Design and Optimization of 2-Stage Reduction Gearbox

¹Neeraj Patel ²Tarun Gupta ³Aniket Wankhede ⁴Vilas Warudkar

^{1 23}B.Tech Scholar ⁴Assistant Professor ^{1 23 4} Department of Mechanical Engineering ^{1 23 4} MANIT Bhopal India

Abstract— Engineering design is an iterative process that requires to be dealt with all feasible design solutions in order to arrive at desired objective. Proper design of gearbox has a significant place in power transmission applications. Traditional methods used in its design do not have ability in automating the process. Thus an attempt to automate preliminary design of gearbox has been accomplished in the paper. Software to automate preliminary design of gear box with spur helical and bevel gears was developed. In the software KISSsoft we apply the problem with the objective function of minimizing of volume of gear trains. The objective function was constrained by bending strength contact stress face width and number of pinion and gear teeth. The preliminary design parameters module number of teeth and width of teeth for pinion and gear pairs of the stages were optimized and gear ratios were determined in respect to the objective function and design constraints. Design optimization of a two stage gearbox by using KISSsoft was accomplished by readily supplying the design parameters requested.

Index Terms—Design optimization Gearbox KISSsoft

I. INTRODUCTION

Engineering design is an iterative process that is started with a poorly defined problem refined and then developed a model finally arrived at a solution. Due to nature of engineering design there could be more than one solution therefore a search should be conducted in order to find the best solution. As a mechanical design problem design of gearbox is very complex because of multiple and conflicting objectives.

A gearbox utilizes a group of gears to achieve a gear ratio between the driver and driven shafts. The material volume of gear trains is the main determination factor in sizing of this power transmitting units. Trail-and-error method is mainly used in

traditional design of gearbox. Researchers have developed several applications using different design and calculation methods. A gearbox producing the required output speed was designed by KISSsoft. An optimal weight design problem of a gear pair system was studied using KISSSOFT. The system was able to find the number of design variables considering specified constraints. A generalized optimal design formulation to gear trains was presented. A computer aided design of gears approach was proposed to optimize one stage gear pair. KISSSOFT was employed for minimizing gear volume by reducing the distance between the centre of gear pairs and other parameters such as transmitting power reduction ratio. The KISSSOFT module was used for optimizing volumes of pitch cylinders of gears for a single reduction gearing system.

II. PROJECT REQUIREMENTS AND ENGINEERING SPECIFICATIONS

We have a desire to switch their drive train reduction from a chain to a gear reduction in order to improve efficiency. We recognized that a gear reduction will increase the weight of the vehicle but we would like the weight to be minimized so that the drive train weight does not increase the weight of the vehicle by more than 10% of the weight of the previous vehicle. We would also like to keep final gear reduction of 10.0:1. In order to meet the packaging requirements of the vehicle the drive train must work with a 0.75 inch input shaft.

- ✓ For optimal integration of the reduction box to each system and the vehicle there is a minimum distance of six inches and maximum distance of eight inches between the centerlines of each shaft.
- \checkmark The width of the gear box cannot be greater than five inches.
- ✓ The friction of the drive train must be decreased by 10% when measured by using breakaway torque to rotate as the friction causes a loss of power.
- \checkmark To increase the acceleration of vehicle.
- \checkmark Also to increase the reliability of the power train.

III. MATERIAL SELECTION

The first step in the gearbox design process is to select the material. A material is to be selected by doing intensive research on the properties of the various materials. A material is to be selected keeping in mind the various parameters like strength weight

IJEDR1702095

durability cost and other parameters for the sake of designing gearbox **18CrNiMo case-carburized steel** is selected as gear material due to its better mechanical properties.

MATERIAL SPECIFICATION	VALUE
Surface Hardness	HRC61
Tensile Strength(N/mm2)	1200
Yield Strength(N/mm2)	850
Poisson's Ratio	0.3
Young's modulus (N/mm2)	206000

TABLE 1. GEAR MATERIAL SPECIFICATIONS

45C8 carbon steel is selected as shaft material due to its better mechanical properties. TABLE 2.SHAFT MATERIAL SPECIFICATIONS

MATERIAL SPECIFICATION	VALUE
Surface Hardness	HRC 13
Tensile Strength(N/mm2)	660
Yield Strength(N/mm2)	560
Poisson's Ratio	0.3
Young's modulus (N/mm2)	206000

IV. SPUR GEAR DESIGN

Input characteristics: Power=7.5 KW Rp m=2048 B&G engine- 13.755 ft. lbf@ 2600 10 hp@3600 Input Torque=25.81 ft. lbf

Gearbox is coupled with CVTech CVT having minimum ratio of 3 and maximum ratio of 0.5.

CVT ratio= $3 - \left[\frac{2.5(rpm - 1800)}{1800}\right]$

 $\begin{array}{l} Rp\,m=2600 \ r_{cvt}{=}1.88 \ T{=}18.65 \ Nm \\ Rp\,m=2000 \ r_{cvt}{=}2.72 \ T{=}17.89 \ Nm \\ Rp\,m=2200 \ r_{cvt}{=}2.44 \\ Rp\,m=2400 \ r_{cvt}{=}2.16 \\ Rp\,m=2800 \ r_{cvt}{=}1.61 \\ Now \ for \ wheel \ diameter \ D{=}\ 22 \ inch{=}\ 0.558m. \end{array}$

 Power=Torque*angular velocity

 P=T*ω=7.5*1000=35*ω
 ω=214.285=2*π*N/60

 Hence N=2047.3 rpm.

Fig.1 Powertrain Assembly

 $V = \frac{\pi * D * N}{60} = \frac{3.14 * 0.558 * 3800 * 0.8}{60 * 10 * 0.6} = 14.81 \text{ m/s} = 53.3 \text{ kmph(max.)}$ Hence to achieve the speed of 53 kmph we required the gear reduction of gearbox as 10:1.

IV.I. 1^{st} Stage Reduction Following are the input parameters for first stage reduction Ratio=3.16:1 T=35 Nm P= 7.5 KW N = 2048 rpm for pressure angle $\varphi = 20^{\circ}$ min. no. of teeth=18.

