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Abstract

The present review of design methods for sensitivity analysis is

limited to a number of best practices selected by the authors as par-

ticularly suited to settings often encountered in sensitivity analysis.

The case where a full quantitative analysis is needed will be distin-

guished from from that where a simple screening of the factors into

influential and non-influential is sought – though methods shall be

provided to move smoothly from the latter to the former.

For cases where the analyst has control over the design, e.g. where

she can decide where to locate her points, two practices are recom-

mended for computing respectively the first order sensitivity measure

and the total sensitivity measure:

• The first practice in known as random balance design (RBD),

and belongs to the class of Fourier analysis approaches [44]. RBD
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allows the first order sensitivity measure – also known as Pear-

son’s correlation ratio η2 to be computed.

• The second practice is richer in information but computationally

more expensive. This involves the computation of the total sen-

sitivity measures [15]. A quasi-random numbers based approach

is recommended, in conjunction with best available estimators

[37].

Both the first and total order sensitivity measures can also be com-

puted using emulators, when few model samples are available (usually

due to computational expense). The total sensitivity measure can also

be adapted at low sample size and with a different estimator to work

in a screening setting [6].

Finally, the case is discussed where points are “given” – e.g. where

the analyst has to derive sensitivity measures with potentially arbitrarily-

placed sample points (either from simulation or experiment). For this

latter situation an alternative approach is shown which uses smooth-

ing, spline, or kernel regression to estimate first order sensitivity mea-

sures [26].

Keywords: Sensitivity analysis, radial design, variance based

measures, elementary effects method
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1 Introduction

Sensitivity analysis is the study of how uncertainty in the output of a model

(numerical or otherwise) can be apportioned to different sources of uncer-

tainty in the model input [35]. Sometimes the term is also used to indicate

simply the quantification of the uncertainty in model’s prediction, although

strictly speaking this is the closely-related discipline of uncertainty analysis.

In general, sensitivity analysis is used to test the robustness of model-based

inference, i.e. how much the results of the model depend on the assumptions

made in its construction. In engineering and risk analysis, sensitivity analysis

mostly involves an exploration of the multidimensional space of the input fac-

tors/assumptions. In econometrics, sensitivity analysis has been advocated

more in the form of extreme bound analysis, e.g. using confounding factors

in regression which either confirm the most or the least the inference [18, 19].

Very often, in chemistry, physics, biology and so on, one sees sensitivity

analysis performed by changing one factor at a time, a practice which is not

recommended [31]. Instead, current best practice involves designs based on

a multidimensional exploration of the space of the input factors, as in classic

experimental design. A succinct review of sensitivity analysis methods for

use in impact assessment – e.g. in relation to models used for policy, is in

[33].

In this chapter, the term “model” refers to a mathematical construct

which attempts to model some physical, economic or other “real-world” pro-

cess. Sensitivity analysis is applicable to any system that has quantifiable

inputs and outputs. From this point of view, one can consider any model

from the “black-box” perspective, such that it is an unknown function f(x)

of k inputs, where x = {xi}ki=1. The model will typically return a large

number of output quantities, but for simplicity it shall be assumed that the

output is a scalar y, such that y = f(x). Note that although the x and y
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will often appear as random variables, they will always be expressed in lower

case.

Although the function (model) f is known, in the sense that it represents

a computer program based on mathematical equations, it will generally be

complex enough as to be only accessible via simulation. Therefore in practice,

all sensitivity analysis approaches involve sampling the model a number of

times according to some kind of experimental design, and estimating useful

properties from the resulting data. Two main cases arise in this respect:

Case I The analyst can ‘run’ the model. A design can be specified in

this case whereby e.g. n points {x1,x2, ...,xn} are selected in the k-

dimensional input space, to obtain corresponding outputs {y1, y2, ..., yn}.
In this case the sample of the input space is customarily generated with-

out correlation among the input factors. Designs for correlated inputs

are also available. y could represent some modeled property of a design

such as an aeroplane wing or of a natural system such as a hydraulic

transmissivity.

Case II The sample points are given and the analyst can neither control

their positioning nor generate additional points. Such data might come

either from measurements or experiments, or from a design that is not

specifically intended for sensitivity analysis. The form of the model

could be unknown, and the input variables in the sample could be

correlated with one another in the sample. To give a simple example,

y could be the Human Development Index computed over k countries

and the xi could be the indicators used in the construction of the index

[26]. In this case one cannot generate additional points/countries.

In Case I (when the analysis can be designed) the best approach is deter-

mined by the cost of the analysis. In this context, “cost” refers to the total

computational time required to evaluate the model at all the sample points,
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which is the product of the total number of model runs and the time re-

quired for each run. Since complex models can take minutes, hours or longer

to evaluate for a single input point, it is not always feasible to sample a large

number of input points. The strategies available for case I are as follows:

• For cheap models, a fully-fledged quantitative sensitivity analysis can

be performed using Monte Carlo estimators, estimating all k first order

indices and all k total order indices (see Section 3). This approach re-

quires a large number of sample points (typically hundreds or thousands

per input variable), but is preferred where possible since all sensitivity

indices can be estimated with an accuracy related to the number of

sample points.

• For expensive models a design based on Fourier analysis can be used

to compute all first order indices at a cost which is weakly dependent

from the number of factors. The cost is of the order of some hundreds

model simulations. Alternatively, a space-filling design can be used in

conjunction with an emulator (see Section 6). Although computation-

ally cheaper, emulators introduce a data-modelling problem, which can

be very difficult to deal with depending on the nature of the variation

of the data.

