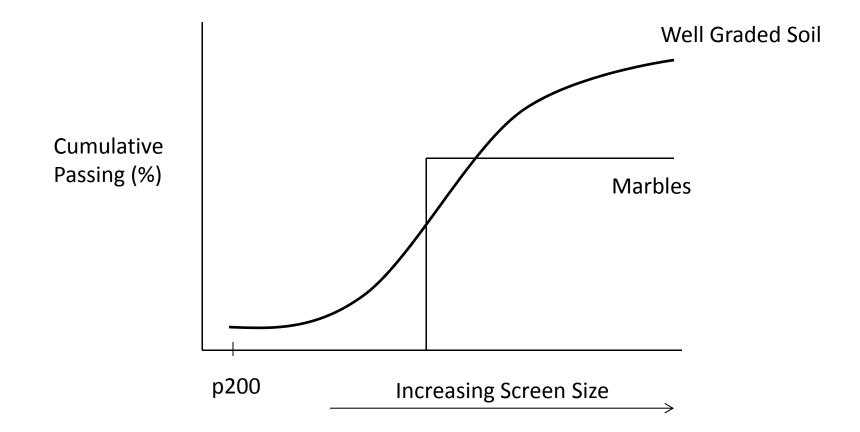
# Site Assessment - Soils

- In order to evaluate the feasibility of a site, the available soils and underlying groundwater must be characterized
  - What types of soil are present on site?
  - Permeability of on-site soils:
    - Use for liner, drainage layer, cover material
  - Is there enough?
  - Availability of off-site soils
  - Depth to bedrock

## Site assessment - Soils

- Perform soil borings and characterize soils visually and by lab analysis
- Borings per acre:
  - Suitability 1/acre
  - Detailed design 10/acre

# Major Divisions


Gravel

- Rounded pebbles, no cohesion
- Sand
  - Granular loose grains, easily visible, no cohesion, settles rapidly
- ♦ Silt
  - Barely visible grains, no cohesion, will settle in water in 30-60 minutes
- Clay
  - Invisible cohesive particles, will remain suspended in water for a minimum of several hours

# Clays

- The fines fraction is frequently referred to as the p200 fraction the fraction passing a 200 screen
  - A small decrease in p200 can result in a large increase in conductivity due to changes in grain size distribution

# **Grain Size Analysis**



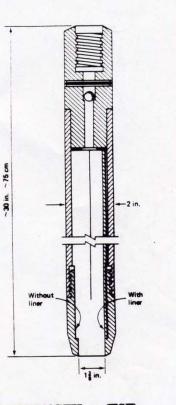
# Clays

- Slippery when wet
- Difficult to work with or drive on
- Absorb large quantities of water and swell, then shrink as they dry, developing large cracks
  - Freeze/thaw

#### Can we make clay?

- Bentonite soil amendment
  - -2 8% bentonite will achieve  $10^{-8}$  cm/sec
  - ~30 \$/yd<sup>3</sup> to mix bentonite into native soil and compact

LOG OF BORING NO. LG-9


| CLIENT<br>PROJECT NAME<br>PROJECT LOCATION<br>SORING LOCATION<br>STRING LOCATION                                                                                                                                     | JOB NO.<br>DATE <u>1275-6-10785</u><br>BORING METHOD <u>HSA</u><br>ROCK CORE DIA. <u>NX</u> IN<br>SHELBY TUBE DIA. IN |                                       |                                        |                   |          |                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-------------------|----------|------------------------------------------------------------------------------------------------------|
| SPECTOR                                                                                                                                                                                                              | STRATUM<br>DEPTH, FT                                                                                                  | DEPTH, FT.<br>Sample No.<br>CoreRun() | BLOWS/BIN:<br>THREE GIN.<br>INCREMENTS | RECOVERY<br>In.   | Ing      | CASING DIA IN.                                                                                       |
| MATERIAL DESCRIPTION<br>SURFACE ELEVATION 250.8                                                                                                                                                                      | DEPT                                                                                                                  | DEPTH, FT<br>Sample<br>Core Ruu       | THRE                                   | RECO In           | Casing   | SAMPLING NOTES                                                                                       |
| Red brown, moist, very stiff, S:<br>CLAY, some medium to fine Sand<br>Red brown, moist, very stiff, S:<br>CLAY and medium to fine Sand (ME<br>Tan to brown to black, moist, med<br>dense, coarse to fine SAND, trace | (1ty<br>(NGE)<br>ilty<br>) <sup>-</sup> 5.5                                                                           | <u>S-1</u><br><u>5-S-2</u><br>S-3     | 3<br>8/10<br>6<br>9/12<br>6<br>8/8     | 16<br>18<br>16    |          | PP on S-1;qu = 2.0 tsf<br>PP on S-2;qu = 2.3 tsf                                                     |
| (SW)<br>Tan, moist, very dense, coarse i<br>SAND, some Silt, little fine gra-<br>rock fragments (decomposed<br>Gneiss) (SM)<br>Orange, tan, moist, very dense,                                                       | to fine<br>avel                                                                                                       | -4                                    | 80/2"                                  | 2                 |          | Spoon refusal at 8.5'<br>attempted to core-<br>broke thru hard seam<br>of decomposed rock at<br>9.0' |
| to fine SAND, trace Silt, trace<br>gravel rock fragments, (decompose<br>Geiss) (SW)<br>C-1, Gneiss, white to orange mon-<br>hard, unweathered<br>C-2 same C-1                                                        | fine  <br>ed   16.5                                                                                                   |                                       | 100/5"<br>100/1"                       | 3<br>0<br>2<br>30 |          | 15.5' to 16.0' drill<br>thru hard seem<br>"Core barel malfumct-<br>ion<br>Only 2" of recovery        |
| Bottom of bering 20.0'                                                                                                                                                                                               |                                                                                                                       |                                       |                                        |                   |          | Barrel must be re-<br>placed<br>RQD = 23/30"                                                         |
| WATER LEVEL OBSERVATIONS<br>NOTED ON RODSFT.<br>AT COMPLETION_ <u>9'8''</u> FT.<br>AFTERHRSFT.                                                                                                                       | BORING<br>HSA HOLLOW<br>CFA CONTINUC<br>DC DRIVEN C<br>MD MUD DRIL<br>RC ROCK COI<br>CA CASING A                      | NUS FLIGHT                            | AUGER                                  | ŝ                 | s-<br>U- | Splitspom<br>Undisturbed<br>Core Run                                                                 |
| Subsurface Conditions                                                                                                                                                                                                | Advanced Co                                                                                                           | ursc                                  |                                        |                   |          | Page 3-3                                                                                             |