IV.I.I. Module estimation on the basis of beam strength

$$\mathbf{m} = \left[\frac{60*10^{6}}{3.14} \left\{\frac{(kw)*C_{s}*f_{s}}{z*N*C_{v}*\frac{b}{m}*\frac{S_{ut}}{3}*Y}\right\}\right]^{1/3}$$

IJEDR1702095

where
$$C_s=1.5$$
 $f_s=1.5$ $Y=0.308$
Substituting values
 $m=2.66$ mm

 $C_v = \frac{3}{3+v} = 3/8...$ assuming velocity = 5 m/s.

IV.I.II. Module estimation on the basis of wear strength

 $\mathbf{m} = \left[\frac{60*10^{6}}{3.14} \left\{\frac{(kw)*C_{s}*f_{s}}{z^{2}*n_{p}*C_{v}*\frac{b}{m}*Q*\kappa}\right\}\right]^{1/3} \qquad Q = \frac{2z_{g}}{z_{g}-z_{p}} = \frac{2*57}{57-18} = 2.92 \qquad K = 0.156 \left\{\frac{BHN}{100}\right\}^{2}$ HRC to BHN HB=5.97*HRC +104.7 HRC=25(for steel) **HB=254 BHN.** Hence module m=3.52 mm

On the basis of above two values the module is selected as **3mm** according to the standard value and this value of module have been verified as per design.

 IV.I.III. Check for Design
 $V_{t} = \frac{2*M_t}{d_p} = 2*35000/54 = 1296.4$ $V = 3.14*d_p*n_p/60*10^3 = 5.79 \text{ m/s}$ $C_v = 3/3 + 5.79 = 0.34$

 Peff. = $C_s/C_v*P_t = 1.5*648.2*2/0.3412 = 5697.67$ $S_b = \text{mb} \sigma_b Y = 3*30*400*0.308 = 11088N$
 $f_s = \frac{S_b}{P_{eff.}} = 1.94$ design is satisfied.
 So module is selected as **3mm.**

IV.I.IV. Minimum number of teeth to avoid interference

$$N_P = \frac{2k}{(1+2m)\sin^2\phi} \left(m + \sqrt{m^2 + (1+2m)\sin^2\phi} \right)$$

For pressure angle= $20^{\circ} k = 1 m = 3$

Np=14.98=15(approx.)

IV.I.V. AGMA /ANSI Procedure

Failure by bending will occur when the significant tooth stress equals or exceeds either the yield strength or the bending endurance strength. A surface failure occurs when the significant contact stress equals or exceeds the surface endurance strength. The American Gear Manufacturers Association (AGMA) has for many years been the responsible authority for the dissemination of knowledge pertaining to the design and analysis of gearing. The methods this organization presents are in general use in the United States when strength and wear are primary considerations. In view of this fact it is important that the AGMA approach to the subject have been used here.

Diameteral pitch=1/m=25.4/3=8.46teeth/inch V= $3.14*d_p*n_p/12$ V=1136.1 ft/min. W=33000*h/V=33000*10/1136.1=290.46 lbf Face width (f)=1.18 inch.

Two fundamental stress equations are used in the AGMA methodology one for bending stress and another for pitting resistance (contact stress).

IV.I.V.I. For Bending

1.	Velocity factor	$K_v = 1200 + V/1200 k_v = 1.94.$
2.	Overload factor	K _o =1.5
3.	Size factor	$K_s = 1$
4.	Load distribution factor	$K_{m} = 1.2$
5.	Rim thic kness factor	$K_b = 1$
6.	Geometry factor	J = 0.33

 $\sigma = w_t * k_o * k_v * k_s * p_d / f * k_m * k_b / J$ $\sigma = 22036.1126 \text{ psi.}$

$$\sigma_{all} = S_t / S_f * \frac{Y_N}{K_t * K_t}$$

1.	Temp. factor	$K_t = 1$
2.	Reliability factor	K.=1

3. Stress cycle factor $Y_n = 1$

S_t=65000 psi (grade-2) for carburized and hardened steel Bending factor of safety=65000/22036.1126 using $\left(\frac{\sigma_{all}}{2}\right)$

$$FOS_{hen} = 2.9$$
 (design is acceptable)

IV.I.V.II. For pitting

- 1. Elastic coefficient Cp=2300
- 2. Surface condition factor $C_f=1$
- 3. Geometry factor(I) = $\cos \phi_t * \sin \phi_t * m_a/2 * m_n * (m_a+1)$ $m_a = gear ratio = 3.16 m_n = 1$ hence I=0.12.

$$\sigma_{c} = C_{p}^{*}(\omega_{t} * Ko * Kv * Ks * Km * \frac{Cf}{Dp} * F * I)^{0.5}$$

σc=133692.96psi

 $FOS_{pitting} = \frac{\sigma_c}{\sigma_{all}} = 2.039.$ Comparing (fos)_{bending} & (fos)²_{pitting} i.e 1.94 & 4.16

IV.II. 2nd Stage Reduction Torque=35* 3.16=110.6 Nm Pitch line velocity(V)=3.14*2.12*648.1/12=359.52ft/min. Wt=33000*H/V=33000*10/359.52=917.88 lbf Facewidth=37.68/25.4=1.48 inch.

IV.II. I. For bend	ling	
1.	Velocity factor=1200+V/1	1200 Kv=1.29
2.	Overload factor	Ko=1.5
3.	Size factor	Ks=1
4.	Load distribution factor	K _m =1.2
5.	Rim thic kness factor	K _b =1
6.	Geometry factor	J=0.33
σ=917.88*1.5*1 σ =36918psi	.29*1*8.46*1.2/1.48*0.33 FOS _{ben} =65000/36918=1.	76
IV.II.II. For pitti	ing	
1.	Elastic coefficient	Cp=2300
2.	Surface condition factor	C _F 1
3.	Geometry factor	I=0.12
$\sigma = 2300 \Big[917$. 88 * 1. 5 * 1. 29 * 1 * 1. 2	$2 * \frac{1}{2.12} * 1.48 * 0.12]^{0.5} = 173046 \text{ psi}$

 $\sigma_{\rm call}$ =225000*1.2*1.01/1*1=272700psi

FOS pitting =272700/173046=1.57

Comparing $\text{fos}_{b} \& (\text{fos})^{2}_{\text{pitting}}$ i.e 1.76 &2.46.

IV.III. Shaft calculations

As shafts are subjected to fluctuating bending and torsional stresses. Hence shafts are designed using DE-Goodman's criteria of failure as it is conservative as well as optimum as per design.