• If one cannot afford more than a handful of points per factor, or one

has many input factors and desires to proceed to a first screening of fac-

tors into influential and non-influential groups, the elementary effects

methods can be applied (see Section 5).

For Case II, when data is given, two approaches are considered here:

• Generate additional points by emulation and then perform a Monte

Carlo sensitivity analysis by the simultaneous computation of all k
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Figure 1: Various approaches to sensitivity analysis: when they can be used,
and what they produce.

first order indices and all k total order indices (depending on method

– see Section 6).

• Estimate directly the k first order indices by kernel regression (or equiv-

alent regression approach) on the sorted model evaluations yj’s (see Sec-

tion 6). In effect, this involves making one-dimensional scatter plots

of y against each xi, then fitting (nonlinear) trend lines. In simple

problems, even a visual inspection of scatter plots may be useful.

The various approaches discussed here and the context in which they can

be applied are summarised in Figure 1. Note that in the present chapter only

three measures of sensitivity are proposed:
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1. First order sensitivity index (see Section 2)

2. Total order sensitivity index (see Section 2)

3. Elementary effects (see Section 5)

The following section gives a brief description of variance-based sensitivity

analysis, which underpins measures (1) and (2) above.

2 Variance-based sensitivity analysis

Many measures of sensitivity have been proposed in the literature. For ex-

ample, a well-known measure is to regress the data against each xi, and take

the Pearson product moment correlation coefficient R2
i values to measure

correlation. An obvious drawback of this is that linear regression can only

meaningfully interpret linear data. While this approach can be extended by

more sophisticated forms of regression, it is preferable not to rely on any

modelling of a functional relationship between y and x, since unwanted as-

sumptions would thus be introduced.

Variance-based approaches have become very popular in recent years,

since they allow for highly nonlinear model responses, and account for vari-

ations over the full input space.

A useful sensitivity measure for a given factor xi is:

Vxi (Ex∼i (y | xi)) (1)

The meaning of the inner E operator is the expected value of y taken over

all possible values of variables other than xi (i.e. over x∼i), while keeping xi

fixed (conditional mean). The outer V is the variance taken over all possible

values of xi.
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The associated sensitivity measure (first order sensitivity coefficient) is

stated as:

Si =
Vxi (Ex∼i (y | xi))

V (y)
(2)

Formula 2 has a long history and was first introduced by Karl Pearson

under the name of correlation ratio, denoted as η2. Note that η2 is precisely

the extension to nonlinear problems of the linear R2
i measure and the two

measures coincide for linear problems.

In sensitivity analysis proper, Si is the first term in a variance decompo-

sition whereby the unconditional variance V (y) is decomposed as the sum of

a set of conditional variances of first, second, · · · , up to the kth order [39].

Such a decomposition holds only if the input factors xi’s are independent.

V (y) =
�

i

Vi +
�

i

�

j>i

Vi,j + ...+ V1,2,...,k (3)

where:

Vi = V (fi(xi)) = Vxi [Ex∼i(y|xi)]

Vi,j = V (fi,j(xi, xj)) = Vxi,xj(Ex∼i,j(y|xi, xj))

−Vxi(Ex∼i(y|xi))− Vxj(Ex∼j(y|xj))

and so on for the higher order terms. The reduced dimensionality terms

fi, fi,j are themselves linked by a functional decomposition analogous to 3:

f = f0 +
�

i

fi +
�

i

�

j>i

fi,j + ...+ f1,2,...,k (4)

The first order terms fi = Ex∼i(y|xi)−E(y) shall be returned to in Section
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6. Dividing all terms in 3 by V (y):

�

i

Si +
�

i

�

j>i

Si,j + . . .+ S1,2,3,...,k = 1. (5)

Computing all terms in 3 is impractical for larger k given that they num-

ber 2k − 1 in total. For this reason the total order sensitivity index ST [15] is

preferred, which measures the total effect of a factor, including its first order

effect and interactions of any order:

ST i =
Ex∼i (Vxi (y | x∼i))

V (y)
= 1− Vx∼i (Exi (y | x∼i))

V (y)
(6)

where x∼i denotes the matrix of all variables but xi. In Ex∼i (Vxi (y | x∼i))

the inner variance V of y, the scalar output of interest, is taken over all

possible values of xi while keeping x∼i fixed, while the output expectation E

is taken over all possible values x∼i [14].

It is straightforward to see that Ex∼i (Vxi (y | x∼i)) is the main effect of

x∼i, or in other words, the sum of the main effects and interactions of all the

variables in x∼i. Since all sensitivity indices sum to 1 (see 5), the remainder

must be equal to all terms not involving x∼i, i.e. the main effect of xi and

any interactions involving it.

In the next section the design and estimation recipes for the the cases

detailed in Section 1 are described.

3 Using design points - quantitative sensitiv-

ity analysis

First, the situation is described where the analyst has full control over the

placement of input points (Case I) and the model is not expensive to esti-
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mate, i.e. where possibly thousands of model runs can be executed without

difficulty. In this case the use of quasi-random numbers is suggested, specif-

ically the LPτ sequences of Sobol’ [38, 41] (also known simply as Sobol’

sequences) coupled with a Monte Carlo design described in [30, 37]. Note,

however, that this approach is also valid with pseudo-random numbers and

other low-discrepancy sequences - see [24] for a summary of many common

approaches.

