

Design Load Basis for Offshore Wind turbines

DTU Wind Energy Report No. E-0133

Natarajan, Anand; Hansen, Morten Hartvig; Wang, Shaofeng

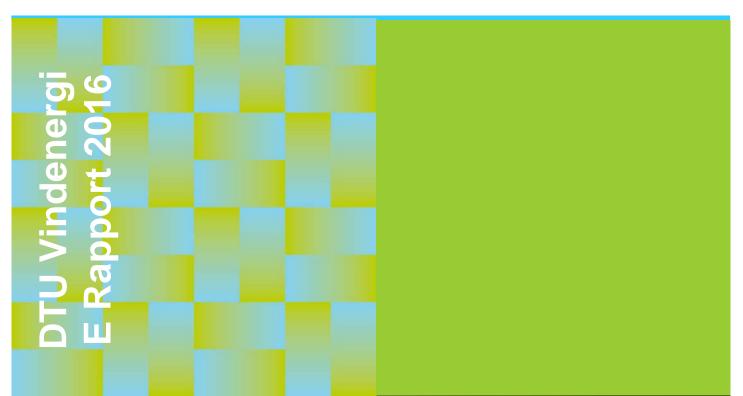
Publication date: 2016

Link back to DTU Orbit

Citation (APA): Natarajan, A., Hansen, M. H., & Wang, S. (2016). Design Load Basis for Offshore Wind turbines: DTU Wind Energy Report No. E-0133.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.


• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Design Load Basis for Offshore Wind turbines

Anand Natarajan, Morten Hartvig Hansen, Shaofeng Wang

DTU Wind Energy Report No. E-0133

August 2016

DTU Vindenergi Institut for Vindenergi

Design Load Basis for Offshore Wind turbines Revision 0

Anand Natarajan, Morten Hartvig Hansen, Shaofeng Wang

Design Load Basis for Offshore wind turbines Revision 00

Report number: *DTU Wind Energy E-0133* 2016

By Anand Natarajan, Morten Hartvig Hansen, Shaofeng Wang

Copyright:Reproduction of this publication in whole or in part must include the customary
bibliographic citation, including author attribution, report title, etc.Cover photo:NonePublished by:Department of Wind Energy, Frederiksborgvej 399Request reportwww.dtu.dkfrom:Image: Construction of the second secon

ISBN: 978-87-93278-99-8

Preface

DTU Wind Energy is not designing and manufacturing wind turbines and does therefore not need a Design Load Basis (DLB) that is accepted by a certification body. However, to assess the load consequences of innovative features and devices added to existing offshore turbine concepts or new offshore turbine concept developed in our research, it is useful to have a full DLB that follows the current design standard and is representative of a general DLB used by the industry. It will set a standard for the offshore wind turbine design load evaluations performed at DTU Wind Energy, which is aligned with the challenges faced by the industry and therefore ensures that our research continues to have a strong foundation in this interaction. Furthermore, the use of a full DLB that follows the current standard can improve and increase the feedback from the research at DTU Wind Energy to the international standardization of design load calculations.

Content

Summ	nary	.6
1. Def	inition of Offshore Wind Turbine	.7
2.	Design Load Cases	.8
Refer	ences	31

Summary

This report describes the full Design Load Basis (DLB) used for load calculations at DTU Wind Energy for offshore wind turbines. It is based on the first edition of the IEC 61400-3 standard, but also takes into account a few of the simplifications in load cases introduced during the revision IEC 61400-3, 2014. It covers the typical cases for assessment of extreme and fatigue loads on the turbine components. Special cases that are intended for specific turbines must be added to this DLB if necessary e.g. faults of specific sensors or actuators. Site Specific environmental conditions are required for predicting the design load basis for the sub structure.

The description is generic and not linked to the development and testing of the HAWC2 aeroelastic software or external models and controllers coupled to HAWC2 through the DLL interface. The description is therefore formulated without direct references to HAWC2 features, commands, or terminology. This generic formulation has the advantage that the DLB can be used independently of the aeroelastic simulation tool.

Each Design Load Case (DLC) of the DLB is described in the following chapter. The DLC description also contains a short description on how the simulation results will be post-processed to obtain the tables of extreme and fatigue loads for the main components. More detailed descriptions of the post-processing methods are given in [2] and [3].

1. Definition of Offshore Wind Turbine

As given in the IEC 61400-3 Ed. 1 [1] standard, a wind turbine is to be considered as an offshore wind turbine, if its support structure is subject to hydrodynamic loading. The following figure taken from the same standard is used to define concepts related to the support structure.

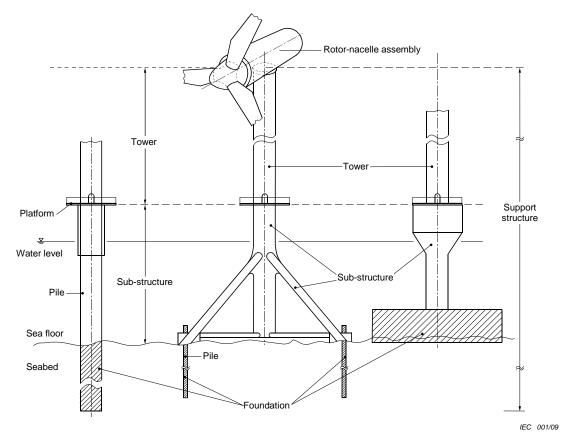


Figure 1 – Components of an offshore wind turbine (Reproduced from [1])

2. Design Load Cases

This chapter contains a description of each Design Load Case (DLC) in the DLB, based on the guidance given in the IEC 61400-3 Ed.1, 2009 [1]. Table 1 shows an overview of the DLCs, where the abbreviations used are defined below:

Name:	Identifier of the DLC
Load:	Type of load analysis (U=extreme/ultimate loads and F=fatigue)
PSF:	Partial safety factor on the loads.
Description:	Short description of the operating conditions.
WSP:	Mean wind speeds at hub height in m/s, e.g. 4:2:26 means the range 4, 6, 8,, 26 m/s (Vr=rated, Vin=cut-in, Vout=cut-out wind speeds, Vref=reference speed of the IEC class, Vmaint=max. speed during maintenance, V1 and V50 are wind speeds with 1-and 50-year recurrence period).
WCP:	Wave and Current parameters to be used in the load cases
SS:	Sea State Conditions
WWD:	Direction between Wind and Waves – Unidirectional (UNI) or Multi Directional (MUL)
Yaw:	Mean yaw errors in degrees, e.g8/+8 deg means that simulations are performed for these two yaw errors for each wind speed and turbulence seed.
Turb.:	Turbulence level or intensity.
NWLR	The normal water level range between highest astronomical tide (HAT) and lowest astronomical tide (LAT).
EWLR	50 year Extreme Water Range under storm conditions, HAT + storm surge – (LAT + storm surge (negative))
MSL	Mean Sea Level
LAT	Lowest Astronomical Tide
HAT	Highest Astronomical Tide
NSS	Normal Sea State
ESS	Extreme Sea State
SSS	Severe Sea State
E[]	Expected Value
Hs	Significant Wave Height
Hs WSP	Significant Wave Height conditional on the mean wind speed
Hs₁	1-Year Significant Wave Height
Hs ₅₀	50-Year Significant Wave Height
NCM	Normal current model

ECM	Extreme current model
RNA	Rotor – nacelle assembly
UNI	Unidirectional
MUL	Multiple directions
Seeds:	Number of wind turbulence seeds or random wave seeds used per mean wind speed and yaw error.
Shear:	Vertical shear exponent or reference to equation in the IEC 61400- 1 standard.
Gust:	Gust type according to the IEC 61400-1 standard.
Fault:	Short description of fault type.
Т:	Length of simulated load signal used for analysis in seconds.
Files:	Number of result files.

The wind speed range for normal operation is here set to 4 - 26 m/s; however, it must be adjusted to the specific turbine, e.g. in case that the turbine has a storm controller.

All simulations are to be performed with aerodynamic imbalance due to uncertainty in blade pitch calibration of 0.5 deg, whereby one blade has a -0.5 deg pitch offset, another blade has +0.5 deg pitch offset, and the last blade of a three bladed rotor has no offset. Similar, all simulations are performed with a mass imbalance of each blade corresponding to 0.2% of the total blade mass, which is placed on two blades in their centers of gravity.

The load cases using stochastic wind conditions also require stochastic waves. <u>Offshore</u> <u>substructure design (monopiles, jackets etc.) is site specific and this requires that simulations</u> <u>are run with site specific met-ocean conditions</u>. In situations where this is an ultimate load case for the sub structure during turbine operation such as DLC 1.3, DLC 6.1 or DLC 6.2, 10 minutes of simulation time is not sufficient to cover all the phase differences possible between 10 minutes of wind time series and 10 minutes of wave time series and therefore at least 30 minute-60 simulations are required. In all cases of selecting extreme waves, the highest wave height must be chosen from at least 1 hour wave simulation. If this highest height is judged to be a possible breaking wave, then guidance can be taken from Annex C of the IEC 61400-3 or Ref.[4]. The 50 year wave height determination may need prior stochastic extrapolation of measured wave data or the use of the Inverse First Order Reliability Model (IFORM) also explained in the Annex of the IEC 61400-3.

For the listed DLCs with the chosen operational wind speed range, the total number of simulations, and therefore also result files will be more than the corresponding results for land turbines due to increased number of simulations required for DLC1.2, extra load case DLC 1.6, longer time of simulations required for DLC 1.3 and possible repetition of load cases at different water depths for the storm cases. Note that any transients in the simulation start-up must be excluded and are not counted to the time lengths of the simulated load signals that will be used for the load analysis.

Offshore sub structure design is site specific and depending on the type of sub structure, it may be required that some of the operational load cases are repeated with the wind/waves incident

over a 360 deg. polar around the turbine. The rotor is in such cases, facing the incident wind. Further for site specific cases, appropriate soil properties need to be considered for the sub structure, whereby both the lateral bending and axial shear interaction between the sub structure and the soil are accounted for [4].

Name	Load	PSF ¹	Description	WSP	Yaw [deg]	Turb.	Seeds	Shear	Gust	WCP	ss	WWD	Other	No. of	T [s]
Name	LUau	r Ji	Description	[m/s]	Taw [deg]	Turb.	Jeeus	Silear	Gust	WCF	55		Conditions	Stoch	1 [3]
				[1173]									conditions	astic	
														Wave	
														Seeds	
DLC11	U	1.25	Normal	4:2:26		NTM	6	0.14	None	E(Hs WSP),	NSS, MSL,	UNI	Only RNA	3	600
			production		-10/0/+10					NCM along	Stochastic,		loads to be		
					-, -, -					wave	JONSWAP		extrapolated		
DLC12	F	1.0	Normal	4:2:26		NTM	6	0.14	None	Joint	NSS, MSL,	MUL 0	None	3	600
			production		-10/0/+10					distribution	Stochastic,	+/- 10			
										Hs,Tp, WSP,	Pierson	degs			
										No currents	Moskovitz	_			
DLC13	U	1.35	Normal	4:2:26		ETM	6	0.14	None	E(Hs WSP),	NSS, MSL,	UNI	None	3	1500
			production		-10/0/+10					NCM along	Stochastic,				
										wave and	JONSWAP				
										against					
										wave					
DLC14	U	1.35	ECD	Vr − 2,	Direction	None	None	0.14	ECD	$H_{\rm s} = E[H_{\rm s}/$	NSS, MSL	Initially	None	-	100
				Vr, Vr + 2	change					WSP], no		aligned			
				VITZ						currents		with			
												wind			
DLC15	U	1.35	EWS	Vr − 2,	0	None	None	Eq. in	None	$H_{\rm s} = E[H_{\rm s}]$	NSS, MSL	UNI	None	-	100
				Vr, Vr + 2				IEC		WSP], NCM					
DI C16		1.25	Normal		0		c	0.14	None	$H_{\rm s} = H_{\rm s,SSS,}$			None	2	600
DLC16	U	1.35	Normal	4:2:26	0	NTM	6	0.14	None		SSS, MSL	UNI	None	3	600
	1		Production							NCM					

Table 1: Overview of the Design Load Basis of DTU Wind Energy. For turbines with storm operation the wind speed range must be adjusted accordingly.