IV.III.I. For Intermediate shaft

 $W_{12}^{t}=290.46lbf$ W^t₃₄=917.88lbf $W\cos 20 = w_{12}^t$ W^{r}_{12} =105.72 lbf $W_{34}^{r} = 334.08 \text{ lb f}$ d₂=6.732inch T=977.73 lbf.inch ($w_{12}^{t}*d_{3}/2$)

For X-Y Plane

 $W_{12}^{r}+W_{34}^{r}=R_{AY}+R_{BY}=105.72+334.08=439.8$ Taking moment about point A $R_{BY}*4.2393 = w_{34}^{r}*2.9070 + w_{12}^{r}*1.1811$ R_{BY}=258.5418lbf

o

R_{AY} =181.258lbf.

Wt12 Wr34 For X-Z Plane Wr12 $w_{12}^{t}+R_{AZ}+R_{BZ}=W_{34}^{t}$ R_{AZ}+R_{BZ}=627.42 С Taking moment about point A E R_{BZ} *4.2393+ W_{12} *1.1811= W_{34} *2.9070 Θ e R_{BZ}=548.49 lbf RAZ=78.9297lbf Calculating bending moment For X-Y Plane $M_b=0$ M_d=R_{by}*1.3323=344.455 lbf.inch SED M_e=288.426lbf.in M_c=214.073 lbf.in $M_a=0.$ 540.21 For X-Z Plane $M_b = 0$ 8220 $M_d = R_{BZ} * 1.3323$ M_d=730.753 lbf.in M_e=456.77 lbf.in $M_c = (R_{BZ} * 3.058 - W_{34}^t * 1.726) M_c = 93.02 \text{ lbf.in}$ Fig.1 Intermediate shaft (SFD and BMD) $M_a=0.$ For shaft material (45 C8 Steel) $K_t = 1.7$ $K_{ts} = 1.5$ A lloyed steel S_{ut}=95.0 Kpsi. For Se Surface factor $k_a = a^*(S_{ut})^b a = 2.7 b = -0.265$. 1. K_a=0.8077. 2. Size factor K_b=0.9 3. Loading factor $K_c=1$ 4. Temp.factor $K_d=1$ Ke=0.753 5. Reliability factor Kf=0.5 6. Miscellaneous factor S_e=0.8077*0.9*1*1*0.753*0.5*9<mark>5=26Kpsi</mark> Using DE-Goodman's criteria Ma=540.21 lbf.in T_m=977.73lbf.in $d = \left\{\frac{16*2}{3.14} * \left(2 * K_{f} * M_{a} / S_{e} + \left[3 * (K_{fs} * T_{m})^{2}\right]^{0.5} / S_{ut}\right)\right\}^{0.33}$ d=0.7852 inch. d=0.875 inch (from standard table) End dia. range=0.726-0.728 inch. D= 1.2 *0.875 inch=1.125 inch. D/d = 1.2 (std.) D/d=1.125/0.875=1.2857 which is acceptable. Assume fillet radius r=d/10=0.0875 inch $K_t=1.6 q=0.82 k_f=1+q(K_t-1)=1.49$ K_{ts}=1.35 q_s=0.95. $K_{fs}=1+q_s(K_{ts}-1)=1+0.95(1.35-1)=1.33$ $K_a=0.8077$ (no change) $K_{\rm b} = (d/0.3)^{-0.107} = 0.8917.$ Now Se=0.8077*0.8917*1*1*0.753*0.5*95=25.76 Kpsi $\sigma_a'=32 K_f M_a/3.14 d^3=12244.61 psi$ $\sigma_{\rm m}$ '=1.73*16*1.33*977.73/3.14*(0.875)³'=17131.076 psi Using Goodman equation $1/n_{\rm f} = \sigma_{\rm a}/S_{\rm e} + \sigma_{\rm m}/S_{\rm ut} = 1.54$ Check for yielding

IV.III.II. For Input shaft W_{12}^{t} =290.46lbf W_{12}^{r} =105.72lbf.

 $n_y = S_y / \sigma_{max} > S_y / \sigma_a + \sigma_m = 82000 / 12244.61 + 17131.076 = 2.8.$

T=308.756 lb f. in=309lb f. in

For X-Y Plane $W_{12}^{r}=R_{AY}+R_{BY}=105.72$ Taking moment about point A $R_{BY}*4.2393=W_{12}^{r}*1.1811$ $R_{BY}=29.451bf.$ $R_{AY}=76.271bf.$

For X-Z Plane $R_{AZ}+R_{BZ}=w_{12}^{t}$ Taking moment about point A R_{BZ} =80.92 lbf. R_{AZ} =209.79 lbf.

Calculating Bending Moment For X-Y plane $M_b=0$ $M_c=76.27*1.1811$ $M_c=90.08lbf.in$ $M_B=76.27*4.2393-105.72*3.0582=0$ For X-Z plane $M_c=R_{AZ}*1.1811=209.79*1.1811=247.78lbf.in$ $M_r=(M_{cxz}^2+M_{cxy}^2)^{0.5}$ $M_r=263.65lbf.in$ Se=26Kpsi_(from intermediate)

Using DE-Goodman's criteria

using $M_m=T_a=0$ $M_a=263.65$ lbf.in $T_m=309$ lbf.in d=0.5743 inch d=0.6368 inch. $K_t=1.6 q=0.82 k_f=1+q(K_t-1) k_f=1.49$ $k_ts=1.35 q_s=0.95 K_{ts}=1.33$ $K_a=0.807$ (no change) $K_b=(d/3)^{-0.107} K_b=0.9226$ Now $S_e=0.8077^*0.9226^*1*1*0.753*0.5*95=26.65$ Kpsi $\sigma_a = 15503.337$ psi $\sigma_m = 14045.56$ psi $1/n_f = \sigma_a /S_e + \sigma_m /S_{ut} = 1.371$

IV.III.III. For Output Shaft **For X-Z plane** $R_{AZ}+R_{BZ}=W_{34}^{t}=917.88.$ Taking moment about point A $R_{BZ}*4.2393=917.88*2.9070.$ **R**_{BZ}=629.4145 lbf **R**_{AZ}=288.465lbf.

