

Design Guide DA20 Humid Tropical Air Conditioning

Α

March 2017

Humid Tropical Air Conditioning

- The previous DA 20
 - First published 1997
 - 36 pages
- Current DA 20
 - Review process commenced 2013
 - Review Group involved 7 designers across Australia
 - 12 additional reviewers
 - 136 pages

- Scope

- Climate, Comfort, External Air, Internal Moisture
- Building Design Elements
- A/C Selection & Application
- A.C System Design
- Installation, Commissioning and Maintenance
- Appendices
 - Climate Data
 - Ventilative Cooling for Comfort in Humid Tropics

Location of Hot Humid Regions

– North of 23⁰28' S

(Tropic of Capricorn 23.4 ^oS)

(Tennant Creek – 900 km inland from Darwin??)

- Areas where the summer outdoor design Dew Point exceeds the indoor dry bulb temperature (Port Hedland at 39.5 °DB / 28.0 °CWB / 24.3 °CDP, 20.3 °S, so a couple of degrees south of there??)
- National Construction Code?
 (Provides building and building services energy guidelines but does not define Hot Humid Regions)

AIRAH DA20

National Construction Code Climate Zones for Thermal Design

Comes close but Halls Creek?

We are chasing hot / humid ambient design parameters

• One of the major failings of the old DA 20 was identification of hot humid regions:

Based on mean temperature, mean rainfall and the type of fauna present

Figure 2.1: Australian Climate Classes

Figure 2.3: Three zone heating/cooling regions map.

- Section 3 Building Design and System Selection
 - Passive Design
 - Low Energy Design
 - Natural Ventilation
 - Mechanical Ventilation
 - Evaporative Cooling
 - Hybrid Systems (Ceiling Fans / AC)
 - Refrigerated Cooling Systems

Type of HVAC system will be dependent on intended building use, building design and internal design conditions.

- Building Elements
- Vapour Migration and Condensation
 - Vapour Seals
 - Insulation
 - Sislation position
 - Air tightness of the fabric
 - Thermal bridging / cold tracking
 - Moisture permeantation
 - Air / dust infiltration

- Section J building efficiency/insulation versus dehumidification
 - Insulation
 - On which side the insulation does the foil face (vapour barrier) go to the outside or inside?
 - Simple Rule –
 - The vapour barrier goes on the most hot and humid side.

- Building air tightness

Can we rely on the builder to provide an airtight building, a full vapour barrier? Will the design of the building prevent infiltration? 2 x NO!! **Rule No 1 - Pressurize**

CASE 2: Vapour barrier in wrong location

Mould formed in wall sheeting saturated by concensation

- Mould spore
- Food (dust)
- Moisture / water

Once mould has established itself, it does not take long to grow. Hard to completely remove.

Given the right conditions (moisture, food), mould will grow again, sometimes months / years later.

Failure of vapour barrier

- Fungal Contamination of HVAC systems
 - Ducts
 - Coils
 - Drip trays
 - Condensate drains
 - Ceiling diffusers
 - Discharge louvres of wall splits, cassettes

Underside of A/C unit drip tray. Insufficient insulation between tray and casing.

Carnarvon – saturated return air filter from secondary FCU

Section 4.9

Covers Controls, Control Logic & Control Routines

- Scheduled and non scheduled start / stop
- Occupied / unoccupied modes
- Space temperature reset
- Economy cycle
- Night purge
- Dehumidification control
- Ventilation interlocks
- Demand controlled ventilation

Section 5

Covers Air Conditioning System Design

- Controlling Indoor Humidity
- Outdoor air based strategies for humidity control
- Heat recovery
- Air distribution system arrangements
- Constant volume, variable volume
- Variable refrigerant flow systems
- Chilled beam systems
- Plantrooms
- Piping (refrigerant and chilled water)
- Ductwork details

Going down the path for air conditioning

- Ambient Design Conditions
 - CAMEL
 - ASHRAE (Appendix B of DA 20)
 - AIRAH Handbook
 - Building Management & Works Design Guidelines
 - WA Police Design Guidelines
 - Rio Tinto, FMG, etc, etc