¹ Listed PSFs are for the standard values according to Table 3 of IEC 61400-1 Ed. 3. Note that the PSF can be lowered if gravity is part of the characteristic load for the particular channel.

DLC21	U	1.35	Grid loss	4:2:26	-10/0/+10	NTM	4	0.14	None	$H_{\rm s} = E[H_{\rm s}]$	NSS, MSL	UNI	Grid loss at	-	100
										WSP], NCM			10s		
DLC22p	U	1.1	Pitch runaway	12:2:26	0	NTM	12	0.14	None	$H_{\rm s} = E[H_{\rm s} $ WSP], NCM	NSS, MSL	UNI	Max. pitch to fine at 10s	-	100
DLC22y	U	1.1	Extreme yaw	4:2:26	15:15:345	NTM	1	0.14	None	$H_{\rm s} = E[H_{\rm s}]$	NSS, MSL	UNI	Abnormal	-	600
			error							WSP], NCM			yaw error		
DLC22b	U	1.1	One blade stuck at fine pitch	4:2:26	0	NTM	12	0.14	None	$H_{\rm s} = E[H_{\rm s} $ WSP], NCM	NSS, MSL	UNI	1 blade at fine pitch	-	600
DLC23	U	1.1	Grid loss	Vr – 2, Vr, Vr + 2, Vout	0	None	4 differen t azimuth start points	0.14	EOG	$H_{\rm s}=E[H_{\rm s} $ wsp], ncm	NSS, MSL	UNI	Grid loss at start of gust, max acceleration and max velocity	-	100
DLC31	F	1.0	Start-up	Vin, Vr, Vout	0	None	None	0.14	None	$H_{\rm s} = E[H_{\rm s} $ WSP], No currents	NSS NWLR	UNI	None	-	100
DLC32	U	1.35	Start-up at four diff. times	Vin, Vr+/-2, Vout	0	None	None	0.14	EOG	$H_{\rm s} = E[H_{\rm s} $ WSP],	NSS, MSL	UNI	None	-	100
DLC33	U	1.35	Start-up in EDC	Vin, Vr+/-2, Vout	0	None	None	0.14	EDC	$H_{\rm s} = E[H_{\rm s} $ wsp],	NSS, MSL	Initially aligned with wind	None	-	100
DLC41	F	1.0	Shut-down	Vin, Vr, Vout	0	None	None	0.14	None	Hs = E[Hs WSP], No currents	NSS NWLR	UNI	None	-	100
DLC42	U	1.35	Shut-down at six diff. times	Vr+/-2, Vout	0	None	None	0.14	EOG	Hs = <i>E[</i> Hs WSP],	NSS MSL	UNI	None	-	100

DLC51	U	1.35	Emergency shut-down	Vr+/-2, Vout	0	NTM	12	0.14	None	Hs = E[Hs WSP],	NSS MSL	UNI	None	-	100
DLC61	U	1.35	Parked in extreme wind	V50	-8/+8	11%	6	0.11	None	$H_{\rm s} = H_{\rm s50,}$ ECM	ESS, EWLR, Stochastic, JONSWAP	MUL 0 and +/- 30 degs	None	3 seeds	600- 1hour
DLC62	U	1.1	Parked grid loss	V50	0:15:345	11%	1	0.11	None	$H_{\rm s} = H_{\rm s50,}$ ECM	ESS, EWLR, Stochastic, JONSWAP	MUL 0 and +/- 30 degs	None	3 seeds	600- 1hour
DLC63	U	1.35	Parked with large yaw error	V1	-20/+20	11%	6	0.11	None	$H_{\rm s} = H_{\rm s1}$, ECM	ESS, MSL, Stochastic, JONSWAP	MUL 0 and +/- 30 degs	None	3 seeds	600- 1hour
DLC64	F	1.0	Parked	4:2:0.7 *Vref	-8/+8	NTM	6	0.14	None	Joint prob. distribution of $H_{\rm s}, T_{\rm p}$, WSP No Currents	NSS, NWLR, Stochastic, Pierson Moskovitz	MUL 0 and +/- 10 degs	None	3 seeds	600
DLC71	U	1.1	Rotor locked and extreme yaw	V1	0:15:345	11%	1	0.11	None	$H_{s} = H_{s1}$ NCM	ESS, MSL, Stochastic, JONSWAP	MUL +/- 30 degs	Rotor locked at 0:30:90 deg	1 seed	600
DLC 72	F	1.0	Rotor locked, under normal wind conditions	NTM $V_{\rm in}$ to $V_{\rm out}$	0	11%	6	0.14	None	Joint prob. distribution of H_{s} , T_{p} , WSP	NSS, MSL, MUL, Pierson Moskovitch	MUL 0 and +/- 10 degs	Rotor locked at 0:30:90 deg	3 seeds	600
DLC81	U	1.5	Maintenance	Vmaint	-8/+8	NTM	6	0.14	None	$H_{\rm s} = E[H_{\rm s} $ WSP], NCM	NSS, MSL, JONSWAP	UNI	Maintenance	1 Seed	600