It is assumed that all random variables x1, x2, . . . , xk are sampled in the

k-dimensional unit hypercube X ;

x ∈ X : X = [0, 1]k (7)

Different distributions can easily be generated by mapping the points in (7)

onto the desired distribution function (uniform, normal, log-normal, etc).

This involves the inversion of the cumulative (target) distribution function,

i.e. solving for x the equation ζ =
� x

−∞ g(η)dη, where ζ is the number in [0, 1]

from (7) and g is the desired distribution function [34].

The use of quasi-random sequences is motivated by their good space fill-

ing properties; these sequences outperform both pseudo-random Monte Carlo

sampling as well as Latin Hypercube Sampling in the estimation of multi-

dimensional integrals [40]. Recent extensive testing with a large batch of

functions spanning different degrees of dimensionality, linearity and addi-

tivity has demonstrated their suitability for sensitivity analysis [17]. An

additional desirable property of LPτ sequences when compared to LHS is

that with the former, additional points can be added sequentially to the the

analysis till a desired target accuracy is achieved. With the latter, the sam-

ple size cannot be extended once the analysis is performed, without starting

again from the beginning.

An example of the first few rows of a three-dimensional sequence are given
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in Table 2. These sequences can be generated using freely available software

both in FORTRAN, and MatLab (see [9]).

The steps needed to estimate a full set of first order and total order

sensitivity indices via the Monte Carlo method are as follows (see Figure 2

for an illustration of the construction of the matrices):

1. Generate n points of a 2k-dimensional LPτ sequence. Take the first k

columns and call these coordinates A. Take the remaining k columns

and call these B. In this way, a total of N rows of the sequence have

been used. The generic coordinates of A and B can be indicated re-

spectively as x(a)
ji and x(b)

ji . The index i runs from one to k, the number

of factors, while the index j runs from one to n, the number of rows.

2. Generate an additional k matrices Ai
B, such that the ith matrix is

entirely composed of coordinates from A but for its ith column, which

is the ith column of B. A total of k + 2 sets of coordinates (matrices)

have thus been generated. See figure 2 for an illustration.

3. To estimate Si one needs to estimate first Vxi(Ex∼i(y | xi)). Coordi-

nates from B and Ai
B are used as follows:

Vxi(Ex∼i(y|xi)) ≈
1

n

n�

j=1

f (B)j f
�
Ai

B

�
j
− f 2

0 , (8)

where f (B)j indicates values of Y computed from a generic row j of

matrix B and f (Ai
B)j indicates values of y computed from a generic

row j of matrix Ai
B. f0, the sample mean, and V (y), the unconditional

variance, are computed from matrix A alone.

4. For ST i one needs to estimate first Vx∼i (Exi (y | x∼i)). This can be

obtained using the couple A,Ai
B:
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0.500 0.500 0.500 0.500 0.500 0.500
0.250 0.750 0.250 0.750 0.250 0.750
0.750 0.250 0.750 0.250 0.750 0.250
0.125 0.625 0.875 0.875 0.625 0.125

LP (4,3) =

A B

0.500 0.500 0.500
0.750 0.750 0.250
0.250 0.250 0.750
0.875 0.625 0.875

AB
(1) =

0.500 0.500 0.500
0.250 0.250 0.250
0.750 0.750 0.750
0.125 0.625 0.875

AB
(2) =

0.500 0.500 0.500
0.250 0.750 0.750
0.750 0.250 0.250
0.125 0.625 0.125

AB
(3) =

Figure 2: Construction of theA, B and Ai
B matrices, using the LPτ sequence

with k = 3 and N = 4. Grey columns correspond to those taken from the
matrix B.

Vx∼i (Exi (y | x∼i)) ≈
1

n

n�

j=1

f (A)j f
�
Ai

B

�
j
− f 2

0 , (9)

with a similar meaning of symbols as above.

Note that each matrixAi
B is used twice for each factor xi, once to compute

Si and once to compute ST i. An explanation of estimators 8, 9 can be found

in [34]. For the reader it will be straightforward to notice that the estimators

make use of sums of products of function values, and that in each product the

two function values being multiplied by one another have some symmetry.

In the case of Si the two functions have identical values for coordinate xi.

In the case of ST i the two functions have identical values for all coordinates

but xi. Take the case of Si for illustration: if xi is influential, then the
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two functions values being multiplied will resemble one another, high values

being multiplied by high values and low values by low values. If xi is non

influential, high and low values will be randomly coupled, resulting in a lower

value for the estimator for Si.

For even better results with Sobol’ sequences (due to the deterioration of

uniformity in higher dimensions, as discussed in [37]), estimator (8) can be

substituted with:

Vxi(Ex∼i(y|xi)) ≈
1

n

n�

j=1

f (B)j

�
f
�
Ai

B

�
j
− f (A)j

�
(10)

and (9) with:

Ex∼i (Vxi (y | x∼i)) ≈
1

2n

n�

j=1

�
f (A)j − f

�
Ai

B

�
j

�2
(11)

�Si and �ST i are obtained by dividing equations 10 and 11 respectively by

V (y).

To show how the Monte Carlo estimators above perform at different n,

consider a simple polynomial example,

y = 3x2
1 + 2x1x2 − 2x3; (12)

where the coefficients have been chosen quite arbitrarily. Figure 3 shows the

scatter plots of each variable. It is evident that x1 has quite a strong, slightly

nonlinear effect on y. x2 has apparently quite a weak effect (there is little

discernable trend), whereas x2 has a slight negative effect. These trends are

clearly reflected in the coefficients of equation (12) – of course, normally one

would not have the coefficients of an analytical equation to examine.