For X-Y plane $R_{AY}+R_{BY}=W_{34}^{t}=334.08$ Taking moment about point A $R_{BY}*4.2393=W_{34}^{r}*2.9070$ $R_{BY}=229.0871bf$ $R_{AY}=104.99251bf$

 Taking X-Y plane

 $M_c = R_{AY} * 2.9070 = 104.9925 * 2.9070 = 305.2132$ lb f. inch

 Taking X-Z plane

 $M_c = R_{AZ} * 2.9070 = 288.465 * 2.9070 = 838.5677$ lbf. inch

 $M_r = (M_{CXY}^2 + M_{CXZ}^2)^{0.5} = 892.384 \text{lbf.inch}$
 $S_e = 26 \text{Kpsi}$ (from intermediate)

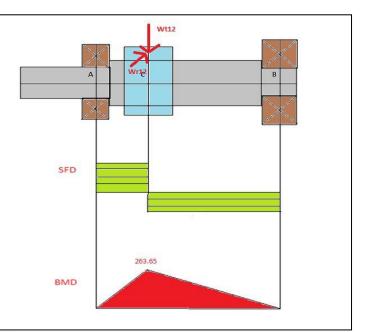


Fig.2 Input shaft (SFD and BMD)

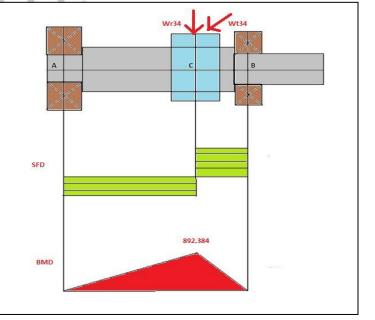


Fig.3 Output shaft (SFD and BMD)

IJEDR1702095

```
M_m = T_a = 0
M<sub>a</sub>=892.384 lbf.inch T<sub>m</sub>=3089.6288lbf.inch
d = \{32/3.14(2*0.5*892.384/26000 + \{[3*(1.5*3089.6288)^2]^{0.5}\}^{0.33}
d=1.0658 inch
d=1.128 inch.
K_t = 1.6
                q=0.82
                                K_{f} = 1 + q(K_{t} - 1)
K<sub>fs</sub>=1.35
                q_s = 0.95
                                K_{fs}=1+q_s(k_{fs}-1)=1.33.
k_a = 0.8077
K_b for
0.11 {\leq}d{\leq}2 inch
K_b = (d/0.3)^{-0.107} = 0.8678
Now S_e=0.8077*0.8678*1*1*0.753*0.5*95=25.07 psi.
\sigma_{a} = 32 k_{f} M_{a} / 3.14 d^{3} = 9441.28 psi
\sigma_{\rm m} = [3*(16*k_{\rm fs}*T_{\rm m}/3.14*d^3)^2]^{0.5} = 25267.87 \text{ psi}
```

```
Using Goodman equation
1/n_f = \sigma_a / S_e + \sigma_m / S_{ut}
n_f = 1.556
```

V. Optimization of parameters

Optimization have been done by using the KISSsoft software.

V.I. For 1st Stage Reduction

At first power and torque are entered as the basic parameters and other parameters have been optimized in further steps.

Basic data	Reference	profile Tole	ances	Rating	Factors													
Strength																		
Calculatio	n method		AGMA	2001-D04			•				Reference	gear		Gear 1	•		Detai	s
Tooth flar	k fracture cal	ulation method	No calo	ulation			•				Power		Р	10.000	0 hp	C)	4
Driving ge	ar		Gear 1				•				Torque		T1	25.810	0 ft*l	of C	•	
Working f	lank gear 1		right fla	ank			▼ 1				Speed		nı	2034.900	7 1/m	n (0	
Sense of	rotation gear	ı					clockwise				Required se	ervice life	н	20000.000	0 h			+
											Overload fa	actor	Ko	1.500	0			1
Load spec	trum																	
· · ·	age load (no c	ollective)			•] Consi	der load	spect	rum
Frequ	iency [%]	Power factor	Sp	eed factor				 	 									
1	100.000000	1.0	0000	1.0	0000													
Input Po	wer 🔻 Fac	tor 🔻 Re	ad					 										

Fig.4 User interface of KISS soft to input parameters

Various iterations have been done through the software of which some of the main iterations are listed below, out of which most optimum one have been selected.

Nr. ^	a [in]		b1 [in]	b2 [in]	P _{nd} [1/in]	β [°]	Z1	Z2	:	x*1	x*2		da1 [in]	da2	[in]	ε٥	εβ	εγ	i	b/d1	b	/m _n
	1	0.132	0.036				0.000	19	60	0.393		-0.021		072	0.205		.525	0.000	1.525	3.158	0.553	10.500
	2	0.183	0.024	0.022	10.84	1	0.000	24	76	0.349)	0.021	0.0	97	0.283		.594	0.000	1.594	3.167	0.250	6.001
	3	0.113	0.052				0.000	16	51	0.429		-0.055	0.0		0.177		.473	0.000	1.473	3.188	0.938	15.002
	4	0.152	0.029				0.000	16	51	0.429		-0.055	0.0		0.237		.473	0.000	1.473	3.188	0.375	6.001
	5	0.133	0.041				0.000	24	76	0.349		0.021	0.0		0.207		.593	0.000	1.593	3.167	0.625	15.000
	6	0.131	0.037	0.035			0.000	19	60	0.398		0.002	0.0		0.203		.520	0.000	1.520	3.158	0.569	10.809
	7	2.950	1.276				0.000	17	54	0.354		-0.453		542	4.591		.574	0.000	1.574	3.176	0.869	14.766
	8	3.100	1.211				0.000	18	57	0.217		-0.507		701	4.831		.650	0.000	1.650	3.167	0.777	13.987
	9	3.300	1.015				0.000	22	69	0.433		0.306		771	5.110		.504	0.000	1.504	3.136	0.619	13.614
	10	3.300	1.114				0.000	22	70	0.337		-0.134		762	5.123		.596	0.000	1.596	3.182	0.682	15.000
	11	3.300	1.028				0.000	19	60	0.352		-0.251		309	5.125		.572	0.000	1.572	3.158	0.622	11.821
	12	3.450	0.960				0.000	23	72	0.448		0.401		343	5.336		.498	0.000	1.498	3.130	0.558	12.841
	13	3.450	1.043				0.000	23	73	0.346		-0.039		334	5.351		.591	0.000	1.591	3.174	0.609	13.999
	14	3.450	1.011				0.000	20	63	0.311		-0.410		885	5.348		.619	0.000	1.619	3.150	0.581	11.616
	15	3.450	0.887	0.844			0.000	16	51	0.549		0.553		89	5.390		.333	0.000	1.333	3.188	0.528	8.445
	16	3.600	0.973				0.000	24	76	0.357		0.055		906	5.578		.586	0.000	1.586	3.167	0.543	13.020
	17	3.600	0.989				0.000	21	66	0.272		-0.564		961	5.571		.662	0.000	1.662	3.143	0.541	11.354
	18	3.600	0.814				0.000	17	54	0.440		0.085		983	5.612		.464	0.000	1.464	3.176	0.454	7.712
	21	3.800	0.865				0.000	22	69	0.319		-0.218		053	5.880		.613	0.000	1.613	3.136	0.449	9.871
_	22	3.800	0.926				0.000	22 18	70 57	0.149		-0.535 0.095		022	5.909		.715	0.000	1.715	3.182	0.481	10.593
	23	3.950	0.729				0.000	22		0.425		0.095	2.	081	5.914		.482	0.000	1.482	3.167 3.182	0.381 0.358	6.858 7.869
	20	3.950	0.854				0.000	22	70 72	0.396		-0.376		129	6.134 6.104		.656	0.000	1.656	3.130	0.338	9.737
	28	3.950	0.888				0.000	23	73	0.270		-0.582		080	6,148		.030	0.000	1.778	3.174	0.441	10.137
	20	3.950	0.888				0.000	19	60	0.011		-0.337		167	6,133		.589	0.000	1.589	3.158	0.362	6.876
	33	4,100	0.730				0.000	23	73	0.541		0.763		156	6,360		. 416	0.000	1.416	3.174	0.340	7.815
	34	4.100	0.094				0.000	23	76	-0.225		-0.524	2.		6,404		.857	0.000	1.857	3.167	0.340	10.892
	35	4.100	0.722				0.000	20	63	0.223		-0.524		208	6.387		.735	0.000	1.735	3.150	0.340	6.796
	38	4.250	0.688				0.000	24	76	0.486		0.584		236	6.586		.472	0.000	1.472	3.167	0.322	7.738
	40	4.250	0.643				0.000	20	63	0.515		0.569		286	6.597		.410	0.000	1.410	3.150	0.300	6.000
	-10	4.200	0.045	0.000	10.00	•	0.000	20	05	0.515	,	0.505	2.	.00	0.337	-	. 410	0.000	1.410	5.150	0.500	0.000

