
Design for Scalability in 3D Computer Graphics
Architectures

Ph.D. thesis

by

Hans Holten-Lund, M.Sc.

Computer Science and Technology
Informatics and Mathematical Modelling

Technical University of Denmark
http://www.imm.dtu.dk/cst/

July, 2001

This thesis has been submitted in partial fulfillment of the conditions for ac-
quiring the Ph.D. degree at the Technical University of Denmark. The Ph.D. study
has been carried out at the Section for Computer Systems and Technology at the
Department of Informatics and Mathematical Modelling, supervised by Associate
Professors Steen Pedersen and Jan Madsen.

Copenhagen, July 2001

Hans Holten-Lund

ii

Abstract

This thesis describes useful methods and techniques for designing scalable hybrid
parallel rendering architectures for 3D computer graphics. Various techniques for
utilizing parallelism in a pipelined system are analyzed. During the Ph.D. study
a prototype 3D graphics architecture named Hybris has been developed. Hybris
is a prototype rendering architecture which can be tailored to many specific 3D
graphics applications and implemented in various ways. Parallel software im-
plementations for both single and multi-processor Windows 2000 systems have
been demonstrated. Working hardware/software codesign implementations of Hy-
bris for standard-cell based ASIC (simulated) and FPGA technologies have been
demonstrated, using manual co-synthesis for translation of a Virtual Prototyping
architecture specification written in C into both optimized C source for software
and into to a synthesizable VHDL specification for hardware implementation. A
flexible VRML 97 3D scene graph engine with a Java interface and C++ interface
has been implemented to allow flexible integration of the rendering technology
into Java and C++ applications. A 3D medical visualization workstation prototype
(3D-Med) is examined as a case study and an application of the Hybris graphics
architecture.

iii

iv

Preface

I would like to thank all the people who helped me build the foundations for the
Hybris graphics architecture during my Ph.D. studies. A special thanks goes to my
advisors; Steen Pedersen for encouraging me during my Ph.D. studies by coming
up with challenging tasks such as designing and implementing a 3D medical visu-
alization workstation from scratch to see if my ideas on computer graphics were of
any actual use, and Jan Madsen for insight into codesign system design method-
ologies which are very useful for designing combined hardware/software systems
such as the graphics architecture presented in this thesis.

Thanks must also go to Niels Jørgen Christensen for inspiring my interest in
parallel computer graphics architectures.

Additionally I would like to thank all the people from 3D-Lab in Copenhagen;
Tron Darvann, Per Larsen, Sven Kreiborg and others, for discussions about medi-
cal visualization, as well as Niels Egund from Århus Kommunehospital for being
willing to test our prototypes in practice.

And also thanks to Professor Arie Kaufman who made it possible for me to
carry out six months of my studies at his Visualization Lab in the Computer Science
department of the State University of New York at Stony-Brook (SUNY-SB), NY,
USA.

Further thanks goes to all the master’s students who made contributions to the
Hybris graphics architecture as well as the 3D medical visualization workstation.

Some of these master’s students include: Martin Lütken [130] , Thomas
Gleerup [71] and Henrik Ahrendt Sørensen [207] who proved to be an invaluable
help for building and defining the Hybris graphics architecture.

Finally, I would like to thank the other master’s students credited for help-
ing building and defining the 3D medical visualization workstation. They in-
clude: Mogens Hvidtfeldt [97], Søren A. Møller [151], Kurt Jensen [109], Jacob
Winther Madsen [131], Lars Bo Mortensen [160], Torben Yde Pedersen [176],
Kenneth Haldbæk Petersen [178], Jan Dueholm Rasmussen [189] and Kim Theil-
gaard [222].

v

vi

Contents

Preface v

Contents vii

1 Introduction 1
1.1 Parallel rendering – the next step 2
1.2 Contribution of this thesis . 5
1.3 Thesis chapter overview . 6

2 Parallel Rendering and Scalability 9
2.1 Scalable 3D graphics architectures 9

2.1.1 General purpose parallel computing system architectures . 10
2.1.2 Scalability of current PC-based 3D graphics processors . . 12
2.1.3 Summary . 17

2.2 Parallel rendering concepts . 17
2.2.1 Coherence . 18
2.2.2 Parallelism in rendering 19

2.3 Parallel rendering as a sorting problem 22
2.3.1 Sort-first . 23
2.3.2 Sort-middle . 24
2.3.3 Sort-last . 26
2.3.4 Hybrid sorting . 29

2.4 Bucket sorting . 30
2.4.1 Bounding box bucket sorting overlap 31
2.4.2 Exact bucket sorting overlap 33

2.5 Chapter summary . 39

3 Designing a Scalable Graphics Architecture 41
3.1 Understanding the problem . 41
3.2 Development of the Hybris rendering architecture 43

vii

viii CONTENTS

3.2.1 Clipping . 44
3.2.2 Fast tile boundary clipping 46
3.2.3 Fast floating point to fixed-point conversion 48
3.2.4 Back-face culling . 49
3.2.5 Hierarchical back-face culling 51
3.2.6 Pixel addressing rounding rules 53
3.2.7 Sub-pixel triangle culling 54
3.2.8 Sub-pixel shading correction 55
3.2.9 An alternative: Point rendering 57
3.2.10 Half-plane edge functions 59
3.2.11 Packet data format for a triangle node 62

3.3 Object partitioning . 65
3.3.1 Triangle strips . 66
3.3.2 Indexed triangle meshes 67
3.3.3 Triangle mesh partitioning with MeTiS 68

3.4 Partitioned object-parallel renderer front-end 71
3.5 Triangle setup and bucket sorting 73
3.6 Tile-based image-parallel renderer back-end 77

3.6.1 Pipeline stages . 77
3.6.2 Load balancing the back-end rasterization pipeline 79
3.6.3 Parallel tile rendering . 80
3.6.4 Image composition of tiles 80
3.6.5 Interleaved pixel parallel back-end rasterization pipeline . 81
3.6.6 Anti-aliasing for the tile renderer 84

3.7 Texture mapping . 89
3.8 Chapter summary . 91

4 Codesign for Hardware and Software Implementations 93
4.1 Design methodology . 93

4.1.1 Codesign using C language for architectural design 95
4.1.2 Using C language for hardware description 97

4.2 Standard physical interfaces . 99
4.2.1 AGP – A fast interface for graphics 99
4.2.2 PCI . 102

4.3 Implementing the Hybris graphics architecture 103
4.3.1 Single CPU software implementation 103
4.3.2 Multiple CPU parallel software implementation 106

4.4 ASIC implementation . 108
4.5 FPGA implementation . 111

4.5.1 PCI bandwidth . 113

CONTENTS ix

4.5.2 VGA video output . 115
4.5.3 Physical properties . 120

4.6 Performance figures for the implementations 125
4.7 Prospects for future HW/SW implementations 128
4.8 Chapter summary . 130

5 Interfaces and Applications 131
5.1 Virtual Reality . 131
5.2 3D application interfaces . 133

5.2.1 Immediate-mode graphics interface 133
5.2.2 Retained-mode graphics interface 133

5.3 The Hybris VRML engine . 135
5.4 Introduction to visualization . 136

5.4.1 Direct volume rendering 136
5.4.2 Surface model extraction 139

5.5 The 3D-Med medical visualization workstation 139
5.6 Chapter summary . 140

6 Conclusion 143
6.1 Summary . 143
6.2 Future work . 145

Bibliography 147

A Published papers 169

x CONTENTS

Chapter 1

Introduction

The inspiration for this thesis is a desire to make it possible to do something use-
ful with interactive 3D computer graphics. In this case the driving application is
3D medical visualization. Three dimensional scanning generates huge amounts of
data. Visualizing these datasets requires graphics systems capable of processing
the data. Interactive visualization raises the performance requirements for these
graphics systems even higher.

Historically computer graphics has always been a very computationally de-
manding task resulting in great limitations on the achievable realism. That has
changed much lately with the arrival of fast graphics processors for the PC. These
PC based graphics processors primarily rely on texture mapping to achieve aesthet-
ically pleasing interactive 3D computer graphics. Texture mapping is the process
of applying two-dimensional images to three dimensional geometric objects in or-
der to achieve an illusion of high complexity, suitable for computer games. Driven
by the steady increase in computational power, greater attention on the geometric
detail of three dimensional objects becomes possible.

The goal of this dissertation is to examine how we may improve the perfor-
mance of graphics processors to allow greater geometric detail without sacrific-
ing interactivity. In particular the focus is on computer graphics rendering algo-
rithms and techniques for providing scalability in computer graphics architectures.
The need for scalability comes from the desire to design and build an interactive
3D graphics system with the ability to handle very large datasets. Such a large
dataset, possibly containing millions of polygons, cannot easily be handled by nor-
mal graphics workstations and PCs. This thesis will focus on the techniques and
algorithms required to work with large datasets. Small datasets such as those found
in common computer games are trivially handled by current graphics processors.
A large dataset may be reduced by decimation to build a smaller dataset approxi-

1

2 Chapter 1. Introduction

Camera
Rendered image

3D objectProject ion
p lane

Figure 1.1: Example of perspective projection in 3D computer graphics. The
Bunny 3D model on the right side is rendered to the computer screen plane.
The 2D image to the left is the result of rendering the Bunny from the cam-
era’s point of view.

mating the original dataset, which would make it possible to view it on a standard
graphics processor, but it would also result in a loss of detail. Scaling the perfor-
mance of a computer graphics system to facilitate rendering of the large datasets
without sacrificing detail is a better approach.

The process of generating an image in computer graphics is called rendering
[63], figure 1.1 shows an example of how an object, the 3D model of The Bunny1, is
rendered on the screen using perspective projection, simulating how a real camera
works. Rendering a dataset such as the Bunny is relatively straightforward using
a sequential polygon renderer to render its 69,451 triangles. The triangles form a
triangle mesh connecting 35,947 vertices. A simple sequential renderer will break
the mesh into 69,451 individual triangles, resulting in a vertex count of 208,353 i.e.
nearly 6 times as many as needed. This illustrates why a renderer must be carefully
implemented in order to take advantage of special properties of the input data.

1.1 Parallel rendering – the next step

Parallel rendering is becoming very important in computer graphics. Historically
parallel rendering has been used in massively parallel graphics supercomputers
such as the Silicon Graphics RealityEngine [5] and InfiniteReality [158], as well
as the UNC PixelFlow [155, 57], Pixel-Planes 5 [65] and many others. However
these systems were prohibitively expensive especially when scaled to a high level
of parallelism, with a typical system price tag of one million dollars.

1This is the Bunny model from the Stanford 3D scanning repository [208].

1.1. Parallel rendering – the next step 3

Computer animation for motion pictures is another area where parallel ren-
dering is currently being used successfully. Since motion pictures do not require
interactive rendering it becomes very simple to parallelize rendering as batch jobs.
The computer animation studio simply employs a “rendering farm” of multiple
workstations, possibly hundreds, each working on its own set of animation frames.
This type of parallelism is often known as “embarrassingly parallel” because of its
straightforward implementation. It is not suitable for interactive real-time render-
ing.

At the turn of the millennium we are witnessing a revolution in computational
power in ordinary PCs, driven by the advances in semiconductor technology. This
has up to now allowed commodity microprocessors such as the Pentium IV, Athlon,
PowerPC and Alpha to scale to very high performance levels. The microprocessor
computational power evolution was made possible by shrinking the dimensions of
the transistor, which in turn makes it possible to fit many more transistors on a
single chip and increase the clock frequency. Currently the minimum feature size
of cutting-edge commercial CMOS semiconductor process technologies is 0.13 µ .
Maximum clock frequency for a chip such as the Pentium IV CPU is 1.7 GHz, and
the maximum number of transistors that can be fitted on a chip die as large as 400
mm2 is more than 100 million transistors.

This progress in semiconductor technology development is not going to stop
any time soon, as predicted by Gordon Moore’s historically proven law. Moore’s
law predicts a two-fold increase in semiconductor transistor density every 18
months, i.e. exponential growth. Sources in the semiconductor industry claim that
this development will continue for at least ten more years just by improving CMOS
semiconductor technologies. Note that Moore’s law only claims technology im-
provements of the minimum transistor size in semiconductors, while improvements
in computational power, complexity and speed are side-effects of putting improved
technology to good use.

Ironically it is becoming increasingly more difficult to put all this on-chip real
estate made available by technological advances to good use. Current micropro-
cessors are using the added silicon area to embed larger cache memories, longer
pipelines, multiple execution units and wider SIMD (Single Instruction Multiple
Data) vector processing datapaths. A detailed description of these concepts in the
context of the microarchitecture of the AMD K6-2 3D-Now! microprocessor is
available in [206]. Current 3D graphics accelerators are also taking advantage
of increased silicon area by integrating more parts and improved features of the
rendering pipeline into a single chip. These parts were previously executed by
microprocessors and/or several other ASICs (Application Specific Integrated Cir-
cuit). Some recent graphics accelerators [188, 187] are even integrating on-chip
memories in order to overcome memory bandwidth problems.

4 Chapter 1. Introduction

Let us examine the hypothetical situation when an entire graphics rendering
pipeline has been implemented in hardware on one chip, and the chip still has
many nanoacres2 of unused area left. Note that because of the numerous pins3 re-
quired to interface with high performance memories and buses, a graphics ASIC
design is often pad-limited so the die size cannot simply be reduced, leaving us
with unused silicon area. Adding extra functionality to a chip to utilize the in-
creasing chip area has limitations, though. Let us assume in this hypothetical case
that better pipelining or “feature creep scalability” will not improve the speed of
the design further. In order to scale to higher levels of performance (in computer
graphics infinite rendering performance is preferred), parallelism is required. This
can be achieved with a scalable graphics architecture, which will allow processing
units of the graphics accelerator to be replicated across the entire chip. This thesis
will show that replicating a single type of processing unit across the chip surface
is not ideal, several different processor types are needed as well as an efficient
communication network between them, forming a heterogeneous structure of pro-
cessors, memories and communication. This is because a parallel renderer needs
to redistribute temporary rendering data at least once at some point in the render-
ing pipeline in order to be scalable. Automatic load-balancing is also needed in a
parallel renderer in order to keep all processors busy. While the parallel redistribu-
tion network provides a facility for internal load balancing, the input to the parallel
renderer should also be partitioned so it can be distributed over the renderers to
equalize the rendering workload.

Further, some level of programmability of the functional units is desirable as
it will provide a tradeoff between having hardwired datapaths or general purpose
microprocessors at each node. Several emerging new microarchitectures such as
Intel’s network processors and the Imagine [172] stream processor give an idea of
what is possible when integrating multiple programmable parallel processing units
on one chip. This is also evidenced by recent trends in the graphics accelerator mar-
ket, where the new Nvidia GeForce 3 graphics processor provides programmable
functional units for per-vertex and per-pixel processing, allowing the application
writer to customize those parts of the pipeline by using simple stream processing
scripts, rather than a hardwired pipeline. A promising emerging alternative method
for achieving programmability is to use field programmable gate arrays (FPGAs).

To summarize, under the somewhat unlikely assumption that we cannot think
of any extra functional features to add to the renderer and that the number of
pipeline stages cannot be increased further, then one practical way to utilize any
remaining chip area is to parallelize. This can be done by building a pipeline

21 nanoacre ≈ 4.0469 mm2

3The Neon [140] chip has 824 pins (609 signal pins + power supply pins).

1.2. Contribution of this thesis 5

of parallel processing farms [62], each corresponding to a stage in the graphics
pipeline. By using efficient communication for data redistribution between the
worker processors in each stage, good scalability can be achieved. This is why par-
allel processing is likely to see a revival soon, but this time for embedded systems
such as 3D graphics processors. By implementing such embedded parallel systems
on a single chip, many of the communication problems limiting the scalability of
parallel real-time graphics can be reduced.

The author’s past experience with Transputer networks for rendering (ray-
tracing) [87] by using networks containing up to 40 transputers were severely lim-
ited by the slow communication channels and all-to-one communication required
to assemble the final image, making real-time rendering impossible although the
slower ray-tracing algorithms did scale in performance from the parallelism. To-
day parallel real-time rendering looks far more promising as better communication
paths are available.

1.2 Contribution of this thesis

This thesis is an attempt to describe and analyze useful methods and techniques
for designing and implementing scalable parallel rendering architectures for 3D
computer graphics. During the Ph.D. study a prototype 3D graphics architecture
called Hybris has been developed. Hybris is also a prototype rendering system
implementation testbed for experimental hardware/software codesign of graphics
architectures, which can be tailored to many specific 3D graphics applications.
Several variants of Hybris have been implemented during the Ph.D. study for both
software and hardware. In software, both scanline and tile-based versions were
implemented. Two different parallel software renderers were implemented, one
based on functional parallelism and another based on data parallelism. Parallel
software implementations for both single- and multi-processor Windows 2000 sys-
tems have been demonstrated. Efficient methods for partitioning and sorting were
implemented to allow parallelism and efficient cache usage.

Working hardware/software codesign implementations of Hybris for standard
cell design based ASIC (simulated) [71] and FPGA technologies [207] have been
demonstrated. The hardware part of the design was carried out using manual trans-
lation of the software C source code to a synthesizable VHDL specification. The
FPGA implementation was the first physically working hardware implementation
of the Hybris renderer back-end. Currently the FPGA implementation shows great
potential for future development, for example many of the parallel back-end ar-
chitectural concepts demonstrated on the multiprocessor PC may be implemented.
Additionally a fully functional VGA video output interface was implemented in

6 Chapter 1. Introduction

the FPGA, eliminating the need to transfer the final rendered frames back to the
host PC.

For interfacing the graphics rendering architecture to applications an interface
with a high abstraction level is required. Since common interfaces such as OpenGL
enforce strict ordering of input data, they make data partitioning optimizations dif-
ficult, in effect relying on the calling application to do all front-end optimizations.
The chosen solution is to rely on the ISO standard VRML 97 virtual reality model-
ing language [28]. VRML uses a scene graph programming model which does not
assume anything about how an object is actually rendered. This abstraction allows
object level optimizations to be made “behind the scenes”.

In Hybris a flexible VRML 97 scene graph engine with an EAI [135] Java
interface and a custom object-oriented C++ interface has been implemented to
allow flexible integration of the Hybris rendering technology into Java and C++
applications. The VRML abstraction allows Hybris to perform object level pre-
processing and data partitioning optimizations. While lower level interfaces are
also present internally in the Hybris architecture for the front-end and back-end
graphics pipelines, these interfaces are not intended to be exposed to applications.

Finally the 3D-Med medical visualization workstation is an example of a com-
plete application which uses the Hybris 3D computer graphics architecture for vi-
sualization of e.g. bone structures from CT-scans.

In summary figure 1.2 gives an overview of the various aspects of the work
done in the Ph.D. study, however only some parts of the work will be covered in
this thesis. The description of the design of the Hybris hybrid parallel graphics
architecture is the main topic of this thesis. Hybrid parallel rendering offers some
nice advantages; Good load balancing, low memory bandwidth requirements and
good scalability.

1.3 Thesis chapter overview

This chapter has presented the motivation to design a scalable graphics architec-
ture as well as an introduction to some of the concepts. The rest of this thesis is
structured as follows:

Chapter 2 focuses on scalability in general with special focus on parallel ren-
dering. State of the art in current commercial rendering architectures is covered.
An introduction to recurring concepts in parallel rendering is given with an analysis
of some of the available options.

Chapter 3 gives an in-depth view of the design concepts of the Hybris graphics
architecture at an abstraction level slightly above the possible implementations.
The potentially available parallelism of the architecture is described independent

1.3. Thesis chapter overview 7

of an actual implementation.
Chapter 4 goes forth by analyzing the possible implementation options for the

architecture presented in chapter 3 by using codesign to map the designed architec-
ture onto software and hardware components. We look at different base implemen-
tation platforms, such as single or dual CPU PC’s for software implementations.
ASIC and FPGA hardware accelerator implementations are also covered.

Chapter 5 discusses how to interface with the application that uses the graphics
architecture. An implementation of VRML 97 is used as a high-level interface to
the architecture. As an example of an application which uses the architecture, the
3D-Med medical visualization workstation is presented.

Finally, Chapter 6 summarizes the work with conclusions and suggestions for
future work.

8 Chapter 1. Introduction

3D medical
scanner

3D
volumetr ic

dataset

Iso-surface
extraction

3D surface
model

3D surface
model

Pre-
processing

& Stat ic
opt imizat ion

Opt imized
3D surface

model

Opt imized
3D surface

model

Geometry
Transform
& Lighting

3D model
traversal,
cul l ing &

distribution

Backface
cull ing &
Triangle
cl ipping

Triangle
set-up

Bucket
sorting

Bucket
sorted

triangle
heap

Bucket
sorted

triangle
heap

Tile-based
rendering

Sub- image
composit ion

Final
rendered
image!

Data acquis i t ion and extract ion

Preprocessing and stat ic opt imizat ion

3D graphics p ipel ine, Front-end

3D graphics p ipe l ine, Back-end

VRML
scene with
3D surface

models

Applicat ion
with

embedded
VRML
engine

Interactive
scene

traversal

Appl icat ion level

Interactive
viewing

experience

Figure 1.2: Overview of the Hybris 3D computer graphics architecture, in-
cluding extensions for interactive virtual reality based on VRML as well as
extensions to support the 3D-Med medical 3D visualization workstation.

Chapter 2

Parallel Rendering and
Scalability

This chapter focuses on parallel rendering in general but with special focus on scal-
ability. State of the art in current commercial rendering architectures is discussed,
including recent PC based architectures. An introduction to recurring concepts
in parallel rendering is given with an analysis of some of the available options.
Architectural concepts and design methods for scalability of parallel rendering ar-
chitectures on the system-architecture level will also be discussed.

2.1 Scalable 3D graphics architectures

In computer graphics there is a need for a scalable solution where the rendering per-
formance increases as more parallel hardware processing units are added. Several
scalable 3D graphics architectures have been published, e.g. the PixelFlow [155]
and Pomegranate [51]. With the advent of highly integrated ASIC technologies
and fast interconnects, scalable architectures are gaining interest.

Before parallelism can be applied to rendering in 3D computer graphics some
methods for achieving scalability is needed. Definition of scalability: The ability
of a system to take advantage of additional processing units. This usually implies
that the system can take advantage of parallel execution. Two types of scalability
can be considered; hardware scalability and software scalability. Hardware (i.e.
performance) scalability is the ability to gain higher levels of performance on a
fixed size problem. Software (i.e. data) scalability is the ability to encompass larger
size problems, such as added model complexity or framebuffer resolution.

In popular terms software scalability means that a system can take advantage
of faster/better/more complex hardware to improve the overall quality of the work

9

10 Chapter 2. Parallel Rendering and Scalability

performed. This definition is often used with recent PC graphics hardware (e.g.
Nvidia), where the intent is to make proper use of faster graphics hardware with
existing software, i.e. the software should detect that powerful hardware is used and
attempt to utilize it by increasing the quality of the task. In a computer graphics
application such as a game this can mean using more detailed geometry in the 3D
models, larger textures, additional texture layers, better illumination models, etc.
This definition of scalability refers to the scalability of the application with respect
to dynamically adapting itself to different generations of hardware.

As a combined definition, scalability refers to the ability of an algorithm to be
able to efficiently utilize multiple parallel processors.

A simple form of scalability is when a software renderer is running on a mul-
tiprocessor computer, for example a PC configured in an SMP (Symmetric Multi
Processing) configuration with two CPUs using shared main memory. The PC
must be running an operating system such as Linux or Windows NT/2000 which
supports multiple processors, processes and threads. In an SMP system the main
memory is shared between all processors and a process can have two concurrently
running threads with a speedup scaling factor of around 2 (the actual scaling factor
depends on the main memory access patterns and synchronization of the threads).
However hardware performance scalability is limited by the bandwidth of the
shared main memory, because adding more processors does not increase the main
memory bandwidth. This is why highly scalable multiprocessors use a distributed
memory architecture where the processor/memory nodes are interconnected using
a switched high-speed network. Unfortunately such an architecture may limit the
communication bandwidth between the nodes, if the network is slower than the
memory. For this reason scalable architectures often try to partition the workload
to minimize the communication between processor nodes, in order to allow high
scalability performance gains with a distributed processing architecture.

From a hardware point of view, scalability is the ability to speed up a system
by adding more hardware components to the system.

2.1.1 General purpose parallel computing system architectures

This section presents a quick overview of some popular general purpose parallel
computing system architectures.

SMP – Threads

Microsoft Windows NT and Windows 2000 supports parallel execution of mul-
tiple threads on a multiprocessor host using the Win32 thread API. For modern
UNIX hosts Posix pthreads provides a similar thread API. Threads are useful

2.1. Scalable 3D graphics architectures 11

in shared memory architectures and provides a simple programming model where
all data is shared in main memory. SMP (Symmetric Multi Processing) systems are
characterized by having a single main memory subsystem to which all processing
nodes are directly connected. This allows simple and fast communication between
threads, but the processors cannot run at full speed when they must time-share
the access to main memory. SMP using two CPUs is available in many PCs and
workstations. Larger configurations are found in some server systems.

Distributed multi processing

In distributed multi processing architectures, each processor has its own local mem-
ory, which is not directly accessible by other processors. The processors are linked
via a communication network, and all data must be explicitly distributed among
the processors. This type of architecture allows each processor to run at full speed
once it has all the data it needs. Unfortunately finding a good data distribution with
minimal communication needs can be difficult, depending on the problem. Today
distributed multi processing systems are often implemented by connecting a huge
number of standard PCs in a high-speed switched network.

MPI – Message Passing Interface

MPI (Message Passing Interface) is an international standard API for communi-
cation between processing nodes in a distributed multi processing environment.
MPI works by allowing processes to communicate by message passing, and al-
lows process synchronization using barriers. MPI helps by hiding low-level syn-
chronization and communication from the programmer, and should help make the
distributed processing architectures more accessible and easier to use.

NUMA

NUMA (Non Uniform Memory Architecture) is a compromise between shared
memory and distributed memory systems, which is used in many modern parallel
supercomputers. NUMA allows the system to be partitioned into groups of SMP
systems connected in a high speed network. Often special hardware support for
thread programming is implemented in order for the application to assume a shared
memory thread programming model.

Note that this hybrid general purpose architecture shares many similarities with
the hybrid parallel graphics architectures which will be discussed later. Another
interesting note is that SMP systems based on CPUs with large internal caches
may be considered to be a NUMA system, as the caches will work much like the
local memories in a distributed multi processing environment.

12 Chapter 2. Parallel Rendering and Scalability

2.1.2 Scalability of current PC-based 3D graphics processors

Most manufacturers of low-cost high-performance PC-based 3D graphics proces-
sors have been reluctant to discuss the microarchitectures of their implementations.
Only superficial details such as the amount of graphics memory, clock frequency,
peak fill-rate, peak triangle-rate, 3D graphics feature set and vague marketing lingo
about the actual implementations are available. The only exception to this is a
description of Digital’s Neon single-chip graphics accelerator [140, 141], which
was published after their design project was cancelled. The Neon was actually
made for Digital Alpha workstations using a 64-bit PCI bus [175] rather than the
AGP interface [104], but otherwise it had features similar to many PC 3D graph-
ics cards. Neon relied heavily on the high performance of Alpha workstations to
create a well balanced system. Despite all this the Neon is not directly scalable
without a redesign of the chip, but it features a novel memory subsystem using
an 8 way memory controller to utilize 8 separate 32 bit SDRAM1 memory con-
trollers to gain high memory bandwidth and allow multiple simultaneous memory
operations. Other publications related to the spin-off from the Neon design project
include [139, 142, 144].

Scalability is not common in PC graphics accelerators because of very tight
cost limitations favoring single chip implementations, still some attempts have
been made to implement scalability. This is mainly done to provide the option for
a faster graphics system to those willing to pay, or to squeeze more performance
from a dated technology. In the following we take a look at some representative
PC graphics architectures and their scalability options.

3dfx – SLI

Some scalable designs use multiple graphics cards by interleaving the framebuffer
on a scanline basis. The interleaved graphics method renders even scanlines on
one card and odd on the other. All scene geometry is broadcast to both graphics
cards. A well known example of this configuration is the Voodoo 2 SLI (Scan Line
Interleaved) configuration of two 3dfx Voodoo 2 3D graphics PCI cards. In the
SLI configuration the two PCI boards are connected via a ribbon cable to act as
one board. The ribbon cable is used to send rendered pixels from the slave board to
the master board, which assembles the odd and even scanlines to create the video
image. The SLI configuration improves performance by doubling the pixel drawing
speed, as two independent memory buses are used to double the pixel bandwidth.
Yet, since the geometry is sent to both processors, the geometry processing speed
is not improved. This makes the SLI approach somewhat inefficient.

1SDRAM: Synchronous Dynamic Random Access Memory [147].

2.1. Scalable 3D graphics architectures 13

Since the Voodoo 2 boards, 3dfx finally released the VSA-100 (Voodoo Scal-
able Architecture) graphics chip in 2000. The VSA-100 is essentially a single chip
implementation of the Voodoo 3 (which was a single chip version of the Voodoo 2
+ a 2D graphics core) combined with the SLI capabilities of the Voodoo 2 chipset.
This allows VSA-100 to employ board level scanline interleaving using up to 32
VSA chips. Each chip needs it own local 32 MB framebuffer memory. The Voodoo
4 board uses one VSA-100 chip, while the Voodoo 5 5500 uses 2, and the Voodoo
5 6000 uses 4 VSA chips. The VSA-100 based graphics boards basically distribute
the workload like a Voodoo 2 SLI system by broadcasting data to all processors,
duplicating the geometry setup calculations on all chips. However the real purpose
for the parallelism is fast supersampling anti-aliasing which requires four VSA-100
chips to work. A high-performance configuration called the AAlchemy, produced
by Quantum3D, uses up to 32 VSA-100 chips in parallel to render fast antialiased
3D graphics. Of the Voodoo 5 boards, only the 5500 version with 2 processors
made it to the market. The 4 processor 6000 version needed for full quality an-
tialiasing required an external power supply and was never released on the PC
market. Unfortunately 3dfx was liquidated and acquired by Nvidia in early 2001,
so no further development of these products may be seen.

ATI – MAXX

Another example of scalability is the ATI Rage Fury MAXX card which uses two
Rage 128 Pro chips in an AFR (Alternate Frame Rendering) configuration. With
AFR, one chip renders even frames while the other chip renders odd frames. Each
chip processes triangle setup for its own frame without waiting for the other chip,
making AFR more efficient than 3dfx’s SLI technique. The AFR method is also
nicely load balanced since the frame-to-frame coherence is usually quite good in
interactive 3D systems. However because each chip needs data for two different
frames, the software driver needs to completely store the data needed for at least
one frame while the other frame is being rendered. This introduces pipelining la-
tency in the system. Another drawback in the hardware design is that the graphics
board requires two independent framebuffers, one for each graphics chip, doubling
the memory usage from 32 Mb to 64 Mb. Additionally the bandwidth over the AGP
bus is critical since the design effectively makes both graphics chips available on
the AGP bus, both needing different data simultaneously. ATI’s newest graphics
accelerator, the Radeon [159], is not available in an AFR configuration, presum-
ably because of driver problems, as the MAXX configuration with two devices on
the AGP interface does not work properly with the Windows 2000 operating sys-
tem. The Radeon implements other nice features such as a geometry processor
for transformation, lighting and clipping, as well as a hierarchical z-buffer [75] to

14 Chapter 2. Parallel Rendering and Scalability

improve visibility culling.
According to user testing2 the latency introduced by the AFR technique is not

significant enough to influence the interactive gameplay of the computer game
Quake 3 Arena. This is an important observation relevant for any system which
relies on increased latency to improve performance (Such as the Hybris architec-
ture presented later in this thesis).

PGC

Metabyte/Wicked 3D’s PGC (Parallel Graphics Configuration) technique uses two
graphics boards in parallel to work on different sections of a frame. One board ren-
ders the top half of the frame, while the other board renders the bottom half of the
frame. The PGC system includes an external hardware component that collects the
analog video outputs from both graphics boards (the upper and lower regions) and
integrates them into a single image video signal for the monitor. PGC allows two
slightly modified standard graphics boards to be used in parallel by this technique.
The analog video merging technique may introduce image tearing because of dif-
ficulties with video timing and DAC calibration. A digital video merger would not
suffer from these problems. Since PGC statically divides the image in two halves,
poor load balancing may occur e.g. if the rendered scene is more detailed in the
lower than the upper half (flight simulators have this behaviour).

3Dlabs – Parascale

The 3Dlabs Wildcat II 5110 dual pipeline graphics accelerator, which was intro-
duced early 2001, is an example of an AGP Pro based graphics accelerator. AGP
Pro is simply an AGP interface for workstation PCs which allows large cards with
a power consumption up to 110W, see section 4.2.

Wildcat II is an implementation of the 3Dlabs Parascale [1] scalable graphics
architecture, which allows a graphics system to use up to four Geometry Accelera-
tor ASICs and up to four Rasterization Engine ASICs, scaling the performance up
to four times. The dual pipeline Wildcat II should supposedly reach a performance
of 12 Mtriangles/sec, while a quad pipeline implementation should reach 20 Mtri-
angles/sec, according to marketing pamphlets on http://www.3dlabs.com.

Parascale is similar to the 3Dlabs Jetstream architecture, of which some infor-
mation was given in the keynote presentation at the 1999 workshop on graphics
hardware [225]. The Jetstream architecture is based on continued development of
the GLINT Delta and Gamma [224] front-end geometry processors. The Jetstream

2Review at http://www.tomshardware.com

2.1. Scalable 3D graphics architectures 15

architecture works by dividing the scene into interleaved strips of scanlines, allow-
ing better texture map cache coherency compared to scanline interleaving. The
architecture utilizes a rendering ASIC and a geometry processor ASIC. The geom-
etry processor ASIC is a specialized active AGP to AGP bridge placed between the
host’s AGP port and the rendering ASIC. Any transmitted vertex data is processed
by the geometry processor. Using two output AGP ports, the chip is able to divide
the vertex data stream in two streams, one to be processed locally and sent to a ren-
dering ASIC connected to port one, and one to be passed on to the next geometry
ASIC connected to AGP port two. This way the architecture is scalable until the
bottleneck becomes the AGP input bandwidth for the first ASIC in the chain.

PowerVR – Naomi II

PowerVR [188] is an innovative scalable tile-based rendering architecture for low-
cost PCs, TV game consoles and high-performance arcade game systems. It is
manufactured by STMicroelectronics and designed by Imagination Technology.

The PowerVR architecture is used in a scaled configuration for the recently
announced Sega Naomi II arcade game system, where two tile rendering ASICs
are used along with one geometry co-processor ASIC which handles floating point
calculations for transformation, lighting and clipping, offloading the system’s CPU.
The configuration is able to render 10 Mtriangles/sec sustained throughput in real
game applications.

A low cost single chip configuration of the PowerVR architecture is used in
the Sega Dreamcast TV game console, where low cost is the main limiting design
factor.

For PCs PowerVR has previously been implemented in several less successful
designs, but lately (March 2001) the PowerVR Kyro II graphics accelerator chip
was announced, showing new high performance levels for a tile based renderer.
Benchmarks3 show that in certain real-world circumstances the Kyro II is able to
outperform even the Nvidia GeForce 2 Ultra. This is remarkable, as the Kyro II
is clocked at 175 MHz, uses 128 bits wide 175 MHz SDR SDRAM memory (1.4
Gbytes/s peak bandwidth) and relies on the host PC to perform geometry calcu-
lations for transformation, lighting and clipping. In comparison the GeForce 2
Ultra includes a hardwired geometry pipeline, is clocked at 250 MHz and uses 128
bits wide 230 MHz DDR SDRAM memory (Double Data Rate, 7.4 Gbytes/s peak
bandwidth).

3Benchmarks at http://www.anandtech.com

16 Chapter 2. Parallel Rendering and Scalability

GigaPixel

The key feature of GigaPixel’s Giga3D architecture [187] is that it implements tile-
based rendering, much like the PowerVR architecture. The key benefit of this type
of rendering is that tiles of reasonable size can be completely rendered using on-
chip memory, without having to access external SDRAM using read-modify-write
cycles. Using the tiling architecture it is possible to perform efficient visibility-
culling, which removes graphics primitives and pixels which do not contribute to
the final image. Finally the tiling architecture allows very efficient implementa-
tion of anti-aliasing using jittered supersampling to produce a high image quality.
Since Giga3D is able to render using small on-chip memories, it achieves an image
quality equivalent to a classical architecture using three to ten times lower external
memory bandwidth.

The GigaPixel Giga3D architecture never resulted in any actual products other
than the prototype GP-1 which was successfully demonstrated at Comdex 99. In
late 2000 GigaPixel was acquired by 3dfx, supposedly to merge Giga3D IP into
upcoming Voodoo graphics accelerators. However in early 2001 3dfx succumbed
to financial difficulties and was sold to Nvidia. Thus Nvidia now owns the IP of
two of its former competitors, 3dfx and GigaPixel.

Nvidia

While Nvidia currently produces the most complex PC graphics accelerators (in
terms of special effects features implemented), they do not produce any directly
scalable graphics architectures. The latest GeForce 3 graphics accelerator from
Nvidia was introduced in March 2001. The GeForce 3 is implemented on a single
0.18 µ chip using 57 million transistors. The GeForce series of graphics acceler-
ators implement a hardwired geometry processor for transformation and lighting
calculations. The newest GeForce 3 extends this geometry processor with a sim-
ple programming interface to allowing customized vertex stream processing for
alternative lighting models and transformations. Nvidia seems to employ inter-
nal fine-grained pixel-level parallelism possibly with CPU-like caches, and relies
on very fast memory technologies to solve the memory bottleneck problems. The
GeForce 3 requires 64 MB memory organized in 4 banks of 32 bit wide DDR
SDRAM clocked at 230 MHz (effectively 460 MHz) to get a peak memory band-
width of 7.4 GB/s. The memory organization with 4 banks is very similar to the
Neon’s [140] crossbar memory controller. Since Nvidia now owns both 3dfx and
GigaPixel technology, they may want to explore other design options.

2.2. Parallel rendering concepts 17

2.1.3 Summary

While current PC based 3D graphics architectures are using scalable concepts to
some degree, supercomputer 3D graphics systems have used other more elaborate
and expensive scalable architectures, e.g. the PixelFlow [57] and the SGI Infinite-
Reality [158]. Note that current ASIC technology is able to integrate much of these
past systems onto a single chip, e.g. the PixelFlow is currently being implemented
in the FUZION chip [137], and the datapaths of the InfiniteReality has inspired the
Nvidia GeForce series of graphics processors.

While most PC based 3D graphics accelerators are using a poorly scalable
computation model very similar to the PC itself (hardwired CPU with external
memory) this is beginning to change. Some nice examples are the PowerVR and
Giga3D which use an on-chip pixel buffer to render one tile of pixels at a time.
Other examples such as the 3Dlabs Jetstream architecture is an attempt to fit an
architecture similar to the SGI InfiniteReality on a single board. Finally Nvidia
is using a crossbar memory architecture for the GeForce 3 to squeeze more per-
formance from the hardwired CPU with external memory approach. The GeForce
3 even features some limited programmability in form of downloadable vertex-
shader and pixel-shader [138] programs, reducing the difference between CPU’s
and graphics processors.

2.2 Parallel rendering concepts

Rendering a complex scene is so computationally intensive that it requires billions
of floating-point, fixed-point and integer operations for each frame. Real-time in-
teractive rendering places even higher demands on the rendering system as a min-
imum framerate has to be maintained. Note that real-time rendering usually is a
soft-real-time problem where the response time may be stretched slightly without
major problems. Most real-time implementations do not require a hard-real-time
guaranteed response time to function (although that would be nice). In order to
maintain the processing power needed for interactive rendering of complex scenes,
we can rely on Moore’s law and wait until microprocessors and graphics accelera-
tors become fast enough to solve the problem. Alternatively, if the needed process-
ing power is wanted now, the only option left is parallel processing, in this case
parallel rendering. Some concepts which are important for parallel rendering will
be discussed in the following sections.

18 Chapter 2. Parallel Rendering and Scalability

Scanl ine interpolat ion
Sc

an
l in

e
in

te
rp

ol
at

io
n

Span interpolat ion

Span coherence

Scanl ine
coherence

Span

Figure 2.1: Spatial coherence in a screen space region (32x32 tile).

2.2.1 Coherence

The term coherence is used in computer graphics to describe that features nearby
in space or time have similar properties [37, 215]. Coherence is useful for reducing
the computational requirements of rendering, by allowing incremental processing
of data by a sequential algorithm. Because of this it is important for a parallel
rendering algorithm to preserve coherence, or it will suffer from computational
overhead. Several types of coherence can be identified in rendering:

Spatial coherence refers to the property that pixels tend to have values similar
to their neighbors both in horizontal and vertical directions, stepping from one
scanline to the next (scanline coherence), and between pixels within a span (span
coherence). Figure 2.1 illustrates these types of spatial coherence. A sequential
rendering algorithm can use these kinds of coherence to reduce computation costs
while interpolating parameters between triangle vertices during scan conversion. A
popular incremental linear interpolation algorithm is forward differencing or DDA
(Digital Differential Analyzer) [58]. In a parallel renderer which partitions the
screen into regions, coherence may be forfeited at region boundaries. Because of
this, triangles which overlap several regions may cause a computational overhead
in a parallel renderer.