Power production in normal turbulence
Extreme extrapolation Partial safety factor 1.25
Simulation of power production without faults performed for wind speeds in the
entire operational range with normal turbulence according to the IEC class. Yaw
errors during normal operation are set to +/- 10 deg. Six seeds per wind speed
and yaw error are used.
Length: 600 s
Wind: 4 – 26 m/s with steps of 2 m/s
Yaw: -10/0/+10 deg
Turbulence: NTM, Minimum 6 seeds per wind speed and yaw error
Shear: Vertical and exponent of 0.14
Waves Stochastic, NSS; 3 seeds
Gust: None
Fault: None
At least 216
The extrapolation of extreme loads from cases DLC11 is performed to
statistically determine the long term load extremes [3] only for the rotor
nacelle assembly and the load case is therefore similar to those used on
<u>land</u> . If in case extreme loads only on the support structures are required, this load case may be omitted for fixed sub structures.
If it can be shown that the influence of NSS waves on the RNA is
negligible, then the simulation of waves for this load case can be omitted.

DLC12	Power production in normal turbulence								
Assessment	Fatigue	Partial safety factor 1.0							
Description	Simulation of power production without faults performed for wind speeds in the entire operational range with normal turbulence according to the IEC class. At least 3 different wave seeds are used in 3 different directions. Yaw errors during normal operation are set to +/- 10 deg. Six seeds per wind speed and yaw error are used. The wind/wave directions should also have misaligned combinations. If the difference between HAT and MSL is more than 5m, then at least two water depths should be simulated. Note that a Pierson Moskovith wave spectrum is used here.								
Simulation	Length: 600 s								
setup	Wind: 4 – 26 m/s v	vith steps of 2 m/s							
	Yaw: -10/0/+10 de	eg							
	Turbulence: NTM, 6 see	ds per wind speed and yaw	error						
	Shear: Vertical and	exponent of 0.14							
	Waves Stochastic,	3 seeds, NSS, 3 directions,	MSL and HAT depths						
	Gust: None								
	Fault: None								
Total no.	· ·	hs), for jacket fatigue analys	•						
simulations	-	ts around 360 degs in steps	s of 30 degs is						
	recommended.								
Post-	•	ed for each load sensor and							
processing	v	B results files for each wind							
	•	t that particular wind speed.							
	•	to a life-time load spectrum	-						
		quivalent fatigue loads are c	•						
	•	l on the Palmgren-Miner ass	•						
	•	llso contains load cycles from	m DLC24, DLC31, DLC41,						
	DLC64 and DLC 7.2								

DLC13	Power production in extreme turbulence								
Assessment	Extreme – normal event Partial safety factor 1.35 ²								
Description	Simulation of power production without faults or yaw error performed for wind								
	speeds in the entire operational range with extreme turbulence according to the								
	IEC class. Yaw errors are set to +/- 10 deg. Six seeds per wind speed and yaw								
	error are used. This load case needs larger run time of at least 1500s to include								
	sufficient phase differences between wind and waves to get the right extreme								
	load combination on the sub structure.								
Simulation	Length: 1500 s								
setup	Wind: $4 - 26$ m/s with steps of 2 m/s								
	Yaw: -10/0/+10 deg								
	Turbulence: ETM, 6 seeds per wind speed								
	Shear: Vertical and exponent of 0.14								
	Waves Stochastic, NSS, 3 seeds								
	Gust: None								
	Fault: None								
Total no.									
simulations	At least 216: 18 seeds for each joint pair of wind and wave conditions is								
	recommended								
Post-	The wave seeds can be made in combination with wind seeds to ensure the								
processing	same number of simulations as in the land case. However note that the length								
	of each simulation should be at least 1500s. The mean of the extremes values								
	for each mean wind speed are extracted for each load sensor as the								
	characteristic extreme load value.								

 2 For load sensors where gravity has a positive effect the partial safety factor can be reduced according IEC61400-1 (3. Ed.)

DLC14	Power production in extreme coherent gust with wind direction of	change								
Assessment	Extreme – normal event Partial safety factor 1.35 ²									
Description	Simulation of power production without faults or turbulence and with e	Simulation of power production without faults or turbulence and with extreme								
	coherent gust with wind direction change according to the IEC standa	rd. Wind								
	speeds close to rated are considered to capture the extreme blade tip)								
	deflections and flapwise blade moments.									
Simulation	Length: 100 s									
setup	Wind: Vr and Vr +/- 2m/s									
	Yaw: 0 deg									
	Turbulence: None									
	Waves Deterministic NSS									
	Shear: Vertical and exponent of 0.14									
	Gust: ECD: Equations (23) and (25) of IEC 61400-1 (E	d. 3)								
	Fault: None									
Total no.										
simulations	3									
Post-	The extremes values over all wind speeds are extracted for each load	d sensor.								
processing										

DLC15	Power production in	extreme wind shear								
Assessment	Extreme – normal event Partial safety factor 1.35 ²									
Description	Simulation of power pro	Simulation of power production without faults performed for wind speeds in the								
	entire operational range	ge without turbulence and with extreme vertical or								
	horizontal wind shear the	transients in four different combinations, two pairs of								
	opposite sign in the two	vo directions.								
Simulation	Length: 10	00 s								
setup	Wind: 4	I – 26 m/s with steps of 2 m/s								
	Yaw: 0) deg								
	Turbulence: N	None								
	Waves D	Deterministic, NSS								
	Shear: E	EWS: Equations (26) and (27) of IEC 61400-1 (Ed. 3)								
	Gust: N	None								
	Fault: No	None								
Total no.										
simulations	48									
Post-	The extremes values o	over all wind speeds are extracted for each load sensor.								
processing										