b/a	SF _{smallest}	SH _{smallest}	SB	SInt	Slam(B)	SFF _{min} (B)	SW1		SW ₂	T _{1 max} [ft*lbf]	P _{max} [hp]		η	W [lb]	H _{min} [h]
0.263	1.000	1.000	-1.000	-1.000	0.000	0.	.000	0.000	0.000	1	9.050	13.420	0.988	13.305	10155.662
0.119	1.000	1.000	-1.000	-1.000	0.000	0.	.000	0.000	0.000	1	9.042	13.414	0.992	15.822	10156.075
0.443	1.000	1.000	-1.000	-1.000	0.000	0.	.000	0.000	0.000	1	9.045	13.417	0.984	14.303	10104.398
0.177	1.000			-1.000	0.000		.000	0.000	0.000		9.038	13.412	0.987	13.732	10025.702
0.298	0.957		-1.000	-1.000	0.000	0.	.000	0.000	0.000	1	9.047	13.418	0.990	15.298	10332.572
0.271	1.000			-1.000	0.000		.000	0.000	0.000		9.022	13.400	0.988	13.287	9844.037
0.417	1.004			-1.000	0.000		.000	0.000	0.000		25.788	9.992	0.983	6.528	9820.803
0.376	1.013			-1.000	0.000		.000	0.000	0.000		5.797	9.995	0.984	6.821	9893.167
0.295	0.969			-1.000	0.000		.000	0.000	0.000		5.723	9.966	0.990	6.347	8274.679
0.325	0.962			-1.000	0.000		.000	0.000	0.000		25.540	9.895	0.988	7.006	5997.091
0.299	0.996			-1.000	0.000		.000	0.000	0.000		5.701	9.958	0.987	6.495	7891.430
0.266	0.975			-1.000	0.000		.000	0.000	0.000		5.893	10.032	0.991	6.526	11996.017
0.290	0.970			-1.000	0.000		.000	0.000	0.000		5.758	9.980	0.989	7.138	8927.125
0.281	0.998			-1.000	0.000		.000	0.000	0.000		5.747	9.976	0.987	6.949	8723.444
0.245	1.300			-1.000	0.000		.000	0.000	0.000		5.821	10.004	0.988	6.155	10092.534
0.258	0.968			-1.000	0.000		.000	0.000	0.000		25.704	9.959	0.990	7.213	7935.218
0.263	0.995			-1.000			.000	0.000	0.000		5.685	9.952	0.987	7.370	7624.736
0.214	1.114			-1.000	0.000		.000	0.000	0.000		5.836	10.010	0.988	6.107	10225.934
0.216	0.999			-1.000	0.000		.000	0.000	0.000		5.781	9.989	0.989	7.130	9386.863
0.232	0.998	1.082		-1.000	0.000		.000	0.000	0.000		5.763	9.982	0.988	7.687	9039.660
0.180	1.055	1.000		-1.000	0.000		.000	0.000	0.000		5.819	10.004	0.989	6.030	10080.148
0.166	1.000			-1.000	0.000		.000	0.000	0.000		5.813	10.001	0.992	6.149	10081.298
0.205	0.998	1.124		-1.000	0.000		.000	0.000	0.000		5.768	9.984	0.989	7.577	9139.619
0.214	0.998			-1.000	0.000		.000	0.000	0.000		5.759	9.980	0.989	7.948	8954.702
0.174	1.000			-1.000	0.000		.000	0.000	0.000		5.804	9.998	0.988	6.508	9870.395
0.159	1.000			-1.000	0.000		.000	0.000	0.000		5.807	9.999	0.992	6.570	9949.853
0.221	0.997			-1.000	0.000		.000	0.000	0.000		5.734	9.971	0.988	9.220	8482.420
0.166	1.000	1.000		-1.000	0.000		.000	0.000	0.000		5.799	9.996	0.988	6.942	9867.880
0.152	1.000			-1.000	0.000		.000	0.000	0.000		5.802	9.997	0.992	6.978	9831.197
0.141	1.177	1.076	-1.000	-1.000	0.000	0.	.000	0.000	0.000	2	9.900	11.585	0.991	6.742	129344.702