To estimate the sensitivities of the variables, a Sobol’ design is created
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Figure 3: Scatter plots of the variables in the test equation (12).
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Variable Si (MC) Si (analytic) ST i (MC) ST i (analytic)
x1 0.7517 0.7568 0.7781 0.7720
x2 0.0503 0.0456 0.0604 0.0608
x3 0.1870 0.1824 0.1829 0.1824

Table 1: Comparison of Si estimates from local-linear kernel regression of
polynomial function against analytical values

in 3 dimensions, assuming a joint-uniform distribution for simplicity, and

estimators (10) and (11) are used. The only choice is what value of n, the

number of sample points, to use. Given that the Sobol’ sequence allows

sequential addition of new points, one can start with a small number of

points, then gradually increase until convergence is observed. Figure 4 shows

the convergence of these measures with n ranging from 8-4096. It is evident

that the estimators converge quite quickly to an accurate estimate of the

sensitivity indices; even at the lowest n, the variables are already correctly

sorted, and at n ≥ 128 the indices have converged to two decimal places. For

most applications of sensitivity analysis, this would be sufficient accuracy.

Table 3 shows the results at n = 128 compared to analytical values. Note

that due to the weak interaction between x1 and x2, the ST of these variables

is slightly higher than their respective S values, which reflects a portion of

the variance being attributed to S1,2 (not estimated here, though it can be

deduced from the table, noticing that x3 does not interact).

Despite the flexibility of Monte Carlo estimators, one should remember

that the cost is N(k + 2) runs (see again figure 2). While this is fine for

fast models, for large models it may be impractical. In the following sections

some alternative approaches are discussed that have lower computational

requirements.
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Figure 4: Convergence of the Si and ST i of the polynomial equation (12) with
increasing n. Lines represent, from top to bottom, x1, x3 and x2 respectively.

4 Using design points - FAST and the Ran-

dom Balance Design

Random Balance Designs (RBD) in sensitivity analysis make use of an ap-

proach known as the Fourier Amplitude Sensitivity Test (FAST) [10, 11].

FAST uses the Fourier series to represent a multivariate function in the fre-

quency domain, using a single frequency variable s. Therefore, the integrals

required to calculate sensitivity indices become univariate, resulting in com-

putational savings. Basis (transformation) functions are used of the form,

xi = G (sin(ωis)) (13)

where s is a variable in [−π, π], G is a specified transformation function,

and ωi is an integer, representing the fundamental frequency of xi. Given

appropriate choices of the constants and basis functions (mainly to avoid
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interferences between harmonics of variables), the variance is given as,

V (y) = 1
2π

� π

−π

�
f 2(s)ds− E(y)2

�
ds

≈ 2
∞�
n=1

(a2ω + b2ω)
(14)

where
aω = 1

π

� π

−π (f(x) cosωx) dx

bω = 1
π

� π

−π (f(x) sinωx) dx
(15)

The integrals in (15) can be evaluated numerically from the training points

(e.g. Monte Carlo integration), which involves sampling from s; indirectly,

this is sampling from x, since each xi will vary according to its basis func-

tion, therefore a “search curve” is created across the sample space. The

oscillation of the xi translates into an oscillation of the model output y at

the fundamental frequency ωi of each variable. If the amplitude of y at the

fundamental frequency of an input variable is high, it indicates a high sensi-

tivity to that variable – this provides the basis for sensitivity analysis. The

sensitivity measure is written as,

V̂ωi = 2
M�

p=1

�
a2pωi

+ b2pωi

�
(16)

where p is an integer, representing the pth harmonic of the fundamental

frequency. When divided by the FAST estimate of variance, V̂ωi has been

shown to be equivalent to the first order sensitivity index, Si.

To complete the specification one must choose a basis function G. It is

necessary to consider that the search curve produced by the basis function

should sample as uniformly as possible over X . In other words, uniformly

sampling over s should produce a low-discrepancy sequence in x. Several

transformations have been proposed that have this property - see [36] for

some examples. The resulting design gives an oscillating search curve over
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Figure 5: A 2D example of a FAST search curve using a triangular basis
function [36] and with ω1 = 1 and ω2 = 4.

the design space. An example using a triangular basis function (possessing

good uniformity) is shown in figure 5.

Since different frequencies must be used to investigate each variable, with-

out interference, the computational cost of FAST quickly rises with k (albeit

less than with the Monte Carlo approach), because higher frequencies are

required, which require a greater density of points to represent. The RBD

approach to FAST [44] circumvents this to some extent by using a single

frequency ω for all inputs. At this point, the points will be very poorly

distributed in the sample space. RBD takes random permutations of the

coordinates of these points, generating a set of sample points that is roughly

equivalent to a Latin hypercube design, which is known to have reasonably

good space-filling properties. Figure 6 shows an illustration of this process

before and after the scrambling of coordinates. After running the model, the
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Figure 6: A 2D example of a RBD sample before and after scrambling of
coordinates, with ω1 = ω2 = 1.

sample points can be reordered with respect to each input, and the FAST

measures discussed above can be calculated.

5 Using design points - Screening

For cases where the model is expensive to run and one cannot use the em-

ulators described in section 6, screening methods offer a computationally-

efficient way of identifying influential and non-influential variables. Typically

this will be used to weed out uninfluential variables before applying a more

informative analysis to the remaining set.