DLC16	Power production in severe sea states
Assessment	Extreme – normal event Partial safety factor 1.35 ²
Description	This load case is only run for offshore wind turbines. Simulation of power
	production without faults performed for wind speeds in the entire operational
	range with normal wind turbulence but under severe sea state conditions. It is
	recommended that nonlinear waves are used either second order nonlinear
	random waves or a combination of Stokes nonlinear waves and irregular linear
	waves.
Simulation	Length: Minimum 600 s
setup	Wind: $4 - 26$ m/s with steps of 2 m/s
	Yaw: -10/0/+10 deg
	Turbulence: NTM, 6 seeds per wind speed and yaw error
	Shear: Vertical and exponent of 0.14
	Waves Stochastic, 3 seeds, SSS, Nonlinear Waves
	Gust: None
	Fault: None
Total no.	
simulations	216
Post-	The waves are simulated as part of SSS, implying the joint probability of the
processing	normal wind speed and waves should have a 50 year return period. The mean
	of the extremes values over all wind speeds are extracted for each load sensor.
	Requires use of nonlinear waves such as described in [5] and the extreme wave
	height should be based on at least 1-hour wave simulations.

DLC21	Power production with grid loss						
Assessment	Extreme – normal event Partial safety factor 1.35 ²						
Description	Simulation of power production with grid loss (generator torque drops to zero)						
	after 10 s and thereafter the overspeed protection of the turbine controller ³ will						
	shut-down the turbine. Normal turbulence and four seeds per wind speed and						
	yaw error are used.						
Simulation	Length: 100 s						
setup	Wind: 4 – 26 m/s with steps of 2 m/s						
	Yaw: -10/0/+10 deg						
	Turbulence: NTM, 4 seeds per wind speed and yaw error						
	Waves Deterministic, NSS						
	Shear: Vertical and exponent of 0.14						
	Gust: None						
	Fault: Grid loss at t=10 s						
Total no.							
simulations	144						
Post-	For each load sensor, the average value of the upper half extreme values of the						
processing	12 realizations is computed for each wind speed.						

DLC22b	Power production with one blade at minimum pitch angle						
Assessment	Extreme – abnorma	l event	Safety factor	1.1			
Description	Simulation of power	Simulation of power production with failure in the pitch system or bearing of one					
	blade such that the	turbine is o	perating with this blade	e at minimum pitch angle.			
	All operational wind	speeds an	d normal turbulence ar	e considered with 12			
	seeds per wind spe	ed.					
Simulation	Length:	100 s					
setup	Wind:	4 – 26 m/s	s with steps of 2 m/s				
	Yaw:	0 deg					
	Turbulence:	NTM, 12 seeds per wind speed					
	Waves	aves Deterministic, NSS					
	Shear:	near: Vertical and exponent of 0.14					
	Gust:	: None					
	Fault:	Failure of pitch system on one blade leading to this blade					
	remaining at minimum pitch angle.						
Total no.							
simulations	144						
Post-	For each load sensor, the average value of the upper half extreme values of the						
processing	12 realizations is co	mputed for	each wind speed.				

³ In case that the controller does not include an overspeed monitoring feature, the simulations are set up by forcing an overspeed shut-down at the time instant where the rotor speed has accelerate to the specific overspeed limit.

DLC22p	Power production with pitch runaway ⁴						
Assessment	Extreme – abnorma	l event	Safety factor	1.1			
Description	Simulation of power	production with failure i	in pitch system afte	r 10 s leads to			
	collective pitching to	owards minimum pitch a	ngle at the maximu	m pitch speed.			
	Wind speeds from 1	2 m/s and above and ne	ormal turbulence w	ith 12 seeds per			
	wind speed are con	sidered.					
Simulation	Length:	100 s					
setup	Wind:	12 – 26 m/s with steps	of 2 m/s				
	Yaw:	0					
	Turbulence:	NTM, 12 seeds per wind speed					
	Waves	Deterministic, NSS					
	Shear:	Vertical and exponent of 0.14					
	Gust:	None					
	Fault:	Failure in pitch system leading to collective pitch runaway					
		where all blades pitch at t=10 s with maximum speed					
		towards minimum pitch angle.					
Total no.							
simulations	96						
Post-	For each load sense	or, the average value of	the upper half extre	eme values of the			
processing	12 realizations is co	mputed for each wind s	peed.				

DLC22y	Power production	with abnormal yaw err	or				
Assessment	Extreme – abnorma	l event	Safety factor	1.1			
Description	Simulation of power	production with abnorm	ally large yaw erro	r due to failure in			
	the turbine safety sy	stem. All operational wi	nd speeds and nor	mal turbulence			
	are considered with	one seed per wind spee	ed and yaw error.				
Simulation	Length:	600 s					
setup	Wind:	4 – 26 m/s with steps of	of 2 m/s				
	Yaw:	15 to 345 deg with steps of 15 deg					
	Turbulence:	NTM, 1 seed per wind speed and yaw error					
	Waves	Deterministic, NSS					
	Shear:	Vertical and exponent of 0.14					
	Gust:	None					
	Fault:	Failure of yaw system	leading to abnorma	al yaw errors.			
Total no.							
simulations	276						
Post-	For each load sense	or, the average value of	the upper half extre	eme values of the			
processing	12 realizations is co	mputed for each wind s	peed.				

⁴ The DLC may be omitted if it can be argued that there is a redundant safety system that detects a pitch run-away and shuts down the turbine immediately, or that makes a pitch run-away impossible.