CAMEL

Comfort design conditions are temperatures that do not occur more than 10 days per year – at 3 PM, averaged over years

CAMEL calculates space heat load and airflow rate

Map Location	Western Australia 💌 PERTH RO 💌											
)esign Conditions based on climatic data before 💿 1990 🔿 after												
	.IAN	FFB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0CT	NOV	DEC
3pm *CDE	36.6	36.6	36.6	31.9	28.1	24.7	22.9	24.1	27.6	32.2	35.4	36.5
3pm ⁺C₩E	22.4	22.4	22.4	20.6	19.5	18.2	16.2	16.9	17.7	19.0	20.6	22.4
Years on which	Design (Conditior	ns based	1979-	1988							
Map Location Western Australia VPERTH METRO												
Map Location	West	ern Aust	ralia	▼ PEF	RTH MET	RO				•		
Map Location Design Conditio	West	ern Aust I on clim	ralia atic data	▼ PEF befor	RTH MET	'RO 1990 @	after			-		
Map Location Design Conditio	West	ern Aust I on clim FEB	ralia atic data MAR	▼ PEF befor APR	TH MET re () 1 MAY	RO 1990 • JUN) <mark>after</mark> JUL	AUG	SEP	ост	NOV	DEC
Map Location Design Conditio 3pm *CDE	West ns based IAN 36.7	ern Aust I on clim FFB 36.7	ralia atic data MAB 36.7	 PEF before APR 33.6 	RTH MET re O 1 MAY 28.7	RO 1990 @ JUN 23.4	after JUL 23.1	AUG 23.6	SEP 26.9	• 0CT 31.7	NOV 35.3	DEC 36.7
Map Location Design Conditio 3pm *CDE 3pm *CWE	West ns based JAN 36.7 22.1	ern Aust I on clim EFB 36.7 22.1	ralia atic data MAR 36.7 22.1	 PEF befor APR 33.6 20.9 	RTH MET re () 1 MAY 28.7 19.2	1990 • JUN 23.4 17.3	after JUL 23.1 16.5	AUG 23.6 17.0	SEP 26.9 17.0	• OCT 31.7 18.9	NOV 35.3 20.2	DEC 36.7 21.9

Map Location	Map Location Western Australia VBROOME AMO											
Design Condition	Design Conditions based on climatic data before 💿 1990 🔘 after											
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
3pm *CDB	36.8	37.4	37.4	37.4	35.6	33.3	32.7	34.2	37.4	37.4	37.4	37.4
3pm *CWB	28.5	28.5	28.5	28.3	25.5	23.0	22.5	22.7	25.0	26.2	27.3	28.5
Years on which Design Conditions based 1979-1988												
Map Location Western Australia BROOME AIRPORT												
Map Location	West	ern Aust	ralia	BRC	OME A	RPORT				-		
Map Location Design Condition	West	ern Aust 1 on clim	ralia atic data	BRC befor	00ME AI	RPORT 1990 (•	after			-		
Map Location Design Condition	West ns based JAN	ern Aust 1 on clim FEB	ralia atic data MAR	▼ BRC befor APR	DOME AI	RPORT 1990 • JUN	after	AUG	SEP	•	NOV	DEC
Map Location Design Condition 3pm *CDB	West ns based JAN 35.7	ern Aust 1 on clim FEB 36.4	ralia atic data MAR 37.3	▼ BRC befor APR 37.3	DOME AL re O T MAY 36.5	RPORT 1990 • JUN 33.4	after JUL 32.8	AUG 34.9	SEP 37.3	• OCT 37.3	NOV 37.3	DEC 37.0
Map Location Design Condition 3pm *CDB 3pm *CWB	West JAN 35.7 27.9	tern Aust 1 on clim FEB 36.4 27.9	ralia atic data <u>MAR</u> 37.3 27.9	BRC befor APR 37.3 27.4	DOME AI 1e O 1 MAY 36.5 25.0	RPORT 1990 (* JUN 33.4 23.7	after JUL 32.8 22.6	AUG 34.9 22.8	SEP 37.3 24.4	• OCT 37.3 26.6	NOV 37.3 27.4	DEC 37.0 27.9