The most common approach, suggested by Morris [22], is an extension

of a basic sensitivity tests, the one-at-a-time (OAT) design. Like the OAT

design, the method of Morris involves varying one input at a time, but the
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design follows a “winding stairs” pattern, such that an input is varied by a

given amount ∆i, then the next input is varied, keeping the new value of

the first input, and so on for all inputs, giving a trajectory of k + 1 points.

This is repeated R times at random starting points within a predefined grid.

Figure 7 shows an example in three dimensions. Sensitivity is calculated for

each input as the mean of R elementary effects,

EEi,r =
f(x1, ..., xi−1, xi +∆i, xi+1, ..., xk)− f(x1, ..., xk)

∆i
(17)

where r is the index over trajectories. The screening measure is thus ex-

pressed as,

µi =

�R
r EEi,r

r
(18)

A further useful measure of nonlinearity and interaction is given by the vari-

ance σi of the elementary effects,

σi =

�R
r (EEi,r − µi)2

r
(19)

The logic here is that if the response of the output to a given input were

perfectly linear, the elementary effects would be identical anywhere in the

input space; in the nonlinear case the opposite would be true.

A drawback with the sensitivity measure given in (18) is that if the main

effect of an input is non-monotonic, the average of the elementary effects

may be close to zero even though, individually, they are significant positive

and negative values. The result is that the measure µi could potentially miss

influential variables. A modified measure µ∗, proposed in [4] suggests the use

of the modulus of the elementary effects, i.e.

µ∗
i =

�R
r |EEi,r|

r
(20)
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Figure 7: A trajectory screening design in three dimensions, with R = 5.
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This measure has been shown to summarize both the µi and σ2
i measures, and

has a close correlation with ST , the global variance-based measure discussed

in Section 2 [5].

Improvements have also been made to the sampling strategy. The draw-

back of the winding stairs design is that there is no guarantee that the tra-

jectories are well-spaced, and that the input space has been well-explored

given the number of runs. A glance at the design in Figure 7 shows that

points can sometimes be close to one another, therefore inefficiently explor-

ing X . An alternative implementation of this design that is suggested here

as a best practice uses a so-called “radial” configuration based on Sobol’s

LPτ sequence to achieve a screening design with well-spaced trajectories [7].

To construct the radial design, an LPτ sequence in 2k dimensions is gen-

erated. Let the first k columns be called the “baseline points” {aj}kj=1, and

the remaining k columns be the “auxiliary” points {bj}kj=1. For a given base-

line and auxiliary point, a radial configuration of k+ 1 points is constructed

as the following (discarding the row index for clarity),

a1, a2, a3, ..., ak

b1, a2, a3, ..., ak

a1, b2, a3, ..., ak

a1, a2, b3, ..., ak
...

a1, a2, a3, ..., bk

where the ai and bi are the ith elements of the the a and b vectors respec-

tively. Since in LPτ designs the values of coordinates tend to repeat, it is

recommended that the a and b points for a given radial configuration are not

taken from the same row, otherwise there will be no perturbation in some

dimensions and numerical errors. In practice it has been found that pairing
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aj and bj+4 gives good results [7]. This means that for a design of R radial

configurations, one needs an LPτ sequence of R+4 points in 2k dimensions,

translating to a computational cost of R(k+1) runs. An example of a radial

screening design is given in Figure 9. To show the capability, this exact design

is used to estimate µ∗
i measures of the polynomial example from equation 12.

With R = 5 and d = 3, the cost is 20 model runs. The analysis returns,

µ∗
1 = 3.2875

µ∗
2 = 0.6500

µ∗
3 = 2.0000

Note that these values do not have an exact meaning with regard to the

variance of the output (as compared to the S measures), but they allow

the user to sort between influential and uninfluential variables. Much like

the results in Table 3, one can see that variable 2 is relatively unimportant

compared to variables 1 and 3. Consider that this example is trivial, since

screening is generally for use with high-dimensional problems, but even with

20 runs the order and to some extent the magnitude of importance of each

variable can be distinguished.

Note that an advantage of the radial design is that, if required (and if

possible), the number of points can be increased until the points are dense

enough to be used with the estimators for S and ST , discussed in Section 2,

since the design is exactly equivalent. This fits naturally with the progression

from a preliminary screening design to a more sophisticated global sensitivity

analysis, making efficient use of all model runs.

6 Emulator Approaches and Smoothing

To estimate sensitivity measures when data points are given (the placement

of points is arbitrary), two general methods are presented here, both of which
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Figure 8: A radial screening design in three dimensions, with R = 5.
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adopt a data modelling approach. The first is to try to fit an emulator (a

relatively simple mathematical function, also known as a metamodel) to the

data, which behaves in the same way as the model itself. The emulator

can then be used to estimate new points (with the intention of performing

a Monte Carlo estimation as in Section 3). An alternative approach is to

project the data onto a single axis xi (i.e. create k one-dimensional scatter

plots) and attempt to infer the main effect E(y|xi) using a smoothing regres-

sion approach, for example kernel regression. Both methods have advantages

and drawbacks, which will be summarised.

Emulators

The central idea of emulation is to find some relatively simple function η (the

emulator) such that η(x) ≈ f(x). If η is considerably cheaper to run than the

original model, but produces very similar results for any X ∈ Ω, then it can

be used to generate a very large number of points that can estimate sensitivity

indices via Monte Carlo methods. Even better, if η is analytically tractable, it

can be used to analytically evaluate sensitivity integrals, therefore bypassing

the need for Monte Carlo completely.