DLC23	Power production with grid loss during extreme operating gust				
Assessment	Extreme – abnormal event Safety factor 1.1				
Description	Simulation of power production with grid loss performed at close to rated and at				
	cut-out wind speeds. To capture the extremes of this abnormal event, the grid				
	loss is initiated at three different time instances after the gust has started.				
Simulation	Length: 100 s				
setup	Wind: Vr+/-2 m/s and Vout				
	Yaw: 0 deg				
	Turbulence: None				
	Waves Deterministic, NSS				
	Shear: Vertical and exponent of 0.14				
	Gust: EOG: Equation (17) of IEC 61400-1 (Ed. 3)				
	Fault: Grid loss initiated at three difference instances in the gust.				
Total no.					
simulations	9				
Post-	The extremes values over all wind speeds and timings are extracted for each				
processing	load sensor.				

DLC24	Power production with large yaw errors					
Assessment	Fatigue	Safety factor	1.0			
Description	Simulation of power	production with large yaw erro	rs of +/-20 deg performed for			
	all operational wind	speeds with normal turbulence	using three seeds per wind			
	speed and yaw error	r. The large yaw errors are a re	sult of a failure in the yaw			
	control and the size	of the yaw error is defined by t	he safety system.			
Simulation	Length:	600 s				
setup	Wind:	4-26 m/s with steps of 2 m/s				
	Yaw:	-20/+20 deg				
	Turbulence:	NTM, 3 seeds per wind speed and yaw error				
	Waves	Deterministic, NSS				
	Shear:	Vertical and exponent of 0.14				
	Gust:	None				
	Fault:	Failure in yaw control leading to maximum yaw error				
	ensured by the safety system.					
Total no.						
simulations	72					
Post-	The one hour load s	pectra obtained from the six re	alizations of each wind			
processing	speeds are added to	the load spectra from DLC12	assuming that these large			
	yaw errors occur 50ł	h per year.				

DLC31	Start-up in normal	wind profile			
Assessment	Fatigue	Safety factor	1.0		
Description	Simulation of start-u	up in normal wind profile and a	at cut-in, rated, and cut-out		
	wind speeds.				
Simulation	Length:	100 s			
setup	Wind:	Vin, Vr and Vout			
	Yaw:	0 deg			
	Turbulence:	None			
	Waves	Deterministic, NSS			
	Shear:	Vertical and exponent of 0.1	14		
	Gust:	None			
	Fault:	None			
Total no.					
simulations	3				
Post-	A total of 1000 start-ups at cut-in wind speed, 50 at rated wind speed and 50 at				
processing	cut-out wind speed per year are assumed, and the load cycles during start-up				
	for each load sensor and each wind speed are added to the combined load				
	spectrum obtained f	from DLC12 and DLC24.			

DLC32	Start-up during extr	Start-up during extreme operating gust				
Assessment	Extreme – normal eve	ent	Safety factor		1.35 ²	
Description	Simulation of start-up	perform	ned at cut-in, close	to rate	ed and cut-out wind	
	speeds. To capture th	ne extrer	mes of this event, t	the sta	rt-up is initiated at four	
	different time instance	es after t	the gust has starte	d.		
Simulation	Length:	100 s				
setup	Wind:	Vin, Vr+	/-2 m/s and Vout			
	Yaw:	0 deg				
	Turbulence	None				
	Waves: Deterministic, NSS					
	Shear: Vertical and exponent of 0.14					
	Gust:	Gust: EOG: Equation (17) of IEC 61400-1 (Ed. 3)				
	Fault:	None				
Total no.						
simulations	16					
Post-	The extremes values over all wind speeds and timings are extracted for each					
processing	load sensor.					

DLC33	Start-up during ex	treme wi	nd direction chang	je		
Assessment	Extreme – normal e	vent	Safety factor	1.35 ²		
Description	Simulation of start-u	ip during	extreme wind direct	ion change performed at cut-in,		
	close to rated and c	ut-out wir	nd speeds. Two timi	ngs for each sign of the		
	direction change is	used: sta	rt-up is just before t	ne direction change and one		
	half way through the	e directior	n change.			
Simulation	Length:	100 s				
setup	Wind:	Vin, Vr+	-/-2 m/s and Vout			
	Yaw:	0 deg				
	Turbulence	None				
	Waves:	Deterministic, NSS				
	Shear:	Vertical and exponent of 0.14				
	Gust:	EDC: Equation (21) of IEC 61400-1 (Ed. 3)				
	Fault:	None				
Total no.						
simulations	16					
Post-	The extremes value	s over all	wind speeds and ti	mings are extracted for each		
processing	load sensor.					

DLC41	Shut-down in norn	nal wir	nd profile		
Assessment	Fatigue		Safety factor		1.0
Description	Simulation of norma	al shut-	down in normal wind	l profile	and at cut-in, rated, and
	cut-out wind speeds	6.			
Simulation	Length:	100 s	6		
setup	Wind:	۷in, ۱	/r, and Vout		
	Yaw:	0 deg]		
	Turbulence:	None)		
	Waves	Deterministic, NSS			
	Shear:	Vertical and exponent of 0.14			
	Gust:	None			
	Fault:	None)		
Total no.					
simulations	3				
Post-	A total of 1000 shut-downs at cut-in wind speed, 50 at rated wind speed and 50				
processing	at cut-out wind speed per year are assumed, and the load cycles during normal				
	shut-down for each	load se	ensor and each wind	speed	are added to the
	combined load spec	trum c	btained from DLC12	and DI	_C24.

DLC42	Shut-down during extreme operating gust			
Assessment	Extreme – normal event Safety factor 1.35			
Description	Simulation of normal shut-down performed at close to rated and cut-out wind			
	speeds. To capture the extremes of this event, the shut-down is initiated at six			
	different time instances after	the gust has started.		

Simulation	Length:	100 s			
setup	Wind:	Vr+/-2 m/s and Vout			
	Yaw:	0 deg			
	Turbulence	None			
	Waves:	Deterministic, NSS			
	Shear:	Vertical and exponent of 0.14			
	Gust:	EOG: Equation (17) of IEC 61400-1 (Ed. 3)			
	Fault:	None			
Total no.					
simulations	18				
Post-	The extremes values over all wind speeds and timings are extracted for each				
processing	load sensor.	load sensor.			