Temporal coherence is based on the observation that consecutive frames in an
animation or interactive application tend to be similar. This may be useful for

2.2. Parallel rendering concepts 19

Pipel ine Stage 1
(Processor 1)

Pipel ine stage 2
(Processor 2)

Pipel ine stage 3
(Processor 3)

Paral le l task
(Processor 1)

Paral le l task
(Processor 2)

Paral le l task
(Processor 3)

D
is

tr
ib

ut
e

C
om

po
si

te

Sequent ia l task
(Processor 1)

Sequent ia l task
(Processor 2)

Sequent ia l task
(Processor 3)

a) Functional paral lel ism

b) Data paral lel ism c) Temporal paral lel ism

Input F IFO FIFO Output

Output 2

Output 3

Output 1Input 1

Input 2

Input 3

OutputInput

Figure 2.2: A process parallelized over three processors by using three dif-
ferent types of parallelism. a) Functional parallelism. b) Data parallelism. c)
Temporal parallelism.

predicting workloads in a parallel renderer in order to improve load balancing. A
good example of temporal coherence is MPEG video compression which relies on
incremental frame to frame encoding and motion compensation to achieve its high
compression ratios.

Data coherence is a more abstract term, but can for example be described as the
tendency for multiple triangles or other data to contribute to nearby pixel regions.
Data coherence is improved by locally caching data and reusing the cached data. It
is related to both spatial and temporal coherence as multiple triangles contributing
to the same screen region can be grouped together to improve communication effi-
ciency and usage of cached pixels. These properties are important for the efficiency
of a parallel renderer.

Statistical studies on workload characteristics examining different forms of co-
herence in various rendering tasks were published in [150, 32].

2.2.2 Parallelism in rendering

Many different types of parallelism can be exploited in rendering. These are func-
tional parallelism, data parallelism and temporal parallelism. Figure 2.2 presents
an overview. These basic types of parallelism can be used alone or combined into
hybrid systems to exploit multiple forms of parallelism at once.

20 Chapter 2. Parallel Rendering and Scalability

Appl icat ion Geomet ry Raster izat ion Disp layComposi t ion

Figure 2.3: Standard rendering pipeline.

Appl icat ion Geomet ry Raster izat ion Disp layComposi t ion
FI

FO

FI
FO

FI
FO

FI
FO

Figure 2.4: A pipelined parallel renderer using FIFOs to queue data between
stages.

Functional parallelism – Pipelining

In computer graphics 3D surface rendering can easily be expressed as a pipeline,
where triangles are fed into the pipeline and data is serially passed from one pro-
cessing unit to the next in the data path, and pixels are produced at the end. The
standard rendering pipeline (figure 2.3) is an obvious candidate for functional par-
allelism as each individual stage may be mapped to individual processors. Sev-
eral early commercial hardware renderers [5, 45] were based on functional paral-
lelism by physically arranging programmable floating-point microprocessors in a
pipeline, and mapping different stages of the rendering pipeline to different micro-
processors (or “Geometry Engines”).

Functional parallelism has some major drawbacks, though. The overall speed
of the pipeline is limited by its slowest stage, and it is susceptible to pipeline stalls.
Most pipelines use FIFO4 queues to balance the pipeline loads by queuing data
between pipeline stages (figure 2.4), allowing upstream stages to continue working
while a downstream stage is busy. A pipeline stall occurs when a pipeline stage is
using more time to complete its task than the others, for example when a rasterizer
is busy filling a huge triangle. Small pipeline stalls can be avoided by using FIFO
queues to balance the load, provided that the processed data stream provides the
pipeline with an even workload distribution averaged over time.

The level of parallelism achieved by functional parallelism is proportional to
the number of pipeline stages. Functional parallelism does not scale well, since the
pipeline has to be redesigned for a different number of pipeline stages each time
the system is scaled. To achieve higher levels of performance, an alternate strategy
is required.

4First-In-First-Out

2.2. Parallel rendering concepts 21

Data parallelism

While it may be simple to perform rendering using a single data stream through
multiple specialized pipelined processors, it may be preferable to split the load into
several data streams. This allows us to process multiple data items concurrently by
replicating a number of identical processing units. Data parallelism is necessary
to build scalable renderers because large numbers of processors can be utilized,
making massively parallel systems possible. It is also possible to build different
versions of a data parallel system, scaling the performance levels to match the
required tasks simply by varying the number of processing elements.

Data parallelism can be implemented in rendering in many different ways. Two
basic classes of data parallelism in rendering may be conceived, object parallelism
and image parallelism.

Object-parallel rendering refers to an architecture which splits the rendering
workload so each processor works independently on individual geometric
objects in a scene.

Image-parallel rendering refers to partitioning the processing of the pixels for
the final image. Each processor is responsible for its own set of pixels, and
works independently of the other processors.

Object parallelism and image parallelism can be combined to perform object
parallel computations at the front-end of the rendering pipeline, and image paral-
lelism can be exploited at the back-end of the rendering pipeline. Load balancing
between the front-end and back-end must be handled. The workload must also be
balanced between the individual workers in each stage. Communication patterns
between front-end and back-end are crucial for the scalability of such a system,
which will be discussed later. Functional and data parallelism can also be com-
bined to gain additional speed, e.g. by building a pipeline of processor farms. The-
ory behind pipelined processor farms (PPF) is covered in the recently published
book [62]. Figure 2.5 shows how a pipeline of parallel processor farms can be used
to parallelize the 3D graphics pipeline. Note that the data communication between
the pipeline stages is not simple. Data redistribution or sorting is required between
some of the pipeline stages to implement a parallel renderer.

Temporal parallelism

Temporal parallelism works by rendering several different frames of an animation
concurrently. Batch renderers, such as those used for rendering 3D animated spe-
cial effects for Hollywood movies, typically use temporal parallelism to distribute
the workload over a “rendering farm” of workstations, each rendering their own set

22 Chapter 2. Parallel Rendering and Scalability

Appl icat ion

D
is

tri
bu

te
Dataf low direct ion in the paral le l feed-forward render ing pipel ine

Geomet ry

D
is

tri
bu

te

Raster izat ion

D
is

tri
bu

te

Composi t ion

D
is

tri
bu

te

Display

Figure 2.5: Parallel feed-forward rendering pipeline.

of animation frames. This is the only type of parallel rendering that is considered
to be embarrassingly parallel, as each worker process executes the entire rendering
pipeline implemented as a sequential 3D renderer.

When used for interactive real-time rendering, temporal parallelism can exploit
the latency in the rendering pipeline to overlap rendering of two consecutive frames
by using two separate graphics pipelines. This technique requires that the frame
rate is high enough to hide the effect of latency. Note that in this case the achieved
parallelism can also be thought of as high level pipelining.

2.3 Parallel rendering as a sorting problem

Molnar [154] classified parallel rendering architectures by treating the task as a
sorting problem, with three possible classifications: Sort-first, Sort-middle and
Sort-last. These three classes indicate possible locations in the graphics pipeline
where work redistribution must be done in order to implement a scalable parallel
renderer. Sort-first redistributes work before screen-space transformation, sort-
middle redistributes work after transformation and sort-last redistributes partial re-
sults after rendering to build a complete image. Figure 2.6 illustrates these three
possible locations where redistribution may take place in a parallel rendering ar-
chitecture.

Note that it is also possible to perform more than one redistribution in a parallel
renderer, a possibility which is gaining popularity in current graphics architecture
research such as [51, 195, 167] as well as this thesis. Multiple redistribution hybrid
parallel architectures are more feasible to build today as the added communica-
tion overhead is more manageable with the advent of high-speed communication
links and crossbar switches, as well as the recent possibility to integrate significant
amounts of on-chip memories in modern ASICs as well as larger cache sizes in
CPUs. Going a step further, all this may be integrated on one graphics-system-on-
a-chip (SoC).

2.3. Parallel rendering as a sorting problem 23

G G G G

R R R R

Geometry database d is t r ibut ion

Transformed geometry redist r ibut ion

Framebuf fer composi t ion

Host
System

Display

Paral le l
Geomet ry
Processors

Paral le l
Ti le
Renderers

Figure 2.6: Generic parallelism with redistribution.

2.3.1 Sort-first

A sort-first parallel rendering algorithm redistributes the raw triangles before they
are transformed. Figure 2.7 shows a conceptual example of a sort-first parallel
renderer which subdivides the framebuffer into four equal sized regions. In order
to redistribute primitives before transformation, the sort-first renderer must first
determine which three dimensional sub-spaces will correspond to the screen re-
gions after transformation and screen-space projection. A popular method for im-
plementing sort-first is hierarchical pre-transformation of triangles to determine
which region it falls into. This is a non-trivial problem, but once the redistribution
has been completed the remaining parallel rendering task is trivially implemented.
Sort-first is quite suitable for parallelizing commodity PC graphics accelerators e.g.
in a large display using multiple PC’s [196]. A weakness is poor load balancing
as triangles may concentrate into a few of the renderers leaving others idle. This
problem can be overcome by using smaller regions for better load balancing of the
renderers, but it comes at an increased sorting cost and also reduces the available
coherence.

If we abandon the idea of completely solving the parallel processing redistri-
bution problem for sort-first, several other sorting options for sort-first are feasible,
e.g. we might sort the primitives according to size, spatial or temporal proxim-

24 Chapter 2. Parallel Rendering and Scalability

G G G G

R R R R

Geometry database (random dist r ibut ion)

Paral le l
Geomet ry
Processors

Paral le l
Ti le
Renderers

Final image is
assembled f rom
subdivis ion t i les

Dynamic redist r ibut ion of geometry database

Figure 2.7: Sort-first parallelism using tiled image subdivision.

ity, surface properties, etc. Hybris uses sort-first to redistribute triangles accord-
ing to object-space spatial groupings which may not necessarily coinciding with
any screen-space subdivision. While this does not solve the sorting problem com-
pletely, it can be applied as a preprocessing step to help other types of sorting. To-
gether this can form a hybrid sorting architecture. An example of a hybrid parallel
graphics architecture primarily based on sort-first and sort-last is given in [195].

Further research on various screen-space subdivision schemes suitable for sort-
first parallel rendering can be found in [161, 162]. Other research focuses on the
use of sort-first to enable parallel rendering using standard PC 3D graphics hard-
ware [27, 94, 95]. As multiple PCs are used in this case, the possibility of a parallel
graphics interface is examined in [99, 101].

2.3.2 Sort-middle

The sort-middle parallel rendering algorithm redistributes the triangles after they
have been transformed, but before they are rasterized. Figure 2.8 shows a con-
ceptual overview of a sort-middle parallel renderer using a tiled subdivision of the
framebuffer into four equal sized regions or tiles. Tiling in sort-middle architec-
tures can use either a few large or many small tiles, depending on architectural

2.3. Parallel rendering as a sorting problem 25

choices. The sort-middle redistribution over multiple tiles is often referred to as
bucket sorting, binning, blocking or chunking, which is necessary to determine
which tile(s) a triangle covers. Many sort-middle architectures (e.g. SGI Infinite-
Reality) ignore bucket sorting and simply broadcasts all triangles to all tiles, result-
ing in poor scalability as all processors must process all triangles.

When implementing bucket-sorting there is a choice between physically having
a processor per region or using virtual processors. The processor per region version
of sort-middle provides a simple redistribution mechanism implementable using a
broadcast or crossbar system to distribute triangles to the tile processors, requiring
no buffering other than perhaps some FIFOs. The virtual processor version of sort-
middle distributes the workload across more tiles than there are tile processors.
This approach requires extensive buffering of the entire scene in a bucket sorted
triangle heap, but allows an implementation to use a few fast tile renderers, each
rendering into a virtual local framebuffer. Load balancing between the tile renderer
processors works best with the last method, as the workload can be dynamically
balanced. In comparison the processor per region sort-middle architectures depend
on an even distribution of triangles to achieve good load balancing, although this
can be improved by interleaving the framebuffer but for the cost of less efficient
bucket sorting (i.e. broadcast).

While no sorting is required in the geometry processors, some data distribu-
tion is required. Round robin distribution of individual triangles over the geometry
processors is used in [38] with good results. The sort-middle data redistribution
itself is fairly straightforward, as triangles have been transformed to screen space
coordinates. Since sort-middle can be implemented in many different ways, some
simple forms of sort-middle have become quite popular in commercial graphics
architectures. Interleaved framebuffer architectures, e.g. scan-line interleaving, are
based on sort-middle where the “sorting” has been simplified to a broadcast to all
worker processors. While this architecture is easy to implement with a very sim-
ple broadcast stage, poor load-balancing and poor utilization of worker processors
may occur if the rendering process is not fill-limited. An example of a sort-middle
architecture using broadcast to interleaved renderers is the Silicon Graphics GTX
3D graphics subsystem [63] shown in figure 2.9. This system is generally con-
sidered to be a sort-middle parallel architecture although it is not fully parallel,
as a single processor pipeline handles the data redistribution. Some methods for
scaling the pipelined front-end is by using SIMD-like data parallelism [81] or even
better by using MIMD data parallelism [158]. Similar interleaved architectures are
found in [4, 5, 45]. In general the interleaved architectures perform best for scenes
with large triangles as a very small triangle will only be processed by a few of the
renderers while the others are idle because of the broadcast mechanism.

Non-interleaved tiled sort-middle architectures are found in [65] as well as

26 Chapter 2. Parallel Rendering and Scalability

G G G G

R R R R

Bucket sorted redistr ibut ion by screen region

Geometry database (random dist r ibut ion)

Paral le l
Geomet ry
Processors

Paral le l
Ti le
Renderers

Final image is
assembled f rom
subdivis ion t i les

Figure 2.8: Sort-middle parallelism using tiled image subdivision.

[234] and [38]. An interesting sort-middle architecture is the SAGE processor-
per-pixel scanline renderer [68]. A two-step redistribution scheme is used for sort-
middle in [52, 53, 54] to improve scalability. Recent tile-based graphics architec-
tures suitable for sort-middle parallelism include the PowerVR [188] architecture
in its arcade game parallel configuration with one geometry processor chip and
two tile processor chips. The 3Dlabs Wildcat II [1] is another an example of a
sort-middle architecture.

2.3.3 Sort-last

In sort-last, redistribution of pixels (not triangles) is done after rasterization. Fig-
ure 2.10 gives a conceptual overview of a sort-last parallel renderer using image
composition of four full-frame image layer tiles. The advantage of sort-last is that
scalability is quite simple since each triangle is only processed by one front-end
and one back-end processor.

Image composition requires a high-speed image composition network which
composites each final pixel from pixel values from all the rendering processors.
To do this correctly the composition processor needs pixel values such as colour,
transparency and depth. Some methods for image composition of images with

2.3. Parallel rendering as a sorting problem 27

Figure 2.9: The Silicon Graphics GTX 3D graphics subsystem, which uses
a 5x4 interleaved array of 20 image engines in the back-end, each with their
own framebuffer. The front-end is implemented using a pipeline of iden-
tical programmable processors executing different stages of the geometry
pipeline. (From [63]).

28 Chapter 2. Parallel Rendering and Scalability

G G G G

R R R R

Geometry database (random dist r ibut ion)

Paral le l
Geomet ry
Processors

Paral le l
Ti le
Renderers

Final image is
composi ted
per pixel

Compos i ted
pixel

Figure 2.10: Sort-last parallelism using image composition.

transparency using the over operator are discussed in [49, 20, 17]. A major dif-
ficulty with image composition arises when multiple transparent triangles are lay-
ered at the same pixel, since depth ordering may be lost in the renderers. A simple
way to handle this is to ignore transparency and use pixel depth to determine the
pixel value. Correct handling of transparency in sort-last requires fragment sorting
which involves sorting pixel contribution fragments from each triangle touching
that pixel. Load balancing in sort-last architectures is quite vulnerable to large tri-
angles which may place much more work on one renderer, unless large triangles
are subdivided.

A good example of a sort-last architecture is the PixelFlow [155, 156, 57] ar-
chitecture which uses a high-speed image composition network to combine full
screen images from multiple renderers into a complete image by using pixel depth
comparisons. PixelFlow achieves high performance and scalability but does not
handle transparency correctly. Since PixelFlow is based on the Pixel-Planes 5 [65]
processor-per-pixel architecture, it is not vulnerable to load imbalance caused by
large triangles.

The Truga001 [102] architecture is a newer example of a sort-last architecture
which uses a binary tree of pixel composition circuits (Truga002) to combine the

2.3. Parallel rendering as a sorting problem 29

results from several renderers into one image. Other interesting sort-last archi-
tectures include the processor-per-primitive system found in [44], as well as the
fragment sorting sort-last based commercial workstations E&S Freedom 3000 [55]
and Kubota Denali [121]. The 3DRAM memory chip described in [46] which is
used in some Sun workstations can also be considered as sort-last.

2.3.4 Hybrid sorting

While Molnar [154] only considered parallel graphics architectures belonging to
one of the sorting classes; sort-first, sort-middle or sort-last, other possibilities do
exist. The three main sorting classifications may be combined into hybrid sorting.
The Hybris hybrid parallel graphics architecture is an example of an architecture
combining the different sorting methods. As mentioned in [69] hybrid rendering is
likely to be what is needed to raise the performance bar for rendering architectures:

It is very likely that the rasterization systems of the future will not be
based on any one single technique, but will use a creative combination
of the best features of known techniques to obtain even higher levels
of performance.

A recent example of such a “sort everywhere” architecture is the Pomegranate
[51] architecture which was presented at Siggraph 2000. Pomegranate uses a fast
redistribution network based on 4x4 crossbar switches and 10 Gbytes/s point-to-
point communication channels between all stages of the parallel rendering pipeline,
to build a hybrid sort-middle / fragment sorting sort-last architecture.

The VC-1 [167] is an example of a hybrid sort-middle, sort-last architecture us-
ing multiple virtual local framebuffer renderers (small tiles) which combines their
results using image composition of tiles before writing them to a global frame-
buffer. This is essentially a tile-based renderer version of PixelFlow’s image com-
position network.

Compared to the sorting-classes defined earlier, a hybrid sorting parallel graph-
ics architecture does not necessarily need to do a complete sort at each redistribu-
tion step, as long as the combined redistribution gives the correct result. In addi-
tion, by redistributing data at multiple points, the data redistribution workload is
distributed over several sorting steps. The hybrid sort-first / sort-last architecture
in [195] is a good example of this, as it allows the renderers to re-balance their
workload to keep all processors working.

As we have seen, good load balancing in parallel graphics architectures de-
pends on the partitioning of the tasks. To achieve good load balancing in a tile
partitioned renderer using a combination of the sort-first, sort-middle or sort-last

30 Chapter 2. Parallel Rendering and Scalability

architectures, a high tile granularity level is preferred as well as a tiled virtual pro-
cessor architecture.

Finally, the technology available today for manufacturing ASICs supports inte-
gration of small fast blocks of on-chip memory, ideal for implementing a parallel-
renderer-on-a-chip where each rendering processor in a pipeline of processor farms
include local memory for computations. The Hybris graphics architecture relies on
such localized buffering to scale to high performance levels. This development of
ASIC technology and graphics architectures was predicted in the paper [69] with
this quote:

Improving the speed of rasterization techniques surveyed here requires
integrating on one chip logic and small fast memories, a capabil-
ity not well supported by today’s ASIC design and fabrication tech-
niques. Nevertheless, we should expect to see more designs using
“pixel caches” or virtual buffers for the same reason caches are used on
all high performance computers: small memories have fast response.

In the next section we will take a closer look at what it takes to perform bucket
sorting, which is needed for a virtual local buffer tile based sort-middle architecture
such as the Hybris graphics architecture.

2.4 Bucket sorting

The requirements for a sorting algorithm can be relaxed slightly if we allow an
approximate sort by discretizing the sort keys. This approach allows sorting of a
dataset with n elements in linear time into a set of buckets. Within each bucket the
elements are not sorted. This process is known as bucket sorting, binning, chunking
or hashing [3, 41]. A hashing function is used to determine which bucket or set of
buckets in the hash table are relevant for the given element.

In computer graphics rendering algorithms, bucket sorting is a method for op-
timizing the rendering system to overcome bandwidth limitations. Bucket sorting
is used by several known rendering systems, such as the Pixar RenderMan and
Reyes [226, 35] software rendering architectures and hardware architectures such
as PowerVR [188], GigaPixel [187], Pixel-Planes 5 & PixelFlow [65, 57], as well
as Apple [116, 115, 235], Talisman [223] and VC-1 [167].

Bucket sorted rendering, which is required for tile-based rendering, works by
first sorting the scene into equal sized square screen-space regions (tiles) and then
rendering each tile independently. A motivating factor for using tile-based ren-
dering is that image and depth buffers can be stored on-chip using dense SRAM
or embedded DRAM. Tiling also gives us the possibility to render multiple tiles

2.4. Bucket sorting 31

in parallel. Traditional renderers require random access to the entire framebuffer,
which needs to be implemented using a large and fast memory subsystem. In con-
trast a tile-based renderer only needs random memory access within each tile. A
small tile size is preferred because smaller and faster memories can be used. In
addition a small tile size reduces the cost of a parallel tile-based renderer, where
multiple renderers access their own tile-buffer. Load balancing in a parallel ren-
derer is also improved with smaller tile size. Also, a small tile size allows more
information to be stored per pixel by using wider memories. Finally a triangle is
ideally only processed by the tile-renderers assigned to the tiles it overlaps. This
overlap is also one of the drawbacks of the tile-based renderer, as we need to sort
the triangles into buckets for all the tiles they cover. Also, the set-up cost for each
triangle is magnified by the overlap factor. Because of these factors, we need to
understand how to find the optimal tile-size.

A simple and fast bucket sorting algorithm is bounding box bucket sorting. The
bounding box for each triangle is simple to calculate from the minimum and max-
imum values of the x and y coordinates for the three vertices of a triangle. Using
the minimum and maximum values we can find the tiles overlapped by the trian-
gle’s bounding box. The triangle is then placed into each bucket it overlaps. The
bounding box algorithm is cheap, easy and robust. Unfortunately it suffers from
overlap overhead when a triangle is not completely inside a single tile and covers
multiple tiles. Additionally the algorithm may place a triangle into buckets that are
not actually overlapped by the triangle. In [36, 30] the architectural implications
of bounding box bucket rendering is analyzed.

Alternatively exact bucket sorting may be applied. Exact bucket sorting is more
complex as it requires that each triangle is scan converted into tiles, treating tiles
as large pixels. Exact bucket sorting requires triangle set-up in the sorting stage,
but may reduce the number of buckets that a triangle is placed into. Large triangles
overlapping many tiles will be placed into fewer buckets, but small triangles may
not benefit.

2.4.1 Bounding box bucket sorting overlap

The Molnar/Eyles equation (2.1) defined in [156] expresses the overlap factor O
which denotes the average number of screen regions that each triangle overlaps.
The screen is divided into equal sized regions of width W and height H, and the
average bounding box size of the triangles has width w and height h.

O =

(

W +w
W

)(

H +h
H

)

(2.1)

32 Chapter 2. Parallel Rendering and Scalability

(x ,y)
Center of
tr iangle's

bounding box

h/2

w/2

H

W

w

h
Area wi th no over lap

Areas wi th over lap 2

Areas wi th over lap 4

Bounding Box of
Tr iangle

Region border

Figure 2.11: Geometric construction for bounding box overlap. The regions
have width W and height H. The triangle’s bounding box has the width w and
height h. If the center of the bounding box (x,y) is located in the internal area
there is no overlap. If it is located in the edge areas the overlap is two, and
four in the corner areas. Equation (2.1) was derived from this construction.

Derivations and experimental proof of this equation are found in [156, 154]. Figure
2.11 illustrates the geometric relationship of the parameters in the equation.

Equation (2.1) allows both triangle bounding boxes and screen regions to have
arbitrary sizes and aspect ratios, even when a triangle is larger than the region,
as mentioned in [154]. Now we will take a closer look at the screen region aspect
ratio. Assuming that the average triangle bounding box is square with constant side
length s, that the screen region area Ar is constant, and with a variable screen region
aspect ratio R = W/H, equation (2.2) can be derived from (2.1), by substituting
W = R

√
Ar and H = R

√
Ar as shown in [54].

O =

(

R
√

Ar + s
R
√

Ar

)(

R−1√Ar + s
R−1

√
Ar

)

(2.2)

The minimum overlap factor under these conditions is found at the local minimum
of O, which is when the aspect ratio is R = 1. Therefore we can assume that square
regions should be preferred to minimize overlap. Empirical testing in [233, 234]
indicate that square regions provide the highest performance. While square regions
make intuitive sense, a possible explanation is that square regions minimize the
perimeter length while maximizing spatial coherence in both horizontal (span) and

2.4. Bucket sorting 33

vertical (scanline) directions, see figure 2.1.
Equation (2.3) is a variation of (2.1) assuming square screen regions, where S

is the side length of a tile. The equation is derived in [36]. This is the overlap factor
of a tile-based renderer using square tiles and bucket sorting of triangles based on
their bounding box.

O = 1+
w
S

+
h
S

+
wh
S2 (2.3)

Experimental research in [36] based on equation (2.3) suggest that in practice the
overlap factor is independent of the aspect ratio of the triangle bounding box. The
aspect ratio is calculated as r = w/h or r = h/w. This suggests that we can simplify
the equation by assuming s = w = h =

√
A where s is the side length and A is the

area of the triangle bounding box. Further, the ratio of bounding box area A per
triangle area a can be defined as ρ = A/a leading to the following equation (2.4).

O =

(

S + s
S

)2

=

(

S +
√ρa
S

)2

= 1+
2
√ρa
S

+
ρa
S2 (2.4)

According to [30] the area ratio ρ can be approximated to ρ = 3 when triangles
are used. Note that these equations assume that each triangle is placed into each
bucket its bounding box covers. Figure 2.12 shows an example of how triangles are
placed in buckets and figure 2.13 shows the structure of the hash table with buckets
for each tile.

Incidentally a parallel tile-based renderer is an excellent example of a sort-
middle architecture. Bucket sorting is required even when not parallelized, which
adds some overhead.

2.4.2 Exact bucket sorting overlap

When small triangles such as T2 or T3 in figure 2.12 stay within a tile or straddle
the boundary between two tiles, then exact bucket sorting and bounding box bucket
sorting will have the same overlap factor. But as soon as a triangle bounding box
straddles both horizontal and vertical tile boundaries, the differences appear. T1 in
figure 2.12 overlaps 3 tiles when exactly bucket sorted and 4 tiles when sorted by
the bounding box method. Figure 2.13 shows how the hash table of the buckets is
represented by the algorithm. As the triangle size increases relative to the tile size,
this effect is increased. Figure 2.14 shows what happens when a long and narrow
triangle spans across the entire screen. The bounding box method would place it in
all buckets, but exact bucket sorting only places it in the buckets actually affected
by for the shaded tiles. The overhead of placing a triangle into buckets it does not
actually cover causes each tile renderer affected to waste time that could be used

34 Chapter 2. Parallel Rendering and Scalability

 T3

T 2

T 1

Tile
0,0

Tile
1,0

Tile
0,1

Tile
1,1

Tile
2,0

Tile
2,1

X axis

Y axis

Figure 2.12: Examples of overlap in a tile-based renderer. Triangle T2 is
completely inside one tile. T3 overlaps two tiles. T1 overlaps 4 tiles if bounding
box bucket sorting is used, but will only overlap 3 tiles if exact bucket sorting
is used.

0,0

Ti le
x,y

Hash tab le
with a bucket
for each t i le

1,0

2,0

0,1

1,1

2,1

T 1

T 1 T 3

T 3

T 1

T 1

T 2

*)

Figure 2.13: Hash table for the bucket sorted triangles in figure 2.12. Each
bucket maintains a list of triangles overlapping its tile. *) This triangle entry
is created when using bounding box bucket sorting, but not if exact bucket
sorting is used.

2.4. Bucket sorting 35

Figure 2.14: Bounding box bucket sorting will place this long and narrow
triangle in all buckets, resulting in an overlap of O = 256. Exact bucket sorting
will only place the triangle in the buckets for the shaded tiles, in this case
resulting in a lower overlap O = 40.

rendering other triangles. The communication network for distributing triangles
into buckets is also burdened by this overhead.

A method for exact bucket sorting is discussed in [169]. It relies on testing
triangle edges against region edges using the following algorithm which determines
that a triangle intersects a region if:

1. a triangle vertex is inside the region, or

2. a region corner is inside the triangle, or

3. a region edge intersects a triangle edge.

The algorithm requires these tests to be made for every region overlapped by the
triangle’s bounding box.

Alternatively each tile can be treated as a large pixel. By scan converting the tri-
angle into these large pixels, the exact coverage can be determined. Unfortunately
this duplicates the work done by the tile renderers to some degree, and requires tri-
angle set-up in the sorting stage. Performing triangle set-up before bucket sorting
has some side-benefits, though. The Hybris renderer performs triangle set-up in the
bucket sorting stage as an optimization to allow reuse of rasterization parameters
across all tiles covered by the triangle. Knowing the triangle set-up parameters,

36 Chapter 2. Parallel Rendering and Scalability

exact bucket sorting can be performed using the same rasterization algorithm and
rasterization rounding rules that is used in the tile renderers. Further, these raster-
ization rounding rules can be used to cull triangles prior to bucket sorting. While
exact bucket sorting adds a scan conversion overhead it may improve the overlap
factor, in particular for large triangles such as the one in figure 2.14.

Returning to equation 2.1 which in [156] was derived from this integral:

O =
∫ H

0

∫ W

0
p(x,y)r(x,y)dxdy (2.5)

where p(x,y) is the probability for the triangle bounding box center to be placed
at (x,y) and r(x,y) is the number of regions affected by this placement. Assuming
even distribution over square tiles we get:

O =
∫ S

0

∫ S

0

1
S2 r(x,y)dxdy (2.6)

Revisiting the geometric construction in figure 2.11 and assuming a square
triangle bounding box and square tiles, then, for triangles with a bounding box size
smaller than the tile size, the following can be stated: If the triangle bounding box is
completely within a tile or overlaps two tiles either horizontally or vertically, exact
and bounding box bucket sorting has the same overlap. Only in the case when the
triangle bounding box overlaps four tiles, the triangle itself overlaps either three
or four tiles. Based on the triangle bounding box area to triangle area ratio ρ we
can derive an expression for the overlap factor of exact bucket sorting for small
triangles. In the corner four tile overlap case, the estimated overlap with exact
bucket sorting becomes

Ocorner = 3+
1
ρ

(2.7)

allowing the following derivation, where Acorners, Aedges and Acenter are the areas of
the corner, edge and center regions in figure 2.11, s is the side length of the square
triangle bounding box and S is the side length of the square tile.

Acorners = s2

Aedges = (sS + sS−2s2)

Acenter = (S− s)(S− s)

O =
OcornerAcorners +2Aedges +1Acenter

S2

O = 1+
2s
S

+
(Ocorner −3)s2

S2

2.4. Bucket sorting 37

by substituting Ocorner from (2.7) we get

O = 1+
2s
S

+
s2

ρS2 (2.8)

This derivation results in the following nice expression (2.10) for the estimated
overlap factor of exact bucket sorting when the triangle area a is known, by substi-
tuting s =

√ρa in (2.8)

O = 1+
2
√ρa
S

+
a
S2 (2.9)

substituting again to get rid of ρ gives

O = 1+
2s
S

+
a
S2 (2.10)

where the area ratio ρ can be approximated to ρ = 3 when triangles are used, as
previously stated in the discussion for (2.4). Note that ρ = 3 is an average estimate,
a rare case such as the long and narrow triangle in figure 2.14 has a much higher
bounding box area to triangle area ratio. Subtracting equation (2.9) from (2.4)
yields the difference

∆O = OBBox −OExact =
a(ρ −1)

S2 (2.11)

which is low for relatively small triangles.
Figure 2.15 lists some estimated overlap factors calculated for bounding box

and exact bucket sorting, where it is clear that the overlap factor is high for large
triangles and that exact bucket sorting significantly reduces the overlap in this case.
However for small triangles the difference between exact and bounding box sorting
is negligible, as shown in equation 2.11.

The tile size for the renderer should be chosen to be small enough to allow
good load balancing and efficient caching while at the same time be large enough
to allow good coherence within the tile as well as a low bucket sorting overlap fac-
tor. A practical tile size satisfying these criteria, as well as being small enough to
be practically implemented in caches and on-chip RAM, seems to be 32x32 pix-
els. Note that 2nx2n tile sizes are preferred in order to match hardware resources.
Figure 2.16 plots a comparison between exact and bounding box overlap for 32x32
tiles. This suggests that an adaptive bucket sorting algorithm which dynamically
chooses between using bounding box bucket sorting for small triangles and exact
bucket sorting for large triangles can be useful.

38 Chapter 2. Parallel Rendering and Scalability

1 4 16 64 256 1024
Tile side length:

8 1.480 2.054 3.482 7.464 19.928 62.856
16 1.228 1.480 2.054 3.482 7.464 19.928
32 1.111 1.228 1.480 2.054 3.482 7.464
64 1.055 1.111 1.228 1.480 2.054 3.482

128 1.027 1.055 1.111 1.228 1.480 2.054
256 1.014 1.027 1.055 1.111 1.228 1.480

1 4 16 64 256 1024
Tile side length:

8 1.449 1.929 2.982 5.464 11.928 30.856
16 1.220 1.449 1.929 2.982 5.464 11.928
32 1.109 1.220 1.449 1.929 2.982 5.464
64 1.054 1.109 1.220 1.449 1.929 2.982

128 1.027 1.054 1.109 1.220 1.449 1.929
256 1.014 1.027 1.054 1.109 1.220 1.449

Bounding box overlap:

Triangle area:

Exact overlap:

Triangle area:

Figure 2.15: Example bounding box and exact overlap for some interesting
tile and triangle sizes.

0

1

2

3

4

5

6

7

8

1 4 16 64 256 1024

Triangle area

O
ve

rl
ap Bounding Box

Exact

Figure 2.16: Overlap for 32x32 pixel tile.

2.5. Chapter summary 39

2.5 Chapter summary

In this chapter we have discussed parallel rendering in general with a special focus
on scalability. State of the art in current scalable commercial rendering architec-
tures has been covered. An introduction to general concepts in parallel rendering
has been given with an overview of some of the available options for implementing
a scalable graphics architecture. This overview seems to point towards a primar-
ily sort-middle architecture based on image-parallel subdivision of the screen into
many small square tiles mapped to virtual local framebuffers. For each tile bucket
sorting and buffering of work is used to load balance the jobs across virtual pro-
cessors, each optimized for rendering one small square tile. In addition a partial
sort-first architecture using object-parallel subdivision of the 3D model input data
looks promising. The input data is split into many small sub-objects to distribute
work over several geometry processors while maintaining data coherence. Finally
sort-last is used to assemble the final image from tiles. Image composition of over-
lapping tiles might be useful in order to allow the architecture to scale even further,
if correct handling of transparency is not an issue.

40 Chapter 2. Parallel Rendering and Scalability

Chapter 3

Designing a Scalable Graphics
Architecture

This chapter presents an analysis of how the Hybris graphics system architecture
is designed and implemented at a high abstraction level slightly above the possible
implementations. The intention is to specify a portable and scalable architecture
which may be implemented for many different software or hardware based com-
puter technologies. Hybris is designed to reduce the computational load at many
levels and to be scalable. The graphics architecture was originally named HPGA
which is short for Hybrid Parallel Graphics Architecture, and later renamed to
Hybris (Danish for Hubris). This graphics architecture is a hybrid because it ap-
plies a combination of several types of parallelism in order to scale. Chapter 18 of
[63] defines a hybrid-parallel graphics system as one which uses a combination of
object-order and image-order rasterization techniques.

3.1 Understanding the problem

In order to define and implement a scalable graphics architecture we need to un-
derstand the operation of all parts of the graphics pipeline. This understanding will
help the design for a scalable graphics architecture.

Traditionally the graphics pipeline is a serial processing pipeline for processing
one graphics primitive at a time. While a straightforward implementation of this
model lends itself towards easy implementation in both software and hardware, it
is not necessarily the most optimal.

Designing a scalable architecture for graphics forces us to take a new look at
the graphics pipeline. Distributed processing is needed for good scalability, leading
to an architecture composed of multiple localized data processing units. The pro-

41

42 Chapter 3. Designing a Scalable Graphics Architecture

cessing units are not identical, several different unit types are needed to form the
graphics pipeline. From the overview of scalability in graphics architectures given
in the earlier chapter, giving an idea of the generic parallel graphics architecture,
we must find a practical implementation.

For developing the Hybris graphics architecture, the architecture has been
evolved mainly in a software environment, reflecting useful software implementa-
tion methods. The architecture is targeted towards an implementation with efficient
utilization of CPU and system resources such as instruction scheduling, caches and
memory bandwidth. Additionally the 3D graphics rendering algorithms used in
Hybris are optimized towards achieving these goals. Using a general purpose com-
puter for development has allowed us to apply an abstraction of the design process
above a straightforward implementation of the archetypical graphics pipeline. The
main difference between the software implementation and the standard graphics
pipeline is how memory is used.

The usage of memory in the graphics architecture allows buffering of tem-
porary data and variables. While buffering enables re-use of earlier calculated
data values, an equally important aspect is that the memory can be partitioned to
match the data coherence present in computer graphics. A useful way to improve
memory usage in any system is to apply loop fusion and strip mining techniques
[117, 143, 228], which are examined in relation to Hybris in the paper [88], see
also the next chapter.

To enable a scalable architecture, a workload distribution scheme must be ap-
plied as well as a practical way to collect and combine partial results into the final
result, in this case one rendered frame of interactive real-time animation.

The software version of the Hybris rendering architecture was originally devel-
oped by breaking the rendering pipeline apart into several independent functions
or loops, each reading its input data from memory and writing output data back
to memory. This isolation of components made it possible to test each component
separately and test various implementations of each component. However, when
the components are configured into a graphics pipeline this approach is not neces-
sarily optimal when compared to the direct pipeline approach where no temporary
data exist in memory like that.

The advantage of exposing temporary data in memory is greater freedom to
experiment with various memory access schemes for data reuse and data access
coherence as well as enabling a means for data redistribution for use in parallel im-
plementations. Data blocking or chunking schemes has proved to be a very efficient
method for optimizing data access performance in computer systems equipped
with caches. Previously, data blocking schemes have been widely employed for
supercomputer applications e.g. in implementations of the linpack and scalapack
mathematical subroutine libraries. Today these techniques are not restricted to su-

3.2. Development of the Hybris rendering architecture 43

percomputers, but can be employed by modern personal computers as well as new
ASIC technologies with enough space for on-chip memories.

The Hybris graphics architecture is an attempt at applying data blocking tech-
niques to computer graphics. This was done by experimenting with various code
transformations by manually applying techniques such as loop fusion and strip
mining to achieve good cache and memory utilization.

3.2 Development of the Hybris rendering architecture

As indicated earlier it is desirable to localize the data processing in the rendering
architecture. An early attempt at this using an approach based on a scanline z-
buffer algorithm [84, 89, 130] worked nicely in a single processor environment,
but because of data dependencies between scanlines it caused many problems with
the design and implementation of an efficient scalable graphics architecture. Some
similar scanline based architectures are discussed in [116, 31, 68].

The basic rendering technique used in Hybris is a shaded triangle renderer us-
ing a combination of the Gouraud and Phong smooth shading techniques originally
proposed in [73, 182]. This thesis will not discuss all topics relevant for implemen-
tation of a 3D graphics system, as some of the basic topics as well as a description
of the scanline renderer can be found in [84, 89, 130] as well as textbooks on com-
puter graphics such as [63, 230, 229, 152]. In the following the focus is on the
properties of the tile-based rendering pipeline in Hybris, with emphasis on topics
relevant to parallelism, scalability and efficient implementations.

The tile-based version of the Hybris renderer was developed after it was real-
ized that it is not always a good idea to maintain an active triangle list. An active
triangle list allows incremental rendering one scanline at a time without duplicating
triangle nodes for each scanline. While an active triangle list is good in the sense
that it minimizes data-redundancy, it has to be updated when crossing over a scan-
line boundary. Bidirectional dataflow is needed between the the active triangle list
and the scanline renderer. To reduce the impact of this problem a multi-scanline
shaped on-chip buffer was investigated instead of the single scanline on-chip buffer
that was used by the scanline renderer. A multi-scanline on-chip buffer would allow
the active triangle list to be updated less often, but it would also require much more
chip-area for the on-chip buffer to make this worthwhile. To reduce the on-chip
memory area and retain the advantages of multi-scanline rendering a tile-shaped
buffer seems ideal. However the active triangle list needed for incremental bucket
sorting would have to be updated when crossing tile boundaries both in horizon-
tal and vertical directions. Additionally triangles would have to be clipped on the
vertical boundaries between tiles, which at first seems to be a major problem.