The two issues associated with emulation are,

• First, an appropriate function (type of emulator) is needed to fit to the

data.

• Second, parameters or hyperparameters associated with the model need

to be estimated, i.e. the emulator must be trained.

A large number of competing methods are available to tackle both prob-

lems (see for example [2]). A comparison of some of these methods in the

context of sensitivity analysis can be found in [42]. Once an appropriate

emulation method is selected, the accurate estimation of parameters can be

achieved provided that a sufficiently-large sample of training data (the given
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points) is available. How large this sample needs to be is somewhat depen-

dent on the type of emulator, but strongly related to the number of input

variables (the so-called curse of dimensionality). For this reason, emulator-

based approaches are suited to situations with few input variables (perhaps

less than thirty, depending on the emulator). Higher-dimensionality prob-

lems can sometimes be brought into the reach of emulators by a precursory

screening analysis to reduce the number of factors.

While there are many emulators available in the literature, only a small

subset is described here for illustration. Many of these methods rely on

a technique known as High-Dimensional Model Representation (HDMR),

which seeks to approximate the model by performing a functional decom-

position into orthogonal terms, then truncating the series. This has already

been given in equation 4, and is restated as:

f(x) = f0 +
�

i

fi(xi) +
�

i

�

j>i

fi,j(xi,j) + ...+ f12...k(x1,2,...,k)

≈ f0 +
�

i

fi(xi) +
�

i

�

j>i

fi,j(xi,j)

(21)

if the series is truncated after the second term. The task then remains to

find suitable orthogonal functions to approximate the fi(xi) and fi,j(xi,j).

One approach that has been used with considerable success is the use

of multivariate smoothing splines [28]. A smoothing spline model assumes

that the underlying function to be emulated is continuous, and has a contin-

uous first derivative, further that the second derivative is square-integrable.

This corresponds to the function belonging to a second order Sobolev space.

The smoothing spline estimate arises from considering the function g that
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minimises the following,

1

n

n�

i=1

{yi − g(xi)}2 + λ

� 1

0

{g��(x)}2dx (22)

The first term in this “tradeoff” expression is simply the sum of squared error

between the training data and the emulator g - if the function were to pass

through every data point (exact interpolation), this term would be zero. The

second term expresses the integral of the second derivative of g, which is a

global measure of roughness. λ is a parameter that controls the weighting

between the two terms. Overall therefore, the expression summarizes the

tradeoff between interpolation and model simplicity. The tuning parameter

can be set to give more weight to one or the other of these, and can be

chosen via cross-validation. The solution to this minimisation problem can

be shown to be a natural cubic spline, with knots at each of the data points.

Natural cubic splines are simply local cubic polynomial functions between

each data point and the next, with the constraints that the global function

is continuous and the first derivative is continuous at knots (joins between

the local cubic functions).

Splines can be extended to the multivariate case by the use of HDMR

decompositions. The implication is however, that they cannot be used to

estimate total effect indices ST , since the HDMR series is truncated (usually

after first-order interactions). An extension of multivariate splines, known

as Adaptive Component Selection and Shrinkage Operator (ACOSSO), uses

a modified version of (22) that uses norms rather than square-norms, and

also includes the integral of the first derivative of g - see [20] for details. For

Matlab scripts for performing sensitivity analyis with smoothing splines, see

[9].

Another method that has attracted attention in recent years is the use

of series of orthogonal polynomial functions for each term in the functional
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decomposition [43]. These take the form,

fi(xi) =
∞�

r=1

α(i)
r φr(xi)

fi,j(xi,j) =
∞�

p=1

∞�

q=1

β(i,j)
p,q φp,q(Xi,j)

(23)

where the φ are terms from a suitable series of orthogonal polynomials, and

the α and β are their corresponding coefficients. Of the many series of

orthogonal polynomials, it is typical to use either the Legendre or the Hermite

types. Clearly, it is necessary to truncate the infinite series at a certain order

R, which is usually determined by assessing convergence. Sensitivity indices

can then be calculated analytically by the following,

Ŝi =
�R

r=1(α
(i)
r )2

V̂ (y)

Ŝij =
�P

p=1

�Q
q=1(β

(ij)
pq )2

V̂ (y)

(24)

with ST i being approximated from the sum of Si and its first order interac-

tions. The accuracy of ŜT i of course depends on the accuracy of the HDMR

truncation (i.e. if it is truncated after second order interactions, and third

order interactions are significant, it will provide misleading estimates). The

variance term V̂ (y) can be calculated either from an analytical expression

similar to those for the sensitivity indices, or from the original sample data.

The latter has been shown to be preferable in some cases since it does not

include bias from the HDMR truncation.