No DB / CWB No WB / CDB

AIRAH DA20 Design Guide ASHRAE (Appendix B)

						BROO	OME /	AIRPO	DRT,	Austr	alia				WMO#:	942030
	Lat:	17.95S	Long:	122.23E	Elev	17	StdP	101.12		Time Zone:	8.00 (AU	W)	Period	86-10	WBAN:	99999
1	Annual He	eating and H	lumidificat	tion Design C	onditions											
ſ	Coldeat	Heat			Hun	nidification D	P/MCDB and	HR			Coldest mon	th WS/MCD	В	MCWS	/PCWD	
	Month	Heatin	Ig DB		99.6%			99%		0.	4%	1	%	to 99.	6% DB	
l	WORLD	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS.	PCWD	
	(a)	(b)	(c)	(d)	(e)	(f)	(9)	(h)	(1)	(1)	(K)	(1)	(m)	(n)	(0)	
	7	10.9	12.4	-6.1	2.3	26.9	-3.2	2.9	25.2	9.4	20.9	8.7	21.4	1.3	110	
1	Annual Co	ooling, Dehu	umidificati	on, and Entha	Ipy Desig	n Condition:	5									
ſ	Hottest	Hottest			Cooling	DB/MCWB					Evaporation	WB/MCDB	1		MCWS	PCWD
	Month	Month	0	.4%		1%	2	%	0	4%	1	%	2	%	to 0.4	% DB
l	200422020	DB Rang	DB	MCWB	DB	MCWB	DB	MCWB	I WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
	(a)	(5)	(c)	(d)	(e)	(1)	(g)	(h)	(i)	(j)	(K)	(1)	(m)	(n)	(0)	(P)
	1	5.7	37.2	20.9	35.8	21.6	34.6	22.6	28.2	31.8	27.8	31.3	27.5	31.1	4.5	140
				Dehumidific	ation DP/N	ICDB and HF	ર					Enthalp	y/MCDB			Hours
		0.4%			1%			2%		0.4	4%	1	%	2	%	8 to 4 &
Į.	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6
1	(a)	(b)	(c)	(d)	(e)	(t)	(g)	(h)	(1)	(1)	(K)	(1)	(m)	(n)	(0)	(P)
l	27.2	23.1	30.5	26.9	22.6	30.4	26.5	22.0	30.1	91.3	32.0	89.3	31.4	87.7	31.2	80
1	Extreme A	innual Desig	gn Conditi	ons	2 7 2 14				and states							
١	Evit	eme Annual	14/5	Extreme		Extreme	Annual DB				n-Year Re	turn Period	Values of E	xtreme DB		-
ļ	LAU	ente Annual		Max	M	ean	Standard	deviation	n=5	years	n=10	years	n=20	years	n=50	years
L	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(P)
6	88	8.0	73	30.6	79	40.8	16	15	6.8	41 9	5 9	42 8	5.0	43 6	39	447

Monthly Climatic Design Conditions

(4)

• AIRAH Handbook

Comfort Conditions (Cooling)

	СШВ	DB	WB	CDB
Perth	20.1	36.6	22.4	31.8
Broome	23.2	37.8	29.1	33.5

For hot humid regions, there are three design conditions that need to be addressed:

- Heat Load Calculations for building heat gain, typically dry bulb / wet bulb (Room sensible heat gain to determine airflow)
- Wet bulb / coincidental dry bulb for cooling coil performance calculations (Cooling capacity based on design airflow)
- Ambient conditions for selection of condensing units, air cooled chillers, cooling towers

Below 0°C, Properties and Enthalpy Deviation Lines Are For Ice

2

If, for Perth, the actual ambient conditions(dry bulb) exceed design, what are the consequences?

Higher indoor temperatures, for relatively short periods of time. No building damage.