44 Chapter 3. Designing a Scalable Graphics Architecture

Tiled rendering using complete bucket sorting seems to be wasteful in the sense
that it requires copying of each triangle to all the buckets it covers. This is in con-
trast to incremental bucket sorting which places a triangle only in the first bucket
it covers, using an auxiliary active triangle list to keep track of triangles while ren-
dering. The advantage of complete bucket sorting is that it removes the need to
maintain an active triangle list. This means that the tile renderer can now simply
read the triangles to be rendered in a tile sequentially from the bucket in the tri-
angle heap. More importantly, it never needs to write back to the triangle heap
nor keep track of active triangles. In a hardware implementation this simplifies
the interface to the bucket sorted triangle heap. From a memory point of view it
also removes the need to change between reading and writing to the triangle heap.
Unfortunately, the tile renderer now has to clip every triangle to the tile boundary
e.g. by using direct evaluation, while the scanline renderer could continue directly
to the next scanline by incremental evaluation.

The techniques used in the Hybris tile renderer can be compared with other ap-
proaches. Kelley et al. [116] describe a scanline rendering hardware architecture,
which uses direct evaluation interpolation to avoid incremental write-back to the
active triangle list. Each node in their active triangle list specify only start and end
interpolation values, so each scanline renderer must use direct evaluation to inter-
polate spans and pixel values, using a computationally expensive division for every
scanline a triangle covers. A side benefit of this is reduced memory requirements
in their active triangle list because forward differencing slopes are not stored. In
comparison the Hybris tile renderer relies on a combination of forward differencing
and direct evaluation to gain benefits of both approaches.

In the following sections we consider various rendering concepts relevant to
the tile renderer. In order to improve the speed of the basic graphics pipeline, sev-
eral optimization techniques may be applied to reduce computational load. Many
of these techniques are not required for scalability, but are implemented in the ar-
chitecture because of the achievable speedup. Other optimization techniques are
made possible by the way data is partitioned in order to allow scaling.

3.2.1 Clipping

To ensure that triangle coordinates sent to the tile renderer are in the correct nu-
merical range, geometric clipping must be used. A very popular polygon clipping
algorithm is the Sutherland-Hodgman reentrant polygon clipping algorithm [214],
which in our case can be used to clip triangles against the six planes of the view-
volume corresponding to the screen, see figure 3.2. The algorithm breaks the clip-
ping problem down to clipping the triangles against one clipping region edge at a
time. Figure 3.1 illustrates how the algorithm clips a polygon against a rectangular

3.2. Development of the Hybris rendering architecture 45

c)

b)

a)

Ins ide
Outs ide

Inside
Outs ide

Case 1 - output P Case 2, output I

Ins ide
Outs ide

Case 3, no output

Inside
Outs ide

Case 4, output I
then P

P
I

I
P

d)

Figure 3.1: Sutherland-Hodgman reentrant polygon clipping [214]. a) The
polygon and a rectangular clipping region. b) The polygon is clipped in turn
against each region edge. c) The resulting polygon (7 edges in this case)
must be triangulated in order to be processed by a triangle renderer. d)
For each polygon edge, these four cases are considered by the Sutherland-
Hodgman algorithm for each region edge.

46 Chapter 3. Designing a Scalable Graphics Architecture

zc

h
D
xx=- z

h
D

yy=- z

h
D

xx= z

hy

hx

h
D
yy= z

xc

yc

z=B

z=F

z=D

Figure 3.2: View-volume, which defines the 3D region visible on the screen.
It is defined by the perspective projection parameters hx,hy,D,F,B, forming a
truncated pyramid.

clipping region. Geometric triangle clipping is done before triangle setup, and is
part of the object-based front-end rendering pipeline.

While the Sutherland-Hodgman clipping algorithm works nicely for clipping
against the screen boundary, it would cause a huge overhead to clip triangles to
every tile. The next section discusses a solution to this problem.

3.2.2 Fast tile boundary clipping

The tile renderer must clip the triangles in each bucket against their tile boundary.
We can rely on the fact that all triangles have been clipped to the global frame-
buffer. Since we now know the bounded numeric range of the x and y coordinates,
a technique known as guard-band clipping can be applied. Guard-band clipping
is facilitated by an extension of the interpolation calculations needed to render a
triangle. This allows a simple form of clipping known as scissoring. Instead of
relying on completely clipped coordinates to facilitate simple DDA interpolation,
coordinates are now allowed to extend outside the current tile. Figure 3.3 shows
the different cases which may appear in guard-band clipping.

In practice guard-band clipping is implemented by introducing special case
checking before the forward differencing DDA interpolation loops to adjust the
interpolation starting points. This requires extra multiplications and conditional
testing, but since the extra calculations can be overlapped with the following for-
ward differencing interpolation by pipelining, we essentially get “free” clipping of
triangles inside the outside guard-band boundary.

Earlier, the guard-band clipping technique has been described in [5] as scis-
soring, where it is used to optimize full-frame viewport clipping in the SGI Real-

3.2. Development of the Hybris rendering architecture 47

Guard Band cl ipping region

Visible cl ipping region

Outside cl ipping region

T 1

T 2

T 3

T 4

T 5

T 6

Figure 3.3: Guard-band clipping. While only the visible region is rendered,
the numerical range of coordinates inside the guard-band region must be
representable in the rasterizer. In this example, T1 is completely inside the
visible region and is not clipped. T2 straddles the boundary between guard-
band and visible regions, and can be clipped (scissored) during rasterization.
T4 straddles all region boundaries and must be clipped at least against the
outside boundary. T3, T5 and T6 are completely outside the visible region and
can be safely culled. Alternatively (but less efficient) T3 could also safely be
sent to the rasterizer, while T5 must be clipped against the outside guard-
band boundary first and T6 must be culled.

ityEngine, using a combination of extending the numerical range of pixel coordi-
nates and scissoring to adjust triangles to the viewport. By allowing triangles to
extend well beyond the viewport boundary, trivial culling of triangles outside the
viewport can be combined with clipping against the outside boundary. Remaining
triangles inside the outside guard-band boundary may then be trivially accepted.

While the Hybris tile renderer automatically uses scissoring for clipping
against each tile boundary it can also take advantage of guard-band clipping against
the entire visible viewport. For performance reasons negative valued screen coordi-
nates are not allowed in the tile renderer back-end, but by extending the numerical
range to allow a guard-band of “ghost” tiles around the viewport, full viewport
guard-band clipping can be implemented by adding an offset to the screen coor-
dinates (both triangle and tile position). This can be applied to the FPGA imple-
mentation [207] with no changes to the hardware, since it only renders the active

48 Chapter 3. Designing a Scalable Graphics Architecture

tiles.
Note that guard-band clipping cannot handle all possible triangle locations,

so in the cases where triangles extend beyond the outside guard-band boundary
regular geometric clipping must be used, as described in the previous section.

3.2.3 Fast floating point to fixed-point conversion

ANSI C specifies different rounding rules for floating point to integer conversion
than all other regular floating point operations. Floating point to integer conver-
sions truncates the value while regular floating point operations rounds to the near-
est value. Because of this, C compilers generate special code for the conversion
which changes the rounding mode of the CPU. Unfortunately this code causes the
Pentium III and other CPUs to flush the execution pipelines to ensure consistent
rounding, at a high performance penalty. This overhead has been found to seriously
affect the performance of the tile renderer, if counteractions are not taken. Addi-
tionally proper scaling is needed to get the n fractional bits of a fixed-point number,
which normally requires floating point multiplication by a constant. Floating point
to fixed-point conversion is an often overlooked and serious performance bottle-
neck, e.g. the Silicon Graphics GTX [4] dedicated an entire geometry processor
just to perform floating point to fixed-point conversion (see the figure on page 27),
while the InfiniteReality [158] includes dedicated ASIC support for this.

To overcome these problems, Hybris exploits a property of IEEE 754 floating
point numbers [7] to allow both conversion to integers and proper fixed-point scal-
ing, using one floating point addition with a special value designed to extract the
needed numerical range from the floating point value and generate the bit-pattern
needed for a fixed-point value. A 32 bit IEEE 754 floating point number uses a
bit-pattern where bit 31 is the sign, bits 30–23 is the exponent and bits 22–0 is the
mantissa. Thus, only 23 significant bits are available. Adding 223−n to an IEEE
floating point number has the effect of shifting the bit pattern of the mantissa to the
right (the shift count depends on the value of the exponent) to create the bit-pattern
needed for a fixed-point number with 2n bits in the fractional part, provided that
the floating point value is less than 223−n. Now bits 22-0 of the floating point value
contains the bit-pattern for the fixed-point value. By masking away bits 31–23 we
get the fixed-point value, including the required scaling multiplication by 2n for
free in the process. In C this conversion can be expressed as:

#define SCALING 12 /* 12 fractional bits */
union {
float float_temp; /* 32-bit floating point value */
int float_bits; /* corresponding 32 bit-pattern */

3.2. Development of the Hybris rendering architecture 49

} u;
u.float_temp = float_value + (1 << (23-SCALING));
fixed_value = u.float_bits & 0x007FFFFF;

A drawback is the need for a temporary value, as C cannot assign a float
to an int directly without enforcing its own conversion. Another drawback is
that this conversion only works for positive numbers in a limited numerical range
(0 ≤ v < 223−n), although to handle signed values an offset (223−n−1) can be added
to values prior to conversion and subtracted afterwards. Alternatively we can check
for the sign of the floating point number first and negate or instead subtract 223−n

from the floating point number, followed by a negation of the fixed-point value.
Finally, the maximum precision is strictly 23 bits. All this is can be good enough,
since clipping against the outer (guard-band) boundary has been performed prior
to conversion, guaranteeing the numerical range of the values. The number of bits
required in the fractional part of a fixed point number depends on the desired sub-
pixel accuracy. Fixed point numbers used in forward differencing interpolation
loops require additional fractional guard bits based on the maximum number of
iterations needed, i.e. log2(max number of iterations). E.g. interpolating over a
range of 4096 values requires 12 guard bits.

Since floating point calculations are only needed in the transformation stage
of the graphics pipeline, and since temporary transformed vertex data are stored
in memory (or cache), it is possible to split the conversion into two stages mask-
ing away the temporary variable overhead. This is done by adding the bit-pattern
adjustment value to the perspective transformation parameters and storing the ad-
justed values in the temporary screen-space transformed vertex array. When the
triangle setup process reads vertex data, it simply has to mask away the exponent
bits to get the final fixed-point value.

Other subtleties related to clipping, floating point and fixed-point rounding er-
rors for screen and pixel coordinates are covered in [19, 18].

3.2.4 Back-face culling

A well known technique for reducing the computational load in polygonal com-
puter graphics is back-face culling [63, 84]. Back-face culling is a technique to re-
move triangles which would eventually be covered by front-facing triangles when
rendering an opaque closed-surface 3D object. A triangle is considered to be back-
facing when it faces away from the viewer. To express this, a vector normal to the
triangle’s plane is used. The sign of the dot product of this normal vector and the
vector from the view point to one of the triangle’s vertices then determines whether
the triangle faces towards or away from the view point. Triangle plane normal vec-
tors suitable for back-face culling can be calculated from the cross product of two

50 Chapter 3. Designing a Scalable Graphics Architecture

Plane
Culled
Visible

Normal

View point

A B

b

a

c

Figure 3.4: Back-face culling. The location of the viewpoint relative to the
triangle’s plane determines which way the triangle faces.

vectors defined by two edges in the triangle. Vertex ordering for all triangles must
be consistently either clockwise or counterclockwise for this to work. Figure 3.4
shows how the triangle’s plane and the viewpoint are used to perform back-face
culling.

While back-face culling is conceptually simple, it is not obvious where in the
graphics pipeline back-face culling should be done. One method is to calculate nor-
mal vectors on the fly from triangle edges during setup. Another might be to store
pre-calculated normal vectors in the 3D object description, and transform them to
view space along with vertices, or alternatively transform the view space viewing
position vector back to object space using an inverse transformation, and perform
the dot product test directly on untransformed triangle normals. Furthermore, it is
possible to use a space-saving encoding of the triangle normal, for compact repre-
sentation in object space.

In Hybris the triangle normals are stored as a quantized representation along
with triangle mesh indexing values, requiring only 32 bits for storage of the quan-
tized triangle normal. The normal vector is quantized to 8 bits for each of the 3
coordinates plus an extra 8 bit parameter to enable the triangle plane equation to be
represented. This has the advantage that a triangle can be back-face culled before
even looking at one of its vertices. As the viewpoint can be transformed to object
space and be evaluated in the plane equation, then depending on the sign of the re-
sult we know whether the triangle is back-facing. A margin for error is allowed to
compensate for quantization noise, causing some borderline cases to be classified
as front-facing even though they really are back-facing. This quantization method
has proven to work well in Hybris.

Other normal quantization methods exist, e.g. [43] which uses quantized spher-
ical coordinates to represent normals using an 18-bit encoding, decoded through a

3.2. Development of the Hybris rendering architecture 51

2000 entry look-up table. An interesting alternative is to encode a triangle normal
as a 16-bit index to a bit mask table [240], which must be updated every frame
to match the viewing direction. Using a table look-up and a logical AND opera-
tion for each triangle it determines whether a triangle is back-facing, although the
method has a large margin for error since it depends on the view direction rather
than the view point, culling only up to 40% of the triangles.

In comparison our quantization method requires slightly more bits (24 for the
normal or 32 for a plane equation), is much simpler to implement, and does not
require any table look-up although three 8 bit multiplications are needed.

An alternative method for back-face culling is to calculate the triangle normal
after perspective projection to 2D screen coordinates, allowing us to simplify the
calculations as the sign of the z component of this triangle normal tells us which
way the triangle faces. While simple and cheap, this test must be done quite late in
the geometry processing pipeline, at least after perspective projection, clipping and
transformation, limiting the efficiency of back-face culling. Still, as this method
does not require storage of triangle normals it is more suitable for dynamically
changing triangle data.

In the quantized normal back-face culling, borderline back-facing triangles
wrongly classified as front-facing are later removed in the triangle setup stage
where the triangle normal vector is calculated from screen-space transformed ver-
tices. This normal vector is also needed later for plane equation based calculation
of triangle colour shading and z-depth gradients for rendering. Back-face culling
using the quantized normal vector method improves speed by culling away trian-
gles before fetching vertices. In the current software implementation of Hybris a
small performance increase is observed (about 7% for the Bunny).

Quantization for compression of the source data may also be applied to the
vertices, as described in [43, 221]. However this type of compression is only an
advantage if the vertex geometry processor is implemented in hardware, or if the
model is to be compressed for internet transmission. A software geometry proces-
sor must use the CPU’s floating point units for speed, and would be slowed down
by decompression.

3.2.5 Hierarchical back-face culling

The quantized back-face culling method was developed further to enable hierarchi-
cal back-face culling which allows trivial rejection of entire groups of triangles. A
prerequisite for this is the partitioned object database described later in this chap-
ter. Since vertex data is not needed for back-face culling we can completely avoid
transforming vertex data until at least one triangle in the current dataset is classified
as front-facing. If all triangles are back-facing, no vertices are transformed and the

52 Chapter 3. Designing a Scalable Graphics Architecture

Figure 3.5: Partitioned model of the Stanford Bunny. Each colour represents
one partition of 500 triangles. Hierarchical back-face culling makes it possible
to reject an entire partition of triangles before screen-space transformation.

object is trivially rejected. Note that this will only work for objects with a certain
degree of coherency in the position and direction of triangles. For typical closed
manifold objects this is not typically the case. However when using a partitioned
object database many smaller groups of triangles are formed, where all triangles in
an object partition may be facing in approximately the same direction. While this
method requires testing all the quantized normals of an object partition to possibly
cull it, a substantial speedup is possible. Testing on the Stanford Bunny shows
an additional speedup of approximately 8% when hierarchical back-face culling is
used on a partitioned bunny. Figure 3.5 illustrates the topology of the partitions. In
figure 3.4 we may think of the dashed lines as such object partitions.

An alternative approach to implement hierarchical back-face culling is a
method which uses visibility cones, i.e. a range of normal vector directions form-
ing a cone that can be represented in a compact way (height and diameter at base),
representing the range of normal vectors of the partition.

Similarly to hierarchical back-face culling, we can also perform hierarchical
object visibility culling to improve clipping performance. If some partitions of an
object are completely outside the view volume we can trivially cull them. Simi-
larly if a partition is completely inside the view-volume we can trivially accept it,
allowing us to bypass view-volume clipping completely when processing the ob-
ject partition. Only those object partitions straddling the boundary are candidates
for clipping. In order to quickly determine if an object partition is inside, outside
or straddling, the object partition is embedded in a bounding sphere which allows
a simple test to determine visibility.

3.2. Development of the Hybris rendering architecture 53

3.2.6 Pixel addressing rounding rules

To rasterize or scan-convert a triangle to a rectangular grid of pixels, we need
to determine exactly which pixels are affected by it. This is important in order to
avoid empty holes between connecting triangles and to avoid overlap of connecting
triangles.

Converting floating point or fixed-point pixel coordinates to integer screen
pixel coordinates requires rounding of the coordinates. The pixel rasterization
rounding rules described and analyzed in [149, 230] were used in previous im-
plementations of the Hybris architecture. For horizontal spans given real valued
starting and end points xstart and xend these rounding rules are:

• round xstart up

• round xend down

• if the fractional part of xend is 0 then subtract 1 from it

the rounded versions of xstart and xend now defines the range of pixels to be drawn,
including both the start and end values. Using the rounded versions, if xstart>xend
then we can safely cull the span. Otherwise n = xstart − xend + 1 is the number of
pixels to draw.

In C these rounding rules can be expressed for fixed-point numbers represented
as integers scaled by SCALE bits like this:

/* xstart, xend rounding */
rxstart = xstart>>SCALE;
rxend = xend>>SCALE;
rxstart+= (((unsigned int)

(-(xstart&((1<<SCALE)-1))))>>31);
rxend -= (((unsigned int)

((xend&((1<<SCALE)-1))-1))>>31);

In comparison, DirectX [148] and OpenGL [165, 204] rounds both start and
end values down and does not draw the pixel at the end value. Pixel centers in
OpenGL are defined to be at half-integer coordinates, but at integer coordinates in
DirectX (equivalent to adding 0.5 to coordinates before rounding). The slightly
more complex pixel rasterization rounding rules from Watt [230] were used in
Hybris, where they resulted in an image shifted relative to OpenGL rounding, in
effect skipping the pixel at the start value instead. Thus it is an advantage to adopt
the OpenGL rounding rules in order to get consistent results. Recent versions of
Hybris use these simpler rounding rules, which were found to work just as well

54 Chapter 3. Designing a Scalable Graphics Architecture

as the more complex rounding rules previously used. As a side notice Watt’s new
book [229] now also follows the simpler rules, noting that the choice is arbitrary.
In C the simpler rules can be expressed as:

/* xstart, xend rounding */
rxstart = xstart>>SCALE;
rxend = xend>>SCALE;

The rounded versions of xstart and xend now defines the range of pixels to be drawn
from the start but excluding the end value. Using the rounded versions, if xstart=xend
then we can safely cull the span. Otherwise n = xstart −xend is the number of pixels
to draw. Figure 3.6 shows an example of applying these pixel rounding rules.

3.2.7 Sub-pixel triangle culling

The pixel rounding rules described above gives us an additional possibility to allow
culling (or zero-sizing) of very small triangles, which is a big advantage when
rendering complex models with many small triangles. In effect, the rounding rules
will remove triangle edges and spans which have both starting and ending points
within the same pixel, as neighboring edges and spans will cover these pixels. If we
apply the rounding rules to a triangle’s bounding box prior to rasterization we are
now able to cull very small triangles before sending them to rasterization, where it
would be culled on a span-by-span basis anyway. A sub-pixel triangle culling test
checks the rounded horizontal and vertical coverage of the bounding box, and if
one or both of these are zero the triangle is culled. Figure 3.6 shows how a small
triangle is culled using sub-pixel culling, note how the surrounding triangles merge
to form a less complex surface.

An experiment to extend this mechanism to cull long and thin diagonal trian-
gles with a larger bounding box, based on geometric area calculations, proved to
be unreliable as holes would sometimes appear in the surface at the points where
spans cross pixel boundaries.

However, bounding box sub-pixel triangle culling has proved to boost the effi-
ciently of Hybris greatly, since the culling can be performed during triangle setup
before sending the triangle node packet to the bucket sorted triangle heap, saving
valuable bandwidth. Without this technique designs relying on the PCI bus, such
as the FPGA implementation, would suffer from even more severe bandwidth lim-
itations. Sub-pixel culling is an important technique in Hybris as is improves the
scalability of a parallel implementation by reducing the communication bandwidth
requirements.

If sub-pixel rasterization is desired in order to improve rendering quality by
super-sampling anti-aliasing, we can interpret this as rendering to a higher reso-

3.2. Development of the Hybris rendering architecture 55

Figure 3.6: How the pixel addressing rounding rules and sub-pixel culling
affect triangles. On the left side are three triangles before rounding. On the
right side the triangle coordinates have been rounded to pixel coordinates.
Note that the small center triangle has been culled due to sub-pixel culling.
The remaining triangles are rendered as the dashed pixels, with no gaps or
overlap between triangles.

lution pixel grid. Sub-pixel culling will be less efficient as the triangle bounding
box must fit inside a sub-pixel in order to be culled. Further optimizations for
the anti-aliasing case are possible though, as e.g. a sub-pixel triangle completely
within a screen pixel but larger than a sub-pixel will only contribute to one screen
pixel, which leads to an algorithm which reduces the triangle information to a point
primitive based on the triangle’s bounding box. This remains as a topic for future
study.

As an interesting observation about using rounding for sub-pixel triangle
culling is that it can be viewed as a very simple and quite efficient dynamic and
view-dependent mesh simplification method. This should be compared to other
more complex methods such as mesh optimization [93] and progressive view de-
pendent meshes [90].

3.2.8 Sub-pixel shading correction

Because of the pixel addressing rounding rules unfortunate shading artifacts may
occur. This may happen when rounding snaps a triangle edge from one pixel to the
next. In our case where triangles are rendered by drawing a sequence of horizontal
spans, some discontinuity in the shading values between two scanlines may be
observed, most notably when long thin triangles are oriented nearly vertically on
the screen. In Watt [230] this effect is described as a problem occurring only for
texture mapping. However the effect on interpolative shading is also painfully
visible in certain cases, as seen in figure 3.7. Depth interpolation is not affected

56 Chapter 3. Designing a Scalable Graphics Architecture

a)

b) c)

Figure 3.7: Sub-pixel shading correction. a) A frame from a VRML anima-
tion. b) Zoom in on boxed region showing the result when sub-pixel shading
correction is applied. c) Without correction.

as adversely, as the effect is only visible as a slightly ragged edge in scenes with
surface intersections.

To calculate the sub-pixel shading correction we need both the original and
rounded pixel coordinates to correct the start value used for incremental interpola-
tion. Since we round down, this has the effect of shifting the resulting image up
and left. This corresponds with moving the pixel sample point from the center to
the bottom right corner. Thus sub-pixel correction at the scanline level must move
the shading start value to the right. The starting value can be expressed as:

pstart = ple f t + k
d p
dx

(3.1)

for left-to-right incremental interpolation. The parameter k is expressed as:

k = 1− (xle f t − rxle f t) (3.2)

to reflect sampling at the right side of the pixel. In C this can be expressed using
fixed-point scaled integers as:

3.2. Development of the Hybris rendering architecture 57

/* Sub-pixel shading correction at left edge */
shade+=dsdx-(((xleft-(rxleft<<SCALE))*dsdx)>>SCALE);

Unfortunately sub-pixel shading correction may cause overflow in incremental
interpolated shading when rendering very small triangles. Overflow wrap-around
causes artifacts visible as black or white pixels at triangle edges. One viable solu-
tion to this problem is to use saturation arithmetic for interpolation to avoid over-
flow wrap-around problems, which can be implemented in hardware. For software,
saturation arithmetic is available in the Intel MMX instruction set extension.

3.2.9 An alternative: Point rendering

Recently rendering algorithms based on point primitives rather than triangles have
gained some interest as evidenced by recent papers at Siggraph 2000, Surfels [181]
and QSplat [193]. An overview of point sample rendering can be found in [77].

Rendering using point primitives involve representing surfaces as surface el-
ements (e.g. Surfels) and then splatting them onto the screen using perspective
projection. This can be quite efficient, e.g. QSplat is being used to quickly render
the very complex models of the Digital Michelangelo 3D scanning project [127].
An advantage of point rendering is that it only requires a database of unconnected
points to represent the 3D model. In comparison a triangle mesh 3D model must
also specify how vertices are connected to form triangles. The Stanford Bunny
and Buddha [208] models we use for testing were originally laser-scanned as a
collection of points, which were later connected to form a triangle mesh using an
algorithm described in [40].

A point or “Surfel” surface element is a geometric rendering primitive which
contains the following information:

• Position in 3D object space.

• Orientation, e.g. by a normal vector to define a surface.

• Surface properties (color and texture parameters).

As an experiment a point renderer was implemented and integrated into Hybris.
Since we use a differential expression in the triangle node packets, it is possible
to also express axis-aligned boxes and trapezoids using the same protocol. This
allows us to use the unmodified triangle rendering back-end to render points by
in effect representing a point as an infinitely tall triangle bounded in the y-range,
by assigning zero valued slopes for the span edge interpolations. This approach
of using a variable sized point primitive for splatting is similar to the approach
in QSplat. The implementation in Hybris also allows dynamic selection between

58 Chapter 3. Designing a Scalable Graphics Architecture

whether a sub-mesh should be rendered as a triangle mesh or as a point set, based
on the relative distance from the viewer.

Since point rendering should be more efficient for dense datasets than trian-
gle rendering it was expected that this would speed up rendering. Surprisingly,
rendering speed with points were in many cases found to be slower than with tri-
angle rendering, especially if the point size is large. Unfortunately the points must
be quite large to avoid holes between them. Large point sizes lead to consider-
able amounts of pixel overdraw, slowing down the rendering back-end. Also, the
bucket sorting overlap factor for large points is higher than for triangles. Small
points caused other performance problems, as an object with a small projected
area sends all its point to the back-end for rendering, mainly because no reliable
rounding rules for dynamic sub-pixel rounding and point culling were found. A
reason for this is that no connectivity information exist in the point database as it
does for a triangle mesh. In comparison, triangle rendering can exploit dynamic
sub-pixel triangle culling to speed up rendering. The QSplat renderer solved this
problem by pre-calculating a hierarchy of point data sets, switching to a lower de-
tail level when the area is small or when faster rendering is needed. Hybris would
be able to use a similar technique through its implementation of the VRML LOD
(Level Of Detail) node.

Even though some performance problems with point rendering were discov-
ered, further optimization of the technique is possible in Hybris. However the
fundamental problems with overdraw, bucket overlap, a high required sample rate
and a low resulting image quality (because large pixels protrude outside the ob-
ject boundary) causes some scepticism against point rendering. Some of the nice
advantages of point rendering which were explored with Surfels are integration
of texture colors into the point primitives to eliminate texture map lookup. This
technique is also applicable to triangle rendering, simply by adding colors at the
triangle vertices which correspond to texture map values. Now if the triangles
are small enough, the result is indistinguishable from traditional texture mapping,
without the problems associated with point rendering. As a curiosity it is also
possible to use an enhanced “relief” texture map with depth information to render
three dimensional objects, see [170].

Since point rendering has a tendency to “grow” the edges of an object because
of the size of the points, it might be necessary to trim the border. One possibility is
to do it by adapting the silhouette clipping method described in [197] for this pur-
pose. Although it is designed for polygon rendering, the silhouette edge database
may also be applied to point rendering to allow rendering using fewer larger points
which are protruding over the silhouette edge, and then applying silhouette stencil
clipping to mask away pixels outside the object silhouette boundary.

3.2. Development of the Hybris rendering architecture 59

3.2.10 Half-plane edge functions

While Hybris relies on forward differencing along triangle edges, it uses plane
equations to represent shading gradients inside the triangles. Plane equations may
also be used for representing the triangle edges.

Rendering using half-plane edge functions have been used earlier by the Pixel-
Planes architecture [64, 65], which implements a massive processor-per-pixel
VLSI array to simultaneously evaluate a linear function (3.3) at every pixel.

F(x,y) = Ax+By+C (3.3)

The VLSI array allows Pixel-Planes to render shaded triangles in time independent
of the triangle area, although the processor utilization for small triangles is low.
Equation (3.4) below shows how an edge function can be expressed using this type
of linear equation.

Another interesting hardware rendering architecture described in [235] imple-
ments what is essentially a 32x16 pixel tile-based and serialized version of the
Pixel-Planes architecture, which uses sequential direct evaluation of linear func-
tions for each pixel. The PowerVR [188] architecture possibly also uses linear
function evaluation, but little is known about the microarchitecture of the commer-
cial PowerVR architecture other than a marketing name; “infinite planes”.

An alternative algorithm for half-plane edge function based rasterization using
forward differencing is covered in Pineda’s paper [184], and has been explored
further in [199] as well, and implemented in the Neon [140, 141, 139] and in the
Silicon Graphics RealityEngine [5].

Based on [184, 139], an edge function E(x,y) for an edge from (x0,y0) to
(x1,y1) can be described as

∆x = x1 − x0

∆y = y1 − y0

E(x,y) = (x− x0)∆y− (y− y0)∆x (3.4)

This edge function is zero for (x,y) coordinates that fall exactly on the edge, pos-
itive for coordinates on the “right” side and negative for coordinates on the “left”
side, defined by the direction of the (∆x,∆y) vector. Figure 3.8 shows how the three
directed edges of a triangle form three edge functions (3.4). For points inside the
triangle, all three edge functions are positive, while outside the triangle one or more
edge functions are negative. For points on the edge, one or more edge functions
are zero.

While the edge functions may be evaluated directly for each pixel, Pineda [184]
also described an incremental algorithm, based on the following difference equa-

60 Chapter 3. Designing a Scalable Graphics Architecture

E 1(x,y)<0
All

E(x,y)>0

E 2(x,y)<0

E 3(x,y)<0

Figure 3.8: A triangle described by three half-plane edge functions.

tions:

E(x+1,y) = E(x,y)+∆y (3.5)

E(x−1,y) = E(x,y)−∆y

E(x,y+1) = E(x,y)−∆x

E(x,y−1) = E(x,y)+∆x

Using these stepping rules and given starting values for the three edge functions e.g.
at one of the triangle vertices, we can traverse the pixels covered by the triangle
using a suitable traversal pattern which iterates until one of the edge functions
changes sign. This is essentially a variant of the flood fill algorithm.

Plane equations

As a related technique, linear functions can be used for direct evaluation for inter-
polation of shading, depth, texture and other rendering parameters across a triangle.
The parameter p at (x,y) can be represented as:

p = Ax+By+C (3.6)

The linear coefficients A,B,C can be derived from the three points (x0,y0, p0),
(x1,y1, p1), (x2,y2, p2) by solving this set of linear equations for (A,B,C)





p0
p1
p2



 =





x0 y0 1
x1 y1 1
x2 y2 1









A
B
C



 (3.7)

3.2. Development of the Hybris rendering architecture 61

Now, by using linear plane equations to interpolate parameters we gain the
advantage that direct evaluation of the interpolation can be done at any point using
(3.6).

The linear equation (3.6) can also be expressed using a normal vector notation,
as described in [84]. Given the three vertices v0 = (x0,y0, p0), v1 = (x1,y1, p1),
v2 = (x2,y2, p2), we form the two vectors connecting vertex v0 to v1 and v1 to
v2. From this we can calculate the cross product which defines the normal vector
N = (v1 − v0)× (v2 − v1)





Nx

Ny

Np



 =





x1 − x0
y1 − y0
p1 − p0



×





x2 − x1
y2 − y1
p2 − p1



 (3.8)

The plane equation is defined as:

Nx(x− x0)+Ny(y− y0)+Np(p− p0) = 0 (3.9)

Isolating p gives the linear equation for p:

p = −
Nx(x− x0)+Ny(y− y0)

Np
+ p0 (3.10)

The derivatives of (3.10) are useful as they can be used for forward differencing
evaluation of interpolation. The derivative along the x-axis is

d p
dx

= −
Nx

Np
(3.11)

and along the y-axis
d p
dy

= −
Ny

Np
(3.12)

note that both of these derivatives remain constant within a single triangle. p can be
any parameter which can be linearly interpolated, e.g. colors (r,g,b,a), depth (z) or
surface texture parameters (u,v,w). However this interpolation technique applies
only to triangles, since three points specify a plane. Quads and larger polygons
cannot be used with this technique without triangulation as no uniquely defined
plane may exist.

Plane equations are used in the Hybris renderer to simplify parameter interpo-
lation for triangles. The x-axis derivative (3.11) is used for forward differencing of
parameters within each span and is calculated only once per triangle, reusing the
same normal vector that is used for back-face culling in 2D screen space.

62 Chapter 3. Designing a Scalable Graphics Architecture

3.2.11 Packet data format for a triangle node

The tile renderer back-end expects a description of the triangles it has to render
for each tile. A data packet protocol for transmitting and storing the information
required to express a triangle is needed. To keep things simple the packet only
defines a single triangle. Although using individual triangles may be redundant it
keeps the design simple, as on-the-fly repartitioning of triangle strips and meshes
into tiles is considered to be too complex (for now). Thus a multi-triangle packet
format will not be studied. Some other architectures, e.g. InfiniteReality and Neon
[158, 141] allow triangle strips, but they do not have to deal with the added com-
plexity of tile partitioning. Single triangle packets may be compared to fixed-length
instructions in RISC1 architecture design philosophy, while multi-triangle triangle
mesh or triangle strip packets may be compared to CISC.

There are several possible options for defining the packet data format, three of
which will be identified and discussed below.

Raw. Stores start and end coordinates for each edge, i.e. the three vertices of each
triangle are stored, possibly rounded to integer or sub-pixel coordinates. For
each vertex, triangle parameter values are also stored, e.g. colours, texture
coordinates and depth.

Differential. Stores only a differential expression of the triangle. Starting values
for incremental linear interpolation of the edges as well as parameters along
the edges are stored, along with differentials to add at each step in forward
differencing interpolations.

Plane Equations. Stores half-plane edge functions describing the three edges of
the triangle, as well as plane equations for each of the triangle’s parameters.

Each of these three methods have advantages and disadvantages, depending on
how we choose to partition the rendering architecture.

Raw triangle description

The first method, Raw, is conceptually the simplest as the three vertices of a trian-
gle can be stored and transmitted virtually unchanged, except for some rounding
and packing depending on the desired bit-count. When a raw triangle is received
it is necessary to set-up the interpolation parameters, which involves a division for
each edge to calculate edge slopes. A traditional full-frame rendering engine only
reads each packet once, so it may not matter much if these divisions are done before

1RISC: Reduced Instruction Set Computer, CISC: Complex Instruction Set Computer, see [174].

3.2. Development of the Hybris rendering architecture 63

or after transmission of the triangle. However a tile-based renderer must perform
these edge slope divisions for every tile the triangle overlaps, making this approach
questionable for tile engines. An advantage is good compression properties, as the
vertex data size can be reduced by simple quantization.

Systems known to use Raw transmission of triangles include the Neon
[140, 141], which allows quantization of data down to 12 bytes per vertex us-
ing fixed-point notations, resulting in triangle packet sizes down to 36 bytes in the
simplest case. This allows transmission of up to 2.6 million triangles/s using 32 bit
PCI. Other examples are [116, 115] and the Silicon Graphics GTX [4, 63] which
internally uses a three-step decomposition into first raw triangles then raw edges
and finally raw spans, while the SGI InfiniteReality [158] uses raw triangles (or
triangle strips) directly on its internal bus.

Differential triangle description

The second method, Differential, performs the triangle set-up divisions required
for edge slope calculations before storing the data in the triangle node packet. This
approach is tied to an implementation which uses slope based interpolation either
by direct evaluation or by forward differencing. A naive implementation would
need to store interpolation start values for the first vertex of each edge, and com-
pute parameter interpolation slopes for each span from the interpolated parameter
values at the edges. Examples of the differential method are found in the 3Dlabs
GLint, the 3dfx Voodoo Graphics accelerator and other early PC graphics accelera-
tors without hardware support for triangle set-up. Most other graphics architectures
transfer raw triangles, even though they use differential expressions internally, re-
quiring them to do triangle set-up every time the triangle is read. Since a global
framebuffer architecture only reads a triangle node once this can be an advantage.

Since we choose to support only triangles, parameters can be expressed by
plane equations as discussed earlier. By storing the x-axis derivative of each pa-
rameters plane equation we can avoid a division per span. In addition this allows
us to skip interpolation of parameters along edges at the end of the spans, or both at
the beginning and end of spans if the y-axis plane equation derivative is also stored,
although this will complicate incremental evaluation. A better approach is to al-
low an adaptive incremental interpolation direction for interpolating along spans.
Since one side of a screen-projected triangle will always have only one edge, while
the two other edges will be on the other side (one might be a top/bottom edge),
we can start span interpolation from the side of the triangle which has one edge.
The advantage is that parameter interpolation start values and slopes are only re-
quired for one edge, saving both space and calculations, but the span interpolator
must allow both left-to-right and right-to-left incremental evaluation, and a method

64 Chapter 3. Designing a Scalable Graphics Architecture

Le
ft

ed
ge

, i
nt

er
po

la
te

 x
le

ft
on

ly

R
ight edge, interpolate xright & param

eters

Span interpolat ion

Span

Right edge, interpolate xright only

Le
ft

ed
ge

, i
nt

er
po

la
te

 x
le

ft
&

pa
ra

m
et

er
s

Span interpolat ion

Span

Figure 3.9: Adaptive bidirectional incremental interpolation for triangle ren-
dering. Left: Left-to-right incremental interpolation. Right: Right-to-left incre-
mental interpolation.

for identifying the direction is needed. Figure 3.9 shows how the adaptive bidi-
rectional incremental interpolation method works. A future implementation of the
adaptive interpolation direction method might extend the concept to allow both
top-to-bottom and bottom-to-top scanline interpolation.

By storing differential expressions we can reduce the number of necessary op-
erations per tile, as triangle set-up per tile would be magnified by the bucket sorting
overlap factor. Combined with the optimizations above, the differential method is
judged to be a good data format for the triangle heap.

To summarize, the triangle heap node packet data format in Hybris uses differ-
ential expressions, some of which are based on plane equations. There seems to be
a tradeoff between computing triangle setup before or after sending the triangles
over a redistribution network in a parallel renderer, depending on whether we per-
form set-up once before writing the node or possibly multiple times after reading
the node in the tile renderers. The number of writes vs. the number or reads ratio
influences this, and depends on the bucket sorting overlap factor.

As an example, the Hybris dual CPU parallel software implementation uses
two writers and two readers, where each reader may read a node multiple times
depending on the overlap. As the triangle set-up calculations are stored and re-
used this architecture works well in software. The hardware tile renderer back-
end implementations benefit from not having to do triangle setup in the back-end,
simplifying their design greatly.

3.3. Object partitioning 65

Plane equation triangle description

The last method, Plane Equations, performs evaluation of the parameters required
to express edge functions and plane equations prior to storage. The edge functions
and plane equations are subsequently used to render the triangle using either di-
rect evaluation or an incremental algorithm such as Pineda’s [184]. An advantage
of using edge and plane equations is that their parameters can be calculated com-
pletely without use of divisions. Since edge and plane equation parameters can
be calculated directly from the raw triangle vertices, implementations tend to use
on-the-fly plane equation setup from a raw triangle description. The example from
before, Neon, transmits raw triangles but uses edge function setup and incremental
evaluation internally. The design in [235] also transmits raw triangles, although it
also uses internal buffering of plane equation parameters.

The best match for the plane equation description model is the SGI Reali-
tyEngine [5] which transmits plane equation packets on its internal triangle bus.
However this approach was abandoned in the InfiniteReality [158] which transmits
raw vertices on its internal redistribution bus, forming triangles at the receiving
end by interpreting the vertex stream as triangles or triangle strips. Pixel-Planes
[64, 65] first evaluates the plane equation parameters and then transmits them to
an array of pixel processors, each of which evaluate the plane equation in parallel.
PowerVR [188] is suspected to transmit plane equations, although nothing concrete
about this has been published.

3.3 Object partitioning

Object-parallel rendering of 3D objects requires that the objects are distributed
across all the processing elements of the renderer. A straightforward method for
doing this is by using round-robin distribution of individual triangles. While this
method is quite simple and achieves good load balancing with equal sized trian-
gles, it has to treat each triangle as an individual unit. Since triangles in a 3D
triangle mesh object often share vertices with their neighbors, chopping an object
into individual triangles removes the advantage of shared vertex processing. Figure
3.10 shows how a vertex can be shared by multiple triangles. A central vertex in
a triangle mesh is typically shared by six triangles, while a vertex located on the
edge of a mesh is shared by fewer triangles.

