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Numbers: opportunity or issue? 
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8.4 billion connected things in 2017 (+31% wrt 2016) 

20.4 billion by 2020 

http://www.gartner.com/newsroom/id/3598917 
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SMART-TRANSPORTATION:  
autonomous electric vehicle, improved driver assistance and care. 
Path towards destinations may vary, even diverging from the optimal 
one, according to user preferences. 

SMART-SOCIETY:  
increased building efficiency and comfort, i.e. lightning/air 

quality management can be adjusted to the room status. 

SMART HEALTH:  
distributed healthcare assistance to improve quality of life and active 
and healthy ageing, functionalities can be changed according to the 
daily tasks. 

Some examples ... 
Connectivity and real-time situation awareness are nowadays common in different 
scenarios. 
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Reconfiguration: Recipe for Compromises 

Reconfiguration may allow to optimally implement 
complex/demanding systems, managing 

numerous/conflicting requirements and a variety of 
functionalities. 

Modern digital devices (real-time and ad-hoc) are 
pervasive (98% of computers are embedded) and 

interconnected.  

They may also present sensing and actuating 
capabilities, leading to the concept of CPS. 
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Triggers for Adaptation 
ENVIRONMENTAL AWARENESS:  
Influence of the environment on the system, i.e. daylight vs. nocturnal, radiation 
level changes, etc.  
Sensors are needed to interact with the environment and capture conditions 
variations.  

USER-COMMANDED:  
System-User interaction, i.e. user preferences, etc.  
Proper human-machine interfaces are needed to enable interaction and capture 
commands.  

SELF-AWARENESS:  
The internal status of the system varies while operating and may lead to 
reconfiguration needs, i.e. chip temperature variation, low battery.  
Status monitors are needed to capture the status of the system.  
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Types of Adaptation 
FUNCTIONALITY-ORIENTED: 
To adapt functionality because the CPS mission changes, or the data being 
processed changes and adaptation is required. 
It may be parametric (a constant changes) or fully functional (algorithm 
changes). 

NON-FUNCTIONAL REQUIREMENTS-ORIENTED:  
Functionality is fixed, but system requires adaptation to accommodate to changing 
requirements, i.e. execution time or energy consumption. 

REPAIR-ORIENTED:  
For safety and reliability purposes, adaptation may be used in case of faults. 
Adaptation may add self-healing or self-repair features. e.g.: HW task migration 
for permanent faults, or scrubbing (continuous fault verification) and repair.  

A 

B C 
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Computing Spectrum 

ASIC DSP GPU CPU 

GP 

Flexibility Efficiency 

CG 

RECONF 

FG 

Fine-Grained  
(FG) 

Coarse-Grained 
(CG) 

bit-level word-level 

flexibility   

speed   

memory   

Reconfigurable computing provides a trade-off between execution efficiency typical of 
ASICs and flexibility mainly exhibited by GP devices.  
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Computing Spectrum 
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DPR 

Reconfigurable computing provides a trade-off between execution efficiency typical of 
ASICs and flexibility mainly exhibited by GP devices.  
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Virtual vs. Dynamic & Partial 
VRC  Virtual Reconfigurable Circuits 

• High reconfiguration speed 

• Lower operation speed (mux and size)  

• Higher Area Overhead 

• Technology independent (ASIC or FPGA) 
 

DPR  Dynamic and Partial Reconfiguration 

• Lower reconfiguration  speeds 

• Better operation speed (no mux/less logic) 

• Better Resource Utilization (no dark logic) 

• Higher Flexibility and Scalability 

• Technology dependent (FPGA) 
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Multi-Dataflow Composer: Development 
2010 2011 2012 2013 2014 2015 2016 

Baseline tool specification:  
Multi-Dataflow Composer (MDC) tool 

MPEG-RVC Framework Integration: 
Orcc + MDC + Xronos + Turnus 

Structural Profiler 

Low-Power Extension 

Co-processor Generator 

2017 

Generalization 
Process 

2018 
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Multi-Dataflow Composer: Evaluation 
2010 2011 2012 2013 2014 2015 2016 2017 2018 