If, for Broome, the actual ambient conditions (coincidental dry bulb / wet bulb) exceed design, what are the consequences? Potentially huge – collapsing ceilings, mould growth

Internal Comfort Conditions (%)

Indoor Design Conditions

Dew Point / Dry Bulb / Relative Humidity

If the intent is to increase (Max) dry bulb space temperature, then humidity needs to be reduced to remain at or under 13.0 °C DP to prevent mould growth

DP	22.5 ⁰ CDB	23.0 ⁰ CDB	23.5 ⁰ CDB	24.0 ⁰ CDB
13.0 ⁰ CDP	54.9 %RH	53.3 %RH	51.7 %RH	50.2 %RH
DP	24.5 ⁰ CDB	25.0 ⁰ CDB	25.5 ⁰ CDB	26.0 ⁰ CDB
13.0 ⁰ CDP	48.7 %RH	47.3 %RH	45.9 %RH	44.6 %RH

- Outside Air
 - Strategies for treating the outside air component whilst minimising energy and still meeting statutory requirements.
- Building Pressurisation
 - Dealing with air tightness
 - Building leakage
 - Infiltration
 - Affect on building performance and internal moisture content

• System Selection and Design

There isn't just one solution to the design.

- DX Evaporator Coils and moisture removal
- DX Evaporator Coils and Entering Air Temperature
- DX Units for Pre-conditioning Outside Air
- DX Vs Chilled water systems
- Heating water systems
- Heat Rejection equipment
 - Condensers
 - Cooling Towers
 - Dry Coolers (or air cooled chillers)

DX Systems

Don't assume that a single row coil in a humid environment will remove enough moisture.

Example

Let us take a small room that is say 100m² floor area and 300m³ volume. Lets assume an average heat load of 150 w/m² gives us 15kW load. Assume for the purposes that we put fresh air into the space of 10 l/s/person at 1 person per 10 provides 100 l/s. Assume a 40 kJ/kg gives about 4.5 kW cooling to remove the moisture to get to 22 at 50% gives 100 ml per minute of water, 6 l/hr.

A typical split for comparison gives us 2 l/hr moisture removal from the coil would barely remove 1/3 of that moisture.

DX Systems

Evaporator Coil Entering Air Limitations

Ambient Temperature 37.8 ^oC (Broome)

Return air temperature at 24.5 °C

% of Outside Air / Supply Air Varies

Mix Entering Air on Coil Condition

% O/A	20%	25%	30%	35%
⁰ CDB EAT	27.2	27.9	28.5	29.1

Some A/C units can incorporate hot gas bypass and operate upto $31 \, {}^{0}\text{C} - 33 \, {}^{0}\text{C}$ EAT

What happens when Ambient $> 37.8 \, {}^{\circ}\text{C}$?

DX Systems

Evaporator Coil Entering Air Limitations

A classroom of 20 primary school students (population rate at 1 person / $2 m^2$),

Classroom area = 40 m²

Outside air 12 l/s / person, reduced to 7.5 l/s for use of particulate filters = 150 l/s

Supply air flow rate = $10 \text{ l/s} / \text{m}^2 = 400 \text{ l/s}$

Evaporator Mix EAT Condition = 29.5 °C

To achieve EAT < 28.0 0 C, increase supply air to 580 l/s (increase 45%), 14.5 l/s / m²

DX Systems

100% Outside Air Using DX (Pre-conditioners)

Daikin FXMW – FM Units Nominal Capacity 14.0 – 28 kWr, 300 – 580 l/s

- Uses hot gas bypass
- Typically Max Ambient Temperature 33.0 °C DB / 28.0 °C WB
- Leaving Air Condition 18.0 ^oC DB
- Equivalent Length of Refrigerant Piping 7.5 m horizontal

What happens when Ambient > 33.0 °C DB?

- So the above deals with Typical Commercial Building arrangements. What about less usual scenarios;
 - Ventilative Cooling
 - Relationship between air velocity and comfort
 - Hybrid and Mixed Mode Systems
 - Spot Cooling
 - Evaporative Cooling
 - Heating
 - Installation and commissioning
 - Operation and maintenance

What is paramount ?

- Building construction
- Building Pressurization
- Selection of the right combination of air conditioning plant and equipment to handle ambient conditions for both the "Wet and Dry Seasons" and maintain acceptable indoor temperature and humidity

DA 20 has a wealth of information that needs to be fully digested for you to make the correct design choices

Thank You