To maintain vertex sharing after partitioning an object, we need a partitioning
algorithm which is able to group triangles which share vertices. By using suffi-
ciently large partitions, good vertex sharing can be achieved.

66 Chapter 3. Designing a Scalable Graphics Architecture

T 1 T 3

T 5

T 6

T 2

T 4

V 1
V 2

V 3 V 4 V 5

V 6 V 7

Vertex V4 is
shared
between
tr iangles T1..6

Figure 3.10: Example of vertex sharing in a triangle mesh. Each central
vertex is typically shared by six triangles.

3.3.1 Triangle strips

To improve vertex sharing triangle strips [152] have traditionally been used
in graphics hardware [158, 140]. Triangle strips provide a means for speci-
fying a sequence of connected triangles. Figure 3.11 shows an example of a
triangle strip, where the triangles T1...T5 are specified by the vertex sequence
v1,v2,v3,v4,v5,v6,v7. Triangle i in this sequence is specified by vi,vi+1,vi+2. Some
triangle strip implementations include a swap bit to allow reusing a vertex by swap-
ping vi & vi+1 as shown with v5 in figure 3.11. Modern APIs such as OpenGL and
DirectX chose not to implement the swap bit and requires v5 to be specified mul-
tiple times. Closely related to a triangle strip is the triangle fan which shares the
first vertex among all triangles, using the sequence v0,vi+1,vi+2.

Without swapping, a long triangle strip (or triangle fan) requires

lim
n→∞

3+(n−1)

n
= 1 (3.13)

down to one vertex per triangle. Because of this vertex reuse and the architectural
simplicity of only buffering the two previous vertices, triangle strips and fans are
a popular feature in many hardware renderers. However even in their optimal case
they only share half as many vertices as in a triangle mesh, meaning that every ver-
tex in the triangle mesh must be specified at least twice. The generalized triangle
strip [43] extends the swap bit idea and uses additional bits to index further back

3.3. Object partitioning 67

T 1 T 3

T 2

T 5

T 4

T 9 T 7

T 8 T 6T 10

V 1

V 2 V 4 V 6

V 7V 5V 3

V 8V 9V 11

V 10V 12

Figure 3.11: Example of a triangle strip. The grey arrow shows the triangle
rendering sequence T1 ... T10. Each vertex is typically only shared by three
triangles. Note that e.g. T1 and T10 cannot share vertices. v5 is a swap vertex
in this example.

in a longer vertex reuse buffer, allowing better vertex sharing. This work is further
extended in [33] to improve geometry compression. In [92] generalized triangle
strips are explored in order to improve vertex cache locality for modern graphics
accelerators.

Algorithms for automatic generation of triangle strips from a triangle mesh are
described in [152, 92]. These strip generation algorithms may be used to partition
a triangle mesh into a set of triangle strips for distribution over parallel renderers.
However, optimal triangle strip generation algorithms are NP-complete [152] and
furthermore the strips generated have widely varying lengths.

3.3.2 Indexed triangle meshes

A popular method for sharing vertices in a triangle mesh is the indexed trian-
gle mesh. The indexed triangle mesh uses two arrays: The first array (a ver-
tex buffer) contains all the shared vertices, while the second array (index buffer)
describes each triangle using three indexes into the vertex array. The VRML
IndexedFaceSet node [28] is a typical structure used for representing a tri-
angle mesh. In an indexed triangle mesh each vertex can be shared by many trian-
gles (figure 3.10), up to six depending on the mesh topology. This implies that the
number of vertices needed per triangle goes towards 1/2 as the mesh size increases,
meaning that each vertex may be specified only once. An exception to this rule is
the vertices at mesh edges, where a vertex may be used for only one triangle.

Unfortunately, each triangle may index vertices randomly anywhere in the ver-
tex array. Because of this it can be difficult to say anything about the cacheability
of vertex data, as well as predict anything about the spatial- and data-coherence of

68 Chapter 3. Designing a Scalable Graphics Architecture

how the triangles in the object are rendered to the screen.
While the indexed triangle mesh provides the optimal reuse of vertices, a large

object may be difficult to accommodate in a graphics system. To minimize the ran-
dom access properties it would be useful to determine local groups of neighboring
triangles in order to partition the triangle mesh.

3.3.3 Triangle mesh partitioning with MeTiS

Rather than reinvent the wheel and implement our own mesh partitioning algo-
rithm, the excellent general purpose free graph partitioning package MeTiS (ver-
sion 4.0) [113] can be used. The graph multilevel multi-constraint graph parti-
tioning algorithms implemented in MeTiS are presented in [114]. MeTiS supports
k-way mesh partitioning while minimizing the connectivity of subdomains. While
originally intended to provide data partitioning for finite element or finite volume
methods, it it also applicable for partitioning the dense triangle meshes used in
computer graphics today. Graph partitioning algorithms and their uses in scientific
computing are covered in [201, 202].

When working on a triangle mesh, MeTiS only needs a list of the nodes (vertex
index numbers) used by each element (triangles). Since each vertex is only spec-
ified by an index value, this means that the mesh partitioner does not know about
position of each vertex, nor does it know anything about the size of each triangle.
Because of this, MeTiS works best with triangle meshes of approximately equal
sized triangles. This is not a huge problem since the trend in computer graph-
ics is heading towards denser triangle meshes. For our application MeTiS uses a
balanced k-way partitioning algorithm which minimizes the number of edges that
straddle partitions (edge-cut), which helps to optimize vertex re-use within each
partition and forms nice small regular sized partitions.

After an object-partitioning has been determined, it is quite straightforward to
build a set of 3D objects, one for each partition, while duplicating only those ver-
tices needed across partition boundaries. This approach allows up to two times
better vertex reuse ratio than normal triangle strips. The algorithm complexity is
lower than generalized triangle strip generation algorithms which must also deter-
mine a triangle rendering sequence [92, 43, 21].

By selecting an appropriate partition size it is possible to achieve good locality
of reference to vertices, while maintaining a high vertex reuse ratio. Parameters
such as processor data cache size, desired parallelism, communication cost as well
as data dependencies such as triangle size distribution all influence the perfect par-
tition size. Using a partition size of 500 triangles gives a data cache memory foot-
print of about 8 kbytes, assuming each vertex uses 32 bytes and is reused 6 times.
In a software implementation for e.g. a Pentium III PC this allows temporary trans-

3.3. Object partitioning 69

formed vertex data to remain in cache memory until they are needed for triangle
setup.

In figure 3.12 two versions of the Stanford Buddha (from [208]) were parti-
tioned using MeTiS with a 500 triangle partition size. Figure 3.13 is a zoom-in
showing the area relationship between a 32x32 pixel tile and the rendered triangle
partitions. Note how several partitions may fit entirely within one tile. This im-
proved coherence between triangle partitions and tiles helps maintain cache data
coherence and minimize memory paging. In this sense, triangle mesh partitioning
is in fact a sort-first architecture, if complete sorting is not required. As Hybris
uses tiled sort-middle later in the pipeline, mesh partitioning is quite useful in the
architecture as a complete partition may fit in one tile. For a hardware implemen-
tation of the Hybris front-end pipeline, mesh partitioning allows a dramatic size
reduction of the temporary transformed vertex array buffer. Rather than needing to
accommodate the entire transformed vertex array of the object, possibly millions
of vertices, we now only need a vertex buffer large enough for one object partition,
in this case about 8 kbytes. A hardware implementation of the front-end graphics
pipeline may use on-chip memory for this buffer.

The actual size of the vertex array depends on the level of vertex sharing present
in the original unpartitioned 3D object. In the optimal case each vertex is used by
6 triangles, giving twice as many triangles as vertices in each partition. However
if the original object is a pathological collection of unconnected triangles and no
vertex sharing is available, the number of vertices will be three times the number
of triangles. Either the vertex buffer must be designed to handle this worst case or
further sub-partitioning for this worst case must be made. The 8 kbytes buffer size
mentioned earlier assumes good vertex sharing, which is also why the the partition
size is 500 triangles and not 512, compensating for lower sharing at the partition
boundary.

As a consequence of partitioning the object, and reducing the size of the vertex
buffers, we can also reduce the size of vertex indexes. Since we know the maximum
number of vertices, we can trim the number of bits per vertex index in the triangle
description. Since three vertex indexes are needed, going from 32 bits to 10 bits
per vertex index potentially reduces the size of the index array by 68%.

Recently other researchers are beginning to use MeTiS in computer graphics,
e.g. [111, 112] uses MeTiS for preprocessing to enable efficient mesh geometry
compression.

70 Chapter 3. Designing a Scalable Graphics Architecture

a) b)

Figure 3.12: Two renderings of the Stanford Buddha, showing the result of
MeTiS based object partitioning using a partition size of 500 triangles. To
the left is the full Buddha model of 1,087,716 triangles and to the right is a
decimated version with 293,232 triangles. The white square shows the size
of a 32x32 pixel tile.

Figure 3.13: Zoom in on the left part of figure 3.12. The square represents
a tile of 32x32 pixels. Notice how several partitions fit entirely inside the tile.

3.4. Partitioned object-parallel renderer front-end 71

Transform,
Light &

Perspect ive
vertex

Triangle
set-up

cl ipping and
cull ingvertex

Triangle
heap

Bucket
sorted

Bucket
sortingtriangle

tr
ia

ng
le

Object
database
partit ioned

Back-face
culling

triangle (vertex indexes)

ve
rt

ex

in
de

x

index

Scene
traversal &

Object
partit ioning

object

Transformed
vertex buffer

for one
partit ion

Transformed
vertex buffer

for one
partit ion

Figure 3.14: Front-end graphics pipeline, or geometry engine. One object
partition is processed at a time. A transformed vertex buffer allows optimal
vertex re-use within one partition. The triangles that survive clipping and
culling are bucket sorted and sent to the triangle heap.

3.4 Partitioned object-parallel renderer front-end

Many of the techniques described earlier in this chapter are implemented in the
Hybris architecture. This section describes the partitioned object-parallel front-end
graphics pipeline in the Hybris architecture.

The front-end graphics pipeline traditionally performs geometric transforma-
tion, lighting, clipping and perspective projection. If implemented in hardware the
front-end graphics pipeline is often referred to as a “geometry engine” or “hard-
ware T&L unit”. The operations performed in the front-end creates screen-space
vertices and graphics primitives ready to be rendered in the back-end graphics
pipeline, which renders triangles to pixels in an image-parallel graphics architec-
ture. Thus the front-end performs the work before sort-middle redistribution in a
parallel graphics architecture.

While a single front-end rendering pipeline by itself is conceptually the same
whether the object database is partitioned or not, some additional optimizations
such as reduced storage and indexing range as well as improved data locality
for caching becomes possible with partitioning. Additionally a partitioned object
database allows parallelism by processing multiple object partitions in parallel us-

72 Chapter 3. Designing a Scalable Graphics Architecture

ing multiple front-end rendering pipelines. Figure 3.14 presents an overview of
a single front-end rendering pipeline, which is able to process one partition at a
time. A hardware implementation may use a double buffered vertex buffer to allow
pipelined processing of several partitions. Figure 3.15 shows how two geometry
engines are used to render two object partitions in parallel, where each pipeline
processes its own set of object partitions, in this case odd or even. Using two trian-
gle heaps can improve performance, e.g. in dual CPU implementations by allowing
the two separate CPU caches to operate without invalidating each other.

Some operations that are performed in the front-end pipeline operate on a per-
vertex basis (transformation, lighting and projection) while other operations (back-
face culling, clipping and triangle set-up) operate on a per-triangle basis. For sim-
plicity the only graphics rendering primitive represented in Hybris is triangles.
By using triangles, other more complex graphics primitives (e.g. quads, polygons,
quadric surfaces, Bézier patches, NURBS surfaces and subdivision surfaces) can be
represented by subdividing them into a set of triangles. Triangle strips can also be
subdivided into individual triangles for simplicity. Other graphics primitives such
as lines and points are also representable as triangles. Lines are represented as a
rectangle using two long thin triangles. Points are represented as a square by two
small triangles. An alternative technique to allow points to be directly expressed
and rendered as “tweaked” triangles is described in section 3.2.9.

While the object partitioned rendering front-end depends on a higher level ren-
dering control program to manage the object partitions, the front-end pipeline does
not need to be concerned by this, and only has to deal with the individual partitions.

If an object partition is determined to be visible (i.e. located somewhere in the
view volume, not occluded by other objects and not back-facing) then it is sent
to the rendering front-end. The first process in the front-end is an object-space to
world-space to screen-space transformation of each vertex. The transformation is
performed in one step using a matrix representation of the combined object-space
to screen-space transformation. After transformation of the vertex coordinates the
vertices are lit using a lighting model.

The lighting model relies on vertex normals which are pre-computed and stored
in the vertex records. These vertex normals are represented in object-space coordi-
nates. To avoid transforming the vertex normals to world-space in order to perform
lighting calculations, the relevant world-space lighting parameters are transformed
from world-space to object-space before processing the object partition. This al-
lows lighting calculations to be performed in object-space. Perspective projection
is necessary to determine the screen-space pixel coordinates of the vertices, and is
performed after transformation and lighting. All of these steps can be performed
in a single combined transformation and lighting datapath, and is expressed in C
using a single loop.

3.5. Triangle setup and bucket sorting 73

triangle
Triangle
heap 1

(odd
objects)

Triangle
heap 2
(even

objects)

Object
database
partit ioned

(odd
objects)

Transform,
buffering,

set-up and
cull ing

Bucket
sortingobject triangle

triangle

Object
database
partit ioned

(even
objects)

Transform,
buffering,

set-up and
cull ing

Bucket
sortingobject triangle

object

object

Scene
traversal &

Object
partit ioning
(odd/even)

Figure 3.15: Parallel front-end rendering pipeline. Each geometry engine
works on its own set of objects, in this example odd or even numbered object
partitions. Two triangle heaps are used to improve performance.

After these steps, the vertices are ready for triangle set-up, except for one spe-
cial case, clipping. If necessary, a triangle is clipped against the view volume using
the clipping algorithm described earlier.

3.5 Triangle setup and bucket sorting

Triangle setup in a sort-middle architecture can be performed either before or after
bucket sorting. Selecting whether to use one or the other sequence depends on sev-
eral factors, such as the level of parallelism in front- and back-end as well as load
balancing between front- and back-ends. Since bucket sorting with a triangle heap
is a synchronization barrier between the front- and back-end rendering pipelines,
the choice of where to place triangle set-up is effectively whether it should part
of the front-end or the back-end. Currently Hybris performs triangle set-up before
bucket sorting and after transformation and clipping in the front-end, and as such
is located in the front-end.

Figure 2.12 and 2.13 from chapter 2 (page 34 and 34) illustrates how the trian-
gles are mapped to the bucket sorted triangle heap using a two dimensional hash
table. The hash table is simply a 2D array of pointers, one for each tile, which point
into the triangle heap. The triangle heap itself optimizes the dynamic assignment
of memory locations to triangle nodes by managing a linked list of triangle heap
tile buffers for each tile. Figure 3.16 shows an example of how the tile buffers
are managed in the bucket sorted triangle heap. Each of these buffers are the size
of an SDRAM page, typically 4 kbytes, and are also aligned in memory to fit in
one SDRAM page, optimizing memory access within one tile. Each buffer holds
a header (number of triangles and a pointer to the next buffer) and 63 triangle

74 Chapter 3. Designing a Scalable Graphics Architecture

H

0 63

H 2

H

1

23

H

1 3

4 kbyte SDRAM page

Page 0

Page 1

Page 2

Page 3

1 1 1 1 1 3 3 3 3 3 3 3 3 3 3

33 3 3 3 3 3

3 3 3 3 3 3

2 2 2

33 3

H (header):
size
next

Figure 3.16: Memory management of triangle nodes in the bucket sorted
triangle heap. Triangles are allocated in buffers of 63 triangles. A linked list
of buffers are used, if space for more triangles are needed in a bucket. In
this example the triangles of object 1 go to the first buffer, page 0. Object 2 is
placed in page 1. The triangles of object 3 overlapping the upper left tile fills
up page 0 and is continued in page 2. The triangles overlapping the lower
left tile goes to page 3. The lower right tile is empty and nothing is allocated
for it.

description nodes, i.e. 64 bytes per triangle node. If a tile buffer is full and more
storage is needed, a new buffer is allocated from the heap and linked into the linked
list of triangle buffers. Note that actual implementations also use a last pointer to
quickly locate the currently active triangle buffer for a given bucket. This trian-
gle heap management technique has proved to work well in practice, and can be
implemented in software as well as for hardware using SDRAM memory directly,
as described in [71, 72]. Each buffer also provides a nice communication block
size for transmission to rendering hardware, e.g. over the PCI-bus to the FPGA
implementation of the tile renderer back-end.

The triangle heap node packet data format is a collection of interpolation start
values, slopes and plane equation differentials organized using a compact 64 byte
(512 bit) C data structure. The data structure is shown in figure 3.18.

Figure 3.17 shows the different cases that the triangle setup process must con-
sider when calculating slopes and differentials for generating this triangle node.
Because of the adaptive bidirectional span interpolation (see figure 3.9) we only
store parameter interpolation values for one start edge. In the tile renderer, the
span interpolation direction is determined from the triangle node by the compar-

3.5. Triangle setup and bucket sorting 75

U

L

U

L U

L

a) b) c) d)

top

middle

bot tom

Figure 3.17: Four triangle cases considered in the triangle setup stage. a)
Left-to-right triangle with upper and lower trapezoids. b) Right-to-left triangle
with upper and lower trapezoids. c) Upper trapezoid only triangle. d) Lower
trapezoid only triangle.

struct THnode {
int z; // depth interpolation start value
int z_inc; // depth interpolation slope for start edge
int dzdx; // depth differential for span interpolation
int xleft; // x start value for left edge
int xright; // x start value for right edge
int xleft_inc; // x slope for left edge
int xright_inc; // x slope for right edge
int xmiddle; // x start value for middle edge
int xmiddle_inc; // x slope for middle edge
int s; // color interpolation start value
int s_inc; // color interpolation slope for start edge
int drdx; // color differential for span interpolation
int y1; // start scanline
int y2; // middle scanline
int ye2; // end scanline
int pad; // pad to 64 bytes size

};

Figure 3.18: Triangle node C data structure. Each triangle node in the trian-
gle heap is stored as a packet with this data structure.

76 Chapter 3. Designing a Scalable Graphics Architecture

ison if (xleft_inc < xright_inc) as left-to-right, else the direction is
right-to-left.

This data structure for the triangle node uses int’s for all the parameters,
which is convenient in a C program, although they actually represent fixed-point
values. However many of the parameters may be reduced in size to create an even
more compact representation, depending on the precision needed for rendering.
In order to allow interpolation over a sufficiently large screen area, we need 12
fractional bits in the fixed-point representation of the slopes and differentials.

Internally in the FPGA hardware implementation [207] the triangle node is
represented by 348 bits (44 bytes), by using 20.12 fixed-point for depths, 12.12 for
x values, 8.12 for colors, and 11 bit integers for y values. A total of 333 bits (42
bytes). The remaining 15 bits are used to identify which tile the triangle belongs
to.

However, we can do even better than that, since we do not absolutely need all
the extra fractional resolution to specify interpolation start values, we may trim
those to e.g. 4 fractional bits for x subpixel precision, and no fractional bits for
colors. For depth we need about 24 bits [229] so this can also be trimmed. Ap-
plying these observations, we can save another 44 bits, reducing the total to 289
bits. Finding one more bit to kill, we can reduce the total to 288 bits (36 bytes), the
same size as the Neon’s smallest packed raw triangle format [141]. In comparison
the early 3dfx Voodoo graphics processor used 144 bytes per triangle.

Performing triangle set-up before bucket sorting has the advantage of enabling
exact bucket sorting, which can minimize the bucket overlap factor for large trian-
gles, as discussed in chapter 2. In the current Hybris architecture though, bucket
sorting is done using the triangle bounding box as key, placing a triangle into all
buckets touching the triangle bounding box. Since Hybris performs triangle set-up
before bucket sorting, exact bucket sorting may be used in the future to reduce the
overlap factor for large triangles covering many tiles.

Alternatively, triangle set-up may be performed after bucket sorting. This has
the advantage that set-up calculations are being performed in the back-end pipeline,
benefiting from any available parallelism. According to [116], moving calculations
from the front-end to the back-end will also help reduce latency. Some drawbacks
of set-up after bucket sorting is that exact bucket sorting becomes more difficult
to implement, although the method described in chapter 2 and [169] is applicable.
Another difficulty is that a completely different triangle data format is needed in
the bucket sorted heap. The workload of triangle set-up will also be duplicated by
every tile worker rendering a part of the same triangle in a parallel tile rendering
back-end.

In the next chapter we will look at how multiple bucket sorted triangle heaps are
used to implement a scalable graphics system (figure 4.3), which allows multiple

3.6. Tile-based image-parallel renderer back-end 77

object-partitioned geometry engines to work in parallel in the front-end pipeline
and multiple tile engines to work in parallel in the back-end pipeline.

3.6 Tile-based image-parallel renderer back-end

The tile-based rendering back-end in Hybris is designed to simplify calculations
and localize memory references. A small tile shaped region of pixels are directly
addressable in a small virtual local framebuffer. The size of this region must be
small enough to fit in on-chip RAM or in CPU cache but large enough to prevent
too much overlap. (See the discussion of bucket sorting overlap in section 2.4). For
input data, the tile renderer needs to be given the data relevant for one tile, which
is the contents of one bucket in the bucket sorted triangle heap. The result after
rendering all triangles from the bucket is a 32x32 pixel tile which must be placed
at the correct location in the full-screen framebuffer.

3.6.1 Pipeline stages

The tile rendering engine’s functional specification is written in C and is expressed
with nested loops. The loops handle initialization of per triangle parameters, it-
eration over the number of spans in the triangle with setup of span parameters,
and finally iteration over the number of pixels in each span where color and depth
values are evaluated and assigned. From an architectural point of view, the nested
loops can conveniently be thought of as a four stage pipeline. The first pipeline
stage Setup Triangle calculates per triangle parameter setup based on the current
tile parameters and the input. This involves adjusting the forward differencing
y-interpolation start values to match the range of scanlines in the tile. This is
done using scissoring in the vertical direction and direct evaluation as described in
section 3.2.2, which requires a multiplication per parameter. Setup Triangle also
determines the span interpolation direction, left-to-right or right-to-left.

Results from Setup Triangle are then forwarded to the next pipeline stage Draw
Triangle. Draw Triangle iterates over the active scanlines in the triangle for the cur-
rent tile, while updating y-interpolation parameters using forward differencing. At
each scanline a span of pixels is determined, which is sent to the next stage, Setup
Span. Setup Span handles per span parameter setup, which involved adjusting
forward differencing x-interpolation start values to match the horizontal range of
pixels in the tile. This also involves a scissoring operation, but this time for the
horizontal interpolation direction. For each span, data is forwarded to the Draw
Span stage. Draw Span draws the pixels in the span by iterating over the number
of active pixels in the span. To draw pixels, Draw Span uses a 32x32 pixel local

78 Chapter 3. Designing a Scalable Graphics Architecture

a) Setup Tr iangle b) Draw Tr iangle

c) Setup Span d) Draw Span

e) Final resul t

Figure 3.19: Processes in the tile rendering engine back-end pipeline. a)
Setup Triangle adjusts y-parameters to fit tile. b) Draw Triangle iterates over
the active scanlines, generating spans. c) Setup Span adjusts x-parameters
to fit tile. d) Draw Span iterates over the active pixels in the span, performing
per-pixel shading and depth testing. e) Final result for drawing one triangle.

memory buffer, from which colour and depth values are read, modified and written
back. Note that if needed this triangle drawing algorithm can also be used to draw
points, lines and trapezoids.

An overview of the processes involved for scan converting a triangle is shown
in figure 3.19. In a hardware implementation it is convenient to combine the Draw
Triangle and Setup Span stages, as some control logic can be combined. Some
FIFO buffering between the stages is useful for load balancing the pipeline. This is
because the Draw stages which involve iteration have a widely varying execution
time which depends on the area of the triangle. For each span the number of drawn
pixels may vary between 0 and 32, and for each triangle the number of active spans
may also vary in the range 0–32. Figure 3.20 shows an architectural overview
of the tile rendering engine back-end pipeline, with FIFO buffers placed between
iterating pipeline stages to help average out any load imbalances.

For hardware implementation the two local tile pixel buffers are double
buffered using a 2x2 crossbar switch to allow one buffer to be used for rendering
while another can be used for I/O operations. Additionally they use a dual ported
data interface to accommodate a pipelined read-modify-write cycle using one port
for reading and another for writing. In the I/O operation mode the dual ported data

3.6. Tile-based image-parallel renderer back-end 79

Local SRAM
32x32 pixels

color &
depth

Setup
Tr iangle

Draw
Tr iangle /

Setup
Span

Draw
Span /
Draw
Pixel

Triangle

Pi
xe

l

Pi
xe

l

FI
FO

FI
FO

2x2 crossbar switch

Triangle Triangle Span Span

Local SRAM
32x32 pixels

color &
depth

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

switch

hand-
shake

hand-
shake

hand-
shake

hand-
shake

hand-
shake

hand-
shakeInput

Tr iangle
control ler

Output
Ti le

control ler

Figure 3.20: Architectural overview of the tile rendering engine back-end
pipeline. FIFO buffers are placed between iterating pipeline stages to help
average out load imbalances. The double buffered tile buffer allows the tile
engine to render one tile while the previously rendered tile is being copied to
the global framebuffer.

interface is used to read data for output while writing is used for resetting the pixels
values.

3.6.2 Load balancing the back-end rasterization pipeline

While load balancing a pipeline using FIFO buffers is a reasonable approach, it
may be quite expensive since a FIFO buffer requires memory proportional to how
deep it is. Furthermore, a FIFO buffer is only useful for localized re-balancing of
the pipeline as it can only hide the extra processing time for a few large triangles if
smaller triangles also exist.

The pipeline stages of the rendering engine back-end must be balanced so on
average they perform their tasks in equal time. Assuming each stage is driven
by the same clock signal then the span drawing time, span setup time, triangle
rasterization time and triangle setup time should be equal. This may be difficult
to achieve as very small triangles are needed to allow the span and pixel loops to
finish in one clock cycle.

For larger triangles where pixel processing time requires more time than setup
there are two options: We can slow down the setup stages e.g. with serial multi-
pliers and/or we can speed up pixel rasterization by parallelizing it. Slowing down
the setup stages is not very desirable as the case for small triangles will be slowed
down. Speeding up rasterization sounds better, as is reduces the time required for
larger triangles, although the drawing time for rasterizing small single pixel trian-

80 Chapter 3. Designing a Scalable Graphics Architecture

Output
Tile

Control ler
pixel

pixel

Tile
renderer 1
(odd ti les)

Tile
renderer 2
(even t i les)

Global
f rame-
buffer

all ti les

pixel

pixel

pixeltriangle

Output
Tile

Control ler
triangle

Triangle
heap

(odd ti les)

Triangle
heap

(even t i les) pixel

Local
32x32 pixel
t i le buffer

Local
32x32 pixel
t i le buffer

Local
32x32 pixel
t i le buffer

Local
32x32 pixel
t i le buffer

M
ul

ti
pl

ex
er

pixel

Figure 3.21: Parallel tile rendering. Two tile rendering engines shares the
workload of rendering a complete frame. Each tile engine renders its own
set of tiles (e.g. odd or even) independently of the other tile engine.

gles will not be improved.

3.6.3 Parallel tile rendering

Parallel tile rendering is possible by having multiple tile rendering engines, each
one rendering its own set of tiles independently of the others. Figure 3.21 shows
how two tile renderers work on their own set of tiles. For example an odd/even
tile distribution can be used to form a checkerboard pattern for the workload dis-
tribution (see figure 4.3 on page 107). This kind of sort-middle redistribution of
triangles requires that each tile rendering engine reads data from all triangle heaps.
However, as each tile renderer only reads data for its own set of tiles, the triangle
heaps can be organized to support this. Triangles for a given tile are stored in the
same bucket using a list of buffers mapped to SDRAM pages (see figure 3.16).
As an SDRAM chip [147] has four banks of pages, up to four pages may be open
for access at the same time, which can be used to address up to four triangle heap
buffers without excessive SDRAM page swapping overhead.

3.6.4 Image composition of tiles

When rendering of a tile has completed, the tile must be sent to the framebuffer
in order to build a complete image, one tile at a time. If multiple parallel tile ren-
derers are used to render different tiles, a multiplexer is used to collect the results.
However we might also want to implement a full image composition sort-last style
parallel architecture, e.g. by assigning two tile renderers to the same tile. Figure
3.22 shows an example of this. Each of these overlapping tile renderers must ren-
der a different set of triangles (e.g. odd/even). After they complete rendering of

3.6. Tile-based image-parallel renderer back-end 81

Image
composer

(depth
compare)

pixel

pixel

Tile
renderer 1

(odd
triangles)

Tile
renderer 2

(even
triangles)

pixel

pixel

pixel
triangle

tria
ngle

Triangle
distribution
(odd/even)

Partial
32x32 pixel
t i le buffer

Partial
32x32 pixel
t i le buffer

Partial
32x32 pixel
t i le buffer

Partial
32x32 pixel
t i le buffer

Final
32x32 pixel
t i le buffer

Figure 3.22: Image composition of tiles. Two tile rendering engines share
the workload of rendering one tile. Tile renderer 1 renders odd triangles and
tile renderer 2 renders even triangles. The image composer compares the
depths of overlapping pixels and stores the nearest in the final tile.

the two sub-images, a sort-last image composition network as described in chapter
2 can be applied to compose the two tile images into a final tile, to be stored in
the framebuffer. This image composition network can be implemented efficiently
on-chip in a hardware implementation. A larger number of partial images may be
combined into one image by using either a binary tree [153] or a linear pipeline
[156] of image composers. For image composition to work efficiently it needs a
large enough number of triangles per tile to keep all tile renderers busy. Also, a
uniform triangle size distribution is needed for load balancing. Note that image
composition does not handle transparent surfaces correctly, because it compares
pixels and not fragments.

Combining parallel tile rendering and image composition

A sort-middle image-parallel tile renderer can include image composition sort-last
parallel rendering on a per-tile basis by substituting each tile renderer with two
partial tile renderers. Each of the tile renderers then uses image composition of
the partial tiles when storing the final tiles in the global framebuffer. An exam-
ple of such a hybrid sort-middle /sort-last parallel tile renderer is shown in figure
3.23. A scanline renderer (i.e. one pixel high tiles) version of this hybrid parallel
architecture was presented earlier in [89].

3.6.5 Interleaved pixel parallel back-end rasterization pipeline

The tile renderer can be parallelized in various ways by combining multiple tile
renderers in a sort-middle or sort-last architecture, or possibly a hybrid as shown

82 Chapter 3. Designing a Scalable Graphics Architecture

Image
composer

(depth
compare)

pixel

pixel

Tile renderer 2
(even tr iangles,

odd ti les)

Tile renderer 1
(odd triangles,

odd ti les)

Image
composer

(depth
compare)

pixel

pixel

Tile renderer 4
(even tr iangles,

even t i les)

Tile renderer 3
(odd triangles,

even t i les)

triangle

triangle

Triangle
distribution
(odd/even)

triangle

triangle

Triangle
distribution
(odd/even)

Global
f rame-
buffer

all ti les

pixel

pixel

triangle

triangle

Triangle
heap

(odd ti les)

Triangle
heap

(even t i les)

Figure 3.23: Combining parallel tile rendering and image composition to
create a 4-way hybrid sort-middle / sort-last parallel renderer.

earlier. However, it is also possible to look within the tile renderer itself, and apply
parallelism on a lower pixel-parallel level.

Looking at other parallel architectures, the Pixel-Planes [65] architecture is in-
teresting as it can rasterize a single triangle in constant time independent of its size.
Constant time triangle rasterization is accomplished with a processor-per-pixel ar-
ray. While guaranteeing constant time execution, unfortunately the processor array
is not well utilized when drawing small triangles.

A viable architecture for flattening the triangle size dependent differences in
execution time in the tile renderer back-end is an interleaved span and pixel pro-
cessing architecture. Probably the best known example which does this, is the
Silicon Graphics architecture as described in [4], see also the discussion of figure
2.9 on page 27. The back-end of the SGI GTX architecture uses 20 interleaved
span processors organized in a 5x4 array, where the draw triangle2 process is inter-
leaved over 5 span processors which each handle every fifth scanline (in the GTX
scanlines are oriented vertically). Each span processor is interleaved over 4 image
engines which each handle every fourth pixel. In effect this means that in order
to keep the renderers busy, triangles must be larger than a certain minimum size
(5x4 pixels), smaller triangles will leave some of the processors idle. Also, all
the SGI architectures (GTX [4], RealityEngine [5], InfiniteReality [158]) apply the
interleaving scheme over the entire framebuffer, which makes rendering of large
triangles very fast, but it also makes rendering of very small triangles very ineffi-

2The GTX architecture was really designed to process generic polygons, where each polygon is
decomposed into trapezoids in the setup stage.

3.6. Tile-based image-parallel renderer back-end 83

h.s. x4

ha
nd

-
sh

ak
e

Setup
Tr iangleTriangle FI

FO
Triangle

hand-
shake

hand-
shakeInput

Tr iangle
control ler

Draw
Tr iangle /

Setup
Span

Triangle

hand-
shake

Draw
Tr iangle /

Setup
Span

Triangle

hand-
shake

B
ro

ad
ca

st
 b

us FI
FO

Triangle

hand-
shake

FI
FO

Triangle

hand-
shakeTriangle

hand-
shake

Draw
Span /
Draw
Pixel

FI
FO

Span

hand-
shake

FI
FO

Span

hand-
shake

Broadcast bus

FIFO

S
pa

n

ha
nd

-
sh

ak
e

FIFO

S
pa

n

ha
nd

-
sh

ak
e

S
pa

n

ha
nd

-
sh

ak
e

Draw
Span /
Draw
Pixel

S
pa

n

ha
nd

-
sh

ak
e

Draw
Span /
Draw
Pixel

Broadcast bus

FIFO

S
pa

n

ha
nd

-
sh

ak
e

FIFO

S
pa

n

ha
nd

-
sh

ak
e

S
pa

n

ha
nd

-
sh

ak
e

Draw
Span /
Draw
Pixel

S
pa

n

ha
nd

-
sh

ak
e

Pi
xe

l

Pi
xe

l

2x2 crossbar

Local SRAM
16x16 pixels
color & depth

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

2x2 crossbar

Local SRAM
16x16 pixels
color & depth

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

2x2 crossbar

Local SRAM
16x16 pixels
color & depth

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

2x2 crossbar

Local SRAM
16x16 pixels
color & depth

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l Collect
pixels into
32x32 t i le

Output
ctrl.

Output
ctrl.

Output
ctrl.

Output
ctrl.

Span

Span

ha
nd

-
sh

ak
e

Output
Ti le

control ler

Pi
xe

ls

ha
nd

-
sh

ak
e

Figure 3.24: Architectural overview of the 2x2 pixel interleaved configuration
of a parallelized tile rendering engine back-end.

84 Chapter 3. Designing a Scalable Graphics Architecture

cient. The InfiniteReality uses a framebuffer tiling pattern to make texture mapping
more efficient.

Applying this interleaving scheme to the tile rendering engine back-end makes
it possible to better balance the pipeline and improve the overall throughput. Since
the tile engine keeps all memory on-chip the cost of interleaving the memory sub-
system is very low. A viable configuration would be a 2x2 interleaved architecture
where the same triangle is broadcast to two independent Draw Triangle stages,
where one handles the even scanlines and the other handles the odd scanlines. Af-
ter span setup, each of the stages broadcasts the same span to two independent
Draw Span stages, where one handles the even pixels and the other handles the
odd pixels. Each of the Draw Span processors require access to only one fourth of
the pixels in a tile, allowing subdivision of the 32x32 pixel tile into four smaller
16x16 pixel tile buffers. This subdivision increases the effective bandwidth of the
tile pixel memory four times, allowing four pixel span processors to work with
no performance penalty. The bandwidth for the output controller is also effectively
increased four times, allowing faster initialization and output of the tile pixel mem-
ory.

Figure 3.24 shows an overview of the 2x2 pixel interleaved tile buffer archi-
tecture. Note the use of FIFO buffering before and after broadcasting, which will
allow each stage after the broadcast to work more independently. This allows better
load balancing. Adding a FIFO buffer before broadcast allows cheaper buffering
for cases where the FIFO load balancing is exhausted, e.g. when a FIFO is full
because one processor is delaying the processing. For this reason the FIFO buffer
before the broadcast should be deeper than the buffers after the broadcast. In ef-
fect, the buffers before the broadcast help reduce load imbalance between pipeline
stages, while the buffers after the broadcast help reduce load imbalance between
parallel processors within a pipeline stage. This load balancing method assumes
an even workload distribution.

All control signals such as a signal to identify when rendering of all triangles
in the tile has finished, are passed through the pipeline and FIFOs as extra bits in
the triangle and span messages.

3.6.6 Anti-aliasing for the tile renderer

A technique rapidly gaining support in modern graphics hardware is anti-aliasing.
While it is not currently implemented in Hybris, the tile rendering engine is well
suited for implementation of supersampling anti-aliasing. Since the pixels in the
tile buffer can be accessed quickly, it is possible to implement e.g. 2x2 pixel su-
persampling using the 32x32 pixel tile buffer. When all contributing triangles have
been rendered to the tile buffer, it is filtered using a 2x2 pixel box filter. The result is

3.6. Tile-based image-parallel renderer back-end 85

1

2

3

4

1

2

4

2
3

1

5
6

7
8

Figure 3.25: Sparse supersampling sub-pixel sample positions within a pixel.
Left: 2 samples in a 2x2 grid. Middle: 4 samples in a 4x4 grid, Right: 8
samples in a 8x8 grid.

a filtered 16x16 pixel tile buffer which can be stored in the global framebuffer. This
is a simple type of supersampling anti-aliasing popularly known as 4X OGSS [11]
(Ordered Grid Super-Sampling). Using a tile rendering engine for implementation
of supersampling anti-aliasing is very efficient in terms of bandwidth, compared
to a traditional global framebuffer renderer which must store pixel and depth val-
ues in a supersampled global framebuffer, requiring more memory and memory
bandwidth.

The 2x2 supersampling anti-aliasing technique fits perfectly with the previ-
ously described interleaved 2x2 pixel-parallel tile rendering engine. Rendering
would be to a supersampled tile buffer with four pixel processors each generating
one of the four sub-pixels. Finally a box filter would reduce the tile buffer to an
anti-aliased tile by averaging the four pixels using equal weights (1/4).

Numerous other approaches for implementing anti-aliasing are currently
emerging in recent graphics hardware. Since full supersampling with nxn sub-
pixels requires n2 samples to be processed, there might be better ways to use the
high number of samples. Stochastic supersampling is a technique normally em-
ployed in ray-tracing which uses several sample points randomly placed within
the area of one screen-space pixel, with a different random placement for every
pixel. The benefit of this is that noise is added to mask the aliasing noise present in
an ordered rectangular grid. While stochastic supersampling provides high image
quality, it is difficult to implement efficiently.

Related to stochastic supersampling methods are sparse supersampling meth-
ods. As mentioned in [110] the SGI InfiniteReality [158, 136] implements the
sparse supersampling method in hardware. Sparse supersampling using n selected
samples placed within a nxn sub-pixel grid may look almost as good as true or-
dered grid supersampling using all n2 sample points. The reason for this lies par-

86 Chapter 3. Designing a Scalable Graphics Architecture

tially in the way the computer screen and human eye/brain interprets the pixels.
Without antialiasing, nearly vertical and horizontal edges will be affected the most
by aliasing, while diagonal lines are not perceived as badly aliased. Antialias-
ing with ordered grid supersampling helps reduce this problem but treats all angles
equally, i.e. nearly horizontal or vertical edges only benefit from 8 rows or columns
in an 8x8 sub-sample array. With sparse supersampling using one sample per row
and column we can achieve approximately the same result as full supersampling
for those nearly horizontal or vertical edges if the subpixel samples avoid being
axis aligned. This makes it possible to get n intensity steps from n sample points
distributed on a nxn sub-pixel grid, while rendering nearly vertical or horizontal
edges. The goal here is to approximate stochastic supersampling, by making the
sub-sample distribution as “random” as possible, maintaining one sample per row
and column while making sure that the samples are evenly distributed. This is
important to avoid flashing of sub-pixel sized moving objects. Figure 3.25 shows
some examples of sample patterns for sparse supersampling using one sample per
row and column.