Another emulator that is widely used in sensitivity and uncertainty anal-

ysis is a Gaussian process (GP) . GPs are widely used in the machine learning

community as a sophisticated form of nonlinear regression and classification

[27]. In short, a GP is a distribution over functions, i.e. the random variable

28



Figure 9: A Gaussian process fitted to sine wave data with added noise.
Dotted line is the underlying sine function, solid line is the posterior mean
of the GP and grey region represents 95% confidence bounds.
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of the distribution is a function rather than a single number or fixed-length

vector. Rather than returning a crisp output value y for any given input

point x (as in a standard regression), the GP returns a specification for a

Gaussian probability distribution. This means that for any given set of input

points, the corresponding output values are distributed joint-normally. As

such, a GP is completely defined by a mean function and covariance function,

which specify the joint-normal distribution for any given set of input points,

f(x)|σ2,w ∼ GP
�
m(x), σ2c(x,x�)

�
(25)

where x� is a point close to x, and σ2 and w are hyperparameters that are

found from maximum likelihood estimation or Markov Chain Monte Carlo

(see [2]). GPs have the advantage that they do not invoke the HDMR as-

sumption, and as result can estimate sensitivity indices of all orders, including

the ST i. However, the cost of training GPs scales poorly with model dimen-

sion, therefore users will encounter problems emulating models with k > 30

or so, depending on computational resources (this is however the case with

all emulators, to some extent). A further useful property of the GP is that,

given certain assumptions, sensitivity indices can be calculated analytically

[25] (available as software from [16]). An extremely useful property of GPs

is that, being a Bayesian approach, a full accounting of uncertainty in esti-

mation is given, both from the data and from the estimation of parameters

– this is passed in the form of confidence intervals to estimates of sensitiv-

ity indices. Some fairly recent additions in the field of GPs with respect to

sensitivity analysis include a method of automatically screening out unim-

portant variables using the correlation parameter in the covariance function

(see [21]), and the use of multiple GPs divided by decision trees to allow for

bifurcating responses [13] (available as an R package).

As an example of the power of an emulator, consider again the simple

30



Variable Si (GP) Si (analytic) ST i (GP) ST i (analytic)
x1 0.7566 0.7568 0.7715 0.7720
x2 0.0456 0.0456 0.0605 0.0608
x3 0.1829 0.1824 0.1830 0.1824

Table 2: Comparison of Si and ST i estimates from a Gaussian process re-
gression against analytical values

polynomial from equation 12. Using 128 points of the Sobol’ sequence over

the unit cube, a Gaussian process was trained, and sensitivity indices inferred

analytically from the resulting posterior distribution. Table 6 shows the

results. The GP is achieving accuracies of three or more decimal places on

only 128 points – recall that the Monte Carlo estimator, for a similar level of

accuracy, requires several thousands of runs per variable, therefore the GP

is at least an order of magnitude more efficient. However, the GP and other

emulators are only as good as their fit to the data: the polynomial function is

a smooth, “well-behaved” function, which is an easy data modelling problem.

For data that are heteroscedastic, bifurcating, or of varying smoothness, the

emulators are likely to be much less reliable. Additionally, they scale poorly

with dimensionality. However, for certain situations, emulators can offer a

powerful solution.

Overall, there is no “best” emulator available. The approach will depend

on computational resources, sample size and model dimension, amongst other

things. Both [2] and [42] are recommended as background reading. Further-

more, it is essential to test the fit of any emulator by methods such as cross

validation.

Custom Sampling for Emulators

Although the points were considered as “given” in the discussion above, it can

happen that the analyst has the possibility to design her own set of training

data for an emulator. This can be the case when, for example, the analyst
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only has a small number of input variables, but a very computationally-

expensive model. In this scenario it makes sense to go directly to an emulator

approach, since pure Monte Carlo would be too expensive and screening too

inaccurate.

Experimental designs for emulators can be divided into two categories -

space-filling designs, and model-based designs. In the former, the design is

constructed to fill the sample space as evenly as possible, which is to say that

points should be as far apart from each other as possible. The reasoning for

this is that first, it is required to capture the behavior of the model over the

whole input space with as few points as possible. Second, assuming that the

output of the model is deterministic and smooth with respect to its inputs,

little information can be gained by having points close to each other (since

the outputs will be very similar). For this reason, purely random sampling

is not an efficient design.

For a general-purpose emulator design, a space-filling design such as the

Sobol’ sequence discussed in section 3 is a good choice. Sobol’ designs have

a low-discrepancy property that avoids “clumping” of points, and allow the

sequential addition of new points. For other space-filling designs the reader

is referred to [24].

If the model itself is accessible, an even more sophisticated approach is to

use a model-based design (also called optimal design). In this approach, the

design is constructed so as to optimise some emulator-dependent criterion of

interest. For example, a popular criterion, called “D-optimality”, is to select

points which minimise the variance of the estimators of the emulator param-

eters. Another way is to minimise the maximum variance of the emulator

prediction at any given point (G-optimality). Clearly, a set of points which

provide a good estimate of the parameters of one type of emulator might

not be suitable for another type, which is why such designs are completely

dependent on the emulator. Optimal designs can either be constructed in
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one pass, or step by step, perhaps starting from a rough initial design. The

advantage of the sequential approach (known as adaptive design) is twofold –

first, the output values will influence the optimum placement of new points,

so knowledge of previous points will produce a more effective design than

one that is constructed in one go. Second, by proceeding in small steps, one

can generate exactly the required number of points to reach some level of

accuracy of interest, perhaps measured by cross validation.

The theory of model-based designs is a large field of research that is be-

yond the remit of this chapter, therefore the reader is referred to [1] for a

good general resource. There is also a strong interest in Bayesian approaches

to optimal design; reviews can be found in [8, 12].

Scatter Plot Smoothing

A useful approach for handling “given” data is based on one-dimensional

nonlinear smoothing regression. This method allows estimation of first-order

sensitivity indices and, from a computational point of view, is less vulnerable

to the curse of dimensionality.