Fig.5 List of iterations for 1st stage reduction

V.II. For 2nd Stage Reduction

Input parameters

Basic data	Reference	profile	Tolerance	s Ratir	g	Factors]													
Strength																				
Calculation	n method		AG	4A 2001-D0	4				•				Reference	gear		Gear 1	•		D	etails
Tooth flan	k fracture cal	culation met	hod No o	alculation					•				Power		Ρ	10.00	00	hp	0	4
Driving ge	ar		Gea	r 1					•				Torque		Τ1	81.56	00	ft*lbf	0	€ ↔
Working fl	ank gear 1		righ	t flank					• <u>i</u>				Speed		n1	643.95	27	1/min	۲	
Sense of r	otation gear :	1							clockwise	•			Required se	ervice life	н	20000.00	00	h		+
													Overload fa	actor	Ko	1.50	00			1
Load spec	tr:																			
· · ·	age load (no ci	ollective)				•										·	/ 0	onsider í	load s	pectrum
Frequ	ency [%]	Power fac	tor	Speed fac	or			 				 	 							
1	100.000000		1.0000		1.0	000														
	_																			
Input Po	wer 🔻 Fac	tor 🔻	Read								_	-								

Nr. Â	a [in]	b1 [n] b₂[i		Pnd [1/in]	β		Z2	x*1	X"2		da1 [in]	d _{a2} [in]	εο	εβ	εγ	i	b/d1		b/mn
1		0.169	0.047	0.044		9.304	0.000	19	60	0.393	-0.021	0.092			1.525	0.000	1.525	3.158	0.553	10.502
2		0.234	0.030	0.028		8.461	0.000	24	76	0.349	0.021	0.124			1.594	0.000	1.594	3.167	0.250	5.999
3		0.145	0.066	0.064		9.196	0.000	16	51	0.429	-0.055	0.081			1.473	0.000	1.473	3.188	0.938	15.000
4		0.193	0.037	0.034		6.891	0.000	16	51	0.429	-0.055	0.108			1.473	0.000	1.473	3.188	0.375	6.001
5		0.174	0.054	0.052		1.405	0.000	24	76	0.349	0.020	0.092			1.594	0.000	1.594	3.167	0.625	15.002
6		0.157	0.054	0.052		0.000	0.000	19	60	0.398	0.002	0.086			1.521	0.000	1.521	3.158	0.696	13.217
7		3.950	1.386	1.327		0.000	0.000	19	59	0.418	0.105	2.179			1.497	0.000	1.497	3.105	0.698	13.266
8		3.950	1.560	1.500		0.000	0.000	19	60	0.337	-0.337	2.167			1.589	0.000	1.589	3.158	0.789	15.000
10		4.150	1.300	1.241		0.000	0.000	20	62	0.408	0.114	2.277			1.513	0.000	1.513	3.100	0.620	12.406
11		4.150	1.457	1.397		0.000	0.000	20	63	0.325	-0.325	2.265			1.604	0.000	1.604	3.150	0.699	13.972
12		4.150	1.532	1.473		0.000	0.000	20	64	0.067	-0.543	2.209			1.734	0.000	1.734	3.200	0.736	14.727
13		4.150	1.280	1.220		8.000	0.000	16	50	0.404	-0.199	2.350			1.503	0.000	1.503	3.125	0.610	9.760
14		4.150	1.428	1.368		8.000	0.000	16	51	0.253	-0.542	2.311			1.619	0.000	1.619	3.188	0.684	10.946
15		4.400	1.231	1.171		0.000	0.000	21	66	0.400	0.121	2.376			1.529	0.000	1.529	3.143	0.558	11.709
16 17		4.400	1.365	1.305		0.000	0.000	21 17	67 53	0.315	-0.315 -0.186	2.363			1.617	0.000	1.617	3.190	0.621	13.050 8.498
1/			1.122 1.249	1.062 1.189		8.000	0.000	17	53	0.390	-0.186	2.471 2.431			1.522 1.636	0.000	1.522 1.636	3.118 3.176	0.500	9.512
19		4.400	1.170	1.189		8.000 0.000	0.000	22	69	0.392	0.128	2.451			1.543	0.000	1.543	3.136	0.505	9.512
20		4.600	1.282	1.222		0.000	0.000	22	70	0.392	-0.304	2.4/4			1.630	0.000	1.630	3.130	0.556	12.223
21		4,600	1.034	0.974		8.000	0.000	17	54	0.612	0.849	2,488			1.282	0.000	1,282	3,176	0.356	7.791
22		4.600	1.100	1.040		8.000	0.000	18	56	0.324	-0.520	2.580			1.607	0.000	1.607	3.111	0.462	8.323
23		4.600	1.045	0.985		7.200	0.000	16	50	0.393	-0.271	2.609			1.518	0.000	1.518	3.125	0.443	7.095
24		4.600	1.223	1.163		7.200	0.000	16	51	0.148	-0.511	2.536			1.661	0.000	1.661	3.188	0.523	8.374
25		4.800	1.113	1.054		0.000	0.000	23	72	0.384	0.135	2.573			1.556	0.000	1.556	3.130	0.458	10.537
26		4.800	1.214	1.154	1	0.000	0.000	23	73	0.294	-0.294	2.559	7,44	1	1.641	0.000	1.641	3,174	0.502	11.543
27		4.800	1.278	1.218	1	0.000	0.000	23	74	0.025	-0.505	2.501	7.49	5	1.764	0.000	1.764	3.217	0.530	12.181
28		4.800	0.923	0.864		8.000	0.000	18	56	0.632	0.946	2.613			1.275	0.000	1.275	3.111	0.384	6.908
29	•	4.800	0.945	0.885		8.000	0.000	18	57	0.509	0.467	2.608			1.397	0.000	1.397	3.167	0.394	7.083
30		4.800	0.977	0.917		8.000	0.000	18	58	0.413	0.003	2.599			1.503	0.000	1.503	3.222	0.408	7.337
31		4.800	1.151	1.091		8.000	0.000	19	59	-0.030	-0.533	2.608			1.767	0.000	1.767	3.105	0.459	8.730
32		4.800	0.965	0.905		7.200	0.000	16	51	0.563	0.612	2.625			1.319	0.000	1.319	3.188	0.407	6.515
33		4.800	1.093	1.033		7.200	0.000	17	53	0.120	-0.538	2.666			1.688	0.000	1.688	3.118	0.438	7.438
34		5.000	1.066	1.006		0.000	0.000	24	75	0.376	0.142	2.672			1.568	0.000	1.568	3.125	0.419	10.061
35		5.000	1.157	1.098		0.000	0.000	24	76	0.284	-0.284	2.657			1.652	0.000	1.652	3.167	0.457	10.976
36		5.000	1.233	1.173		0.000	0.000	24	77	0.113	-0.593	2.619			1.748	0.000	1.748	3.208	0.489	11.731
37		5.000	0.849	0.790		8.000	0.000	19	59	0.524	0.566	2.734			1.391	0.000	1.391	3.105	0.332	6.316
38		5.000	0.879	0.819		8.000	0.000	19	60	0.419	0.104	2.724			1.499	0.000	1.499	3.158	0.345	6.552
39		5.000	0.976	0.916		8.000	0.000	19	61	0.340	-0.340	2.710			1.590	0.000	1.590	3.211	0.386	7.331
40		5.000	0.893	0.833		7.200	0.000	17	53 54	0.541	0.558	2.762			1.352	0.000	1.352	3.118	0.353	6.000
41 45		5.000 5.200	0.893	0.833		7.200 8.000	0.000	17		0.440	0.085	2.754 2.849			1.464 1.494	0.000	1.464	3.176 3.100	0.353	6.000 6.075
40		5.200	0.816	0.759		8.000	0.000	20 20	62 63	0.428	-0.239	2.849			1.587	0.000	1.494 1.587	3.100	0.304	6.075
47		5.200	0.969	0.845		8.000	0.000	20	64	0.340	-0.239	2.635			1.693	0.000	1.693	3.200	0.365	7.304
47		3.200	0.505	0.915		0.000	0.000	20	τU	0.1//	-0.302	2.791	0.10	0	1.033	0.000	1.032	3.200	0.305	7.304

