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ABSTRACT

Digital multipliers play a crucial role in various Digital Signal Processing units. They

carry the major responsibility of power expenditure in the system and ultimately determine

its speed. As a result, it is always beneficial to develop high performance, low power

multipliers.

Vedic Mathematics is a set of mathematical rules, derived from ancient Indian scripts

that makes arithmetic calculations extremely fast and simple. There are 16 rules or Sutras

expounded in Vedic Mathematics. This report presents novel designs of a multiplier based

on the Vedic Sutras on multiplication - Urdhva Tiryakbhyam and Nikhilam.

The objective of this report is to develop an optimum Vedic multiplier for 128−bit inputs.

Various fresh algorithms and strategies based on both the sutras as well as a combination

of them are propounded and implemented to develop the most optimum multiplier in terms

of power consumption, delay and area occupied. The proposed multipliers are designed for

synthesis using Carry Look Ahead Adders and compared with other existing multipliers

like Array, Booth and Modified Booth multipliers and the performances are evaluated. The

design of a novel integrated 128− bit multiplier is presented along with its mathematical

analysis of power and is validated by its optimum time delay, area occupancy and minimum

power consumption of 4.971 ns, 75013 nm2 and 28.73 mW respectively.

KEYWORDS: Integrated digital multiplier, Vedic Mathematics, Vedic Sutras, Urdhva

Tiryakbyam, Nikhilam, low power, optimum area, reduced time delay, 128 − bit, Array,

Booth, Modified Booth
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Chapter 1

Introduction

Digital signal processing (DSP) is firmly being established as an extremely vibrant
and vital field in the Electronics industry. The past few decades have seen an exponential
growth in the number of products and applications that involve DSP, with a wide reach into
diverse domains such as audio signal processing, digital image processing, video compression,
speech processing, speech recognition, digital communications, RADAR, SONAR, financial
signal processing, seismology and even biomedicine. Especially since computers have evolved
into powerful machines capable of high computational complexity, almost all the signal
processing takes place in the Digital Domain.

Frequently used algorithms include the Convolution operation, Finite Impulse Response
(FIR) Filter, Infinite Impulse Response (IIR) Filter, and Fast Fourier Transform (FFT), all
of which require intensive computation. DSP algorithms generally require a large number
of mathematical operations to be performed quickly and repeatedly on a series of incoming
data. The signals are constantly converted from analog to digital, digitally manipulated,
and then converted back to analog.

Figure 1.1: A typical Digital Processing System

Most general–purpose microprocessors and operating systems can execute DSP algo-
rithms successfully, but consume more power and occupy a larger area which is not suitable
for most portable applications like those on mobile phones, biomedical devices, etc. A
specialized digital signal processor, the Digital Signal Processor (DSP processor),
having different architectures and features optimized specifically for digital signal processing,
is hence preferred. This will tend to provide a lower-cost solution, with better performance,
lower latency and lesser power consumption. Thus, the efficiency in the design of the under-
lying hardware in the DSP processors will reflect in the performance of the applications.
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One of the most important hardware structures in a DSP processor is the Multiply-
Accumulate (MAC) unit. A conventional MAC unit consists of an n− bit multiplier, the
output of which is added to/subtracted from the contents of an Accumulator that stores
the result. Thus, the MAC unit implements functions of the type A + BC. The ability
to compute with a fast MAC unit is essential to achieve high performance in many DSP
algorithms, and which is why there is at least one dedicated MAC unit in all of the modern
commercial DSP processors.

Figure 1.2: A MAC unit

Hence as it can be observed, Digital Multipliers are the core components of all MAC
units and hence all DSP processors. The multiplier lies in the Critical Delay Path
and ultimately determines the performance of any algorithm in the processor. Currently,
multiplication time is still the major factor in determining the instruction cycle time of a
DSP chip apart from contributing to the bulk of its power expenditure. Since multiplication
drains power quickly and dominates the execution time of most DSP algorithms, there
is a need for Low–Power, High–Speed Multipliers. In this concern, design of efficient
multipliers has long been a topic of interest to digital design engineers.

The other function that a MAC unit inherently performs is the addition operation.
It is one of the most essential operations in the instruction set of any processor. Other
instructions such as subtraction and multiplication employ addition in their operations,
and their underlying hardware is primarily dependent on the addition hardware. Hence
the performance of a design will be often be limited by the performance of its adders. It
is therefore as important to choose the correct adder to implement in a design as it is to
choose a multiplier because of the many factors it affects in the overall chip.
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The main expected features of any DSP block, be it an adder or a multiplier, are
speed, accuracy and easy integrability. A number of interesting algorithms have been
reported in literature, each offering different advantages and having trade-offs in terms
of speed, circuit complexity, area and power consumption, forming an active area of research.