DLC51	Emergency shut-down		
Assessment	Extreme – normal event	Safety factor	1.35 ²
Description	Simulation of emergency shut	-down performed at close	e to rated and cut-out
	wind speeds in normal turbule	ence with 12 seeds per w	ind speed. The
	emergency stop may or may	not incorporate a mechar	nical brake dependent on
	the turbine type.		
Simulation	Length: 100 s		
setup	Wind: Vr+/-2 m	/s and Vout	
	Yaw: 0 deg		
	Turbulence: NTM, 12	seeds per wind speed	
	Waves Determir	nistic, NSS	
	Shear: Vertical a	and exponent of 0.14	
	Gust: None		
	Fault: None		
Total no.			
simulations	36		
Post-	The average of the upper half extremes values for each wind speed is		
processing	computed for each load sensor.		

DLC61	Parked in 50-year extreme wind			
Assessment	Extreme – normal event		Safety factor	1.35 ²
Description	Simulation of parked turbine with idling rotor and yaw error at a wind speed with			
	50-year recurrence perio	d and	d turbulence intensity of	11%. Six seeds per yaw
	error are used. The comb	inati	ion of extreme wind and	wave conditions shall be
	such that the global extre	me e	environmental action has	a combined recurrence
	period of 50 years. This r	eed	s to be repeated at 3 wat	er depths of MSL, HAT
	+storm surge and LAT-st	orm	surge if the water level th	nat results in the largest
	loads is not known.			
Simulation	Length: At le	ast (600 s (1 hour is recomme	ended)
setup	Wind: V50			
	Yaw: -8/+8 deg			
	Turbulence: 11%	inte	ensity, 6 seeds per wind s	speed and yaw error
	Waves: Stochastic, ESS, EWLR, 50 year nonlinear waves, 3 seeds			
	Shear: Vertical and exponent of 0.11			
	Gust: Non	Э		
	Fault: Non	Э		
Total no.				
simulations	12 (if fixed water depth) of	ther	wise 36 (for 3 different w	ater depths)
Post-	The average of the extremes values is computed for each load sensor as the			
processing	characteristic extreme load value. The non-linear waves of height equal to the			
	extreme wave height must be used based on at least 1 hour wave simulation			
	using methods such as given in [5]. If the load simulation length is only 600s,			
	then the extreme wave from a 1-hour wave simulation should be used. For 1-			
	hour load simulations the extreme mean wind speed can be 0.95 of the 10			
	minute extreme mean wir	nd sp	beed.	

DLC62	Parked without grid connection in 50-year extreme wind		
Assessment	Extreme – abnormal event Safety factor 1.1		
Description	Simulation of parked turbine with idling rotor and abnormally large yaw error due		
	to grid loss at a wind speed with 50-year recurrence period and turbulence		
	intensity of 11%. One seed per yaw error is used. The combination of extreme		
	wind and wave conditions shall be such that the global extreme environmental		
	action has a combined recurrence period of 50 years. This needs to be repeated		
	at 3 water depths of MSL, HAT +storm surge and LAT-storm surge if the water		
	level that results in the largest loads is not known		
Simulation	Length: At least 600 s (1 hour is recommended)		
setup	Wind: V50		
	Yaw: 0:15:345 deg		
	Turbulence 11% intensity, 1 seed per wind speed and yaw error		
	Waves: Stochastic, ESS, EWLR, 50 year nonlinear waves, 3 seeds		
	Shear: Vertical and exponent of 0.11		
	Gust: None		
	Fault: None		
Total no.	72 (2 wave misalignment directions for each wind direction)		
simulations			
Post-	The average of the extremes values is computed for each load sensor as the		
processing	characteristic extreme load value. Note that the non-linear waves of height		
	equal to the extreme wave height must be used based on at least 1 hour wave		
	simulation. If the load simulation length is only 600s, then the extreme wave		
	from a 1-hour wave simulation should be used. The misalignment within a range		
	of \pm 30° that results in the highest loads acting on the support structure shall be		
	considered. For 1-hour load simulations the extreme mean wind speed can be		
	0.95 of the 10 minute extreme mean wind speed.		

DLC63	Parked with large yaw error in 1-year wind		
Assessment	Extreme – normal eventSafety factor1.352		
Description	Simulation of parked turbine with idling rotor and large yaw error due to failure in		
	yaw control system at a wind speed with 1-year recurrence period and		
	turbulence intensity of 11%. Six seeds per yaw error are used. The combination		
	of extreme wind and wave conditions shall be such that the global extreme		
	environmental action has a combined recurrence period of 1 year. Multiple		
	wave directions of +/- 30 degs are used.		
Simulation	Length: At least 600 s		
setup	Wind: V1		
	Yaw: -20/+20 deg		
	Turbulence: 11% intensity		
	Waves: Stochastic, ESS, MSL, 1 year wave, 3 seeds, misaligned		
	Shear: Vertical and exponent of 0.11		
	Gust: None		
	Fault: None		
Total no.			
simulations	36		
Post-	The average of the extremes values is computed for each load sensor as the		
processing	characteristic extreme load value. Note that the non-linear waves of height		
	equal to the extreme wave height must be used based on at least 1 hour wave		
	simulation. If the load simulation length is only 600s, then the extreme wave		
	from a 1-hour wave simulation should be used. For 1-hour load simulations the		
	extreme mean wind speed can be 0.95 of the 10 minute extreme mean wind		
	speed.		