Fig.6 User interface of KISS soft to input parameters

nallest SH	H _{smallest}	SB	SInt	Slam(B)	SFF _{min} (B)	SW1	SW ₂	T _{1 max} [ft*lbf]	P _{max} [hp]	η	1	W [lb]	H _{min} [h]
1.000	1.000	-1.000	-1.000		0.00				50.124	13.403	0.987	27.666	19778.9
1.000	1.000		-1.000		0.00				50.145	13.408	0.991	33.272	19822.1
1.000	1.000		-1.000		0.00				50.138	13.406	0.983	29.859	19882.
1.000	1.000		-1.000		0.00				50.207	13.422	0.985	28.552	20386.
1.000	1.000		-1.000		0.00				50.148	13.409	0.989	33.790	19862.
1.000	1.000		-1.000		0.00				50.104	13.399	0.986	28.049	19637
1.002	1.005		-1.000		0.00) (81.740	10.022	0.987	12.489	22654
0.992	1.033		-1.000		0.00				80.872	9.916	0.985	14.052	18455
0.999	1.027		-1.000		0.00				81.451	9.987	0.988	12.853	18565
0.999	1.059		-1.000		0.00				81.483	9.991	0.986	14.515	18976
0.999	1.007		-1.000		0.00				81.445	9.986	0.985	15.428	18490
1.118	1.001		-1.000		0.00				81.790	10.028	0.984	12.844	21273
1.117	1.000		-1.000		0.00				81.497	9.992	0.982	14.486	19673
1.000	1.054		-1.000		0.00				81.600	10.005	0.988	13.642	20575
0.999	1.082		-1.000		0.00				81.482	9.990	0.987	15.247	18966
1.060	1.000		-1.000		0.00				81.612	10.006	0.985	12.524	20285
1.067	1.000		-1.000		0.00				81.595	10.004	0.984	14.096	20196
1.002	1.078		-1.000		0.00				81.754	10.024	0.989	14.098	2286
0.996	1.102		-1.000		0.00				81.200	9.956	0.988	15.567	15609
1.267	1.000		-1.000		0.00				81.566	10.001	0.989	12.551	20038
1.004	1.023		-1.000		0.00				81.855	10.036	0.985	13.340	24512
1.110	1.002		-1.000		0.00) 8	81.952	10.048	0.984	12.760	22205
1.215	1.000		-1.000		0.00				81.496	9.992	0.983	15.196	1966
0.999	1.098		-1.000		0.00				81.440	9.985	0.990	14.537	18420
0.996	1.123		-1.000		0.00				81.247	9.962	0.989	15.966	16120
0.999	1.076		-1.000		0.00				81.516	9.995	0.988	16.978	1941
1.208	1.001		-1.000		0.00				81.658	10.012	0.990	12.026	2053
1.119	1.000		-1.000		0.00				81.639	10.010	0.988	12.414	2043
1.032	1.000		-1.000		0.00				81.609	10.006	0.987	12.919	2027
1.085	0.999		-1.000		0.00				81.372	9.977	0.985	15.313	1903
1.314	1.000		-1.000		0.00				81.621	10.007	0.988	12.782	2033
1.154	0.999		-1.000		0.00				81.476	9.990	0.984	14.579	1956
0.998	1.120		-1.000		0.00			3 (81.420	9.983	0.990	15.029	1816
0.996	1.143		-1.000		0.00				81.259	9.963	0.989	16.435	1625
1.000	1.129		-1.000		0.00				81.549	9.999	0.988	17.643	1986
1.075	1.000		-1.000		0.00) 8	81.620	10.007	0.989	11.929	2032
1.000	1.001		-1.000		0.00				81.595	10.004	0.988	12.436	2049
0.999	1.034		-1.000		0.00				81.508	9.994	0.986	13.946	1931
1.300	1.033		-1.000		0.00				87.088	10.678	0.989	13.038	45549
1.149	1.017		-1.000		0.00) 8	84.326	10.339	0.987	13.113	22603
1.001	1.018		-1.000		0.00		0.000) 8	81.621	10.007	0.989	12.383	20866
				0.000	0.00	0.00	0.000) 8					1980
0.999	1.038	-1.000							81.483	9.991	0.987	15.005	1897
			\mathbf{F}	7 List a	Citomation.	a for and	ataa a	duction					
1.000 0.999			1.050 -1.000 1.038 -1.000	1.038 -1.000 -1.000	1.038 -1.000 -1.000 0.000	1.038 -1.000 -1.000 0.000 0.00	1.038 -1.000 -1.000 0.000 0.000 0.000	1.050 -1.000 -1.000 0.000 0.000 0.000 1.038 -1.000 -1.000 0.000 0.000 0.000 0.000	1.050 -1.000 -1.000 0.000 0.000 0.000 0.000	1.050 -1.000 -1.000 0.000 0.000 0.000 0.000 81.545 1.038 -1.000 -1.000 0.000 0.000 0.000 0.000 81.483	1.050 -1.000 -1.000 0.000 0.000 0.000 0.000 81.545 9.998 1.038 -1.000 -1.000 0.000 0.000 0.000 0.000 81.483 9.991	1.050 -1.000 -1.000 0.000 0.000 0.000 81.545 9.998 0.988 1.038 -1.000 -1.000 0.000 0.000 0.000 81.483 9.991 0.987	1.050 -1.000 -1.000 0.000 0.000 0.000 81.545 9.998 0.988 13.814 1.038 -1.000 -1.000 0.000 0.000 0.000 81.483 9.991 0.987 15.005

V.III. For Input shaft The diameter of shaft have been optimized on the basis of strength and deflection.