1.1 Vedic Mathematics - An Overview

Vedic Mathematics is the name given to a set of rules derived from Ancient Indian
Scriptures, elucidating different mathematical results and procedures in simple and un-
derstandable forms. The word Vedic is derived from the word Veda which means the
store–house of all knowledge.

It is claimed to be a part of the Sthapatya Veda , a book on civil engineering
and architecture, which is an Upaveda (supplement) of the Atharva Veda . It covers
explanations of several modern mathematical terms including arithmetic, geometry (plane,
co-ordinate), trigonometry, quadratic equations, factorization and even calculus.

The beauty of Vedic mathematics lies in the fact that it reduces the otherwise cumbersome-
looking calculations in conventional mathematics to very simple ones. This is because the
Vedic formulae are claimed to be based on the natural principles on which the human mind
works.

Vedic mathematics is mainly based on 16 Sutras (or aphorisms) dealing with various
branches of mathematics like arithmetic, algebra, geometry, etc. Of these, there are two
Vedic Sutras meant for quicker multiplication. They have been traditionally used for the
multiplication of two numbers in the decimal number system. They are –

1. Nikhilam Navatashcaramam Dashatah : All from 9 and last from 10

2. Urdhva Tiryakbhyam : Vertically and crosswise

1.2 Motivation

Multiplication involves two basic operations – the generation of partial products and
their accumulation. Clearly, a smaller number of partial products reduces the complexity,
and, as a result, reduces the partial products accumulation time.

When two n − bit numbers are multiplied, a 2n − bit product is produced. Previous
research on multiplication, i.e. shift and add techniques, focused on multiplying two n− bit
numbers to produce n partial products and then adding the n partial products to generate
a 2n− bit product. In which case, the process is sequential and requires n processor cycles
for an n×n multiplication. Advances in VLSI have rendered Parallel Multipliers – fully
combinational multipliers, which minimize the number of clock cycles/steps required, feasible.

3



Two most common multiplication algorithms followed in the digital hardware are the
Array multiplication algorithm and Booth multiplication algorithm. The computation
time taken by the array multiplier is comparatively less because the partial products are
calculated independently in parallel. The delay associated with the array multiplier is the
time taken by the signals to propagate through the gates that form the multiplication array.
In the case of Booth multiplication algorithm, it multiplies two signed binary numbers in
two’s complement notation. Andrew Donald Booth used desk calculators that were faster
at shifting than adding and created the algorithm to increase their speed. It is possible to
reduce the number of partial products by half, by using the technique of Radix-4 Booth
recoding. But both do have their own limitations. The search for a new design of a multiplier
which will radically improve the performance is always on.

Figure 1.3: Array Multiplier – Algorithm
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Figure 1.4: Booth Multiplier – Algorithm

The main motivation of this project is to make use of the simplicity of the Vedic
sutras and adapt it for binary arithmetic to get an efficient and optimum digital multiplier
fulfilling the demands of the growing technology. This, if implemented correctly, has the
capability to reduce the computational time of DSP applications to a fraction of what it
is today and revolutionize the standard power consumption of DSP chips. Fortunately or
unfortunately, the potential of the Vedic Algorithms has remained untapped and unplun-
dered for long. It would be a source of pride to prove that the Indian–originated methods
can surpass the existing algorithms and to use them widely in various applications for the
benefit of the industry.

1.3 Objective

The aim of this project is to design and implement an optimized digital multiplier which
will multiply two real integers for DSP applications incorporating Vedic Multiplication
principles.

The goals are:

• To reduce the computational time

• To optimize the area occupied

• To minimize the power consumed
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• To realize it for 128 bits

• To develop novel algorithms for obtaining a highly optimum multiplier

• To design and implement an integrated multiplier which will decide the algorithm to
be used depending on the given inputs

• To finalize on an optimum adder and use it to implement all the addition operations

1.4 Organization of the Report

Chapter 1, the Introduction describes the need for efficient multipliers followed by a
brief overview of Vedic Sutras. It illustrates the motivation behind taking up this project
and states the objectives.

Chapter 2, Literature Review, deals with all the multiplication and addition schemes
reported in literature. It puts forward the concepts already proposed on related areas in
journals and conferences.