Returning to the 2x2 supersampling antialiasing method described earlier, we
may extend it to a sparse 4x4 supersampling method, still using only 4 sub-pixel
samples. The results should be an antialiased image quality closer to full 4x4
sample supersampling than the original 2x2 samples. However, extending the 2x2
sample ordered supersampling method to 4x4 sparse supersampling is not quite
straightforward. One applicable method is multi-pass rendering as in [44] which
uses a stochastic supersampling method by accumulating images rendered with
jittered viewpoints. Since each pixel is offset by the same amount of jitter, the
result is effectively the same as sparse supersampling. Note that such a multi-pass
algorithm may alternatively be used to implement temporal anti-aliasing (motion
blur) and field-of-view (out of focus blur) by using different camera locations and
orientations while rendering each accumulated image.

In the 3dfx Voodoo 5 a different approach is used to avoid multi-pass rendering
by using parallelism in the “T-Buffer™” [220] framebuffers. The T-Buffers are two
or four framebuffers which can be combined by averaging during video display in a
specialized video RAMDAC, explaining the ’T’ in the name. The jitter offset is the
same as with the multi-pass algorithm except that the sub-pixel offset is applied on
screen-space coordinates just before rasterization. This method allows single-pass
rendering but requires a parallel architecture with four T-Buffers and four renderers
to enable four sub-sample antialiasing.

Returning to a possible implementation in Hybris, the multi-pass and paral-
lel jitter algorithms are not well suited. This is because the tile buffering causes
problems with jitter offsets, since adding a sub-pixel jitter offset to a sample might
cause it to move into a neighboring tile. Fixing this problem would require over-

3.6. Tile-based image-parallel renderer back-end 87

lapping tiles. Multi-pass viewpoint jitter is also impractical because of the virtual
buffer nature of the tile buffer, as multi-pass would require the tile to be read back
from the global framebuffer in order to apply a second pass, which is also prone to
precision round-off errors.

A solution suitable for the tiled Hybris architecture is to render the scene at
the full 4x4 supersampling resolution, and then selectively rasterize only the sub-
samples at the sparse supersampling locations. Figure 3.25 (Middle) shows which
samples to select in this case. The 2x2 interleaved pixel parallel architecture in fig-
ure 3.24 would however not handle this case, as it is designed to interpolate across
two scanlines, suitable for full 2x2 supersampling or just speeding up the standard
non-antialiased rendering process. In order to handle 4x4 sparse supersampling the
architecture must handle interpolation across four sub-pixel scanlines with variable
x-axis span interpolation offsets for each sub-scanline to select the sparse sample
positions. Four instances of the Draw Triangle processor would be needed rather
than two. Figure 3.26 shows an architecture capable of performing 4x4 sparse
supersampling, as four sub-pixel scanlines may be processed at once. This archi-
tecture is more general than figure 3.24, and can also be used to implement the
previously described interleaved 2x2 pixel parallel renderer.

Other techniques similar to sparse supersampling are the four-sample RGSS
(Rotated Grid Super Sampling) method used in the 3dfx Voodoo 5 [11], as well as
the hybrid “Quincunx™” two-sample supersampling antialiasing / five-sample blur
filter method used in the new Nvidia GeForce 3 accelerator. On the intermediate
level between sparse and full supersampling is staggered grid supersampling [235]
which samples half as many sub-pixels as full supersampling using a checkerboard
pattern. Stochastic supersampling using several sample points randomly placed
within the area of one screen-space pixel was possibly used in the GigaPixel archi-
tecture [187], although reading between the lines it was probably also using sparse
supersampling.

Among other popular antialiasing algorithms for graphics hardware are the A-
buffer [29] algorithms which use pixel coverage calculation to perform antialiasing
with a better precision and without supersampling. Examples of the A-buffer algo-
rithm used for tile rendering are found in [235, 10]. Other coverage-based methods
include [134, 79] as well as the SPARP [124, 125] and Z3 [110] which are ef-
ficient extensions of the subpixel bitmask based A-buffer methods described in
[199, 200]. Unfortunately all these architectures have several problems with han-
dling transparency and sub-pixel depth buffering, complicating their design and
use. Supersampling handles these issues correctly and simply.

88 Chapter 3. Designing a Scalable Graphics Architecture

h.s. x4

Setup
Tr iangleTriangle FI

FO

Triangle

hand-
shake

hand-
shakeInput

Tr iangle
control ler

Draw
Tr iangle /

Setup
Span

Triangle

hand-
shake

Draw
Tr iangle /

Setup
Span

Triangle

hand-
shake

B
ro

ad
ca

st
 b

us

FI
FO

Triangle

hand-
shake

FI
FO

Triangle

hand-
shakeTriangle

hand-
shake

Draw
Span /
Draw
Pixel

FI
FO

Span

hand-
shake

FI
FO

Span

hand-
shake

ha
nd

sh
ak

e

Draw
Span /
Draw
Pixel

ha
nd

sh
ak

e

Draw
Span /
Draw
Pixel

ha
nd

sh
ak

e

Draw
Span /
Draw
Pixel

ha
nd

sh
ak

e

Pi
xe

l

Pi
xe

l

2x2 crossbar

Local SRAM
16x16 pixels
color & depth

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

2x2 crossbar

Local SRAM
16x16 pixels
color & depth

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

2x2 crossbar

Local SRAM
16x16 pixels
color & depth

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

2x2 crossbar

Local SRAM
16x16 pixels
color & depth

Pi
xe

l

Pi
xe

l

Pi
xe

l

Pi
xe

l

Merge
pixels into
32x32 or
16x16 t i le

Output
ctrl.

Output
ctrl.

Output
ctrl.

Output
ctrl.

Output
Ti le

control ler

Pi
xe

ls

ha
nd

-
sh

ak
e

Draw
Tr iangle /

Setup
Span

Triangle

hand-
shake

Draw
Tr iangle /

Setup
Span

Triangle

hand-
shake

FI
FO

Triangle

hand-
shake

FI
FO

Triangle

hand-
shake

FI
FO

Span

hand-
shake

FI
FO

Span

hand-
shake

S
pa

n

S
pa

n

S
pa

n

S
pa

n

Figure 3.26: Architectural overview of a scanline interleaved pixel parallel
configuration of the tile rendering engine back-end, suitable for 4x4 sparse
supersampling using four sub-samples within a 4x4 sub-pixel grid.

3.7. Texture mapping 89

3.7 Texture mapping

One important aspect of computer graphics currently missing in the Hybris graph-
ics architecture is Texture Mapping. Texture mapping has not been implemented
yet because it would complicate the design process and limit the possibilities to ex-
periment with various details of the architecture. Another reason is that the author
believes that texture mapping in Hybris can be replaced with per-vertex surface pa-
rameters, such as color. This is feasible since the triangle meshes used in computer
graphics show a tendency to grow very dense, making it difficult to distinguish be-
tween a rendered image of a textured object and a per-vertex shaded object. Recent
research in point rendering such as Surfels [181] clearly shows that this is a promis-
ing alternative to texture mapping. This colored point rendering method achieves
image quality similar to rendering a dense triangle mesh of triangles each only a
few pixels in size.

The problem of mapping texture map images onto colored vertices in a triangle
mesh is related to the very similar problem of finding an optimal triangulation of
terrain elevation maps. Such terrain map simplification algorithms are described in
[91, 231, 173], and a nice example of texture to triangle mesh mapping is found in
[22].

Colored vertices can also be viewed as an effective form of texture compres-
sion, given that a dense triangle mesh would be used anyway. Texture lighting,
which usually requires modulation of the texture values in a pixel shader, is triv-
ially implemented with colored vertices. However for scenes with large flat poly-
gons texture mapped with detailed bitmapped pictures (e.g. many current computer
games) the colored vertex technique is somewhat impractical as the large polygons
would have to be subdivided into many small triangles in order to map the image
onto colored vertices. In this case traditional texture mapping is very useful.

An implementation of texture mapping involves storing a texture map identifier
as well as (u,v) texture map coordinates per vertex, just like colored vertices which
stores the color as (r,g,b,α). The homogeneous texture coordinates are interpo-
lated across the triangle just like colour and depth parameters, except that per-pixel
perspective correction must be applied before looking up the colour value in the
texture map. This inverse mapping requires two divisions (or one reciprocal and
two multiplications) per pixel [82, 229, 236], which requires specialized division
hardware to perform quickly. Alternatively perspective correction may be omitted
if the triangles are very small. Related techniques for large triangles are [9] and
[14].

Traditional texture mapping is also possible to implement in the Hybris archi-
tecture, e.g. by having the draw-span process query a texture map processor to get
a color for the current pixel. Since we render a small tile at a time, we can use

90 Chapter 3. Designing a Scalable Graphics Architecture

texture caching techniques similar to those used in [100]. Note that tiling should
be used for both texture map representation as well as rendering to improve texture
caching, as concluded in [80]. Pseudo-tiled rasterization order [139] is used by
some global framebuffer architectures such as the Neon [140] to improve texture
caching. Note that texture caching is important to improve texture mapping per-
formance as each texture mapped pixel value is usually calculated by filtering of
several adjacent texels to get an aliasing free texture value for the pixel. A hierar-
chical pyramid filtering technique known as MIP-mapping is usually employed to
optimize texture map filtering [82, 63, 96, 219].

By leveraging the tile-based architecture we can alternatively apply deferred
texture mapping on a per-tile level. Deferred texture mapping is described in [44]
and in the PixelFlow [155, 57] architecture. Deferred texture mapping reduces the
calculations required for texture mapping by factoring them out of the inner triangle
rasterization loop. Instead the renderer stores interpolated texture map coordinates
at each pixel. After rasterization of all triangles have completed, the actual texture
map lookup can begin. Because of the deferring of texture map lookups until the
end of the rendering process, we avoid looking up texture map pixels for those
pixels which have been overwritten while rendering images with overlapping fea-
tures. This results in a potential performance improvement for scenes containing
many overlapping texture-mapped surfaces, under the assumption that they are not
transparent. Because of this transparency problem, deferred texture mapping suf-
fers from the same problems sort-last image composition architectures are facing.
To solve the transparency problem correctly for sort-last and deferred texture map-
ping architectures requires an efficient pixel fragment sorting architecture, a topic
for future research.

Recent commercial implementations of deferred texture mapping and shading
are found in the Giga3D [187] and PowerVR [188] graphics architectures for the
PC.

Procedural textures is an alternative promising technique for applying real-time
synthesized textures to objects, as storage for texture maps is completely avoided.
Perlin [177] describes some useful procedures for generating colour patterns for
simulating e.g. marble. A possible implementation of these techniques for hard-
ware is described in [65]. Current graphics processors are beginning to integrate
techniques similar to texture synthesis, an example is a generalization of multi-
texturing called texture shaders [138] which is used e.g. in the pixel-shaders of the
recent Nvidia GeForce 3 graphics processor. The trend for the future is to inte-
grate better and more complex per-pixel shading techniques into future graphics
hardware as suggested by [205]. Such techniques were previously only usable for
off-line batch rendering of computer animations.

3.8. Chapter summary 91

3.8 Chapter summary

In this chapter we have presented an in-depth view of the concepts involved in the
design of the Hybris graphics architecture, at an abstraction level slightly above the
possible implementations. The potentially available parallelism of the architecture
has been described independently of any actual implementation.

The graphics architecture has taken form as an object-parallel and image-
parallel architecture utilizing partitioned triangle meshes in the front-end graphics
pipeline and tile-based rendering in the back-end graphics pipeline.

Further, several viable extensions for the architecture have been discussed.
These extensions include antialiasing and texture mapping. Additionally some pos-
sible sub-tile interleaved pixel parallel architectures for the tile rendering back-end
have been presented.

92 Chapter 3. Designing a Scalable Graphics Architecture

Chapter 4

Codesign for Hardware and
Software Implementations

In this chapter we will explore some of the possible implementations of the scal-
able Hybris graphics architecture. Using codesign methods based on virtual pro-
totyping we are able to examine several possible configurations of the architecture
and then semi-automatically synthesize several possible hardware and software im-
plementations of the architecture, using optimizing C compilers and VHDL logic
synthesizers. The hardware/software partitioning is done manually before using
the C compiler and VHDL synthesizer.

Two software implementations are discussed, one is a single-threaded pro-
gram for a standard single processor Windows PC, and the other is a multipro-
cessor implementation for a Windows 2000 dual Pentium III SMP workstation
demonstrating scalability. Two hardware implementations are examined. One
is for a standard-cell based ASIC implementation using an STMicroelectronics
0.25 µ CMOS process. The other is an FPGA implementation for a Xilinx Virtex
XCV1000 FPGA mounted on a Celoxica RC1000 reconfigurable computing plat-
form. Furthermore some extended implementations leveraging the scalability and
advanced features of the Hybris scalable graphics architecture will be discussed.

4.1 Design methodology

During the design of the Hybris architecture and its implementations, various de-
sign methods were used. During the design process a constantly mutating mental
image of the processes in the architecture is maintained. This design is then manu-
ally captured into a software representation using the C or C++ language to model
the processes as a sequence of loops. Since the imagined processes of the archi-

93

94 Chapter 4. Codesign for Hardware and Software Implementations

Specification
System

Start

Virtual Prototype

C / C++

HW/SW Partitioning

HW

(VHDL)

Final Architecture

API

Driver SW

C/C++

Analysis

Algorithmic

Optimizing

Transformations

Transformations

HW/SW Constraints

Figure 4.1: Codesign work-flow using the Virtual Prototyping design meth-
ods. Design space exploration is done using a C implementation of the ar-
chitecture. The C representation is then used for HW/SW partitioning.

tecture are concurrently running tasks, capturing them in the C language enforces
a serial ordering of the processes. Using this C representation, we can experiment
with various loop transformations to explore different design options and different
types of data buffering between loops. Finally we can use the C representation
as a basis to implement optimized software and hardware implementations. This
approach allows functional verification of the design ideas. Figure 4.1 illustrates
this Virtual Prototyping design method, which was used to design and test the
Hybris architecture. The paper [88] covers some aspects of virtual prototyping.
Some of the virtual prototyping design techniques are loop transformations to im-
prove memory usage efficiency, such as the loop fusion and strip mining techniques
[117, 143, 228, 145, 194]. The work presented in this thesis is the result of con-

4.1. Design methodology 95

tinued improvement of the Hybris architecture using this simple C based virtual
prototyping design method.

In [56] some related aspects of applying codesign for graphics hardware de-
sign are examined, using a slightly different approach to virtual prototyping based
codesign. They use a “Data Flow Modelling Framework” (DFMF) and an “Algo-
rithm Prototyping Environment” (APE) to enable the same kind of design space
exploration as used for development of Hybris. Their DFMF is a C++ class library
for representation of pipelines using stacks for buffering data between loops cor-
responding to processes in a pipeline. APE is a C++ implementation, using the
DFMF classes, which is an actual “virtual” implementation of the graphics proces-
sor under development. The main motivation for this approach is the faster design
and simulation cycles possible in C relative to VHDL, and the possibility to model
the design at a higher level of abstraction. They also refer to one of our early papers
[132], which describes the use of a C/VHDL co-simulation environment to model
an architecture for a generic graphics co-processor.

4.1.1 Codesign using C language for architectural design

To give an overview of how virtual prototyping can be used to represent and ex-
plore design options, we may think of a C program manually derived from a mental
image of an architecture, reflecting a serial functional description of the architec-
ture. Program flow starts at the beginning of a pipeline of concurrently running
processes. Each process may be modeled using a loop, where each loop iteration
represents a datapath. During program flow, a loop may be interpreted as data
parallelism if a loop iteration does not depend on a result from the previous itera-
tion, allowing us to process each iteration in parallel. Program flow passing from
one loop to a following loop in the program may be interpreted as a pipeline, or
functional parallelism, allowing separate parallel processes to execute each loop.
These observations allow us to transform a program into an architecture based on
pipelines of processors (i.e. pipelined processor farms [62]), which resembles what
happened during the design of the Hybris architecture.

When the program reflects the desired architecture, we can partition it into
hardware and software components to create a combined system. This entire de-
sign process is called codesign or co-synthesis depending on the level of design
tool automation. Codesign and co-synthesis in general using the Lyngby Co-
Synthesis system (LYCOS) is covered in [133]. Further details about codesign
and co-synthesis can be found in [119] as well as [76]. An overview of various
codesign methods and systems is available in [209].

The LYCOS system uses a “Y-chart” codesign methodology to transform an
application into an actual implementation by mapping it onto different components

96 Chapter 4. Codesign for Hardware and Software Implementations

in a pre-determined target architecture. Alternatively an “inverted Y-chart” code-
sign methodology starts with an application which is then successively refined into
an architecture with various subsystems to be implemented.

The virtual prototyping development method that has been used to experiment
with the Hybris graphics architecture shares many similarities with the inverted
Y-chart codesign methodology, at least while operating on a sufficiently high level
of abstraction. This design process is similar to the one used with the COSMOS
codesign tool [227].

At some point in the codesign process the architecture needs to be implemented
and we must choose between a limited number of components such as CPUs (usu-
ally we are forced to use Intel PC class CPUs) as well as other hardware compo-
nents (ASIC standard-cells, FPGA prototyping boards, IP blocks), communication
channels (PCI-bus) and storage (SDRAM main memory). When the derived ar-
chitecture is mapped onto these components, we flip the Y-chart to use the regular
Y-chart codesign methodology where the application, now well suited for imple-
mentation on a known target architecture, is mapped onto that target architecture
to form the final implementation.

The design process we just described and used during virtual prototyping code-
sign and implementation of the Hybris graphics architecture, is very similar to
a codesign methodology for embedded hardware-software systems which is de-
scribed by Gajski in [66].

From an annotated C specification a more verbose specification of a system
can be derived, allowing manual exploration of how the system can be partitioned
into concurrently running processes, and how interfaces between the processes are
implemented. Repeating this as a hierarchical design process we can decide how
each of the processes are mapped to a machine description, either by subdivid-
ing until we arrive at a level suitable for hardware synthesis, or by stopping at a
microprocessor software description of the process.

The virtual prototyping design process also allows design space exploration of
interfaces in the design. The loop fusion and strip mining loop transformations
applied to the design changes the structure of the processes. The interfaces ap-
pearing in the architecture reflect how the process are structured and mapped to
various components of the possible target architectures. This allows us to par-
tition the system to minimize communication bandwidth by transforming some
of the bandwidth requirements to internal localized communication and computa-
tion. Communication bandwidth is often a limiting factor in digital systems design
[108], and must be dealt with by designing the high-level architecture to reflect the
actual implementation options.

4.1. Design methodology 97

4.1.2 Using C language for hardware description

Using a high level C description is not directly suitable for hardware description.
In our case the hardware design case studies done in [130, 71] for ASIC design
and [207] for FPGA design, were carried out by manual translation of the C source
code into VHDL. A similar but probably more systematic design method was used
in the design of the AMD K6-2 3D-Now! microprocessor [206], which was com-
pletely specified, simulated and functionally verified using a C++ program rep-
resentation, but it still had to be manually translated to an HDL specification for
synthesis, which required cross-verification with the C++ specification. Such a C
based design process was also used during the design of the popular S3 ViRGE
VX PC graphics processor [13], which was successively refined from a high-level
functional architecture down to RTL level C code, only then was the VHDL code
manually created.

An even more interesting example is the design method used to create the Neon
graphics accelerator [141], which was completely specified, simulated and func-
tionally verified as a C program. The interesting part is that they followed spe-
cific design rules for the C program which allowed automatic translation of the
RTL level C specification to a RTL level Verilog HDL description synthesizable
by Synopsys. This was achieved by modifying a portable C compiler lcc to cre-
ate c2v which generates Verilog code for synthesis instead of machine code for
a microprocessor. The C program was functionally partitioned to match the hard-
ware architecture requirements, and an event driven simulator also written in C
directly calls the C functions, also allowing the use of C debugging tools. The dis-
advantage of this approach is that an RTL level coding style has to be adopted for
C programming.

The advantage of specifying an architecture in a programming language such
as C is easier design space exploration, as well as faster simulation. Both the AMD
K6-2 and the Neon design projects emphasized the importance of fast simulation
greatly, as they were able to simulate their designs using multiple workstations
in parallel (AMD used thousands of PCs for simulating the K6-2). Economically
there is an added bonus since C simulation does not add the per-copy licensing
fees of VHDL simulators. The Neon and the K6-2 are quite complex designs,
containing 6.8 and 9.3 million transistors respectively.

Recently some more standardized C/C++ programming language based design
methods are appearing. In [78] some aspects of using a programming language for
hardware/software system design are covered, which forms the basis for recent ef-
forts such as SystemC. SystemC [218] is a recent open system design standard for
using C++ as an architecture description language, i.e. a higher level of abstrac-
tion than a typical HDL language such as VHDL. A limitation of C/C++ is that

98 Chapter 4. Codesign for Hardware and Software Implementations

it does not directly support features essential for low-level hardware specification
such as; parallelism, reactivity (automatic response to stimuli), variable bit-length
data types, multi-valued logic, communication channels (signals/wires) and time.
For SystemC these shortcomings were handled by creating a C++ class library to
provide the missing modeling elements without introducing proprietary extensions
to the C++ language. As the SystemC class library includes a cycle-based simula-
tion kernel, all levels of a complete system design can be simulated using an ANSI
C++ compiler. Hardware synthesis from SystemC requires that the hardware parts
of the system are described using a synthesizable subset of C++ similar to VHDL:
i.e. no object-oriented features, no pointers, no recursion, no goto, no malloc/free,
no embedded assembly code, etc. Unfortunately hardware synthesis tools for Sys-
temC are not currently available, although manual translation to VHDL is possible.

The C language based design process applied during the virtual prototyping
development of the Hybris graphics architecture is quite similar to the SystemC-
based “refinement for implementation” design flow. Such a design flow, where
the system architecture description is translated from higher abstraction levels to
lower levels by always using SystemC representations is described in [59]. The
main advantage of using a homogeneous system design language all the way down
to the final optimized software and RTL hardware descriptions is easier testing by
co-simulation and co-verification. Doing the same with C and VHDL is slower and
possibly error prone.

Possibly SystemC might replace VHDL in the future, however current efforts
with SystemC seem to indicate that the RTL level coding style will be the primary
focus for current hardware design.

High-level hardware-from-C synthesis systems are beginning to appear, which
work from a C program specification expressed as loop nests, a higher level of
abstraction than RTL. A good example is the PICO-N (Program-In-Chip-Out) syn-
thesis tool [203], which automatically partitions the design into a systolic array of
customized non-programmable VLIW processors.

An interesting C based HDL is “Handel-C” [24] which is currently being pro-
moted by Celoxica (formerly Embedded Solutions). Handel-C is basically Occam
using a C-style syntax, which can be translated to ANSI C compatible code for
simulation by using the Handel-C preprocessor. A logic synthesis tool is also pro-
vided, replacing VHDL synthesis tools such as Synopsys. The language introduces
low-level parallelism constructs to C, using par{} blocks to indicate blocks of C
statements to be executed in parallel. Normal C statements are executed serially in
the sequence listed in the program. Logic synthesis with Handel-C interprets each
C statement as a piece of combinatorial logic to be executed in one clock cycle. A
sequence of C statements are sequenced by an automatically generated state ma-
chine, executing one C statement per clock cycle. Parallel C statements defined

4.2. Standard physical interfaces 99

inside par{} blocks are executed in parallel in one clock cycle. It is the Handel-C
programmer’s responsibility to make sure that each C statement is simple enough
to execute within a given clock period, determining the maximum clock frequency.
Pipelining can be expressed by using temporary variables between lines. In sum-
mary Handel-C simplifies many aspects of digital system design by hiding many
details present in an equivalent VHDL design. Compared to RTL level VHDL de-
sign, it is difficult to know how resource sharing between sequential C statements
is done.

For the design process of the Hybris graphics architecture, the virtual prototype
C software representation of the architecture allows rapid experimentation with ar-
chitectural concepts and implementation options. Manual translation into VHDL
requires cross-verification and slows down simulations when exploring design op-
tions, as noted in [71]. The recent FPGA implementation [207] does not suffer
from slow simulation speed, although logic synthesis and place and route is quite
time consuming. Instead, the FPGA architecture limits the possible design space
for simulation to what may fit in the FPGA.

As a curiosity, based on the ideas behind the Neon’s event-based C simulation,
Hybris might one day be able to simulate a high-level model of itself by using
the event passing mechanism of its VRML engine to between VRML nodes repre-
senting different processes in the architecture. Hybris’ VRML implementation is
described in the next chapter.

4.2 Standard physical interfaces

While one way to solve the bandwidth problems in computer graphics is to build a
fully customized graphics workstation using high bandwidth buses and interfaces
everywhere, but for the unfortunate fact that it would be very expensive. Existing
commodity interfaces should be used everywhere possible. In this section we will
look at the available options relevant for the PC platform.

4.2.1 AGP – A fast interface for graphics

The AGP (Accelerated Graphics Port) interface [239, 104] was originally designed
to allow graphics accelerators to store texture maps in the PC’s main memory, re-
ducing the total memory cost as semiconductor memory was very expensive when
AGP was first introduced in 1996/97. Physically AGP is an extension of the 3.3V
32-bit 66 MHz PCI bus specification [175], but simplified to allow point-to-point
connection only. It adds a demultiplexed address bus, pipelined transfers and also
a double (2X) and quad (4X) data rate interface. The interface is clocked at 66

100 Chapter 4. Codesign for Hardware and Software Implementations

MHz and the 2X and 4X modes allow effective peak data rates up to 533 MB/s
(2X) and 1066 MB/s (4X), compared to 266 MB/s for the simple 66 MHz transfer
mode (1X).

Electrically the 1X transfer mode is identical to 66 MHz PCI, while the 2X
transfer mode uses transfer of data on both rising and falling clock edges of an ad-
ditional phase shifted 66 MHz clock. The 4X mode requires the signaling voltage
lowered to 1.5V as well as two additional phase shifted and clock doubled (133
MHz) clock signals, allowing transfer of data four times (on the falling edge of
each of the two 4X clocks) within one 66 MHz bus clock period of the interface.
Intel is currently working on the specification of an 8X mode for the AGP interface.

For all transfers initiated from the AGP host to the AGP card, standard PCI
transactions are used. AGP allows the AGP card to access the host’s main mem-
ory using pipelined transactions in two different modes, “DMA” and “execute”.
The “DMA” mode is intended for large transactions e.g. for downloading textures,
while the “execute” mode is used for random access of smaller blocks in the host’s
main memory. These transfers can be pipelined in a split-transaction fashion, by
allowing the AGP card to issue its next data transaction while waiting for the pre-
vious transfer to complete. The AGP system logic maintains a prioritized queue of
these transaction requests, divided into high-priority and low-priority subqueues.
To speed up the shorter “execute” random access transfer type, an extra 8-bit SBA
(Side Band Addressing) bus is used to send data transfer requests to the host. Ran-
dom access within a large main memory area is complicated by the host operating
system’s virtual memory system as a contiguous memory area is fragmented into
4kbyte virtual memory pages. To solve this problem, the AGP host must maintain a
GART (Graphics Address Remapping Table) to translate virtual memory addresses
from the AGP graphics accelerator into physical main memory addresses. The
AGP card’s device driver must manage memory in coordination with the GART.

Today the original purpose of AGP, direct use of host memory for texture map-
ping in 3D graphics, has been defeated as memory costs have dropped rapidly,
allowing graphics accelerators to use faster local memory directly on the graphics
board. Configurations with 64 MB of 128 bit wide 230 MHz DDR SDRAM are
common, allowing a far higher texture bandwidth than AGP. Instead the purpose of
AGP is today being retargeted to allow faster texture map download, and more im-
portantly faster communication of low level graphics primitives such as triangles.
As the geometric detail level of 3D graphics continues to increase, more bandwidth
will be needed for geometry relative to texture maps.

A problem with the AGP port philosophy is that systems based on AGP are
difficult to scale incrementally, as only one AGP interface is available in a PC,
making a dual 3D graphics card scaled configuration awkward. (Although one
prototype of a twin AGP slot PC mainboard was reportedly spotted at a tradeshow

4.2. Standard physical interfaces 101

Intel® 815 Chipset: Graphics Controller PRM, Rev 1.0

R

18

Figure 1. Intel���� 815 Chipset System Block Diagram

System Bus (66/100/133 MHz)

PCI Bus

PCI Slots
(ICH=6 Req/Gnt pairs)

815_SysBlk

ISA
Option2 IDE Ports

Ultra ATA/66 (ICH);
Ultra ATA/100 (ICH2)

2 USB Ports (ICH);
4 USB Ports (ICH2)

USB

USB

I/O Controller Hub

Super
I/O

AC'97

FWH
(Firmware Hub)

Audio Codec

Modem Codec

LAN Option
(for ICH)

Intel® Pentium® III Processor
or

Intel® Celeron� Processor

AGP Connector

AGP Graphics

Display Cache
(4 MB SDRAM,
133 MHz Only)

Or

System
Memory

GMCH
(Graphics and Memory

Controller Hub)

- Memory Controller
- AGP Contoller
- Graphcs Controller
 - 3D Engine
 - 2D Engine
 - Video Engine

TV

Analog Display

Encoder

64 Bit /
100/133 MHz Only

Digital Video Out

Digital Video Out

LPC

LAN Controller
(ICH2)

2.1. I/O Controller Hub

The 82801AA ICH/82801BA ICH2 functions and capabilites are listed below. Unless otherwise

specified, the function/capability applies to both ICH and ICH2.

• PCI Rev 2.2 compliant with support for 33 MHz PCI operations

• ICH supports up to 6 Req/Gnt pairs

• Power Management Logic Support

• Enhanced DMA Controller, Interrupt Controller & Timer Functions

• Integrated IDE controller; ICH supports Ultra ATA/66 (ICH); Ultra ATA/100/66/33 (ICH2)

• Integrated LAN Controller (ICH2 only)

• USB host interface with support for two USB ports (ICH); Four ports (ICH2)

• System Management Bus (SMBus) compatible with most I
2
C devices

• AC�97 2.1 Compliant Link for Audio and Telephony CODECs

• Low Pin Count (LPC) interface

• Firmware* Hub (FWH) interface support

• Alert On LAN*

2.2. Intel
®
 82815 Chipset GMCH Overview

Figure 2 is a block diagram of the GMCH illustrating the various interfaces and integrated functions. The

functions and capabilities include:

Figure 4.2: System architecture of a modern standard PC with an AGP in-
terface and PCI bus, based on the Intel 815E chip set. (From [107].)

in 2000).

Figure 4.2 shows an example of a modern standard PC with an AGP inter-
face and PCI bus, based on the Intel 815E PC chip set [107]. Note how the AGP
interface is isolated from the PCI-bus. The 815E chip set even integrates a low-
performance 3D graphics processor allowing low-cost PCs without an AGP graph-
ics accelerator to be produced. Interestingly this approach seems to gain popular-
ity, as recently (June 2001) Nvidia announced the nForce PC mainboard chip set
featuring an integrated GeForce 2 MX 3D graphics processor as well as a cross-
bar memory controller allowing the PC to have two independent SDRAM main
memory banks. While the integrated graphics processor approach eliminates the
AGP bottleneck, the communication bottleneck is now moved to the CPU and main
memory interface, as the graphics processor competes with the CPU for memory
bandwidth. The crossbar memory architecture, which was probably inspired by the
SGI O2 workstation [118], helps to improve bandwidth.

102 Chapter 4. Codesign for Hardware and Software Implementations

AGP Pro

AGP Pro [105] is a simple extension of the standard AGP specification, increasing
the mechanical, thermal and electrical limits. The form-factor of AGP Pro allows
larger circuit boards to be used. The AGP Pro connector is physically extended to
add additional power lines allowing a maximum power consumption of 110W by
the AGP Pro board. In comparison AGP specifies a maximum current of 6A for
the 3.3V supply, i.e. 20W.

AGP Pro is intended to make designs such as the 3Dlabs Wildcat II 5110 dual
pipeline graphics accelerator possible [1].

4.2.2 PCI

PCI (Peripheral Component Interconnect) [175] is an older but more widely used
bus interface. There is a high availability of design tools and prototyping boards
for PCI (unlike AGP), but commonly only for the lowest-speed 33 MHz 32-bit
PCI specification which has a limited peak transfer rate of 133 MB/s. The faster
versions of the PCI bus feature a 66 MHz and/or 64-bit interface, but are not widely
used mainly because of the availability of AGP.

The PCI bus can operate in to basic data transfer modes, the normal multi-
plexed address/data mode or the burst mode. When multiplexed address/data is
used, the maximum bandwidth is effectively halved to 66 MB/s. Burst mode al-
lows rapid transfer of consecutive data allowing transfers to approach the theoreti-
cal maximum bandwidth of 133 MB/s if the burst mode transfer transaction is large
enough.

A convenient advantage of PCI is that prototyping boards for the PCI bus are
available, such as the RC-1000PP PCI board featuring a PLX PCI 9080 PCI in-
terface and a Xilinx Virtex XCV1000 FPGA. Unfortunately such a prototyping
system is limited by the maximum speed of the PCI bus. The available driver for
accessing the RC-1000PP through the PCI bus limits the bandwidth further. Un-
fortunately these prototyping boards are not available for the AGP port.

PCI-X

Compaq is currently promoting an extension of the PCI bus named PCI-X [34],
which allows use of higher clock frequencies as well as an improved protocol spec-
ification allowing more efficient bus transfers of data.

PCI-X allows use of 33, 66, 100 or 133 MHz clocks on the bus, however the
66 MHz mode limits the bus to a maximum of four devices, the 100 MHz mode
limits the bus to a maximum of two devices and the 133 MHz mode allows only
one device i.e. a point-to-point configuration. From a card subsystem design point

4.3. Implementing the Hybris graphics architecture 103

of view PCI-X is simpler than PCI and AGP because Compaq makes an IP library
available free of charge, which includes ready to use HDL designs for a PCI-X
interface. However PCI-X based PCs are not yet widely available.

The main industry motivation for adopting PCI-X is to allow support of faster
interfaces for Gigabit Ethernet and Ultra3 SCSI, e.g. a 4-port Gigabit Ethernet
interface would fully saturate the 64-bit 66 MHz PCI bus, while a 64-bit 133 MHz
PCI-X bus handles the load better.

4.3 Implementing the Hybris graphics architecture

The Hybris graphics architecture described in the previous chapter can be imple-
mented in various ways. We need to decide what the target hardware platform is,
and map the architecture onto it. In order to achieve good performance the plat-
form must match the requirements of the architecture. In the previous chapter the
architecture was described at a high enough level of abstraction so that the pro-
cesses in the architecture can be mapped to many different platforms, as software
on microprocessors or as dedicated processing units in an ASIC or FPGA. This
platform mapping task can be considered as the last step in a hardware/software
codesign design flow.

For practical and economical reasons the target platform is limited to a PC
and possibly some add-on hardware on the PCI-bus. In the following we discuss
benefits and shortcomings of the several possible codesign based implementations
of the Hybris graphics architecture.

4.3.1 Single CPU software implementation

The simplest implementation target of the Hybris graphics architecture is a serial
software implementation running on a single CPU. This is also the main imple-
mentation testbed for many of the algorithmic and architectural concepts explored
during the virtual prototyping and design space exploration of the graphics archi-
tecture.

Although one method for implementation of the software version is to simply
compile the virtual prototype representation of the architecture, we can also rely on
platform dependent features to further optimize the implementation. This is done
by mapping some of the loops to platform specific features such as the size of cache
lines, type of cache line set associativity, amount of L1 and L2 cache as well as the
amount and bandwidth of available main memory (e.g. SDRAM [147]). Other
important features to consider are micro-architectural features of the CPU such as
the performance properties of the floating point and integer execution units, as well

104 Chapter 4. Codesign for Hardware and Software Implementations

as how the CPU’s instruction execution pipeline is affected by loops and branches.
The interactions between CPU, caches and main memory lead to implementations
that apply memory alignment, data blocking and main memory paging to improve
dataflow. A valuable resource describing optimization issues related to the Intel
Pentium III architecture is [106]. In the previous chapter many of these aspects
were discussed during definition of the graphics architecture, allowing a relatively
efficient implementation of the architecture for the single CPU PC environment.
These system observations are also applicable for hardware designs, such as the
ASIC and FPGA implementations discussed later.

For implementation on a Pentium III based PC, the data structures in the Hybris
architecture are aligned and sized to fit in one or two 32-byte cache lines. A vertex
fits in one cache line and a triangle node fits in two cache lines. This provides
an efficient memory interface as the CPU always reads a cache line from system
memory beginning on a 32-byte boundary. (A 32-byte aligned cache line begins
at an address with its 5 least-significant bits zero.) A cache line can be filled from
memory with a 4-transfer burst transaction. The caches do not support partially-
filled cache lines, so caching even a single word requires caching an entire line. See
the Intel architecture system programming guide [103] for more information. The
Pentium III integrates two 16 kbyte L1 instruction and data caches and a 128–512
kbyte unified L2 cache, all caches are 4-way set associative with a 32-byte cache
line size. For an overview of caches in general, see [174].

The loop fusion and strip mining data locality optimization techniques applied
throughout the codesign of the Hybris graphics architecture ensures good cache
utilization. E.g. the 32x32 pixel virtual local framebuffer tile uses 5 kbytes to store
8 bit color and 32 bit depth per pixel, which fits nicely into the L1 data cache,
with plenty of space left for processing the 4 kbyte triangle heap buffers and other
temporary data as well as space left for an extension to 24 bit color per pixel.
Similarly the front-end uses an 8 kbyte temporary transformed vertex buffer which
also fits in the L1 data cache. One problem in the bucket sorting stage might be the
4 kbyte memory stride between buffers in the bucket sorted triangle heap which
may cause the memory start address of each buffer to map into the same cache
lines. But because the caches are 4-way set associative they can manage up to
four buffers mapped to the same set of cache lines at once. Because the objects
are partitioned we typically only write triangles into a set of four neighboring tile
bucket buffers, which matches the way the cache is managed.

In addition it can be an advantage to use inline assembly code to utilize e.g.
Intel’s MMX, SSE and SSE-2 SIMD vector processing extensions for the Pen-
tium III and IV CPUs [106]. Similar extensions for the AMD CPUs are 3D-Now!
and 3D-Now! Pro [206]. Other examples include the PowerPC AltiVec exten-
sions and the UltraSparc VIS instructions. Finally special purpose processors such

4.3. Implementing the Hybris graphics architecture 105

as the Samsung MSP [166] implement similar vector datapaths. Unfortunately
it would greatly complicate the virtual prototyping design process if these exten-
sions were included in the virtual prototype, as they are very platform specific and
not portable. To use these extensions in practice requires manual translation of
the C specification to include these instructions as assembly code, e.g. by using
compiler-specific intrinsic functions which cause the C compiler to emit SIMD
instructions. Recently the Microsoft Visual C++ compiler has implemented pre-
liminary support for such intrinsics, but is still in the beta testing stage. Intel’s
C compiler additionally supports automatic vectorization of the code to SIMD in-
structions, unfortunately the resulting code is often slower, e.g. the Hybris renderer
was slowed down by about 10%. Experiments with optimizations of the Hybris
software implementation using different C compilers revealed that the Microsoft
Visual C++ compiler currently generates the fastest executing machine code, un-
fortunately the “processor-pack” upgrade patch for preliminary support of SIMD
instructions breaks something in the compiler’s support for C++ templates.

The Pentium III’s SSE extensions additionally provide enhanced data stream-
ing cache management techniques such as instructions for prefetch (load a cache
line before it is actually needed) and non-temporal stores (store final data in main
memory without also placing it in the cache). These enhancements may be useful to
further optimize buffer management in Hybris for the partitioned object database,
the bucket sorted triangle heap and the global framebuffer. Unfortunately an im-
plementation using these techniques also requires manual assembly coding, leaving
this as a topic for future experimentation.

The single threaded software implementation of the Hybris graphics architec-
ture performs quite nicely on the test PC with a Pentium III 500 MHz CPU, reach-
ing rendering performance levels up to 2,7 million triangles/s in software only.
When rendering complex 3D models, this software renderer is in many cases able
to out-perform a hardware graphics processor such as the Nvidia GeForce 2 GTS.
Some performance benchmarks are listed at the end of this chapter.

The current software implementation is targeted for a PC running the Win-
dows 2000 operating system, where an operating system specific interactive user
interface is implemented using windowed output of the final rendered image with
user feedback from mouse and keyboard input devices for manipulating the view
direction, etc. Additionally the software has been encapsulated as a Java user inter-
face component, allowing a Java application to easily integrate the Hybris software
renderer. It should also be mentioned that an earlier single-threaded software im-
plementation of Hybris has been successfully compiled with the Gnu C++ compiler
gcc for the Linux/X-Windows operating system on a PC platform, demonstrating
the portability of the architecture.