Reconfigurable Image/Video Coding: JPEG e 
H.264 

Neural Signal Decoding 

Adaptive Filtering: HEVC 
Encoding  

Cryptographic 
Systems 

CERBERO H2020 
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Multi-Dataflow Composer: Design Suite 

Dynamic Power 
Manager 

Multi Dataflow 
Composer Tool 

Structural Profiler 
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MDC design suite 

 
http://sites.unica.it/rpct/ 
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C 

Dataflow Model of Computation 
COMPUTING PARADIGM: 

• directed flow graph of actors (functional units) 

• communication with tokens (packets of data) 
exchange through dedicated channels 

  

 PECULIARITIES: 

• explicit intrinsic application parallelism 

• modularity favours model re-usability/adaptivity 

  

 EXTERNAL INTERFACE: 

• I/O ports number 

• I/O ports depth 

• I/O ports tokens burst 
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B 

D 

actions 

state 
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Heterogeneous and Irregular: approach 
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Heterogeneous and Irregular: MDC framework 

Multi-Dataflow Composer (MDC) tool: Dataflow 2 HW tool 

• Given N input dataflow specification, it generates the 
HDL Coarse-Grain (CG) reconfigurable substrate 

• Handles programmability, by defining switching and 
configuration logic 

• Deploy Xilinx-compliant IP blocks, plus their drivers 

HETEROGENOUS FUNCTIONAL UNITS 
IRREGULAR INTERCONNECT 
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MDC-based Reconfiguration: Adaptation Types 

Execution Profile 
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The Power Issue 
 Power consumption =  

 Dynamic power + Static power 
  

 Dynamic: activity dependent 

• Short-circuit: when the output line of a transistor is 
switching, there is a period of time when both the PMOS 
and the NMOS transistors are on (I·V·f) 

• Switching power: due to the charging and discharging of the 
load capacitance when logic transitions occur (determined 
by the formula C·V2·f). 

 Static: not activity dependent, but due to leakage currents. 

• Do not depend on switching and operating frequency. 

• As transistors get smaller, channel lengths become shorter and leakage currents increase.  

90 nm  
Inflection Point 
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The Power Issue: Textbook Techniques 

• DESIGN: Multi Vt, Clock gating, Power gating, Multi Vdd, DVFS. 

• PROCESS: Multi Vt, PD SOI, FD SOI, FinFet, Body Bias, Multi oxide devices, Minimize 

capacitance by custom design. 

• ARCHITECTURE: power-constrained DSE, hw customization and IP specific techniques, 

parallelism, mapping. 

Dynamic 
Clock gating 

Variable frequency 
Voltage islands 

Variable/multi power supply 
Dynamic Voltage & Frequency Scaling 

 

Static 
Multi-threshold dev. 

Power gating 
Back (substrate) bias 
Multi-oxide devices 

SOI CMOS 

 
 
 

INTRINSICALLY SYSTEM LEVEL 

MANAGEABLE AT SYSTEM LEVEL 
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Clock-Based Techniques 

• Power consumed by flip-flops.  

• Power consumed by combinatorial logic driven by registers. 

• Power consumed by the clock buffer tree. 

24 

Reduce frequency whenever you can. 
Stop the clock when the component is not active. 

Fine-Grained 

Coarse-Grained 

50% less 
dynamic 
power 
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V3 V2 

Power-Based Techniques 

• Power-aware partitioning. 

• Switching-off power island brings local leakage to zero. 

• Modes of operation -> power down all the idle chip regions. 

25 

Reduce the voltage level of a power island whenever you can. 
Switch it off when it is not active. 
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Clock-/Power-Based Techniques: Overhead 
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 Switch off the clock, applicable to both ASIC and FPGA. 
• @ASIC:  simple and gates. 
• @FPGA: dedicated vendor specific cells. 