A first visual indication of the effects of input variables can be gained

by making k plots of xi against y (see figure 3). If the data shows any kind

of trend (or shape) with respect to xi, this indicates that xi is having some

effect on the output. Indeed, the effect of xi on the output is described by

the curve E(y|xi) — in other words, the expected value of the model output

if we were to fix xi at some value. Over the range of xi, this is equivalent

to a moving average of the points in the xi against y plot. If the E(y|xi)

can be plotted, Si can be estimated by taking the variance of this line (since

Si = var{E(y|xi)}).
To plot such a moving average, it is simply a matter of using any of

a number of smoothing regression approaches. Kernel regression has been
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already used for sensitivity analysis [26]. As with any smoothing regression,

the data are modelled as,

y = m(xi) + � (26)

where m(x) is the smoothed curve (ideally equivalent to E(y|xi)), and �

is an independent error term with mean 0 and variance σ2. In the kernel

regression setting, m(x) is typically chosen to be either a local mean or local

linear kernel. The local mean estimator (first proposed by [23, 45]), for

example, is expressed as,

m̂(x) =

�n
j=1 w(xj − x;h)yj�n
j=1 w(xj − x;h)

(27)

where w is a weighting function and h is a tuning parameter. The weight-

ing function typically gives the strongest weight to points close to x, which

reflects the belief that the closer two points are to each other in x, the more

likely they are to have similar values in y. A commonly-used function that

fulfils this requirement is a Gaussian density function with standard devia-

tion h. The local linear estimator is expressed in a similar fashion (see [3]

for details), and is generally regarded as preferable to the local mean, due

to its improved properties near the edges of the data cloud. In all cases, the

smoothing parameter h can be estimated by cross-validation.

Following the simple polynomial example, Figure 10 shows an illustration

of local linear kernel regression applied to scatter plots of y against each xi.

The resulting estimates of sensitivity are given in Table 6.

In order to estimate sensitivity from the fitted kernel regression, the vari-

ance of the conditional expectation can be calculated using a standard vari-

ance identity (the domain of the expected value is explicitly stated as a

subscript here for clarity),

var{Ex∼i(y|xi)} = Exi{Ex∼i(y|xi)
2}− Exi{Ex∼i(y|xi)}2 (28)
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Figure 10: Local-linear kernel regression applied to the polynomial function.
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Variable Si (kernel) Si (analytic)
x1 0.735 0.758
x2 0.049 0.046
x3 0.182 0.182

Table 3: Comparison of Si estimates from local-linear kernel regression of
polynomial function against analytical values

Note here that since the expectation of a random variable A is defined as
�
Ap(A)dA, the expected values in (28) should be weighted by the distri-

bution of points over xi. The simplest way of doing this is to make kernel

predictions at the same Xi values as the training data. A more sophisticated

approach would be to estimate the underlying distribution with kernel den-

sity estimation or a similar technique. In both cases, the practitioner should

ensure that the given data has been sampled with respect to underlying dis-

tributions – this may not necessarily be the case if the points have come from

an optimization process, for example.

While the examples here have focused on kernel smoothing, this is by

no means the only viable approach to obtaining E(y|xi). The problem is

essentially an emulation/regression problem in one dimension, which can be

tackled by any number of methods such as smoothing splines (see e.g. [29])

or Gaussian processes [27]. Even basic linear regression will provide a good

estimate if the data is sufficiently linear. Good references on parametric and

nonparametric regression can be found in [2] and [29].

Finally, it should be pointed out that while the idea of reducing a multidi-

mensional problem to a series of one-dimensional problems is very appealing

from a computational point of view, it is not a “silver bullet” solution. The

estimation is dependent on a good approximation of E(y|xi), which can be

difficult to obtain depending on the data and smoothing method used. More-

over, as the dimensionality of the problem increases, trends in scatterplots
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are increasingly confused by variation in other dimensions.

7 Conclusions

In this chapter, a number of “best practice” have been outlined that address

many of the various situations that can confront an analyst. It is not claimed

nor intended by the authors that an exhaustive review of all methods has

been addressed here, but the reader should have found here enough material

to apply or adapt to a practical case.

What did this chapter leave out?

• Monte Carlo filtering (MCF) is another possibly relevant setting for

sensitivity analysis. In MCF the analyst is not interested in the dis-

tribution of y or in its variance, but only on a selected region therein,

e.g. y values above or below a given threshold. MCF was not treated

explicitly in this short introductory chapter, but the Monte Carlo quasi-

random number approach described in section 3 is likely to be advisable

also in this setting, all the more so since extremal values of y are likely

to be associated to edges and corners in the hyperspace X , which are

more likely reached by quasi-random points than by ordinary random

points [? ? ].

• The same applies to moment independent methods, such as those where

the analysis is interested in how fixing a factor modifies the entire

empirical probability distribution function of y. (reference to be added)

The rational behind these methods is that variance is but one of several

possible moments.

The present chapter has stressed some general concepts such as,

• The idea that a design should be explorative (against approaches such
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as one-factor-at-a-time so often seen in the literature and so poor at

exploring nonlinear non-additive problems [32]).

• The benefit of having an iterative approach, so that one can start with

a handful of points and then proceed in the analysis by adding more

points. Likewise an iterative approach allows using a stopping rule,

whereby the simulation stops as soon as a precision criterion has been

met.

• The need to communicate the result of the analysis. Both first order

and total order indices can be communicated in relation to both Pearson

eta squared and the scatter plot based interpretation (for Si) and to

the theory of variance decomposition (for both Si and ST i).

Given that every sensitivity analysis is a case apart (since every model has

its idiosyncracies) these rules should hopefully be helpful to devise a suitable

sensitivity setup which will fit to the characteristics of the model.
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