106 Chapter 4. Codesign for Hardware and Software Implementations

4.3.2 Multiple CPU parallel software implementation

The currently fastest working implementation of Hybris is a parallel software im-
plementation. The parallel implementation is targeted specifically for a dual Pen-
tium III 500 MHz PC running Windows 2000. Parallelism is achieved by using a
process with two Win32 threads running in the SMP (Symmetric Multi-Processing)
computing environment provided by the platform. The Hybris architecture was
mapped to this programming model by utilizing the available data parallelism in
the architecture, by running the graphics pipeline in both threads. Each thread
runs on its own CPU and processes its own data. The object partitioned front-
end pipeline was mapped onto two threads by mapping the first half of the object
partitions to the first thread and the second half of the partitions to the second
thread. When both threads finish processing for the front-end pipeline, a barrier
synchronization point manages the threads, switching them to start working on the
tile partitioned back-end pipeline. When working on the back-end pipeline, each
thread is assigned a set of tiles to render. The first thread renders odd numbered
tiles, while the second thread renders even numbered tiles. In effect the workload
distribution forms a checkerboard pattern of tiles.

In the parallel renderer the bucket sorted triangle heap is not just used for bin-
ning the triangles into buckets for each tile. The parallel renderer also uses the
bucket sorted triangle heap for workload redistribution. This is an implementation
of sort-middle parallelism. Figure 4.3 shows the dataflow in the parallel renderer,
using two triangle heaps. Note that the sort-middle redistribution of triangles re-
quires that each tile rendering worker reads data from all triangle heaps. As long
as all CPU’s work exclusively on either the front-end or the back-end, it is not
necessary to double buffer the bucket sorted triangle heaps. However if a pipeline
of concurrently running front- and back-end worker processor “farms” are formed,
the triangle heaps must be double buffered in order to allow both pipeline stages
to work in parallel. Note that by using two triangle heaps we can improve per-
formance in the dual CPU implementation, as it allows writes to the two separate
caches to operate without invalidating cache lines in each other. A cache line is in-
validated if one processor writes to a memory location cached in the other, because
of the automatic cache snooping logic in a dual Pentium III system. When reading
from the triangle heaps this is not a problem, as cache lines are not invalidated by
reading. Further, as each tile renderer only reads data for its own set of tiles, cache
performance is good even though each tile renderer must read from both triangle
heaps.

In a hardware implementation we can further improve memory performance by
applying smarter SDRAM memory bank management techniques unavailable in
software. This is because we have no control over how the operating system’s vir-

4.3. Implementing the Hybris graphics architecture 107

Frame
buffer

combined
output

tile

tile

Geometry
engine 1

Tile
renderer 1

Tile
renderer 2

triangle

triangle

triangletria
ngle

Geometry
engine 2

Object
part i t ioned
data, set 1

object

object

Object
part i t ioned
data, set 2

Front-end Back-end

Bucket
sorted

tr iangle
heap 1

Bucket
sorted

tr iangle
heap 2

triangle

triangle

Bucket
sorted

tr iangle
heap 1

Bucket
sorted

tr iangle
heap 2

Figure 4.3: Dual CPU parallel implementation of the Hybris graphics archi-
tecture. Two sets of object partitions are processed independently by the
workers in front-end pipeline and binned into tiles in two independent bucket
sorted triangle heaps. In the next stage the two tile rendering workers in the
back-end pipeline process tiles in parallel. Each tile renderer reads data from
all triangle heaps.

tual memory management maps the 4 kbyte virtual memory pages to the physical
SDRAM’s four banks of 4 kbyte memory pages. For the software implementation
the current approach of using a large array of 4 kbyte page aligned buffers is the
best we can do to improve bank management, according to [106]. If bank manage-
ment is available we can organize the triangle heap for the case shown in figure 4.3
by having geometry engine 1 write odd tile buckets to bank 0 and even tile buckets
to bank 1, similarly for geometry engine 2 and bank 2 and 3. Tile renderer 1 then
reads from bank 0 and 2, and tile renderer 2 from bank 1 and 3.

This parallel implementation of the Hybris architecture has proved to be very
efficient, reaching a speedup close to two for a variety of scenes. This demonstrates
some of the nice scalability properties achievable with implementations of the Hy-
bris graphics architecture. Future implementations for SMP parallel processing
platforms with more than two CPU’s are also possible, provided that enough mem-
ory bandwidth is available for bucket sorting. As an interesting observation, this
structure for the parallel renderer using a pipeline of groups of worker processors
has recently been formalized as a general method for structured design for embed-
ded parallel systems, known as Pipelined Processor Farms (PPF) in the new book
[62]. In PPF terms, the front-end and the back-end of the parallel implementation
are processor farms which together form a pipelined processor farm.

A multiprocessor platform usable for this type of pipelined multiprocessing is

108 Chapter 4. Codesign for Hardware and Software Implementations

the Imagine stream processor, for which a graphics renderer has been implemented
in [172]. They conclude that such a parallel computing platform is very com-
petitive to contemporary hardware graphics processors. The Imagine achieves its
performance using the same design methods that have traditionally been exploited
in special-purpose hardware, but without giving up programmability.

Shared memory multiprocessor architectures such as SMP are currently the
best for a parallel implementation of Hybris, as the triangle heaps are used for sort-
middle redistribution. Using a distributed memory parallel architecture would need
a very efficient implementation of message passing, requiring efficient hardware
support for good performance. The distributed memory approach is better suited
for a hardware implementation where dedicated communication channels are avail-
able. Note that the programming model necessary for distributed memory parallel
computing, which emphasizes data locality, is also very useful for shared memory
parallel architectures, where the caches behave as distributed local memories. For
a highly scaled implementation of Hybris, a shared memory multiprocessor should
provide some form of multi-banked memory with an efficient communication net-
work based on e.g. crossbar switches. This type of parallel computer architecture
can be considered a hybrid of shared/distributed multiprocessing architectures.

An earlier parallel renderer implementation [85] of an early version of the
Hybris architecture without object partitioning was not as successful, reaching a
speed-up of only 1.6 in the best case. It was limited mainly by main memory
bandwidth for the transformed vertex buffer and also attempted to run three differ-
ent stages of the graphics pipeline concurrently (geometry, triangle setup and tile
rendering), causing severe memory paging and poor cache utilization.

4.4 ASIC implementation

An implementation of the back-end tile rendering engine of Hybris for an ASIC
was made in [71, 72]. The ASIC implementation was targeted for the STMicro-
electronics HCMOS7 0.25 µ standard-cell based CMOS manufacturing process.

In order to implement the ASIC, the C source code of the reference software
implementation of the Hybris architecture had to be translated to VHDL source
code in a format suitable for logic synthesis. See [164] for an overview of VHDL
for modeling of digital systems and [217] for a description of the synthesizable sub-
set of VHDL implemented in Synopsys. In order to enable logic synthesis some
strict coding guidelines must be followed. For logic synthesis using Synopsys De-
sign Compiler this means that the VHDL code must be an RTL (Register Transfer
Level) description of the digital circuit. This RTL description of the architecture
was first derived by manually transforming the C source code into “RTL-friendly”

4.4. ASIC implementation 109

C code, by changing the way loop variables are used and updated. Each loop in
the C program is transformed into two parts, one reflecting calculations and one
reflecting loop variables. This transformation closely resembles the RTL coding
style in VHDL where a loop can be expressed as two VHDL processes, one reflect-
ing combinatorial logic (calculations) and one reflecting clocked register transfers
(loop variables). Furthermore, nested loops in the C program are decomposed into
individual loops. This design process is an example of the Virtual Prototyping
design method discussed earlier, where a C program specification is transformed
into another C program matching the implementation target architecture. From
the RTL-friendly C code the RTL VHDL description is then derived by manual
translation.

The tile rendering engine pipeline structure discussed in the previous chapter
(see figure 3.20 page 79) was expressed in RTL VHDL code ready to be synthe-
sized and implemented in the ASIC. FIFO buffering between the pipeline stages
corresponding to the loop nesting was added to balance the workload, as the ex-
ecution time for each stage is highly data dependent and can vary by many clock
cycles. On-chip SRAM was used to implement both the FIFOs and the dual ported
32x32 pixel color & depth tile buffers. These SRAMs were implemented using
Synopsys DesignWare SRAM’s, although a real implementation should definitely
use the full-custom dual ported SRAM macro-cell generators provided by STMi-
croelectronics, as the generic DesignWare SRAM’s are slower and far less area
efficient.

The FIFOs allow the implementation to balance the load across the pipeline in
case one of the pipeline stages is stalling the pipeline, assuming that the average
workload distribution provides a balanced workload for the pipeline. However the
FIFOs use a lot of chip area without improving the maximum data throughput.
A better way to utilize the chip area is to improve the load balance by creating
parallel datapaths with interleaved pixel processing, as discussed in the previous
chapter (see figure 3.24 page 83).

Using the RTL programming model for logic synthesis, each iteration through
the calculations in the combinatorial logic process must be completed during one
clock cycle. If a calculation is too complex to be performed within the desired
clock frequency it can be subdivided either by using a state machine to control
the dataflow and/or subdividing into more parallel processes or by pipelining the
calculations.

Synopsys Design Compiler has a nice feature to aid in the design of pipelined
datapaths called register re-timing or register balancing which allows the designer
to add a pipeline of registers at the end of a datapath, and then tell the synthesis tool
to distribute these registers across the datapath. The register re-timed pipelined dat-
apath is functionally equivalent to the purely combinatorial datapath with an added

110 Chapter 4. Codesign for Hardware and Software Implementations

“delay” pipeline at the end, but it should now work correctly at a higher clock fre-
quency. Synopsys FPGA Compiler II which is used for the FPGA implementation
described later has a similar register balancing feature. In [71] the register balanc-
ing optimizer was used to create pipelined datapaths for the ASIC implementation
of the tile rendering engine.

An SDRAM memory controller for the bucket sorted triangle heap was also
designed for the ASIC implementation. The intention of this is to provide the pre-
requisites for a hardware implementation of the front-end graphics pipeline. I addi-
tion a hardware implementation of the triangle heap allows the design of a memory
architecture better suited for the tile renderer. As mentioned in the description of
the software implementations of Hybris, it is difficult to know how the 4 kbyte
SDRAM pages are mapped to banks, because of the virtual memory manager. In
hardware we have the opportunity to control this, as well as design a memory ar-
chitecture suitable for implementation of a double-buffered triangle heap, allowing
pipelined parallel operation of the front-end and back-end. The memory layout for
the ASIC implementation’s triangle heap is essentially the same as for the software
implementation, i.e. triangle nodes in a linked list of 4 kbyte page aligned trian-
gle buffers for each bucket. As the 2D bucket pointer hash table is small (40x32
pointers) and static in size, it can be located in a small on-chip buffer. The tile
renderer back-end serially reads a triangle buffer from the triangle heap at a time,
maximizing SDRAM performance as burst mode transfers can be used. Bandwidth
problems may occur only when writing to the triangle heap from the front-end, as
the writes require random access to memory which can cause excessive page swap-
ping in the SDRAM memory. A write caching memory architecture is described
in [72] which uses four FIFO buffers to serialize write accesses to the four banks
of pages in an SDRAM [147]. This caching scheme requires consecutive writes to
be evenly distributed over the four banks to keep the FIFO’s balanced. In addition
the current Hybris architecture has introduced object-partitioning in the front-end
pipeline which further helps serialize the writes to the triangle heap, reducing the
requirement to handle random writes. By organizing the tile buckets in a bank
interleaved scheme so neighboring buckets are in different banks, we are able to
handle bucket overlapping triangles and object-partitions efficiently.

An actual ASIC implementation of the design synthesized using Synopsys De-
sign Compiler would need to be processed with the Cadence Silicon Ensemble
ASIC design layout tool. The input to Cadence is a Verilog net-list produced with
Synopsys. Cadence is then used to map the design to the ASIC standard-cell li-
brary provided by STMicroelectronics in order to perform layout with floorplan-
ning, placement and routing. Finally the design layout tool is used to create the
lithography masks required for the physical manufacturing process to produce the
prototype ASIC.

4.5. FPGA implementation 111

ASIC Simulation

Manufacturing costs for a prototype run of an ASIC in small quantities is very
high (e.g. the STMicroelectronics 0.25µ CMOS process costs about 700 euros per
mm2 for a few prototype chips, including university discount). Because of this,
simulation of the ASIC design is necessary to get an idea of how the design works
before actually manufacturing a chip.

Since the ASIC design was not fully completed only simulation estimates of
the performance is available. From [71] simulated performance for the tile ren-
dering back-end running at 27 MHz is approximately 16 frames/s for rendering
an object with 1 million triangles, such as the Stanford Buddha. Since the ASIC
implementation used floating point operations in some of the inner loops, that is
the main limiting factor for the performance. As pointed out in [71] fixed-point
arithmetic would be required to increase the speed of the design.

In the following section we investigate an FPGA design which implements the
tile rendering back-end using fixed-point arithmetic.

4.5 FPGA implementation

Based on the work done for the ASIC implementation, an FPGA implementation
[207] was made, targeted for a Xilinx Virtex XCV1000 FPGA [238], a modern
FPGA which provides a design space equivalent to one million system gates. For
an overview of FPGAs in general, see [26]. In order to fit the tile rendering engine
onto the FPGA, several changes had to be made. One of the changes was to remove
the FIFOs between the rendering pipeline stages in the ASIC design, as those large
FIFOs are excessively expensive/impossible to implement in an FPGA. The area
is much better spent for applying parallelism in the tile rendering engine together
with some shorter FIFO buffering. Currently the FIFOs are reduced to a depth of
one, i.e. replaced by simple registers. Another change to the design was to remove
pipelining from the individual datapaths. While not absolutely necessary, as all
the FPGA cells contain registers useful for pipelining, this made the FPGA design
process much simpler and also allowed fixing some bugs from the ASIC implemen-
tation. Datapath pipelining may be re-introduced for the FPGA implementation in
the future, as the Synopsys FPGA Compiler II supports the same register balancing
optimization techniques used to implement pipelining for the ASIC. The synthesiz-
able subset of VHDL implemented in the Synopsys FPGA Compiler II is described
in [217].

One of the most important changes made was that the on-chip SRAM archi-
tecture for on-chip tile buffering was redesigned. The ASIC implementation used
a generic Synopsys DesignWare SRAM block, which features an asynchronous

112 Chapter 4. Codesign for Hardware and Software Implementations

reset signal to clear the contents of the entire SRAM. While convenient, this re-
set behaviour adds complexity to an SRAM making it larger and slower. Further,
to implement SRAM blocks in the FPGA we are forced to use the configurable
blocks of dual ported SRAM present in the FPGA (known as BRAM), which do
not feature asynchronous reset to clear the contents. VHDL components for the
BRAMs can be generated by the Xilinx Core Generator’s dual port SRAM gen-
erator. A properly pipelined tile buffer architecture using this more area efficient
type of on-chip RAM was described in the previous chapter (see figure 3.20). Here
double-buffering and cross-bar switching is used to allow multiple accesses to the
dual ported 32x32 pixel tile buffers, providing an efficient tile buffer memory ar-
chitecture which also allows enhanced rendering algorithms to read pixels, which
is needed for alpha blending operations and other advanced rendering methods,
such as those discussed in [48].

The tile depth z-buffer is now double buffered allowing it to be cleared and
stored in a global depth-buffer for future use if required. In comparison, the ASIC
implementation relied on asynchronous clear with a single buffered depth buffer.
The software implementation of Hybris uses some of the z-buffer bits to implement
“dirty” bits in order to limit the need for clearing the z-buffer every time. Similar
techniques are described in [23] and reported to be used in the ATI Radeon graphics
processor.

Additionally it is not possible to transfer the complete triangle heap to the
FPGA, as it does not have enough on-board memory to accommodate the poten-
tially huge triangle heap. E.g. 64 Mbytes are needed to store a triangle heap for
one million rendered triangles. Because of this the PC host software for the FPGA
implementation must send triangle buffers for one tile at a time to the FPGA board.

The FPGA implementation is targeted for a codesign prototyping platform
based on an ordinary Pentium III PC with an FPGA prototyping board on the PCI-
bus. This prototyping board is the Celoxica / Embedded Solutions Ltd. RC-1000PP
PCI board featuring a PLX PCI 9080 PCI interface and a Xilinx Virtex XCV1000-6
FPGA as well as 8 Mbytes of asynchronous SRAM in four independently address-
able 32 bits wide banks. Unfortunately such a prototyping system is limited by
the maximum speed of the PCI bus. The available drivers for accessing the RC-
1000PP through the PCI-bus limits the bandwidth further. The Xilinx Virtex FPGA
architecture is described in [238], and the RC-1000PP manual [216] describes how
the FPGA’s pins are connected to the other resources on the prototyping board.

The design flow for the FPGA implementation is to start from a suitable refer-
ence C implementation and manually transform it into an RTL description of the
design in VHDL suitable for FPGA implementation. In this particular study some
of the VHDL code developed for the ASIC implementation could be reused. Syn-
opsys FPGA Compiler II is then used to synthesize the VHDL description, targeted

4.5. FPGA implementation 113

for the Virtex FPGA architecture. Once synthesized an EDIF net-list is exported
from Synopsys. This EDIF net-list is then imported into the Xilinx Alliance De-
sign Manager FPGA layout tool to map the design to a particular FPGA using
placement and routing to finally create an FPGA configuration bit-file. Finally,
this bit-file is then used to configure the FPGA to form the designed digital system.

4.5.1 PCI bandwidth

The performance of the first FPGA implementation was severely limited by the
available PCI bandwidth. The bandwidth problems were mainly caused by poor
utilization of the limited communication models available in the driver for the RC-
1000PP FPGA prototyping board.

The protocol used in [207] for transferring data over the PCI-bus performed
a host-initiated PCI bus-master DMA transfer for each triangle node buffer in the
bucket sorted triangle heap. While this type of transfer, once running, will trans-
fer data at maximum speed over the PCI-bus, there is a relatively large overhead
for initializing the data transfer. Since the blocks to be transferred are 4 kbytes
or less in size, the accumulated overheads of many small transfers becomes very
high. In [207] a plot of block size and measured transfer rate is presented, show-
ing a relatively poor transfer rate of about 10 Mbytes/s for continuous transfer of
4 kbyte data blocks. This should be compared to a data transfer rate of over 100
Mbytes/s achievable for a single large block transfer. It should be noted that the
actual transfer rate depends on the PCI implementation of the PC’s motherboard
chip-set: Observed maximum transfer rates for transfers from the PC to the PCI
board varied between 50 Mbytes/s with the Intel 815E chip-set, 80 Mbytes/sec
with the VIA 694 chip-set and 110 Mbytes/sec with the Intel 440BX chip-set.

According to the PLX PCI 9080 manual [185] the PCI interface on the FPGA
board is also capable of performing scatter/gather or chaining mode PCI bus-master
DMA transfers. Chaining mode DMA would be the ideal method for transferring
data to the FPGA prototyping board, because it is able to match the data distribu-
tion in the triangle heap. The bucket sorted triangle heap contains a set of triangle
node buffers for each bucket corresponding to a tile. These buffers are not neces-
sarily placed in contiguous memory locations. However, by using chaining mode
DMA it would be possible to instruct the PLX PCI 9080’s DMA engine to trans-
fer the relevant blocks. In practice this can be done by creating a linked list in
either host (PC) or local (FPGA board) memory which is a list of pointers to vari-
able sized memory blocks to be fetched. Once started, the PLX chip automatically
executes the transfers by following the links in the list, avoiding the expensive over-
head of starting the individual transfers from the host. Unfortunately the supplied
RC-1000PP device driver API [25] for Windows only exposes a simplified “2D”

114 Chapter 4. Codesign for Hardware and Software Implementations

interface to this scatter/gather functionality, requiring that the memory blocks are
equal in size and spaced equally in memory. Since no source code was supplied for
the RC-1000PP API, adding the proper functionality would require starting from
scratch with the implementation of a Windows device driver.

Another alternative data transfer method is to use memory mapped I/O. As the
FPGA board’s driver maps the on-board memory to a virtual address space in the
host PC, the FPGA board memory can be accessed as normal memory, although at
a lower speed. An implementation of the triangle data transfer based on memory
mapped I/O improves the bandwidth to about 30 Mbytes/s. Although better than
the original 10 Mbytes/s, it is still far from the maximum PCI bandwidth. The slow
speed is caused by address/data multiplexing which halves the available bandwidth,
as well as the use of individual PCI bus transfers for each data word.

The best transfer method to the FPGA board was found to be DMA transfers
of large data blocks. However this requires re-organization of the 4 kbyte trian-
gle heap memory buffers into larger 2 Mbyte memory blocks which as mentioned
earlier can be transferred at the maximum transfer rate of the PCI bus, i.e. up to
about 100 Mbytes/s. The re-organization causes a small overhead from memory-
to-memory copying, but nevertheless this method is currently the best performing
transfer method to the FPGA board, using the current drivers. For higher perfor-
mance, the memory copy can be avoided by using chaining mode PCI bus-master
DMA, but this requires an improved driver.

Once the data has arrived in one of the input buffer memory banks on the FPGA
board itself, the tiles are rendered one tile at a time, using the buffer swapping input
multiplexer described in [207] to allow PCI-bus data transfer and tile rendering to
be overlapped in time. This buffering scheme is essentially an implementation of a
very large input FIFO needed to maximize PCI bandwidth by using large transfer
sizes. Figure 4.4 shows the input multiplexer needed to access data from one or the
other bank, as well as the input triangle controller.

Note that if chaining mode DMA for transfer of smaller buffers is available,
the on-chip BRAMs on the FPGA would be sufficient for input FIFO buffering,
eliminating the need for external SRAM buffering. Incidentally the Virtex FPGA
implementation currently has exactly 8 kbytes of unused on-chip BRAMs, just
enough for two 4 kbyte input triangle buffers, usable for implementing an 8 kbyte
input FIFO by utilizing the dual-ported BRAMs.

From this point on the FPGA implementation of the tile rendering engine from
figure 3.20 renders the triangles in each tile, and then stores the rendered tiles in a
full-frame framebuffer ready to be sent to the display. The next section discusses
how the display is handled.

4.5. FPGA implementation 115

Input
Tr iangle

control ler

Tile
Render ing

Eng ine

Input

External
SRAM

Input buffer
Bank 0

External
SRAM

Input buffer
Bank 1

Input

In
pu

t m
ul

tip
le

xe
r

Input Triangle

FPGA

PLX PCI
Local bus
interface

Local
Bus

Control/Status Cont.

Figure 4.4: Data input for the FPGA. The input multiplexer allows the FPGA
to read triangles from one bank while the PCI interface writes data to the
other. The input triangle controller builds the internal representation of a
triangle.

4.5.2 VGA video output

One of the major bottlenecks of the FPGA implementation in [207] is the transfer
of the final rendered image back to the host PC. Since this transfer is done across
the same PCI-bus as the source data transfer to the FPGA, the PCI-bus is contin-
uously switched between sending triangle data and retrieving image data to and
from the FPGA board. The required bandwidth for transferring animated images
is very high when high resolution images are transferred at a high framerate. This
also puts the FPGA implementation of Hybris at a disadvantage compared to other
3D graphics processors which are integrated in the video display hardware. The
required bandwidth for transfer of a video image sequence can be formulated as
follows:

Bvideo = width∗height∗depth∗ framerate (4.1)

where width and height specify the size of the image in pixels, depth is the number
of bytes per pixel, and framerate is the number of image frames to be transferred
per second. Bvideo is the bandwidth in bytes/sec. For example a low resolution
image of 640x480 pixels with 8 bits/pixel at 30 frames/sec requires a bandwidth
of 9.2 Mbytes/s, easily accommodated by the PCI-bus though it steals bandwidth
from data transfer to the FPGA board. However the video bandwidth required for
higher resolutions can be quite high. Transferring a typical image for a PC display
with a size of 1280x1024 pixel in 24 bits/pixel true color at 75 Hz full frame rate
requires a bandwidth of 295 Mbytes/s, about three times higher than the available
bandwidth on the PCI-bus.

116 Chapter 4. Codesign for Hardware and Software Implementations

The best way to get rid of this extra bandwidth requirement is to integrate the
3D graphics processor in the video display hardware to get a dedicated communi-
cation channel to the display. Integration of the FPGA into a standard PC graphics
adapter seems to be quite difficult, as detailed technical information about current
PC graphics adapters is impossible to obtain. However a much more practical solu-
tion exists, namely to add a standard VGA (Video Graphics Array) video interface
to the FPGA board itself. Since we do not want to build a PC graphics adapter from
scratch involving complicated Windows drivers and VGA compatibility, we will
still need a standard PC graphics adapter for Windows applications. The FPGA’s
VGA video interface thus only needs to interface with an analog RGB monitor.
This approach for building a 3D graphics accelerator is essentially similar to the
pioneering 3D graphics accelerators for the PC platform, namely the 3dfx Voodoo
Graphics and Voodoo2 dedicated 3D graphics accelerators. These 3D graphics
systems also required the presence of a standard Windows graphics adapter, and
would switch the video output between the 3D graphics board and the 2D graphics
board. The drawback of this approach is that a 3D graphics application using the
dedicated 3D graphics accelerator must run in full-screen, while the 2D Windows
display is not available at the same time (unless two monitors are used). If 2D
Windows functionality must be integrated into the 3D hardware implementation,
some of the techniques described in [186] might be useful.

Video output for a CRT (Cathode Ray Tube) based VGA monitor requires
generation of five signals. Three analog colour signals for intensity of the pri-
mary colours Red, Green and Blue. Additionally two synchronization signals,
hsync and vsync are needed for scan-line and frame synchronization. A CRT
video display monitor is inherently analog and does not process digital pixel sam-
ples but continuous intensity signals. The maximum image resolution is deter-
mined by the video bandwidth and the dot pitch of the display tube. To display a
digital image from a framebuffer on a CRT monitor the VGA video interface must
serialize the pixel contents of the framebuffer into a continuous analog signal, and
generate synchronization pulses between scanlines and frames which follows the
VGA timing requirements. The CRT display draws an image on the screen using
a raster-scan process by scanning an electron beam from left-to-right to build each
scanline and from top-to-bottom to build the image from scanlines. At the end of
each scanline the display must receive a horizontal synchronization signal to move
(retrace) the beam back to the left edge in order to display the next scanline. Simi-
larly the vertical synchronization signal marks the end of a video frame and causes
the beam to retrace back to the top.

The human visual perception system is able to interpret the raster-scan pattern
of a moving dot of light as a complete image, given a sufficiently high frame refresh
rate of at least 60 Hz to avoid flickering.

4.5. FPGA implementation 117

VGA monitor

Figure 4.5: Raster-scan pattern of the electron beam in a CRT-based VGA
monitor. Visible pixels are illustrated as thick lines in the raster-scan pat-
tern. Horizontal and vertical retrace is indicated by the diagonal lines. Note
the horizontal and vertical blanking intervals in the border around the visible
display area.

First we consider a digital version of this video interface using a pixel clock as
a reference for timing. The Standard VGA video signal for a 640x480 pixel display
needs a 60 Hz frame refresh rate and a 31.5 kHz line rate. The visible display area
is defined relative to the horizontal and vertical synchronization signals by hori-
zontal and vertical blanking intervals. Figure 4.5 illustrates the raster-scan pattern
of the electron beam and shows how the visible display area is formed. Standard
VGA specifies timings for the synchronization signals and temporal placement of
the visible area. In practice the VGA timings are expressed using the pixel clock
to determine the duration of synchronization and blanking as a number of pixel
clock cycles. E.g. to accommodate a visible area of 640x480 pixels as well as the
blanking periods for synchronization requires a pixel clock frequency of 25.175
MHz to allow for a 31.5 kHz line rate with a total of 800 pixels of which 25.17
µs are the 640 visible pixels and 3.77 µs (95 pixels) form the hsync pulse in the
remaining blanking interval, similarly for the 60 Hz frame rate we have a total of
525 scanlines of which 480 are visible and 2 are used for the vsync pulse.

The contents of the framebuffer, which was created using the tile rendering
engine, now has to be displayed on the VGA monitor. This is done by fetching one
pixel from the framebuffer per pixel clock during raster-scan of the visible area.
In the FPGA implementation the framebuffer is stored in double buffered external
SRAM memory, allowing the tile renderer to render one frame one tile at a time to
the first buffer, while a VGA display processor reads pixels in raster-scan sequence
from the second buffer. The framebuffers are stored in two independent memory
banks, allowing full memory bandwidth to both the rendering and video display
processors. A 2x2 crossbar switch allows switching between memory banks at any
time, using tri-state buffers to allow switching between input from and output to

118 Chapter 4. Codesign for Hardware and Software Implementations

Tr
is

ta
te

 I/
O

bu
ff

er
s

Output
Ti le

control ler

VGA V ideo
Disp lay

Processor

Pixel

Pixel

Tile
Render ing

Eng ine

Video D/A
Converter ,
3 x 8 bits

Pixel External
SRAM

Framebuf fer
Bank 0

External
SRAM

Framebuf fer
Bank 1

VGA Monitor

2x
2

cr
os

sb
ar

 s
w

it
ch

Pixel

Pixel

Analog video

Pixel

Pixel

Sync

FPGA

Tr
is

ta
te

 I/
O

bu
ff

er
s

Input

Figure 4.6: Integration of a VGA video output processor and the tile ren-
dering engine in the same FPGA. A 2x2 crossbar switch and two external
memory banks allows independent framebuffer access for the two proces-
sors.

the external SRAM banks. Figure 4.6 shows how the video output from the tile
rendering engine is handled by integrating the VGA video output processor in the
same FPGA.

The current FPGA implementation uses two clock domains to allow indepen-
dent operation of the tile rendering engine and the video display processor. This al-
lows setting the pixel clock to exactly the required frequency, while the tile render-
ing engine’s clock frequency remains fully adjustable. Since the external SRAM
is asynchronous, no problems are caused by switching the SRAM banks between
two clock domains. If synchronous SSRAM or SDRAM is to be used in a future
implementation, a more elaborate mechanism must be used to cross between clock
domains.

Since the tile renderer processes one tile of 32x32 pixels at a time, the frame-
buffer also reflects this tiling pattern. However the video display processor requires
a linear stream of pixels one scanline at a time. This is handled by reading one line
of 32 pixels from each framebuffer tile intersected by the currently displayed scan-
line. An SRAM address calculation datapath handles this automatically. As the
tiles are 32 pixels wide this framebuffer linearization method is also applicable to
an SDRAM based framebuffer without too much overhead.

The video DAC (Digital to Analog Converter) used with the FPGA’s video out-

4.5. FPGA implementation 119

75 ohm
termination

VGA monitor

FPGA PCI board

500 ohm (470)
Bit 7

(MSB)
VGA cable

Analog
video

1 kohm (1K)

Bit 6

2 kohm (2K)

Bit 5

4 kohm (3K9)

Bit 4

8 kohm (8K2)

Bit 3

16 kohm (16K)

Bit 2

32 kohm (33K)

Bit 1

64 kohm (62K)
Bit 0

(LSB)

Digital output:
0 or 3.3V

Video signal:
0 - 0.7V

8 bit video D/A converter

Photo of the 3 x 8 bi t RGB video DAC prototype.

Figure 4.7: Schematics for the video D/A converter used for the FPGA im-
plementation’s VGA video output. Three of these 8 bit DACs are needed for
24 bit true colour RGB video output. In addition two TTL level signals, hsync
and vsync are needed for line and frame synchronization and are connected
directly to two pins on the FPGA. The photo shows the video DAC prototype
which connects to the FPGA board using a ribbon cable.

120 Chapter 4. Codesign for Hardware and Software Implementations

put is a simple resistor network, driven directly by the output pins of the FPGA.
Figure 4.7 shows the schematics for one of the three 8 bit video DACs. The re-
sistor values are chosen to generate an analog signal voltage between 0 and 0.7V,
assuming the VGA monitor provides a 75 Ω termination and the FPGA generates
a 3.3V digital high voltage. By doubling the resistance for each lesser significant
bit, a linear correspondence between digital pixel value and video signal voltage
is achieved. The resistor values shown in figure 4.7 are the ideal values, with the
closest standard resistor series values used for the prototype shown in parenthesis.

During practical testing the resistor network DAC provided a very nice and
sharp picture when used in conjunction with the FPGA’s output pins. The 640x480
pixel display was tested up to a pixel clock frequency of 50 MHz (corresponding
to the monitor’s maximum frame rate limit of 120 Hz) showing excellent image
quality. A minor practical problem with “fine tuning” the resistor values in the
resistor network was encountered. Since the resistor network was built using from
standard series 5% accuracy resistors, it was quite difficult to balance all the re-
sistors. Furthermore, the wiring pins on the FPGA prototyping board have a 27 Ω
resistor in series which also has to be accounted for. These resistor inaccuracies
cause some visible discontinuities in colour scales on the monitor, e.g. the intensity
drops slightly when changing from pixel value 127 (MSB off, all other bits on) to
128 (MSB on, all other bits off) where the correct behaviour should be a slight
increase in intensity. Fortunately these problems are very minor, and can be fixed
by using precision resistors (1%) and trimming or simply by using a commercial
video DAC or RAMDAC chip. A RAMDAC integrates a colour correction look-up
table with the D/A converter to allow gamma correction and other calibrations.

4.5.3 Physical properties

The physical FPGA configuration bit-file is generated using the Xilinx Alliance
Design Manager layout tool. The physical layout of the synthesized logic design
is created automatically by mapping the logic to FPGA cells and performing au-
tomatic floorplanning, placement and routing of signals. The final FPGA config-
uration can be viewed and analyzed in the Design Manager. Figure 4.8 shows an
overview of the FPGA floorplan. The floorplan shows how the cells of the FPGA
are utilized for logic only and gives an idea of how much area is left for improving
the design by adding more logic. The dataflow through the FPGA is predominantly
from left to right. The triangle input read-ahead controller, which reads triangle
nodes from the external SRAM banks connected to I/O pads on the left edge of
the FPGA, is located on the left side. Triangle setup and drawing by scanline in-
terpolation is located approximately in the middle and left region. Span setup and
drawing by span interpolation is located in the middle and middle-right area. The

4.5. FPGA implementation 121

Input�controller Setup/Draw
triangle

VGA�video
processor

Draw�spanSetup�span

Tile�output
controller

Tile�buffer�2

Tile�buffer�1

Figure 4.8: Floorplan of the FPGA. Shows how the synthesized logic is
mapped and placed onto the configurable logic blocks of the FPGA.

Figure 4.9: Contention map of the FPGA. Shows the total utilization for all
the FPGA cells, including both logic and routing resources. Higher utilization
is indicated by a darker colour, black indicates maximum utilization.

122 Chapter 4. Codesign for Hardware and Software Implementations

tile buffers and output controller crossbar switches are located to the right, near
the BRAM tile buffers which form the right-most column of the FPGA. Finally the
global framebuffer SRAM banks are connected to I/O pads on the right edge of
the FPGA. The VGA video output processor is located in the upper-middle area,
slightly to the right. The digital video output is connected to pads on the upper
edge of the FPGA.

Figure 4.9 shows a contention map, which charts the total utilization for all the
FPGA cells, including both logic and routing resources. Note how the extensive
routing required to implement the triangle input controller causes high contention
at the left edge of the FPGA. This is because the triangle data structure is repre-
sented internally in the FPGA as a 348 bit logic vector. Similarly some contention
is caused near the BRAM tile buffers in the bottom right hand corner because of
fan-out for the reset signal, which is not mapped to one of the dedicated clock nets.

Finally figure 4.10 shows the routing map, which illustrates how all the signal
paths in the FPGA design have been routed. Note that the VGA video output
signals for digital video are routed backwards in the FPGA, opposite of the general
left-to-right dataflow direction, which may cause some routing contention. This
is because the digital VGA video output pads are located on the upper edge, and
the data source for the video processor is the global framebuffer connected to the
external SRAM banks via pads on the right edge of the FPGA.

The FPGA implementation is currently very promising for future performance
improvements. From the overview of the FPGA floorplans in figures 4.8, 4.9 and
4.10 it is clear that the Virtex XCV1000 FPGA is not yet fully utilized as a rela-
tively large area of configurable logic blocks are currently not utilized. From the
contention map we can see that there is some routing contention in the I/O border
areas of the FPGA, but not in the interior. This suggests that we have plenty of
space left for future improvements of the tile renderer by adding more logic.

From the Xilinx Alliance Design Manager layout tools we can get a report
of the FPGA implementation’s device utilization and performance statistics. This
design report is listed in figure 4.11.

From these statistics we can see that only one third (31%) of the logic capac-
ity is utilized, giving extra space for an implementation of e.g. the 2x2 interleaved
pixel parallel tile renderer discussed in chapter 3, see page 83. This parallelization
only adds extra logic (and wires) and does not need additional on-chip memory,
although the BRAMs must be configured for a wider data interface to allow par-
allel data access. The BRAMs on the left edge of the FPGA may also be used
to accommodate an extended tile buffer to better support colour rendering using
24 bits rather than 8 bits per pixel. However there is an additional routing delay
and possibly more contention if signals are routed across the FPGA to use the left
BRAMs as well as the right BRAMs for the rendering process.

4.5. FPGA implementation 123

Figure 4.10: Fully synthesized graphics hardware. FPGA place & route lay-
out for the tile rendering back-end and VGA video output mapped to a Xilinx
Virtex XCV1000 FPGA.

124 Chapter 4. Codesign for Hardware and Software Implementations

Design Summary

Number of Slices: 3,932 out of 12,288 31%
Number of Slice Flip Flops: 2,138 out of 24,576 8%
Total Number 4 input LUTs: 6,548 out of 24,576 26%

Number used as LUTs: 6,543
Number used as a route-thru: 5

Number of bonded IOBs: 293 out of 404 72%
Number of Block RAMs: 16 out of 32 50%
Number of GCLKs: 2 out of 4 50%
Number of GCLKIOBs: 2 out of 4 50%

Total equivalent gate count for design: 331,682
Additional JTAG gate count for IOBs: 14,160

Design statistics:
Minimum period: 42.252ns (Maximum frequency: 23.668MHz)
Maximum net delay: 10.997ns

Figure 4.11: The FPGA implementation’s device utilization and statistics, as
generated by the Xilinx Alliance Design Manager layout tools when targeting
the Xilinx Virtex XCV1000-6 FPGA.

Note also that only 8% of the flip-flops are utilized, meaning that any pipelining
applied to the datapaths in the FPGA design is essentially free. Pipelining may
allow the design to operate at a higher clock frequency. The current FPGA design
operates reliably at a 25 MHz clock frequency without pipelining of the datapaths.

If we improve the internal speed of the FPGA we might run into problems
with the external asynchronous SRAMs as they can be operated reliably only up to
about 35 MHz from the FPGA. This was discovered during the design of the VGA
video output processor, as it uses a different clock domain than the tile renderer,
allowing its clock frequency to be set independently of the tile renderer’s clock.
However, since the tile renderer uses internal on-chip buffering for the tile-based
rendering, a future design can be allowed to run on a faster clock than the external
memory. If the internal processing speed can be made far higher than the external
memory speed, we may use the extra computational power to improve the render-
ing quality e.g. by applying anti-aliasing as discussed in section 3.6.6 of chapter 3,
demonstrating other aspects of the Hybris architecture’s scalability properties.

4.6. Performance figures for the implementations 125

Model name :
Size (triangles) :

Implementation : frames/s triangles/s frames/s triangles/s
New Single CPU 2.5 2,719,290 19 1,319,569
Single CPU 2.2 2,392,975 16 1,111,216
Dual CPU 3.9 4,242,092 29 2,014,079
FPGA 1 1,087,716 12 833,412
ASIC (simulated) 16 17,403,456 n/a n/a
GeForce 2 GTS 1.6 1,740,346 20 1,389,020

Buddha
1,087,716

Bunny
69,451

Figure 4.12: Measured performance figures for different implementations
of the Hybris graphics architecture. For reference the commercial Nvidia
GeForce 2 GTS graphics processor is included.

4.6 Performance figures for the implementations

This section lists some comparative performance figures for renderings on the Win-
dows 2000 based test PC which features dual Pentium III 500 MHz CPUs, the
FPGA prototyping board with integrated video output and on the ASIC implemen-
tation (simulated). For reference we compare the performances of Hybris with the
commercial Nvidia GeForce 2 GTS1 3D graphics processor.

The test objects are the Stanford Buddha and Bunny models. The Buddha
is made of 1,087,716 triangles, and the Bunny consists of 69,451 triangles. Figure
4.12 lists the performance observed while rendering these objects with the different
implementations of Hybris, as well as the GeForce 2 performance reference. Both
frames/s and triangles/s are listed. Note that the triangle rate is calculated from
the total number of triangles in the test object. The number of visible triangles
is usually less than half, as it depends on dynamic back-face culling and triangle
rounding.

While the dual Pentium III parallel software implementation of the Hybris
graphics architecture achieves the highest performance levels, the FPGA imple-
mentation is also beginning show quite high performance levels. For the Bunny
test case, the FPGA performs almost as well as the single CPU software renderer.