 Switch off the power supply, ASIC only (partially FPGA). 
• Sleep transistors: to switch on and off power supply. 
• Isolation logic: to avoid the transmission of spurious signals from 

gated regions  to normally-on cells. 
• Retention logic: to maintain the internal state of gated regions. 

  
MAIN 

REGISTER 

SHADOW 
REGISTER 

SAVE RESTORE 

Retention Register 

POWER-
DOWN  
BLOCK 

P_UP 

ALWAYS-ON  
BLOCK 

Isolation Cell 

POWER-
DOWN 
BLOCK 

Vdd 

Power Switch-Off Cell 
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Clock-/Power-Based Techniques: Overhead 

27 

 Switch off the clock, applicable to both ASIC and FPGA. 
• @ASIC:  simple and gates. 
• @FPGA: dedicated vendor specific cells. 

 Switch off the power supply, ASIC only (partially FPGA). 
• Sleep transistors: to switch on and off power supply. 
• Isolation logic: to avoid the transmission of spurious signals from 

gated regions  to normally-on cells. 
• Retention logic: to maintain the internal state of gated regions. 

 Vary mode changing Vdd, ASIC only. 

• Level shifters: to pass signals between portions of the design that 
operate on different voltages. 

  
POWER  

DOMAIN 1 
0.8 V 

POWER  
DOMAIN 2 

1.2 V 

Level Shifters 
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Clock-/Power-Based Techniques: Management 

 The Common Power Format (CPF), used within the Cadence design flow, is meant to define 
power-saving techniques early in the design process.  

• Technology part: depends on the adopted technology. It defines the libraries to be used 
(for each operating conditions) and the cells (i.e. isolation, sleep transistors, state 
retentions) to be used within them. 

• Power intent part: depends on the design. It defines all the rules to correctly operating 
the inserted switch (i.e. defines the on/off conditions of the sleep transistors), defines the 
set of available domains and which logic blocks belong to them  
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PSO Example 
• Reconfigurable Filter, the 

depth of the filter can vary. 

• 2 different Logic Regions 
(LR), one always on and one 
switchable  

• Switchable LR needs the 
insertion of 

- isolation,  retention and 
power switch cells; 

- one power controller to 
handle the control signals 
[1*shut-o + 1*isol. + 2*reten.] 
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Heterogeneous and Irregular CGR: power issue 
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Heterogeneous and Irregular CGR: power issue 
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Heterogeneous and Irregular CGR: power issue 
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Heterogeneous and Irregular CGR: power issue 
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Heterogeneous and Irregular CGR: MDC approach 
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Heterogeneous and Irregular CGR: MDC approach 
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CG Reconfigurable FFT Design 
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CG Reconfigurable FFT Design 
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Low-Power CG Reconfigurable FFT Design 
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Low-Power CG Reconfigurable FFT: 90nm ASIC 

  

FFT: power vs throughput 

Dynamic trade-off management 

 

FFT: Area 
MDC offers automatic 

implementation of  
power-gated and clock-gated designs 
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Final Remarks 
• Reconfiguration is a good recipe to address flexibility 

- Functional: change the tasks is possible. 

- Non-Functional: change the execution profile is possible. 

• Power is not necessarily an issue 

- The Multi-Dataflow composer tool offer ways to minimize consumption of unused resources, 
which a negligible impact/effort. 

 

 

  

Example of multi-profile CGR system: HEVC interpolator 

[ESL17] Carlo Sau, Francesca Palumbo, Maxime Pelcat, Julien Heulot, Erwan Nogues, Daniel Menard, Paolo Meloni,  and Luigi Raffo. “Challenging the Best HEVC Fractional Pixel FPGA Interpolators with 
Reconfigurable and Multi-frequency Approximate Computing”  in IEEE Embedded Systems Letters, vol. 9, no. 3, pp. 65-68, Sept. 2017.   
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Intelligent system DEsign and Application (IDEA) @ UNISS 
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The MDC Group – UNISS + UNICA team 
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CERBERO H2020 Project 
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