DLC64	Parked		
Assessment	Fatigue	Safety factor	1.0
Description	Simulation of parked	turbine with idling rotor and	minor yaw error (according to
	the standard) at wind	speeds from 4 m/s to 70%	of the reference wind speed of
	the IEC class. Six see	eds per wind speed and 3 w	ave seeds and yaw error are
	used. This needs to b	be repeated at 3 water depth	s of MSL, HAT and LAT, if the
	water level that result	ts in the largest loads is not	known
Simulation	Length:	600 s	
setup	Wind:	4 m/s to 0.7*Vref with steps	of 2 m/s
	Yaw:	-8/+8 deg	
	Turbulence:	None	
	Waves	Stochastic, NSS, NWLR, Mi	saligned
	Shear:	Vertical and exponent of 0.1	4
	Gust:	None	
	Fault:	None	
Total no.			
simulations	192 ⁵ x 3 (To be repeated 3 times at 3 different water depths)		
Post-	Assuming that the turbine is idling 2.5% of the time in each wind speed bin, the		
processing	load cycles during idling for each load sensor and each wind speed are added		
	to the combined load	spectrum obtained from DL	C12 and DLC24.

DLC71	Parked with rotor locked in 1-year extreme wind		
Assessment	Extreme – abnormal event Safety factor 1.	1	
Description	Simulation of parked turbine with rotor locked at 0:30:90 of	deg and abnormally	
	large yaw error due to electrical fault at a wind speed with	n 1-year recurrence	
	period and turbulence intensity of 11%. One seed per yaw	w error is used.	
Simulation	Length: 600 s		
setup	Wind: V1		
	Yaw: 0:15:345 deg		
	Turbulence: 11% intensity		
	Waves: Stochastic, MSL,ESS; 1 year extrem	ne states	
	Shear: Vertical and exponent of 0.11	Vertical and exponent of 0.11	
	Gust: None		
	Fault: None		
Total no.			
simulations	96		
Post-	The average of the upper half extremes values is comput	ed for each load	
processing	sensor.		

⁵ The number of simulations will vary with the reference wind speed of the selected IEC wind class.

DLC72	Rotor locked, under normal wind conditions				
Assessment	Fatigue		Safety factor		1.0
Description	Simulation of parked	turbine v	with rotor locked at	0:30:9	90 deg and normal
	turbulent wind condit	ions with	nout yaw error. Nor	mal st	tochastic wave conditions
	are used but the wav	es may l	be +/- 10 degrees.		
Simulation	Length:	600 s			
setup	Wind:	V1			
	Yaw:	0:15:345	5 deg		
	Turbulence:	11% inte	ensity		
	Waves:	Stochastic, NSS, MSL, Misaligned			
	Shear:	Vertical and exponent of 0.14			
	Gust:	None			
	Fault:	None			
Total no.					
simulations	96				
Post-	The average of the upper half extremes values is computed for each load				
processing	sensor.				

DLC81	Maintenance			
Assessment	Extreme – normal e	vent	Safety factor	1.35 ²
Description	Simulation of parke	d turbine	with the rotor locked in	the best position ⁶ and minor
	yaw error at the ma	ximum wi	nd speed for maintena	nce and normal turbulence
	model. Six seeds pe	er yaw err	or are used. The use o	f normal stochastic waves is
	made with normal c	urrents. V	ortex induced Vibratio	ns needs to be checked
	based on the status	of the ins	stallation or maintenand	се.
Simulation	Length:	600 s		
setup	Wind:	Vmaint		
	Yaw:	-8/+8 de	g	
	Turbulence:	NTM, 6	seeds per yaw error.	
	Waves:	Normal	waves and Normal Cu	rent model, MSL
	Shear:	Vertical	and exponent of 0.14	
	Gust:	None		
	Fault:	None		

⁶ This best azimuth position of the rotor when it is locked for maintenance may be turbine dependent.

Total no.	
simulations	12
Post-	The average of the upper half extremes values is computed for each load
processing	sensor.

References

- [1] IEC 61400-3. "International Electro technical Committee IEC 61400-3: Wind Turbines part 3: Design Requirements for Offshore Wind Turbines." Edition1, Geneva, 2009.
- [2] Pedersen, M. M. (2014). *Post processing of Design Load Cases using Pdap*. DTU Wind Energy. (DTU Wind Energy I; No. 0371), Online on orbit.dtu.dk.
- [3] Natarajan, A. and Holley, W. E., Statistical Extreme Loads Extrapolation with Quadratic Distortions for Wind Turbines, ASME Journal of Solar Energy Engineering, Vol. 130, 031017, Aug 2008.
- [4] DNV-OS-J101. Design of Offshore Wind Turbine Structures. Det Norske Veritas, 2014.
- [5] Natarajan, A., "Influence of Second-Order Random Wave Kinematics on the Design Loads of Offshore Wind Turbine Support Structures", Renewable Energy Journal, Vol. 68, 2014, pp. 829-841.

DTU Vindenergi er et institut under Danmarks Tekniske Universitet med en unik integration af forskning, uddannelse, innovation og offentlige/private konsulentopgaver inden for vindenergi. Vores aktiviteter bidrager til nye muligheder og teknologier inden for udnyttelse af vindenergi, både globalt og nationalt. Forskningen har fokus på specifikke tekniske og videnskabelige områder, der er centrale for udvikling, innovation og brug af vindenergi, og som danner grundlaget for højt kvalificerede uddannelser på universitetet.

Vi har mere end 240 ansatte og heraf er ca. 60 ph.d. studerende. Forskningen tager udgangspunkt i ni forskningsprogrammer, der er organiseret i tre hovedgrupper: vindenergisystemer, vindmølleteknologi og grundlag for vindenergi.

Danmarks Tekniske Universitet

DTU Vindenergi Nils Koppels Allé Bygning 403 2800 Kgs. Lyngby Telefon 45 25 25 25

info@vindenergi.dtu.dk www.vindenergi.dtu.dk