The dual CPU implementation demonstrates an observed speedup relative to
the single CPU implementation of 1.81 for the Bunny and 1.77 for the Buddha test
objects. While the observed speedup is not linear, this should be considered to be
quite good, considering that some serially executed code still exist in the user input

1GeForce 2 GTS: See chapter 2 and http://www.nvidia.com

126 Chapter 4. Codesign for Hardware and Software Implementations

interface and display output interface, e.g. for every frame the final rendered image
must be copied from main memory to the display memory on the AGP video card.
This means that the actual speedup of the parallel renderer itself is higher, if we
compensate for the serially executing part. From rendering of an empty scene, we
get an idling framerate of about 120 Hz, representing the serially executing code in
the system. Using Amdahl’s Law (4.2), see [174], we can then estimate the actual
speedup of the rendering code in the dual CPU implementation. Amdahl’s Law
states that the total execution time is the sum of the execution time of the improved
(or parallelized) code and the unimproved (or serial) code:

ttotal =
tparallelizable

parallel speedup
+ tserial (4.2)

which for the single CPU case looks like this:

tsinglecpu = tparallelizable + tserial (4.3)

and for the dual CPU case:

tdualcpu =
tparallelizable

dualcpu speedup
+ tserial (4.4)

The observed speedup is calculated by:

observed speedup =
tdualcpu

tsinglecpu
(4.5)

The estimated dual CPU parallel speedup can then be determined by:

dualcpu speedup =
tparallelizable

tdualcpu − tserial
(4.6)

substituting with (4.3) we get:

dualcpu speedup =
tsinglecpu − tserial

tdualcpu − tserial
(4.7)

By inserting the observed performance and the observed serial execution time
in equation (4.7) we can get an estimate of the dual CPU parallel speedup. This
gives the following speedup figures, based on idle performance of 120 frames/s:

Bunny: Parallel speedup: 2.07 (observed speedup: 1.81)

Buddha: Parallel speedup: 1.80 (observed speedup: 1.77)

4.6. Performance figures for the implementations 127

From these figures we get the very interesting result that in the case of the
Bunny test object, the dual CPU parallel renderer achieves superlinear speedup.
This can be explained by the way the Hybris graphics architecture uses memory
partitioned in small localized blocks, which improves the cache utilization. When
two CPU’s are used, each of them process only one half of the dataset while the
total cache size is doubled. This results in a better cache utilization than with the
single CPU which must use a single cache to process all data.

However, the speedup is not superlinear with the Buddha test object. A good
reason for this is the very large data size of the 3D model which causes extensive
main memory bandwidth contention. This is a weakness of the shared memory
multiprocessor platform, as the CPU’s in the dual CPU platform use the same main
memory architecture as the single CPU platform. A multiprocessor computer ar-
chitecture using a crossbar switched multi-banked memory architecture would help
in our case, as the two worker processes in the dual CPU implementation of Hybris
do not simultaneously access the same memory locations.

The ASIC implementation performs very well in simulation, but it should be
noted that the input data-source and output data-sink are assumed to be ideal, i.e.
they are not the bottleneck, allowing the ASIC implementation of the tile rendering
engine to run at maximum speed. This may not be true in a real system, so the 16
frames/s should only be interpreted as an indication of the achievable speed for
an ideal graphics system using a single tile rendering engine. Note that the actual
internal triangle rate in the ASIC tile renderer is 4.2 Mtriangles/s after back-face
culling and rounding. The simulated performance is for the predicted 27 MHz
operational frequency. Under the realistic assumption that a final ASIC implemen-
tation can be scaled to 100 MHz [71], the internal tile rendering performance would
be 59 frames/s or 15 Mtriangles/s (for a dense triangle mesh such as the Buddha).
A triangle heap based on 64 bit wide SDRAM must run at least at 120 MHz to sup-
port this triangle rate (using the 64 byte triangle nodes). Given that contemporary
3D graphics processors employ 128 bit wide 460 MHz DDR SDRAM memories
and operate at up to 200 MHz internal clock frequency, there is plenty of room
for improvement of the ASIC implementation’s performance, e.g. by parallelizing
it, as such a memory subsystem would support a triangle heap bandwidth of over
100 Mtriangles/s. The task of designing a parallel front-end geometry processor
capable of supplying these data rates is quite challenging, but not impossible.

The GeForce 2 GTS performance results were made using the GLView VRML
viewer which was the only 3D viewing software found to be capable of handling
the same test 3D models at an acceptable speed. Other viewers were found to work
very slowly. It should be noted that the GeForce 2 GTS is capable of rendering
at higher performance levels when the object database is small enough to fit in its
vertex buffer, eliminating triangle communication overhead completely. Unfortu-

128 Chapter 4. Codesign for Hardware and Software Implementations

nately even the small Bunny test model is too big to fit in the GeForce 2’s vertex
buffer. The GeForce 2 is mainly optimized for high quality texture mapping of
large triangles in 3D computer games, not millions of small un-textured triangles.

In conclusion to this performance comparison it appears that a parallel software
renderer is currently the best solution for rendering very complex 3D models with
millions of triangles. However the hardware renderers may catch up on this number
in the future.

4.7 Prospects for future HW/SW implementations

Several different future implementations of the Hybris architecture are possible by
applying hardware/software codesign to arrive at other designs possibly achieving
even higher performance levels.

Some parts of the front-end graphics pipeline might well be implemented in
hardware. The most likely candidate is the triangle set-up calculations which may
be performed prior to bucket sorting as the last operation in the front-end or alter-
natively as the first operation in the back-end. The triangle set-up phase is quite
computation intensive as it involves division to calculate the triangle slopes and
differentials for parameters to be interpolated across each triangle.

Division is a bit tricky to implement in hardware, as e.g. Synopsys will only
allows synthesis of the ’+’,’-’ and ’*’ operations in VHDL. To synthesize the di-
vision operation a regular structure somewhat similar to array multiplication may
be used. The paper [241] presents an arithmetic unit generator for VHDL which
is able to generate arithmetic units configurable for many word sizes, including
division operations. This generator is best suited for ASIC technologies, however.
For the FPGA the Xilinx Core Generator can generate a customizable pipelined
divider suitable for our purpose. A generic description of arithmetic structures for
datapaths can be found in [98].

The triangle set-up stage in Hybris was recently transformed to exclusively use
integer and fixed-point arithmetic, so no complex floating point units are required.
This makes the triangle set-up stage implementable for both ASIC and FPGA tech-
nologies, using the division circuits just described.

Future improved ASIC and FPGA technologies will enable more elaborate im-
plementation of the Hybris graphics architecture. Some of the available options
with denser process technologies are implementation of multiple processor ele-
ments by leveraging the scalability of the Hybris architecture, e.g. several parallel
back-end tile engines and/or several parallel front-end object geometry engines. A
mentioned in the previous section, the triangle heap bandwidth is not a problem as

4.7. Prospects for future HW/SW implementations 129

we can use new memory technologies such as DDR2 SDRAM. Note that a highly
scaled implementation of the Hybris graphics architecture would need a crossbar
switched multi-banked memory architecture to support simultaneous data streams
to and from multiple parallel front-end and back-end processors.

Embedded DRAM manufacturing processes are gaining popularity in the semi-
conductor industry, and may be usable for on-chip buffering in future implementa-
tions of the graphics architecture. The main advantage of using embedded DRAM
is a far higher on-chip memory capacity, allowing e.g. an on-chip global frame-
buffer. An example of a graphics processor which uses embedded DRAM to inte-
grate the entire global framebuffer is the work-in-progress Glaze3D™ presented at
[168], which integrates 72 Mbits of 512-bit wide embedded DRAM running at 150
MHz to achieve high memory bandwidth. A related example is the ATI Mobility
graphics processors for notebook PCs which also integrate the framebuffer using
on-chip embedded DRAM, but this time for its low-power properties as access to
off-chip external memory is quite power consuming.

While the Hybris design works best with dual-ported SRAM memories in its lo-
calized buffers for high-speed parallel access, some buffers may be implementable
using embedded DRAM memories. However care must be taken to properly handle
memory refresh, paging and bank management if DRAM is used. An alternative
to regular embedded DRAM is “1T-SRAM” [126] embedded memory, which uses
a special caching and fine-grained multi-bank switching scheme to hide memory
refresh delays, making a DRAM array behave as a single-ported SRAM. The 1T-
SRAM IP-blocks may also be used in standard logic processes. According to [70]
embedded 1T-SRAM is used in the next generation Nintendo game console, a new
competitor for Sony’s PlayStation 2.

In the near future Xilinx will start producing the Virtex II Pro FPGA, which in-
cludes hard-core PowerPC CPU cores embedded in the array of configurable FPGA
cells. While a soft-core CPU is implementable in a normal FPGA, a hard-core
CPU is far more area-efficient and faster as well. This allows very tight integra-
tion between hardware and software components in future system-on-chip (SoC)
implementations using these FPGAs. The front-end geometry engine might be
implemented by using a hard-core CPU closely coupled with SIMD vector co-
processors (similar to [132]) implemented in the FPGA fabric. As the Virtex II
FPGAs include a large number of hard multiplier cores they can be used to perform
the many multiplications needed in an implementation of the front-end pipeline.

2DDR: Double Data Rate, i.e. data transfer on both rising and falling clock edges.

130 Chapter 4. Codesign for Hardware and Software Implementations

4.8 Chapter summary

In this chapter some of the possible hardware/software codesign implementation
options for the Hybris graphics architecture which was presented in the previous
chapter have been examined. We have examined how virtual prototyping code-
sign using the C programming language allows the Hybris graphics architecture
to be mapped to different implementation technologies, ranging from sequential
software and parallel software for general purpose computers with one or more
CPUs, over to more elaborate hardware/software codesign implementations. ASIC
and FPGA implementations of the back-end tile rendering pipeline have been suc-
cessfully implemented, although some work still remains in order to get superior
performance from the FPGA hardware implementation.

Chapter 5

Interfaces and Applications

This chapter discusses how to interface with an application that uses the graph-
ics architecture. An implementation of VRML 97 is used as a high-level inter-
face to the Hybris graphics architecture. Finally the 3D-Med medical visualization
workstation is presented as an example of an application which uses the graphics
architecture.

In order to implement many of the techniques required for high performance
scalable graphics, a high abstraction level of the application programming interface
(API) is required. This chapter describes how VRML 97 can provide a high-level
interface allowing optimizations such as automatic object partitioning, which is
needed to achieve good scalability and performance in the Hybris graphics archi-
tecture. This is compared to other lower-level standard graphics API’s such as
OpenGL. In order to gain scalability for high performance levels it is not enough
to optimize only the low level triangle rendering architecture. Optimizations on a
higher level of abstraction can give good results which may even be impossible to
achieve by optimizing only the lower levels of an architecture.

5.1 Virtual Reality

The highest level of abstraction in an interactive graphics system is the user inter-
action feedback loop. An image is presented on the screen, the user then interacts
by giving feedback that affects how the next image is generated. If this feedback
loop runs fast enough, and has a sufficiently short latency, the user will get the
illusion of manipulating something “real”. This feedback is the basis for Virtual
Reality. A general tutorial on virtual reality concepts is found in [123].

A critical factor of the user interaction feedback loop is the rate of image dis-
play. This is measured in frames per second. At framerates less than one frame per

131

132 Chapter 5. Interfaces and Applications

second (fps), interactivity suffers as the user must wait for the next image to appear.
According to [152] a framerate of 6 fps is enough to get a sense of interactivity,
15 fps provides good interactivity up to around 70 fps, above which interactivity is
not further improved because of limitations with displays and human perception.

Another critical factor is the latency of the feedback loop, i.e. the time that
passes from user input until a visible response is displayed. Latency is related to
framerate, as a faster framerate reduces the latency. Additionally the 3D graphics
system and the user input devices also add latency to the system. Note that latency
typically is in the order of a few frames, depending on the amount of pipelining in
the graphics system.

The visual quality of the resulting images is also important to create a convinc-
ing illusion of a “virtual reality”. Besides photorealism and nice looking images,
anaglyphic 3D stereo images are able to give the user a sense of depth perception.
An anaglyphic 3D stereo image is presented to the user by showing an image ren-
dered from the point of view of the human user’s left eye to that eye only, similarly
for the right eye. This can create an illusion of depth similar to what is possible
with stereo photography.

Several methods for separating the images for each eye are available. These
include: Red/green images + red/green colour filters, colour/monochrome images
+ special filters, alternating images + shutter glasses, horizontal/vertical polarized
light images + horizontal/vertical polarization filters, head-mounted binocular dis-
plays, fresnel-lens LCD stereo displays, etc.

These display methods all require rendering of two separate images, using a
slightly different view-point for each image to simulate the distance between the
human eyes. To properly align each image requires correction for the shape of the
display surface as mentioned in [42]. However our experiments with stereo render-
ing in Hybris, using the red/green filters and shutter glasses methods, shows that
the human visual system is able to compensate for these problems. Further, our ex-
periments showed that anaglyphic 3D stereo rendering provided a greatly enhanced
sense of depth in the rendered images. For example it was quite confusing to get
a good idea of the three-dimensional structure of the veins in a 3D model of the
liver reconstructed from a 3D ultrasound scan, but by using 3D stereo rendering it
was possible to get a good impression of the three dimensional vein structure. In
Hybris the 3D stereo rendering was implemented by rendering an image for the left
eye, moving the location of the viewpoint horizontally, and then render the image
for the right eye.

In order to implement virtual reality or any other kind of 3D visualization we
need an API to define how an application should use and interface with the 3D
graphics architecture. In the next section we will examine how such an interface
can be made.

5.2. 3D application interfaces 133

5.2 3D application interfaces

In general, 3D graphics interfaces fall in two categories, immediate-mode and
retained-mode APIs. The main distinction between these APIs is that immediate-
mode APIs specify a relatively low level of graphics primitive instructions which
immediately cause rendering to the display in the same order they are executed,
while retained-mode APIs allow a more abstract hierarchical 3D object structure
to be specified with no guarantee about the actual rendering order of the individual
graphics primitives.

5.2.1 Immediate-mode graphics interface

An immediate-mode graphics API presents an interface which allows the applica-
tion to specify a graphics primitive which is then immediately rendered into the
framebuffer. A subsequent API call to render a primitive can therefore assume that
all pixels affected by the previous call have been rendered to the framebuffer. This
imposes a strict ordering of graphics primitives. Also there is in general no way to
know when a frame is finished, as it is possible to render into a framebuffer while
it is being displayed.

Most commercial 3D graphics processors use a low-level immediate-mode
graphics API such as OpenGL [165, 204] or DirectX [148]. Typically OpenGL
is the de facto API for 3D computer graphics. OpenGL has evolved from Silicon
Graphics’ IrisGL to a portable immediate-mode graphics API suitable for many
application. The primary focus for OpenGL is technical CAD applications. While
many possible implementations of these interfaces exist [118], they are basically
limited to a serial immediate-mode interface model.

Recently research into parallel immediate-mode graphics interfaces has been
made, such as described in [99, 101] and implemented in the scalable Pomegranate
architecture [51] and WireGL [27]. While such a parallel API can be scalable, it
does not solve the important problem of partitioning the input. The application
must provide a balanced number of triangles to each interface at each node.

Because such a serial immediate-mode graphics interface may limit the max-
imum performance of a graphics system if an application does not use the API
properly, a retained-mode graphics interface may be preferred as the application
can rely on the graphics system to optimize rendering.

5.2.2 Retained-mode graphics interface

A retained-mode graphics API is an interface which accepts a single description
of the graphics objects to be rendered. This may be a hierarchical description

134 Chapter 5. Interfaces and Applications

involving multiple objects, each defined in their own coordinate systems defined
relative to other coordinate systems. Such an object hierarchy is known as a scene
graph.

Although a retained-mode API places limitations on the flexibility of a graphics
system such as by imposing fixed constructs for objects, it may provide improved
performance by statically and dynamically optimizing the scene description data
required for rendering.

The origins of the retained-mode API can be found in the PHIGS (Program-
mer’s Hierarchical Interactive Graphics System) API, a standard, dynamic and in-
teractive graphics interface, which is described in [211]. PHIGS uses a hierarchy of
data structures, which are essentially classes of objects like in C++. An overview
of how classes can be used to build hierarchical scene graphs in retained-mode
graphics interface software is given in [74]. While the ANSI PHIGS standard is
not in widespread use today, many of the ideas survive in recent retained-mode
graphics systems such as SGI OpenInventor [210], the retained-mode API in Di-
rectX [148] and SGI’s IRIS Performer multiprocessor API [192]. An example of
a scalable retained-mode interface is the distributed large-screen rendering system
described in [196, 195].

The ISO VRML 97 standard [28] (Virtual Reality Modeling Language) which
is based on many of the ideas in OpenInventor, can also be interpreted as a retained-
mode scene graph graphics API. OpenWorlds [47] is such a VRML-based object-
oriented scene graph API for C++. Recently Sun’s retained-mode Java 3D API
[212] is gaining popularity in the VRML / X3D community, making rapid de-
velopment of VRML based 3D applications possible using the Java programming
language [213, 61, 60].

The VRML scene graph representation used in the Hybris graphics architecture
is another example of such a retained-mode graphics system. For implementation
of the Hybris VRML browser, a hierarchy of VRML nodes are used, which are
represented by implementing each node as a C++ class.

Other VRML browser implementations which have been described in publica-
tions include i3D [8], VRweb [183], VRwave (a Java version of VRweb) [6], as
well as OpenWorlds [47] which also exposes its internal classes as a commercial
retained-mode scene graph API similar to OpenInventor. These techniques are also
quite usable in computer game engines [15].

Note that recently the popular immediate-mode graphics APIs OpenGL and
DirectX are integrating some concepts from the retained-mode APIs, such as object
representations using vertex and index buffers which allow the application to send
indexed triangle meshes rather than individual triangles or triangle strips to the
graphics system. A higher-level retained-mode interface can be used to encapsulate
the immediate-mode API to enable automatic object partitioning and optimization.

5.3. The Hybris VRML engine 135

As a historical note, the Silicon Graphics and Microsoft Fahrenheit API project
was an optimistic attempt to merge OpenGL and DirectX into a unified retained-
mode optimizing scene graph API.

5.3 The Hybris VRML engine

The Hybris graphics architecture needs an API interface in order to be usable for
real applications. Since one of the requirements is that we need freedom to experi-
ment with internal object representations, an immediate-mode API is not ideal. A
retained-mode API seems like a good model for this. Further, the platform inde-
pendent VRML 97 language does not even require a formal API to be specified as
long as the graphics system can read the VRML scene description. Since VRML
provides a very high abstraction level of the graphics interface, we gain the ability
to perform any optimizations we may think of. This is why VRML 97 was chosen
as the interface to the Hybris graphics architecture.

The VRML language can be used by itself to specify interactive behavior in a
virtual world of 3D objects, as internal sensor nodes are able to generate events in
response to user interaction as well as the flow of time. These events are routed
to other nodes in the VRML scene graph which can respond by activating pre-
determined animations. The Hybris VRML engine implements this event routing
system to allow animation and interactive manipulation of the scene. The event
routing system is implemented in an efficient way to avoid excessive memory
copies of event data. See [237] for further details about event routing.

A VRML extension implemented in Hybris’ VRML engine is the Java EAI
(External Authoring Interface) which is described in [135]. EAI specifies an API
for the VRML engine with interfaces to the Java programming language. The EAI
API works by exposing the VRML event routing mechanism to allow events to
be sent and received to and from an “outside” Java application. The Java Native
Interface (JNI) is used to implement efficient communication between the C++
based Hybris VRML scene graph software and a set of Java classes forming the
EAI interface. This approach allows a minimal interface to be used for run-time
program interaction with the VRML engine, and is useful for integration in e.g. a
Java application such as the medical visualization workstation described later. See
[86] for further information on this Java / VRML integration.

Further, Hybris’ internal object-oriented C++ scene graph classes can be ex-
posed to outside applications, providing a flexible high-level retained-mode graph-
ics API. An example of such a graphics API architecture of an open VRML engine
is found in OpenWorlds [47]. In Hybris the C++ classes which define the scene
graph can be subclassed to build entirely new functional blocks for the VRML en-

136 Chapter 5. Interfaces and Applications

gine, which can then be accessed from the VRML language as extended VRML
nodes. As example of this is the Volume VRML node described later, which
integrates direct volume rendering into VRML.

Finally it should be noted that the low-level interfaces used internally in the
Hybris graphics architecture might be exposed as an immediate-mode API. If the
object-partitioning system is exposed as an additional tool-kit API, the remaining
part of the graphics architecture can be accessed through an implementation of e.g.
OpenGL. This approach can potentially provide a way to allow existing OpenGL
based applications to use the Hybris graphics architecture for rendering. Since
other tile-based hardware renderers such as the PowerVR provides an OpenGL
interface, this will also be possible for the Hybris graphics architecture.

Note that a complete frame of data to be rendered is buffered in the inter-
nal triangle heap of a sort-middle tile-based graphics architecture such as Hybris
or PowerVR. Because of this, support for incremental updates to a display is ei-
ther not supported or at least implemented in a less efficient “compatibility-mode”.
Such incremental updates are typically only used for some CAD applications and
the “3D Pipes” Windows screen saver. Fortunately most virtual reality type appli-
cations render complete frames at high framerates.

5.4 Introduction to visualization

Medical imaging normally involves the handling of very complex models which
leads to great demands on memory and computational resources. Data sets are
seldom smaller than 30-40 Mbytes. Traditionally medical imaging has been per-
formed on large workstations, but recently PCs have become more powerful and
are today quite capable of handling large data sets. The recent availability of Java
and VRML raises the question of whether such high-level languages can be used
for 3D medical imaging on a PC.

For volume visualization two approaches are commonly used; direct volume
rendering and extracted iso-surface rendering.

5.4.1 Direct volume rendering

Direct volume rendering allows the 3D volume data to be visualized directly, which
has the advantage that all data in the volume may contribute to the final image.

While direct volume rendering can be done easily by ray-tracing, this is very
inefficient and slow, as each voxel may be processed several times. A more effi-
cient algorithm traverses the volume in data or slice order to reduce redundant data
accesses. A popular algorithm for doing this is the shear-warp volume rendering

5.4. Introduction to visualization 137

algorithm [122]. Shear-warp is a two pass algorithm which decomposes the 3D
viewing transformation into two simpler transformations, a shear transformation
along one of the major axes of the volume, followed by a 2D warp to make the
result match a 3D view transformation. A parallel version of the shear-warp algo-
rithm is presented in [198]. In [39] a version of shear-warp for surface rendering
of sparse volumes is presented.

The Cube-4 [179] volume rendering architecture developed at SUNY - Stony
Brook is related to the shear-warp architecture in that it processes one slice at a
time. Cube-4L [16] is an extension for perspective projection. EM-cube [171] is an
efficient version of Cube-4, which is used in the commercial Mitsubishi VolumePro
implementation [180]. VolumePro is able to interactively render 2563 volumes at
30 frames/s. Other examples of direct volume rendering hardware can be found in
[128, 190].

During the visit at the Visualization Lab at SUNY-SB some insight in the de-
sign of volume visualization systems was gathered. Based on this, a more effi-
cient implementation of our shear-warp volume renderer, originally implemented
by [109] and [131], was integrated into the VRML scene graph engine of Hy-
bris. This improved integrated volume renderer, while still primitive compared to
CUBE-4, now provides interactive direct volume rendering in software, suitable
for use in the 3D-Med medical visualization workstation described later in this
chapter.

As the volume renderer is integrated in the Hybris VRML engine it is also pos-
sible to display combined surface and volume renderings, although the integration
is not yet optimal, as surface models are currently always rendered on top of the
volume models. A very similar example of how surface and volume rendering can
be combined by using VRML was published this year in [12].

Our VRML Volume rendering extension is defined as this extended VRML
node prototype, which must be used in the geometry node placeholder field of
the Shape node, as it is subclassed from the abstract Geometry node:

Volume {
exposedField MFString url []
exposedField SFBool intermediate FALSE
exposedField SFBool perspective TRUE
exposedField SFInt32 slice -1 #[-1, slices-1]

}

The new Volume VRML node works exactly as any other geometry node
such as IndexedFaceSet, and can be located anywhere in an object hierar-
chy. The url field is a URL1 specifying where to find the volume data file, the

1URL: Universal Resource Locator, similar to an internet WWW link.

138 Chapter 5. Interfaces and Applications

intermediate field specifies if the intermediate (sheared) image should be dis-
played rather than the final (sheared and warped) rendered image, perspective
indicates whether we want a parallel- or perspective-projection rendering, and fi-
nally slice allows rendering of the complete volume (-1) or just one slice. The
size and voxel dimensions of the volume is determined automatically from the in-
put volume data file.

True integration of surface and volume rendering requires a hybrid volume
and polygon graphics architecture capable of sorting the polygons relative to the
slices in the volume in order to handle transparency correctly. This is actually
a generalization of a fragment sorting graphics architecture which is required for
proper handling of transparency, as discussed earlier in this thesis. A possible
extension of the CUBE volume rendering hardware architecture to allow hybrid
volume and polygon rendering with slice-level transparency sorting is published in
[120].

Finally, general purpose 3D graphics hardware with an efficient implemen-
tation of texture mapping is increasingly becoming usable for real-time volume
rendering. 3D texture-mapping can be used to render a volume by mapping a
volumetric texture to a set of polygons. Note that 3D texture mapping must be
implemented in hardware, which is currently only available in high-end graphics
workstations such as the SGI InfiniteReality. The pixel blending operations in the
texture mapping hardware can be used to implement shading and classification of
the volume, by encoding the voxel gradient vectors as the RGB components and
the intensity as the Alpha component in the 3D texture map. This type of volume
rendering based on 3D texture mapping is presented in [67, 232, 146]. Gradient
calculations must be done as a pre-processing step as the texture mapping hardware
is unable to do this.

Recent advances in graphics hardware for single pass multi-texturing allows
volume rendering using 2D texture mapping at high speed on standard PC-based
3D graphics processors, using an approach presented in [191]. Multi-texturing is
used to dynamically interpolate between volume slices, improving the quality of
the rendering. Additionally, as recent PC graphics processors such as the Nvidia
GeForce has introduced per-pixel dot-product operations, this can be used to im-
plement dynamic lighting for shaded volume rendering. Since the 2D texture map
based algorithm in [191] uses a slice oriented memory layout similar to the shear-
warp algorithm and CUBE, it can be implemented more efficiently than 3D texture
mapping based volume renderers.

5.5. The 3D-Med medical visualization workstation 139

5.4.2 Surface model extraction

To visualize volume data it is also possible to extract a triangle mesh model repre-
senting an iso-surface in the volume data. This triangle mesh model is suitable for
rendering with an implementation of the Hybris graphics architecture. A suitable
algorithm for iso-surface extraction is the Marching Cubes algorithm [129].

A discretized version of the marching cubes algorithm, similar to the one pre-
sented in [157], was developed by [160] and is currently used in the 3D-Med work-
station to extract iso-surfaces. It works by matching eight volume values (a cube)
to a finite set of triangle configurations which is then adjusted to best match the
location of the iso-surface, using a discretized rather than continuous set of vertex
locations to speed the process. By repeating this process (marching) over the en-
tire volume, a triangle mesh is constructed which represents an iso-surface in the
volume data set.

5.5 The 3D-Med medical visualization workstation

With the current implementation of the 3D-Med medical visualization worksta-
tion, the user is able to perform three-dimensional measurements on 3D medical
images in a physically correct coordinate system, while retaining the original 2D
slice images from the CT scanner. Using MPR (Multi Planar Reformatting) while
measuring makes it possible to compensate for misaligned scans by realigning the
3D volume to match the anatomical plane. This makes the system usable for practi-
cal clinical measurements e.g. for orthopedic surgery on femoral anatomy [50, 83].
Currently the 3D-Med system is in use at Århus Kommunehospital where it is used
for surgery planning and diagnostics of acetabular dysplasia [163], prior to ortho-
pedic surgery on the pelvis or femur.

The visualization workstation is based on the work presented in the paper [86]
which describes the Java application framework for handling the raw volume data,
as well as possible interfaces to 3D visualization modules based on the Hybris
graphics architecture. Some of the work done in [97] as well as [222] form the
concepts behind the Java software framework.

During the recent work with implementation of Hybris’ Java interface, the 3D-
Med prototype was extended with Java/C++ interfaces to allow a 3D region of
interest subsection of the dataset to be selected. This region of interest is then used
for detailed examination with our visualization tools, either as a direct 3D vol-
ume rendering visualization or by extracting an iso-surface to be viewed using the
scalable Hybris 3D surface rendering hardware/software architecture. 3D viewing
allows the user to get a better overview of the three-dimensional structures present

140 Chapter 5. Interfaces and Applications

in a volumetric 3D medical image. Figure 5.1 shows a screen-shot of the working
prototype 3D-Med medical visualization workstation.

All the components in the system are working prototypes developed here at
CST, IMM, DTU. The 3D-Med workstation eliminates the need for expensive
hardware such as Silicon Graphics visualization workstations, making it possible
to perform the visualization tasks using an ordinary PC. For use in a hospital envi-
ronment, the 3D-Med workstation is able to directly read DICOM / ACR-NEMA
[2] formatted datasets generated by a CT scanner.

5.6 Chapter summary

This final chapter has given an introduction to graphics interface APIs in general, as
well as a possible application for the graphics architecture. VRML was introduced
to provide a high level of abstraction to allow the static and dynamic optimizations
used in the Hybris graphics architecture. Additionally an overview of volume ren-
dering was presented in relation to the surface rendering techniques used in the
Hybris graphics architecture. As an example of a useful application of the graph-
ics architecture, the working prototype 3D-Med medical visualization workstation
was presented.

5.6. Chapter summary 141

Figure 5.1: Screen-shot of the working prototype 3D-Med medical visualiza-
tion workstation. In the lower right side of the screen a software implemen-
tation of the Hybris graphics architecture is interactively rendering a surface
model. The surface model is extracted from the volume data displayed in the
other windows. In the upper right side the shear-warp volume renderer is
rendering the same sub-volume.

142 Chapter 5. Interfaces and Applications

Chapter 6

Conclusion

During this Ph.D. thesis we have covered many aspects of how to design a generic
3D computer graphics architecture with scalability in mind. Furthermore, we have
explored some of the possible options for implementation of the graphics architec-
ture in both hardware and software. In the following a summary of the work will
be presented, along with suggestions for future research.

6.1 Summary

In chapter two, we presented the background for parallel 3D computer graphics
architectures with a special focus on scalability. State of the art in current scalable
commercial rendering architectures were discussed. From the available research
it seems that a combination of parallel rendering techniques is a good method for
achieving scalability. We shape the Hybris graphics architecture around a primar-
ily sort-middle architecture based on image-parallel subdivision of the screen into
many small square tiles mapped to virtual local framebuffers. For each tile, bucket
sorting and buffering of work is used to load balance the jobs across virtual pro-
cessors, each optimized for rendering one small square tile. In addition a partial
sort-first architecture using object-parallel subdivision of the 3D model input data
looks promising. The input data is split into many small sub-objects to distribute
work over several geometry processors while maintaining data coherence. Finally
sort-last is used to assemble the final image from tiles. Image composition of over-
lapping tiles might be useful in order to allow the architecture to scale even further,
if correct handling of transparency is not an issue.

In chapter three, we designed an architecture based on the observations made in
chapter two. This architecture is described at an abstraction level slightly above the
possible implementations. The potentially available parallelism of the architecture

143

144 Chapter 6. Conclusion

has also been described independently of any actual implementation. We also pre-
sented an in-depth view of the concepts involved in the design of the Hybris graph-
ics architecture. The graphics architecture has taken form as an object-parallel
and image-parallel architecture utilizing partitioned triangle meshes in the front-
end graphics pipeline and tile-based rendering in the back-end graphics pipeline.
Further, several viable extensions for the architecture have been discussed. These
extensions include antialiasing and texture mapping. Additionally some possible
sub-tile interleaved pixel parallel architectures for the tile rendering back-end have
been presented.

In chapter four, we examined some of the possible hardware/software code-
sign implementation options for the Hybris graphics architecture, which was pre-
sented in the previous chapters. We have examined how virtual prototyping code-
sign using the C programming language allows the Hybris graphics architecture
to be mapped to different implementation technologies, ranging from sequential
software and parallel software for general purpose computers with one or more
CPUs, over to more elaborate hardware/software codesign implementations. ASIC
and FPGA implementations of the back-end tile rendering pipeline have been suc-
cessfully implemented, although some work still remains in order to get superior
performance from the FPGA hardware implementation.

Finally, chapter five gave an introduction to graphics interface APIs in general.
VRML was introduced to provide a high level of abstraction to allow the static and
dynamic optimizations used in the Hybris graphics architecture. Additionally an
overview of volume rendering was presented in relation to the surface rendering
techniques used in the Hybris graphics architecture. As an example of a useful
application of the graphics architecture, the working prototype 3D-Med medical
visualization workstation was presented.

In conclusion to this work, it can be said that the virtual prototyping C program-
ming language based codesign method has proved to be very successful in terms
of portability. We have demonstrated how the virtual prototype can be transformed
into various hardware and software implementations, using a series of successive
(but manual) transformations to match a given target architecture closely enough to
allow C compilers and VHDL logic synthesis tools to handle the final design steps
automatically.

Finally the performance of the Hybris implementations has proved to be very
good, in many cases out-performing commercial 3D graphics processors such as
the Nvidia GeForce 2. The dual CPU implementation demonstrates some of the
scalability inherent in parallel implementations of the Hybris graphics architec-
ture. Additionally the dual CPU implementation demonstrates the best perfor-
mance (about 4 Mtriangles/s) currently achieved by a working implementation of
Hybris.

6.2. Future work 145

6.2 Future work

As the Hybris graphics architecture is designed at a portable implementation in-
dependent level, there are many possible future implementation options for the
architecture. In addition, the architecture itself can be extended in many ways to
allow more advanced types of rendering.

Currently, one of the most interesting options for future work is an extension
of the FPGA implementation to include the interleaved pixel parallel architectures
described in chapter 3. As mentioned in chapter 4, this extension can very likely be
implemented for the current FPGA prototyping platform, as the FPGA is not yet
fully utilized. As as extension to this pixel parallel implementation, supersampling
anti-aliasing using a four pixel box filter should be relatively straightforward to
implement in the FPGA. Further, the sparse supersampling techniques should be
investigated. Future FPGA prototyping platforms might allow implementation of
parallel tile rendering configurations, as well as implementation of the front-end
and SDRAM interfaces for the triangle heap.

Furthermore it is believed that the FPGA implementation can be improved
enough to outperform as least the single CPU software implementation, up to the
upper limit imposed by the maximum bandwidth of the PCI-bus. By using 64
bytes per triangle transferred to the back-end tile renderer, we can transfer up to
1.2 million triangles/s over the PCI-bus, assuming a bandwidth of 80 Mbytes/s is
sustainable. Because of back-face culling and triangle rounding, this translates into
an application rendering performance 2-4 times higher, depending on the object.

In order to allow proper handling of order-independent transparency, per-pixel
fragment sorting should be investigated as this seems to be a promising future area
of research. Current graphics architectures do not in general implement fragment
sorting and relies on the application to manage transparency depth sorting prior to
rendering.

The parallel software implementation of Hybris is another area for future re-
search, as it would be very interesting to see how the Hybris architecture performs
on larger multiprocessing platforms than the current dual Pentium III PC. The
current prospects for scalable performance looks very promising, provided that
a suitable multiprocessing platform with a crossbar switched memory architecture
is available. Furthermore, a future area of research would be to construct a per-
formance estimation model for such multiprocessor implementations. A highly
parallel software implementation has the potential to out-perform most hardware
graphics processors. In relation to software implementations, it would be interest-
ing to utilize recent vector processor extensions such as the Pentium IV’s SSE-2
extensions.

146 Chapter 6. Conclusion

Bibliography

[1] 3Dlabs. “Wildcat: New Parascale Architecture”. Technical report, 3Dlabs,
2001. http://www.3dlabs.com/product/technology/parascal.htm.

[2] ACR-NEMA. DICOM: Digital Imaging and Communications in Medicine,
2000. Specifications and Working Groups, http://medical.nema.
org.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[4] K. Akeley and T. Jermoluk. “High-Performance Polygon Rendering”. SIG-
GRAPH Proceedings, pages 239–246, August 1988.

[5] Kurt Akeley. “RealityEngine Graphics”. SIGGRAPH Proceedings, pages
109–116, August 1993.

[6] Keith Andrews, Andreas Pesendorfer, Michael Pichler, Karl Heinz Wagen-
brunn, and Josef Wolte. “Looking Inside VRwave: The Architecture and
Interface of the VRwave VRML97 browser”. Virtual Reality Modeling Lan-
guage Symposium, pages 77–82, February 1998.

[7] ANSI/IEEE. IEEE Standard for Binary Floating-Point Arithmetic, 1985.
ANSI/IEEE Standard 754-1985.

[8] Jean-Francis Balaguer and Enrico Gobbetti. “i3D: A High-Speed 3D Web
Browser”. Virtual Reality Modeling Language Symposium, pages 69–76,
1995. http://www.crs4.it/~3diadm.

[9] B. Barenbrug, F. J. Peters, and C. W. A. M. Van Overveld. “Algorithms for
Division Free Perspective Correct Rendering”. SIGGRAPH/Eurographics
Workshop on Graphics Hardware, pages 7–13, August 2000.

147

148 BIBLIOGRAPHY

[10] Anthony C. Barkans. “High Quality Rendering Using the Talisman Ar-
chitecture”. SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 79–88, August 1997.

[11] Kristof Beets and Dave Barron. “Super-Sampling Anti-Aliasing Analyzed”.
Beyond3D & 3dfx, 2000. http://www.beyond3d.com.

[12] Johannes Behr and Marc Alexa. “Volume Visualization in VRML”. Virtual
Reality Modeling Language Symposium, pages 23–27, 2001.

[13] Phil Bernosky and Scott Tandy. “Bringing Workstation Graphics Perfor-
mance to a Desktop Near You: ViRGE VX”. In Hot Chips 8, A Sympo-
sium on High-Performance Chips. S3 Inc., August 1996. http://www.
hotchips.org.

[14] Gary Bishop and David M. Weimer. “Fast Phong Shading”. SIGGRAPH
Proceedings, pages 103–106, August 1986.

[15] Lars Bishop, Dave Eberly, Turner Whitted, Mark Finch, and Michael
Shantz. “Designing a PC Game Engine”. IEEE Computer Graphics and
Applications, pages 46–53, January/February 1998.

[16] Ingmar Bitter and Arie Kaufman. “A Ray-Slice-Sweep Volume Render-
ing Engine”. SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 121–130, August 1997.

[17] James F. Blinn. “Jim Blinn’s Corner: A Ghost in a Snowstorm”. IEEE
Computer Graphics and Applications, pages 79–84, January/February 1998.

[18] James F. Blinn. “Jim Blinn’s Corner: W Pleasure, W Fun”. IEEE Computer
Graphics and Applications, pages 78–82, May/June 1998.

[19] Jim Blinn. Jim Blinn’s Corner: A Trip Down the Graphics Pipeline. Morgan
Kaufmann Publishers, 1996.

[20] Jim Blinn. Jim Blinn’s Corner: Dirty Pixels. Morgan Kaufmann Publishers,
1998.

[21] Alexander Bogomjakov and Craig Gotsman. “Universal Rendering Se-
quences for Transparent Vertex Caching of Progressive Meshes”. Proceed-
ings of Graphics Interface, June 2001.

[22] Georges-Pierre Bonneau and Alexandre Gerussi. “Level of Detail Visualiza-
tion of Scalar Data Sets on Irregular Surface Meshes”. Visualization, pages
73–77, October 1998.

BIBLIOGRAPHY 149

[23] Kellogg S. Booth, David R. Forsey, and Allan W. Paeth. “Hardware Assis-
tance for Z-Buffer Visible Surface Algorithms”. IEEE Computer Graphics
and Applications, pages 31–39, November 1986.

[24] Matthew Bowen. Handel-C Language Reference Manual. Embedded Solu-
tions Limited, 1998. Version 2.1.

[25] Matthew Bowen. RC1000-PP Software User Guide. Embedded Solutions
Limited, 1998. Version 1.10.

[26] Stephen Brown and Jonathan Rose. “Architecture of FPGAs and CPLDs: A
Tutorial”. Technical report, Department of Electrical and Computer Engi-
neering, University of Toronto, 1997.

[27] Ian Buck, Greg Humphreys, and Pat Hanrahan. “Tracking Graphics State for
Networked Rendering”. SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 87–95, August 2000.

[28] Rikk Carey, Gavin Bell, and Chris Marrin. VRML97, The Virtual Real-
ity Modeling Language. VRML Consortium, http://www.vrml.org/
technicalinfo/specifications/vrml97, 1997. International
Standard ISO/IEC 14772-1:1997.

[29] Loren Carpenter. “The A-Buffer, an Antialiased Hidden Surface Method.”.
SIGGRAPH Proceedings, pages 103–108, July 1984.