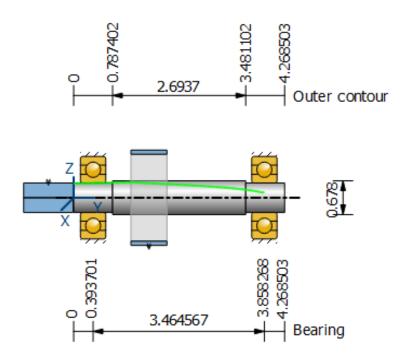
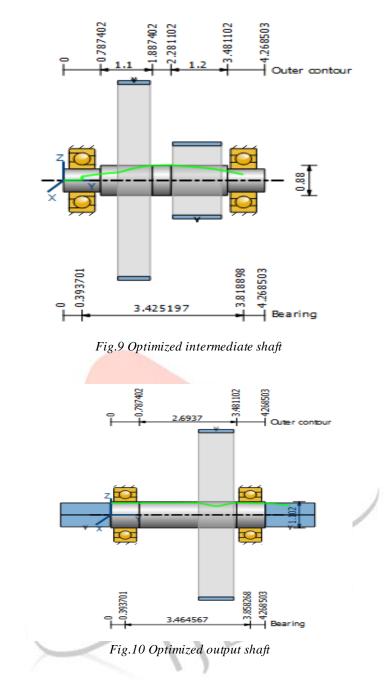



Fig.8 Optimized input shaft

V.IV. For Intermediate Shaft

V.V. For Output Shaft

VL RESULT AND CONCLUSION

The comparative study of the solutions shown in Table 3 leads to the following conclusions:

- The volume of the all gears and shafts calculated with the classical method is 99.3788 cu.in, while the optimal design solution offers a smaller volume, equal to 68.069 cu.in. i.e. a 31.503% reduction.
- The optimal design solution has the transmission ratio for the first stage almost equal to the second stage. That confirms
 the recommendations found in literature.

	Table 5 Classical and Optimal	0	
No.	Classical	Optimal	Denotation
	solution	Solution	
	Main chara	cteristic of the first stage	
1	Transmission ratio		
	3.16	3.167	i
2	Centre working distance(inch)		
	4.4096	3.8	a _w
3	Module (inch)		
	0.1181	0.1	m _n
4	Number of teeth of the pinion		
	18	18	Z1
5	Number of teeth of the wheel		
	57	57	Z ₂
6	Pitch diameters(inch)		
	2.12	1.824	D ₁
	6.69	5.776	D ₂
7	Face Width(inch)		
	1.181	0.729	F ₁
	1.181	0.686	F ₂

Table 3 Classical and optimal design solutions

Table 4 Classical and optimal design solutions

No.	Classical	Optimal	Denotation	
	solution	Solution		
		Main characteristic of the second sta	age	
1	Transmission ratio			
	3.16	3.176	i	
2	Centre working distance(inch)			
	4.4096	4.610	a _w	
3	Module(inch)			
	0.1181	0.125	m _n	
4	Number of teeth of the pinion			
	18	17	Z ₃	
5	Number of teeth of the wheel			
	57	54	Z_4	
6	Pitch diameters (inch)			
	2.12	2.207	D ₃	
	6.69	7.012	D_4	
7	Face Width(inch)			
	1.4835	1.034	F ₃	
	1.4835	0.974	F ₄	

Table 5 Classical and optimal design solutions

No.	Classical	Optimal				
	solution	solution				
	Main characteristic of Input Shaft					
1	Main diameter(inch)					
	0.6368	0.678				
2	Shoulder diameter(inch)					
	0.6368	0.591				
3	3 Length(inch)					
	4.633	4.268				

No.	Classical	Optimal			
	solution	solution			
	Main characteristic of Intermediate Shaft				
1	Main diameter(inch)				
	0.875	0.875			
2	Shoulder diameter(inch)				
	1.125	0.669			
3	Length(inch)				
	4.633	4.268			

Table 7 Classical and optimal design solutions

No.	Classical	Optimal	
	solution	solution	
	Ma	in characteristic of Output Shaft	
1	Main diameter(inch)		
	1.128	1.100	
2	Shoulder diameter(inch)		
	1.128	1.102	
3	Length(inch)		
	4.633	4.268	

VII. REFERENCES

- Optimal design of two-stage speed reducer, LUCIAN TUDOSE, OVIDIU BUIGA, DANIELA JUCAN, CORNEL 1. STEFANACHE, ISBN: 978-960-474-019-2, ISSN: 1790-2769, MACMESE'08.
- Shigley S Mechanical Engineering Design 8th Edition, Pg.349-943. 2.
- 3. Design of Machine Elements, V.B.Bhandari-2010, Pg 330, 646.
- 4. KISSsoft Software, Copyright 1998-2015, KISSsoft AG, Rosengartenstrasse 4, CH-8608 Bubikon.
- Budynas-Nisbett: "Shigley's Mechanical Engineering Design", Eighth Edition, 2008; Pg. 746-47 5.
- Git in M. Maitra:" Handbook of gear design", 1994 6.
- Stephen P. Radzevich; "Dudley's Handbook of Practical Gear Design and Manufacture", Second Edition, 2012 Kapelevich, A. and McNamara, T., "Direct Gear Design® for Automotive Applications", 2013 7.
- 8.
- Milosav Ognjanovic1 Miroslav Milutinovic2," Design for Reliability Based Methodology For Automotive Gearbox Load 9. Capacity Identification", 2012

V

10. Wikipedia