O North Carolina State University

#### **IV. STANDARD PENETRATION TEST (SPT):**

SPT "N - VALUE" is defined as the number of 30" drops of a 140# hammer required to drive a split-spoon sampler 12" into the ground at a given depth after the sampler has first been driven 6".

For example, if the number of blows for three 6" increments was 7, 8, and 10, the "N- value " would be 18.



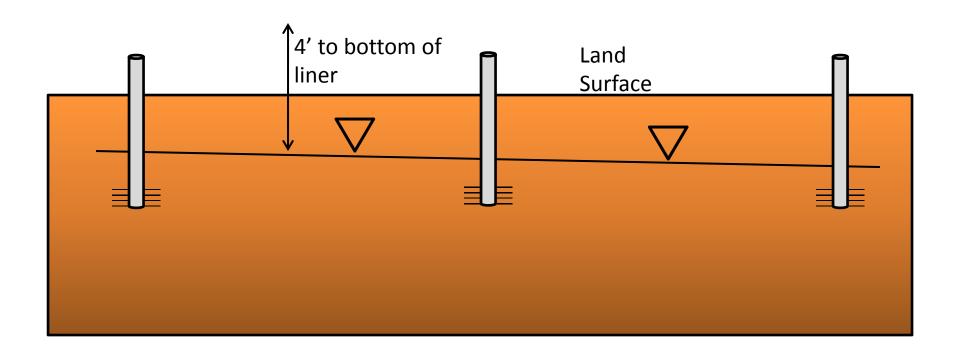
#### FOR COHESIVE SOILS:

#### \*UNCONFINED COMPRESSIVE STRENGTH, q, (TSF)

| Consis- Very<br>tency Soft |        | Soft      | Medium    | Stiff     | Very<br>Stiff | Hard  |  |
|----------------------------|--------|-----------|-----------|-----------|---------------|-------|--|
| N                          | < 2    | 2-4       | 4 - 8     | 8 - 15    | 15 - 30       | >30   |  |
| q,                         | < 0.25 | 0.25- 0.5 | 0.5 - 1.0 | 1.0 - 2.0 | 2.0 -4.0      | > 4.0 |  |

\*Reference: Soil Mechanics in Engineering Practice by K. Terzaghi and R. Peck, Wiley, 1967.

Subsurface Conditions


Page 3-9

Advanced Course
© North Carolina State University

# Groundwater

- Seasonal high water table
  - Bottom elevation of liner must be at least 4 feet above water table
- Present and potential uses
  - (Well inventory)
- Groundwater quality
- Map of potentiometric surface

# Potentiometric Surface



## Groundwater

- A phased approach is used for assessment of soils and groundwater
  - Review existing regional data first
    - -Soils conservation service
    - -U. S. Geological survey
  - Collect site specific data
    - -Expensive

Archaeology



#### Archaeology



- Presence of threatened or endangered species
  - Hire a botanist and biologist to walk the site
- 100 year floodplain
- Proximity to state parks, preserves, recreation areas

- Zoning
  - Need for easements/ right of ways
- Airports
  - 10,000 feet from a large airport
  - 5,000 feet from any airport
- Native American lands

# Wetlands

- Allowed under federal law under special circumstances:
  - No practical alternative
  - Landfill will not violate water quality standards
  - Demonstrate no degradation of wetlands
  - Provide an offset for damaged wetlands
- States may impose stricter regulations

# Infrastructure

- Size
- Potential to isolate from surroundings (buffer requirements in regulations)
- Access roads
  - weight limits
  - low overheads
  - road width
  - rail?

## Infrastructure

- Utilities
- Leachate treatment
  - Access to a sewer and existing WWTP (with capacity) versus need for on-site treatment or hauling