[30] Milton Chen, Gordon Stoll, Homan Igehy, Kekoa Proudfoot, and Pat Hanra-
han. “Simple Models of the Impact of Overlap in Bucket Rendering”. SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 105–112,
August 1998.

[31] Tzi-Cker Chiueh. “Heresy: A Virtual Image-Space 3D Rasterization Ar-
chitecture”. SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 69–77, August 1997.

[32] Tzi-Cker Chiueh and Wei-Jen Lin. “Characterization of Static 3D Graphics
Workloads”. SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 17–24, August 1997.

[33] Mike M. Chow. “Optimized Geometry Compression for Real-Time Render-
ing”. IEEE Visualization ’97, 1997.

[34] Compaq. “PCI-X: An Evolution of the PCI Bus”. Technical report, Compaq
Computer Corporation, September 1999.

150 BIBLIOGRAPHY

[35] Robert L. Cook, Loren Carpenter, and Edwin Catmull. “The Reyes Im-
age Rendering Architecture”. SIGGRAPH Proceedings, pages 95–102, July
1987.

[36] Michael Cox and Narendra Bhandari. “Architectural Implications
of Hardware-Accelerated Bucket Rendering on the PC”. SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 25–34,
1997.

[37] Thomas W. Crockett. “Parallel Rendering”. Encyclopedia of Computer
Science and Technology, 34:335–371, 1996.

[38] Thomas W. Crockett and Tobias Orloff. “A MIMD Rendering Algorithm
for Distributed Memory Architectures”. Symposium on Parallel Rendering,
pages 35–42, November 1993.

[39] Balázs Csébfalvi, Andreas König, and Eduard Gröller. “Fast Surface Ren-
dering of Volumetric Data”. WSCG’2000, The 8th International Confer-
ence in Central Europe on Computer Graphics, Visualization and Interac-
tive Digital Media, February 2000.

[40] Brian Curless and Marc Levoy. “A Volumetric Method for Building Com-
plex Models from Range Images”. SIGGRAPH Proceedings, pages 303–
312, August 1996.

[41] Nell Dale and Susan C. Lilly. Pascal Plus Data Structures, Algorithms, and
Advanced Programming. D. C. Heath and Company, second edition, 1988.

[42] Michael Deering. “High Resolution Virtual Reality”. SIGGRAPH Proceed-
ings, pages 195–202, July 1992.

[43] Michael Deering. “Geometry Compression”. SIGGRAPH Proceedings,
pages 13–20, August 1995.

[44] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil
Hunt. “The Triangle Processor and Normal Vector Shader: A VLSI System
for High Performance Graphics”. SIGGRAPH Proceedings, pages 21–30,
August 1988.

[45] Michael F. Deering and Scott R. Nelson. “Leo: A System for Cost Effective
3D Shaded Graphics”. SIGGRAPH Proceedings, pages 101–108, August
1993.

BIBLIOGRAPHY 151

[46] Michael F. Deering, Stephen A. Schlapp, and Michael G. Lavelle.
“FBRAM: A New Form of Memory Optimized for 3D Graphics”. SIG-
GRAPH Proceedings, pages 167–174, July 1994.

[47] Paul J. Diefenbach, Prakash Mahesh, and Daniel Hunt. “Building Open-
Worlds”. Virtual Reality Modeling Language Symposium, pages 33–38,
February 1998.

[48] Paul Joseph Diefenbach. Pipeline Rendering: Interaction and Realism
through Hardware-based Multi-pass Rendering. PhD thesis, Computer and
Information Science, University of Pennsylvania, 1996.

[49] Tom Duff. “Compositing 3-D Rendered Images”. SIGGRAPH Proceedings,
pages 41–44, July 1985.

[50] N. Egund and J. Palmer. “Femoral Anatomy Described in Cylindrical Co-
ordinates Using Computed Tomography”. Acta Radiologica Diagnosis,
25(Facs. 3), 1984.

[51] Matthew Eldridge, Homan Igehy, and Pat Hanrahan. “Pomegranate: A Fully
Scalable Graphics Architecture”. SIGGRAPH Proceedings, pages 443–454,
July 2000.

[52] David Ellsworth. “A Multicomputer Polygon Rendering Algorithm for In-
teractive Applications”. Symposium on Parallel Rendering, pages 43–48,
October 1993.

[53] David A. Ellsworth. “A New Algorithm for Interactive Graphics on Multi-
computers”. IEEE Computer Graphics and Applications, pages 33–40, July
1994.

[54] David Allan Ellsworth. Polygon Rendering for Interactive Visualization on
Multicomputers. PhD thesis, Computer Science, University of North Car-
olina at Chapel Hill, 1996.

[55] Evans & Sutherland Computer Corporation. Freedom 3000 Technical
Overview, October 1992.

[56] Jon P. Ewins, Phil L. Watten, Martin White, Michael D. J. McNeill, and
Paul F. Lister. “Codesign of Graphics Hardware Accelerators”. SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 103–110,
August 1997.

152 BIBLIOGRAPHY

[57] John Eyles, Steven Molnar, John Poulton, Trey Greer, Anselmo Lastra,
Nick England, and Lee Westover. “PixelFlow: The Realization”. SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 57–68, Au-
gust 1997.

[58] D. Field. “Incremental Linear Interpolation”. ACM Transactions on Graph-
ics, 4(1):1–11, January 1985.

[59] Alessandro Fin, Franco Fummi, Maurizio Martignano, and Mirko Sig-
noretto. “SystemC: A Homogeneous Environment to Test Embedded Sys-
tems”. CODES Symposium on Hardware/Software Codesign, pages 17–22,
April 2001.

[60] David Flanagan. Java Foundation Classes, A Desktop Quick Reference.
O’Reilly & Associates, Inc., first edition, September 1999.

[61] David Flanagan. Java in a Nutshell, A Desktop Quick Reference. O’Reilly
& Associates, Inc., third edition, November 1999.

[62] Martin Fleury and Andrew Downton. Pipelined Processor Farms: Struc-
tured Design for Embedded Parallel Systems. John Wiley and Sons, Inc.,
April 2001.

[63] Foley, van Dam, Feiner, and Hughes. Computer Graphics, Principles and
Practice. Addison-Wesley, second edition, 1990.

[64] Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D.
Austin, Frederick P. Brooks, John G. Eyles, and John Poulton. “Fast
Spheres, Shadows, Textures, Transparencies and Image Enhancements in
Pixel-Planes”. SIGGRAPH Proceedings, pages 111–120, 1985.

[65] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather,
David Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, and Laura Israel.
“Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using
Processor-Enhanced Memories”. SIGGRAPH Proceedings, pages 79–88,
July 1989.

[66] Daniel D. Gajski and Frank Vahid. “Specification and Design of Embedded
Hardware-Software Systems”. IEEE Design and Test of Computers, pages
53–67, Spring 1995.

[67] Allen Van Gelder and Kwansik Kim. “Direct Volume Rendering with Shad-
ing Via Three-Dimensional Textures”. Symposium on Volume Visualization,
pages 23–30, October 1996.

BIBLIOGRAPHY 153

[68] Nader Gharachorloo, Satish Gupta, Erdem Hokenek, Peruvemba Balasub-
ramanian, Bill Bogholtz, Christian Mathieu, and Christos Zoulas. “Sub-
nanosecond Pixel Rendering with Million Transistor Chips”. SIGGRAPH
Proceedings, pages 41–49, August 1988.

[69] Nader Gharachorloo and Robert F. Sproull. “A Characterization of Ten
Rasterization Techniques”. SIGGRAPH Proceedings, pages 355–368, July
1989.

[70] Peter N. Glaskowsky. “MoSys Explains 1T-SRAM Technology, Unique Ar-
chitecture Hides Refresh, Makes DRAM Work Like SRAM”. Microproces-
sor Report, 13(12), September 1999.

[71] Thomas Gleerup. “ASIC for 3D Graphics Pipeline Back-End”. Master’s
thesis, Information Technology, Technical University of Denmark, January
1999.

[72] Thomas Gleerup, Hans Holten-Lund, Jan Madsen, and Steen Pedersen.
“Memory Architecture for Efficient Utilization of SDRAM: A Case Study
of the Computation/Memory Access Trade-Off”. CODES 2000 Workshop
on Hardware/Software Codesign, pages 51–55, May 2000.

[73] H. Gouraud. “Continuous Shading of Curved Surfaces”. IEEE Transactions
on Computers, C-20(6):623–629, June 1971.

[74] Eric Grant, Phil Amburn, and Turner Whitted. “Exploiting Classes in Mod-
eling and Display Software”. IEEE Computer Graphics and Applications,
pages 13–20, November 1986.

[75] Ned Greene, Michael Kass, and Gavin Miller. “Hierarchical Z-Buffer Visi-
bility”. SIGGRAPH Proceedings, pages 231–238, August 1993.

[76] Jesper N. R. Grode. Component Modeling and Performance Estimation in
Hardware/Software Codesign. PhD thesis, Information Technology, Tech-
nical University of Denmark, March 1999.

[77] J. P. Grossman and William J. Dally. “Point Sample Rendering”. In Render-
ing Techniques ’98, pages 181–192, Vienna, Austria, June 1998. Proceed-
ings of the 9th Eurographics Workshop on Rendering, Springer-Verlag.

[78] Rajesh K. Gupta and Stan Y. Liao. “Using a Programming Language for
Digital System Design”. IEEE Design and Test of Computers, pages 72–80,
April–June 1997.

154 BIBLIOGRAPHY

[79] Paul Haeberli and Kurt Akeley. “The Accumulation Buffer: Hardware Sup-
port for High-Quality Rendering”. SIGGRAPH Proceedings, pages 309–
318, August 1990.

[80] Ziyad S. Hakura and Anoop Gupta. “The Design and Analysis of a Cache
Architecture for Texture Mapping”. 24th International Symposium on Com-
puter Architecture, 1997.

[81] Chandlee B. Harrell and Farhad Fouladi. “Graphics Rendering Architecture
for a High Performance Desktop Workstation”. SIGGRAPH Proceedings,
pages 93–100, August 1993.

[82] Paul S. Heckbert. “Survey of Texture Mapping”. IEEE Computer Graphics
and Applications, pages 56–67, November 1986.

[83] K. L. Hermann and N. Egund. “CT Measurement of Anteversion in the
Femoral Neck.”. Acta Radiologica, 1997.

[84] Hans Holten-Lund. “Fast Rendering Techniques for Real-Time 3D Im-
age Synthesis in an Interactive Environment”. Master’s thesis, Information
Technology, Technical University of Denmark, August 1995.

[85] Hans Holten-Lund. “Implementation of a Parallel 3D Graphics Engine”.
Technical report, Information Technology, Technical University of Den-
mark, 1999.

[86] Hans Holten-Lund, Mogens Hvidtfeldt, Jan Madsen, and Steen Pedersen.
“VRML Visualization in a Surgery Planning and Diagnostics Application”.
Web3D-VRML 2000 Fifth Symposium on the Virtual Reality Modeling Lan-
guage, pages 111–118, February 2000.

[87] Hans Holten-Lund and Jacob Lildballe. “Raytracing På Transputere”. Tech-
nical report, Grafisk Kommunikation, DTU, February 1995.

[88] Hans Holten-Lund, Martin Lütken, Jan Madsen, and Steen Pedersen. “Vir-
tual Prototyping, a Case Study in Dataflow Oriented Codesign”. NORCHIP
’98 Proceedings, pages 222–229, November 1998.

[89] Hans Holten-Lund, Jan Madsen, and Steen Pedersen. “A Case Study of a
Hybrid Parallel 3D Surface Rendering Graphics Architecture”. SASIMI ’97
Workshop on Synthesis and System Integration of Mixed Technologies, pages
149–154, December 1997.

BIBLIOGRAPHY 155

[90] Hugues Hoppe. “Progressive Meshes”. SIGGRAPH Proceedings, pages
99–108, August 1996.

[91] Hugues Hoppe. “Smooth View-Dependent Level-of-Detail Control and its
Application to Terrain Rendering”. Visualization, pages 35–42, October
1998.

[92] Hugues Hoppe. “Optimization of Mesh Locality for Transparent Vertex
Caching”. SIGGRAPH Proceedings, pages 269–276, August 1999.

[93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. “Mesh Optimization”. SIGGRAPH Proceedings, pages 19–26,
August 1993.

[94] Greg Humphreys, Ian Buck, Matthew Eldridge, and Pat Hanrahan. “Dis-
tributed Rendering for Scalable Displays”. Proceedings of Supercomputing,
2000.

[95] Greg Humphreys and Pat Hanrahan. “A Distributed Graphics System for
Large Tiled Displays”. IEEE Visualization, pages 215–224, 1999.

[96] Tobias Hüttner and Wolfgang Straßer. “Fast Footprint MIPmapping”. Euro-
graphics/SIGGRAPH Workshop on Graphics Hardware, pages 35–44, Au-
gust 1999.

[97] Mogens Hvidtfeldt. “Handling of Surface Models in 3D Medical Appli-
cations”. Master’s thesis, Information Technology, Technical University of
Denmark, March 1998.

[98] Kai Hwang. Computer Arithmetic, Principles, Architecture and Design.
John Wiley and Sons, Inc., 1979.

[99] Homan Igehy. Scalable Graphics Architectures: Interface & Texture. PhD
thesis, Computer Science, Stanford University, May 2000.

[100] Homan Igehy, Matthew Eldridge, and Pat Hanrahan. “Parallel Texture
Caching”. Eurographics/SIGGRAPH Workshop on Graphics Hardware,
pages 95–106, August 1999.

[101] Homan Igehy, Gordon Stoll, and Pat Hanrahan. “The Design of a Parallel
Graphics Interface”. SIGGRAPH Proceedings, pages 141–150, July 1998.

[102] Tsuneo Ikedo and Jianhua Ma. “The Truga001: A Scalable Rendering
Processor”. IEEE Computer Graphics and Applications, pages 59–79,
March/April 1998.

156 BIBLIOGRAPHY

[103] Intel Corporation. Intel Architecture Software Developer´s Manual, Volume
3: System Programming Guide, 1997. Order number: 243192.

[104] Intel Corporation. Accelerated Graphics Port Interface Specification, May
1998. Revision 2.0.

[105] Intel Corporation. A.G.P. Pro Specification, July 1998. Revision 0.9.

[106] Intel Corporation. Intel Architecture Optimization Reference Manual, 1999.
Order number: 730795-001.

[107] Intel Corporation. Intel 815 Chipset: Graphics Controller. Programmer’s
Reference Manual (PRM), July 2000.

[108] Dan C. R. Jensen, Jan Madsen, and Steen Pedersen. “The Importance of In-
terfaces: A HW/SW Codesign Case Study”. CODES/CASHE ’97 Workshop
on Hardware/Software Codesign, pages 87–91, March 1997.

[109] Kurt Jensen. “Volume Rendering Using VLSI”. Master’s thesis, Information
Technology, Technical University of Denmark, February 1997.

[110] Norman P. Jouppi and Chun-Fa Chang. “Z3: An Economical Hardware
Technique for High-Quality Antialiasing and Transparency”. Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware, pages 85–93, August
1999.

[111] Zachi Karni and Craig Gotsman. “Spectral Coding of Mesh Geometry”.
SIGGRAPH Proceedings, pages 279–286, July 2000.

[112] Zachi Karni and Craig Gotsman. “3D Mesh Compression Using Fixed Spec-
tral Bases”. Proceedings of Graphics Interface, June 2001.

[113] G. Karypis and V. Kumar. MeTiS: A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices. Version 4.0. Computer Science, University
of Minnesota, September 1998. http://www-users.cs.umn.edu/
~karypis/metis/.

[114] George Karypis and Vipin Kumar. “Multilevel Algorithms for Multi-
Constraint Graph Partitioning”. Technical Report 98-019, University of
Minnesota, Department of Computer Science / Army HPC Research Center,
May 1998. http://www.cs.umn.edu/~karypis.

BIBLIOGRAPHY 157

[115] Michael Kelley, Kirk Gould, Brent Pease, Stephanie Winner, and Alex Yen.
“Hardware Accelerated Rendering of CSG and Transparency”. SIGGRAPH
Proceedings, pages 177–184, July 1994.

[116] Michael Kelley, Stephanie Winner, and Kirk Gould. “A Scalable Hardware
Render Accelerator using a Modified Scanline Algorithm”. SIGGRAPH
Proceedings, pages 241–248, July 1992.

[117] Ken Kennedy and Kathryn S. McKinley. “Maximizing Loop Parallelism
and Improving Data Locality via Loop Fusion and Distribution”. In Lan-
guages and Compilers for Parallel Computing, pages 301–321. Springer-
Verlag, 1993.

[118] Mark J. Kilgard. “Realizing OpenGL: Two Implementations of One Ar-
chitecture”. SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 45–55, August 1997.

[119] Peter Voigt Knudsen. Techniques for Co-Synthesis. PhD thesis, Information
Technology, Technical University of Denmark, March 1999.

[120] Kevin Kreeger and Arie Kaufman. “Hybrid Volume and Polygon Rendering
with Cube Hardware”. Eurographics/SIGGRAPH Workshop on Graphics
Hardware, pages 15–24, August 1999.

[121] Kubota Pacific Computer Inc. Denali Technical Overview, March 1993.

[122] Philippe Lacroute and Marc Levoy. “Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation”. SIGGRAPH Proceed-
ings, pages 451–458, July 1994.

[123] L. Casey Larijani. The Virtual Reality Primer. McGraw-Hill, 1994.

[124] Jin-Aeon Lee and Lee-Sup Kim. “Single-Pass Full-Screen Hardware Ac-
celerated Antialiasing”. SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 67–75, August 2000.

[125] Jin-Aeon Lee and Lee-Sup Kim. “SPARP: A Single Pass Antialiased Ras-
terization Processor”. Computers & Graphics, 24:233–243, 2000.

[126] Wingyu Leung, Fu-Chieh Hsu, and Mark-Eric Jones. “The Ideal SoC
Memory: 1T-SRAM™”. Technical report, MoSys Inc., 2000. http:
//www.mosys.com.

158 BIBLIOGRAPHY

[127] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,
Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Gins-
berg, Jonathan Shade, and Duane Fulk. “The Digital Michelangelo Project:
3D Scanning of Large Statues”. SIGGRAPH Proceedings, pages 131–144,
July 2000.

[128] Barthold Lichtenbelt. “Design of a High Performance Volume Visualiza-
tion System”. SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 111–119, August 1997.

[129] William E. Lorensen and Harvey E. Cline. “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm”. SIGGRAPH Proceedings,
pages 163–169, July 1987.

[130] Martin Lütken. “Hardware implementation of 3D graphics pipeline”. Mas-
ter’s thesis, Information Technology, Technical University of Denmark, Au-
gust 1997.

[131] Jakob Winther Madsen. “VLSI Implementering af Volumenbilledvisualis-
ering”. Master’s thesis, Information Technology, Technical University of
Denmark, February 1998.

[132] Jan Madsen and Jens P. Brage. “Codesign Analysis of a Computer Graphics
Application”. Design Automation for Embedded Systems, 1(1-2):121–145,
January 1996. Kluwer Academic Publishers.

[133] Jan Madsen, Jesper Grode, Peter Knudsen, Morten E. Pedersen, and Anne
Haxthausen. “LYCOS: The Lyngby Co-Synthesis System”. Design Automa-
tion for Embedded Systems, 2(2):195–235, 1997.

[134] Abraham Mammen. “Transparency and Antialiasing Algorithms Imple-
mented with the Virtual Pixel Maps Technique”. IEEE Computer Graphics
and Applications, pages 43–55, July 1989.

[135] Chris Marrin. External Authoring Interface Reference. Silicon Graphics
Inc., November 1997. http://www.web3d.org/WorkingGroups/
vrml-eai/history/eai_draft.html.

[136] Brian McClendon and John Montrym. “InfiniteReality™ Graphics - Power
Through Complexity”. In Hot Chips 8, A Symposium on High-Performance
Chips. Silicon Graphics, August 1996. http://www.hotchips.org.

BIBLIOGRAPHY 159

[137] Ray McConnell. “Massively Parallel Computing on the FUZION Chip”. In
Invited Speaker at SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware. PixelFusion Ltd, August 1999.

[138] Michael D. McCool and Wolfgang Heidrich. “Texture Shaders”. Euro-
graphics/SIGGRAPH Workshop on Graphics Hardware, pages 117–126,
August 1999.

[139] Joel McCormack and Robert McNamara. “Tiled Polygon Traversal Us-
ing Half-Plane Edge Functions”. SIGGRAPH/Eurographics Workshop on
Graphics Hardware, pages 15–21, August 2000.

[140] Joel McCormack, Robert McNamara, Christopher Gianos, Larry Seiler,
Norman P. Jouppi, and Ken Correll. “Neon: A Singe-Chip 3D Workstation
Graphics Accelerator”. Eurographics/SIGGRAPH Workshop on Graphics
Hardware, pages 123–132, August 1998.

[141] Joel McCormack, Robert McNamara, Christopher Gianos, Larry Seiler,
Norman P. Jouppi, Ken Correll, Todd Dutton, and John Zurawski. “Neon:
A (Big) (Fast) Singe-Chip 3D Workstation Graphics Accelerator”. Compaq
WRL Research Report 98/1, July 1999.

[142] Joel McCormack, Ronald Perry, Keith I. Farkas, and Norman P. Jouppi. “Fe-
line: Fast Elliptical Lines for Anisotropic Texture Mapping”. SIGGRAPH
Proceedings, pages 243–250, August 1999.

[143] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. “Improving Data
Locality with Loop Transformations”. ACM Transactions on Programming
Languages and Systems, 18(4):424–453, July 1996.

[144] Robert McNamara, Joel McCormack, and Norman P. Jouppi. “Pre-
filtered Antialiased Lines Using Half-Plane Distance Functions”. SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 77–85, Au-
gust 2000.

[145] Nimrod Megiddo and Vivek Sarkar. “Optimal Weighted Loop Fusion for
Parallel Programs”. Proceedings of the Ninth Annual ACM Symposium on
Parallel Algorithms and Architectures, June 1997.

[146] Michael Meißner, Ulrich Hoffmann, and Wolfgang Straßer. “Enabling Clas-
sification and Shading for 3D Texture Mapping Based Volume Rendering
Using OpenGL and Extensions”. IEEE Visualization ’99 Proc., 1999.

160 BIBLIOGRAPHY

[147] Micron Technology Inc. Synchronous DRAM Data Sheet, 64Mb SDRAM,
1998. rev. 10/98.

[148] Microsoft. DirectX 8.0 SDK, 2000. http://www.microsoft.com/
directx.

[149] David Anthony Paul Mitchell. Fast Algorithms and Hardware for 3D Com-
puter Graphics. PhD thesis, Computer Science, Sheffield University, July
1990.

[150] Tulika Mitra and Tzi-Cker Chiueh. “Dynamic 3D Graphics Workload
Characterization and the Architectural Implications”. Proceedings of the
32nd Annual ACM/IEEE International Symposium on Microarchitecture on
MICRO-32, pages 62–71, November 1999.

[151] Søren A. Møller. “Memory and Data Structures in 3D Medical PC-
Workstation.”. Master’s thesis, Information Technology, Technical Univer-
sity of Denmark, August 1997.

[152] Tomas Möller and Eric Haines. Real-Time Rendering. A K Peters, 1999.

[153] Steven Molnar. “Combining Z-Buffer Engines for Higher-Speed Render-
ing”. In Advances in Computer Graphics Hardware III, pages 171–182.
Proceedings of the 1988 Eurographics Workshop on Graphics Hardware,
Eurographics Seminars, 1988.

[154] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. “A Sort-
ing Classification of Parallel Rendering”. IEEE Computer Graphics and
Applications, 14(4):23–31, July 1994.

[155] Steven Molnar, John Eyles, and John Poulton. “PixelFlow: High-Speed
Rendering Using Image Composition”. SIGGRAPH Proceedings, pages
231–240, July 1992.

[156] Steven Edward Molnar. Image-Composition Architectures for Real-Time
Image Generation. PhD thesis, Computer Science, University of North Car-
olina at Chapel Hill, 1991.

[157] C. Montani, R. Scateni, and R. Scopigno. “Discretized Marching Cubes”.
IEEE Visualization, pages 281–287, 1994.

[158] John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher J.
Migdal. “InfiniteReality: A Real-Time Graphics System”. SIGGRAPH Pro-
ceedings, pages 293–302, August 1997.

BIBLIOGRAPHY 161

[159] Steve Morein. “ATI Radeon HyperZ Technology”. In Invited Speaker at
SIGGRAPH/Eurographics Workshop on Graphics Hardware. ATI, August
2000.

[160] Lars Bo Mortensen. “VLSI Til Generering Af 3D-Overflademodel”. Mas-
ter’s thesis, Information Technology, Technical University of Denmark,
February 1997.

[161] Carl Mueller. “The Sort-First Rendering Architecture for High-Performance
Graphics”. Symposium on Interactive 3D Graphics, 1995.

[162] Carl Mueller. “Hierarchical Graphics Databases in Sort-First”. IEEE Sym-
posium on Parallel Rendering, pages 49–57, 1997.

[163] S. B. Murphy, P. K. Kijewski, M. B. Millis, and A. Harless. “Acetabular
Dysplasia in the Adolescent and Young Adult”. Clinical Orthopaedics and
Related Research, (261), December 1990.

[164] Zainalabedin Navabi. VHDL Analysis and Modeling of Digital Systems.
McGraw-Hill, Inc., 1993.

[165] J. Neider, T. Davis, and M. Woo. OpenGL Programming Guide. Addison-
Wesley, 1993.

[166] L. T. Nguyen et al. “Multimedia Signal Processor (MSP) Summary”. In
Hot Chips 8, A Symposium on High-Performance Chips. Samsung, August
1996. http://www.hotchips.org.

[167] Satoshi Nishimura and Tosiyasu L. Kunii. “VC-1: A Scalable Graphics
Computer with Virtual Local Frame Buffers”. SIGGRAPH Proceedings,
pages 365–372, August 1996.

[168] Petri Nordlund. “Glaze3D™”. In Invited Speaker at SIG-
GRAPH/Eurographics Workshop on Graphics Hardware. Bitboys Oy, Au-
gust 1999.

[169] Marc Olano and Trey Greer. “Triangle Scan Conversion Using 2D Homo-
geneous Coordinates”. SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 89–95, August 1997.

[170] Manuel M. Oliveira, Gary Bishop, and David McAllister. “Relief Texture
Mapping”. SIGGRAPH Proceedings, pages 359–368, July 2000.

162 BIBLIOGRAPHY

[171] Rändy Osborne, Hanspeter Pfister, Hugh Lauer, TakaHide Ohkami, Neil
McKenzie, Sarah Gibson, and Wally Hiatt. “EM-Cube: An Architecture
for Low-Cost Real-Time Volume Rendering”. SIGGRAPH/Eurographics
Workshop on Graphics Hardware, pages 131–138, August 1997.

[172] John D. Owens, William J. Dally, Ujval J. Kapasi, Scott Rixner, Peter Matt-
son, and Ben Mowery. “Polygon Rendering on a Stream Architecture”.
SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages 23–32,
August 2000.

[173] Renato Pajarola. “Large Scale Terrain Visualization Using the Restricted
Quadtree Triangulation”. Visualization, pages 19–26, October 1998.

[174] David A. Patterson and John L. Hennessy. Computer Organization & De-
sign, The Hardware/Software Interface. Morgan Kaufmann Publishers,
1994.

[175] PCI Special Interest Group. PCI Local Bus Specification, June 1995. Revi-
sion 2.1.

[176] Torben Yde Pedersen. “Implementering Af CPU Kort Til PCI Bussen”.
Master’s thesis, Information Technology, Technical University of Denmark,
April 1997.

[177] Ken Perlin. “An Image Synthesizer”. SIGGRAPH Proceedings, pages 287–
296, July 1985.

[178] Kenneth Haldbæk Petersen. “Analyse Og Design Af PCI-Bus Kort”. Mas-
ter’s thesis, Information Technology, Technical University of Denmark,
September 1996.

[179] H. Pfister and A. Kaufman. “Cube-4 – A Scalable Architecture for Real-
Time Volume Rendering”. Volume Visualization Symposium, pages 47–54,
October 1996.

[180] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer, and Larry
Seiler. “The VolumePro Real-Time Ray-Casting System”. SIGGRAPH Pro-
ceedings, pages 251–260, August 1999.

[181] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross.
“Surfels: Surface Elements as Rendering Primitives”. SIGGRAPH Proceed-
ings, pages 335–342, July 2000.

BIBLIOGRAPHY 163

[182] Bui Tuong Phong. “Illumination for Computer Generated Pictures”. Com-
munications of the ACM, 18(6):311–317, June 1975.

[183] Michael Pichler, Gerbert Orasche, Keith Andrews, Ed Grossman, and Mark
McCahill. “VRweb: A Multi-System VRML Viewer”. Virtual Reality Mod-
eling Language Symposium, pages 77–85, 1995.

[184] J. Pineda. “A Parallel Algorithm for Polygon Rasterization”. SIGGRAPH
Proceedings, pages 17–20, August 1988.

[185] PLX Technology, http://www.plxtech.com. PLX PCI 9080 Data
Book, January 2000. Version 1.06.

[186] Curtis R. Priem. “Developing the GX Graphics Accelerator Architecture”.
IEEE Micro, pages 44–54, February 1990.

[187] Scott Pritchett. “Giga3D Architectural Advantages”. http://www.
gigapixel.com, GigaPixel, November 1999.

[188] “PowerVR”. http://www.powervr.com, 1996. NEC/VideoLogic (to-
day: STMicroelectronics and Imagination Technologies).

[189] Jan Dueholm Rasmussen. “Implementering Af PCI-Kort Med FPGA-
Kredse”. Master’s thesis, Information Technology, Technical University of
Denmark, April 1997.

[190] Harvey Ray and Deborah Silver. “The RACE II Engine for Real-Time Vol-
ume Rendering”. SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware, pages 129–136, August 2000.

[191] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. “Interac-
tive Volume Rendering on Standard PC Graphics Hardware Using Multi-
Textures and Multi-Stage Rasterization”. SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, pages 109–118, August 2000.

[192] John Rohlf and James Helman. “IRIS Performer: A High Performance Mul-
tiprocessing Toolkit for Real-Time 3D Graphics”. SIGGRAPH Proceedings,
pages 381–394, July 1994.

[193] Szymon Rusinkiewicz and Mark Levoy. “QSplat: A Multiresolution Point
Rendering System for Large Meshes”. SIGGRAPH Proceedings, pages
343–352, July 2000.

164 BIBLIOGRAPHY

[194] Rizos Sakellariou. On the Quest for Perfect Load Balance in Loop-
Based Parallel Computations. PhD thesis, Computer Science, University
of Manchester, 1998.

[195] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal Singh.
“Hybrid Sort-First and Sort-Last Parallel Rendering with a Cluster of PCs”.
SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages 97–108,
August 2000.

[196] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai Li, and
Jaswinder PalSingh. “Load Balancing for Multi-Projector Rendering Sys-
tems”. Eurographics/SIGGRAPH Workshop on Graphics Hardware, pages
107–116, August 1999.

[197] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John
Snyder. “Silhouette Clipping”. SIGGRAPH Proceedings, pages 327–334,
July 2000.

[198] Kentaro Sano, Hiroyuki Kitajima, Hiroaki Kobayashi, and Tadao Nakamura.
“Parallel Processing of the Shear-Warp Factorization with the Binary-Swap
Method on a Distributed-Memory Multiprocessor System”. Parallel Ren-
dering Symposium, pages 87–94, October 1997.

[199] Andreas Schilling. “A New Simple and Efficient Antialiasing with Subpixel
Masks”. SIGGRAPH Proceedings, pages 133–141, July 1991.

[200] Andreas Schilling and Wolfgang Straßer. “EXACT: Algorithm and Hard-
ware Architecture for an Improved A-Buffer”. SIGGRAPH Proceedings,
pages 85–91, August 1993.

[201] Kirk Schloegel, George Karypis, and Vipin Kumar. “Graph Partitioning for
High Performance Scientific Simulations”. In J. Dongarra et al., editors,
To Be Included in: CRPC Parallel Computing Handbook. Morgan Kauf-
mann, 2000. Available online: http://www-users.cs.umn.edu/
~karypis/publications/partitioning.html.

[202] Kirk Schloegel, George Karypis, and Vipin Kumar. “A Unified Algo-
rithm for Load-Balancing Adaptive Scientific Simulations”. Supercomput-
ing 2000, 2000.

[203] Robert Schreiber, Shail Aditya, B. Ramakrishna Rau, Vinod Kathail, Scott
Mahlke, Santosh Abraham, and Greg Snider. “High-Level Synthesis of Non-
programmable Hardware Accelerators”. Technical Report HPL-2000-31,

BIBLIOGRAPHY 165

Computer Systems and Technology Laboratory, HP Laboratories Palo Alto,
May 2000.

[204] M. Segal and K. Akeley. The OpenGL® Graphics System: A Specifica-
tion. OpenGL Architectural Review Board – ARB, 1992. http://www.
opengl.org.

[205] Hans-Peter Seidel and Wolfgang Heidrich. “Hardware Shading: State-
of-the-Art and Future Challenges”. In Keynote Speaker at SIG-
GRAPH/Eurographics Workshop on Graphics Hardware. Max-Planck-
Institut für Informatik, Saarbrücken, Germany, August 2000.

[206] Bruce Shriver and Bennett Smith. The Anatomy of a High-Performance
Microprocessor, A Systems Perspective. IEEE Computer Society, 1998.

[207] Henrik Ahrendt Sørensen. “SoC Design-Eksperimenter med en Stor
FPGA”. Master’s thesis, Information Technology, Technical University of
Denmark, February 2001.

[208] Stanford Computer Graphics Laboratory. The Stanford 3D Scan-
ning Repository. http://www-graphics.stanford.edu/data/
3Dscanrep.

[209] J. Staunstrup and W. Wolf, editors. Hardware/Software Co-Design, Princi-
ples and Practice. Kluwer Academic Publishers, 1997.

[210] Paul S. Strauss and Rikk Carey. “An Object-Oriented 3D Graphics Toolkit”.
SIGGRAPH Proceedings, pages 341–349, July 1992.

[211] David Suey, McDonnell Douglas, David Bailey, and Thomas P. Morrissey.
“PHIGS: A Standard, Dynamic, Interactive Graphics Interface”. IEEE Com-
puter Graphics and Applications, pages 50–57, August 1986.

[212] Sun Microsystems. Java 3D™ API 1.3 Specification Alpha, 2001. http:
//java.sun.com/products/java-media/3D.

[213] Sun Microsystems. The Source for Java™ Technology, 2001. http://
java.sun.com.

[214] Ivan E. Sutherland and Gary W. Hodgman. “Reentrant Polygon Clipping”.
Communications of the ACM, 17(1):32–42, January 1974.

[215] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. “A
Characterization of Ten Hidden-Surface Algorithms”. Computing Surveys,
6(1):1–55, March 1974.

166 BIBLIOGRAPHY

[216] Charles Sweeney and Bill Blyth. RC1000-PP Hardware Reference Manual.
Embedded Solutions Limited, 1998. Version 2.1.

[217] Synopsys, Inc. FPGA Compiler II / FPGA Express VHDL Reference Man-
ual, May 1999. Version 1999.05.

[218] Synopsys Inc., CoWare Inc., Frontier Design Inc. et al. Functional Specifi-
cation for SystemC 2.0, January 2001. http://www.systemc.org.

[219] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. “The
Clipmap: A Virtual Mipmap”. SIGGRAPH Proceedings, pages 151–158,
July 1998.

[220] Gary Tarolli. “Real Time Cinematic Effects on the PC – The 3dfx T-
Buffer™”. In Invited Speaker at SIGGRAPH/Eurographics Workshop on
Graphics Hardware. 3dfx Interactive, August 1999.

[221] Gabriel Taubin and Jarek Rossignac. “Geometric Compression Through
Topological Surgery”. Technical report, IBM Research technical report
number RC-20340, 1996.

[222] Kim Theilgaard. “Medicinsk Visualiseringssystem”. Master’s thesis, Infor-
mation Technology, Technical University of Denmark, 1997.

[223] Jay Torborg and James T. Kajiya. “Talisman: Commodity Realtime 3D
Graphics for the PC”. SIGGRAPH Proceedings, pages 353–363, August
1996.

[224] Neil Trevett. “GLINT Gamma: A 3D Geometry and Lighting Processor for
the PC”. In Hot Chips 9, A Symposium on High-Performance Chips. 3Dlabs,
August 1997. http://www.hotchips.org.

[225] Neil Trevett. “Challenges & Opportunities for 3D Graphics on the PC”. In
Keynote Speaker at SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware. 3Dlabs, August 1999.

[226] Steve Upstill. The RenderMan Companion: A Programmer’s Guide to Re-
alistic Computer Graphics. Addison-Wesley, 1989.

[227] C. A. Valderrama, M. Romdhani, J. M. Daveau, G. Marchioro, A. Changuel,
and A. A. Jerraya. “COSMOS: A Transformational Co-Design Tool”. In
J. Staunstrup and W. Wolf, editors, Hardware/Software Co-Design, Princi-
ples and Practice, pages 307–357. Kluwer Academic Publishers, 1997.

BIBLIOGRAPHY 167

[228] Akiyoshi Wakatani and Michael Wolfe. “Effectiveness of Message Strip-
Mining for Regular and Irregular Communication”. Proc. PDCS, October
1994.

[229] Alan Watt. 3D Computer Graphics. Addison-Wesley, third edition, 2000.

[230] Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques,
Theory and Practice. ACM Press, 1992.

[231] Henrik Weimer, Joe Warren, Jane Troutner, Wendell Wiggins, and John
Shrout. “Efficient Co-Triangulation of Large Data Sets”. Visualization,
pages 119–126, 1998.

[232] Rüdiger Westermann and Thomas Ertl. “Efficiently Using Graphics Hard-
ware in Volume Rendering Applications”. SIGGRAPH Proceedings, pages
169–177, July 1998.

[233] Scott Whitman. “Parallel Graphics Rendering Algorithms”. Proc. 3rd Eu-
rographics Workshop on Rendering, pages 123–134, May 1992.

[234] Scott Whitman. “Dynamic Load Balancing for Parallel Polygon Rendering”.
IEEE Computer Graphics and Applications, pages 41–48, July 1994.

[235] Stephanie Winner, Mike Kelley, Brent Pease, Bill Rivard, and Alex Yen.
“Hardware Accelerated Rendering of Antialiasing Using a Modified A-
Buffer Algorithm”. SIGGRAPH Proceedings, pages 307–316, August 1997.

[236] George Wolberg. Digital Image Warping. IEEE Computer Society Press
Monograph, 1990.

[237] Daniel J. Woods, Alan Norton, and Gavin Bell. “Wired for Speed: Efficient
Routes in VRML 2.0”. Virtual Reality Modeling Language Symposium,
pages 133–138, 1997.

[238] Xilinx, Inc. Virtex™ 2.5V Field Programmable Gate Arrays, May 2000.
http://www.xilinx.com/partinfo/ds003.htm.

[239] Yong Yao. “AGP Speeds 3D Graphics”. Microprocessor Report, 10(8), June
1996.

[240] Hansong Zhang and Kenneth E. Hoff. “Fast Backface Culling Using Normal
Masks”. Symposium on Interactive 3D Graphics, 1997.

[241] Reto Zimmermann. “VHDL Library of Arithmetic Units”. Forum on Design
Languages (FDL ’98), September 1998. Lausanne.

168 BIBLIOGRAPHY

Appendix A

Published papers

This appendix lists the papers published during the Ph.D. study. They are listed in
chronological order.

[89] Hans Holten-Lund, Jan Madsen and Steen Pedersen, “A Case Study of a Hy-
brid Parallel 3D Surface Rendering Graphics Architecture”, SASIMI ’97
Workshop on Synthesis and System Integration of Mixed Technologies,
pages 149–154, December 1997.

[88] Hans Holten-Lund, Martin Lütken, Jan Madsen and Steen Pedersen, “Virtual
Prototyping, a Case Study in Dataflow Oriented Codesign”, NORCHIP ’98
Proceedings, pages 222–229, November 1998.

[86] Hans Holten-Lund, Mogens Hvidtfeldt, Jan Madsen and Steen Pedersen,
“VRML Visualization in a Surgery Planning and Diagnostics Application”,
Web3D-VRML 2000 Fifth Symposium on the Virtual Reality Modeling Lan-
guage, pages 111–118, February 2000.

[72] Thomas Gleerup, Hans Holten-Lund, Jan Madsen and Steen Pedersen,
“Memory Architecture for Efficient Utilization of SDRAM: A Case Study
of the Computation/Memory Access Trade-Off”, CODES 2000 Workshop
on Hardware/Software Codesign, pages 51–55, May 2000.

169