Chapter 3, Theoretical Background - Algorithms presents the Vedic Multiplica-
tion Algorithms – Urdhva Tiryakbhyam and Nikhilam, in detail, then proceeds with an
explanation of the Karatsuba-Ofman Algorithm and concludes by justifying the selection of
the Carry Look Ahead (CLA) Adder.

Chapter 4, Design & Implementation, expounds on the main work done in the
project, beginning with an explanation of the modular hierarchy followed in this project,
and the moving on to the actual logic employed in writing synthesizable code for each
module and finally concluding with an emphasis on Structural modelling as compared to
behavioural modelling.

Chapter 5, Sampoornam – the Proposed Integrated Multiplier presents a novel
multiplier designed such that the logic decides which algorithm is to be used based on the
input along with techniques employed to build this optimum, smart multiplier.

Chapter 6 gives all the Simulations and Results while Chapter 7 presents the Infer-
ences of the results.

Chapter 8 is dedicated to Power Analysis, which gives a true picture of the power
consumed in real time, based on mathematical analyses.

Finally, Chapter 9, the Conclusion completes the report by summarizing the work and
considering the future scope .
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Chapter 2

Literature Review

Here, a brief summary of the work that has already been done in this field with Vedic
Multipliers is presented. A few results are noted down for comparison later.

The implementation of an 8 − bit Vedic multiplier enhanced in terms of propagation
delay when compared with conventional multipliers like Array multiplier, Braun multiplier,
Modified Booth multiplier and Wallace tree multiplier has been given by Pavan Kumar
U.C.S, et al, 2013. Here, they have utilized an 8− bit barrel shifter which requires only one
clock cycle for n number of shifts. The design could achieve propagation delay of 6.781 ns
using barrel shifter in base selection module and multiplier.

S. Deepak, et al, 2012, have proposed a new multiplier design which reduces the number
of partial products by 25 %. This multiplier has reported to have been used with different
adders available in literature to implement multiplier accumulator (MAC) unit and parame-
ters such as propagation delay, power consumed and area occupied have been compared
in each case. From the results, Kogge Stone adder was been chosen as it was claimed to
have provided optimum values of delay and power dissipation. The results obtained have
been compared with that of other multipliers and it has been reported that the proposed
multiplier has the lower propagation delay when compared with Array and Booth multipliers.

A high speed complex multiplier design (ASIC) using Vedic Mathematics has also been
reported by Prabir Soha, et al, 2011. A complex number multiplier design based on the
formulas of the ancient Indian Vedic Mathematics, was said to have been implemented in
Spice spectre and compared with the mostly used architecture like distributed arithmetic,
parallel adder based implementation, and algebraic transformation based implementation.
It claims to have combined the advantages of the Vedic mathematics for multiplication
which encounters the stages and partial product reduction. The proposed complex number
multiplier has been reported to offer 20% and 19% improvement in terms of propagation
delay and power consumption respectively, in comparison with parallel adder based im-
plementation. The corresponding improvement in terms of delay and power was reported
to be 33% and 46% respectively, with reference to the algebraic transformation based
implementation.

Mohammed Hasmat Ali, et al, 2013, have presented a detailed study of different multipli-
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ers based on Array Multiplier, Constant coefficient multiplication (KCM) and multiplication
based on Vedic Mathematics. The reported multipliers have been coded in Verilog HDL
(Hardware Description Language) and simulated in ModelSimXEIII6.4b and synthesized in
EDA tool Xilinx ISE12. All multipliers are compared based on LUTs (Look up table) and
path delays. Results report that Vedic Urdhva Tiryakbhyam sutra is the fastest Multiplier
with least path delay. The computational path delay for proposed 8× 8 bit Vedic Urdhava
Tiryakbhyam multiplier was reported to be 17.995 ns.

Karatsuba-Ofman algorithm has been reported to have been used by M.Ramalatha, et
al, 2009, in the implementation of an efficient Vedic multiplier which is meant to have high
speed,less complexity and consuming less area. Also after using this multiplier module a
Vedic MAC unit was constructed and both these modules were integrated into an arithmetic
unit along with the basic adder subtractor.

A generalized algorithm for multiplication has been reported by Ajinkya Kala, 2012,
through recursive application of the Nikhilam Sutra from Vedic Mathematics, operating
in radix - 2 number system environment suitable for digital platforms. Statistical analysis
has been carried out based on the number of recursions profile as a function of the smaller
multiplicand. The proposed algorithm was claimed to be efficient for smaller multiplicands
as well, unlike most of the asymptotically fast algorithms. It was implemented for same
sized inputs but an algorithm was presented which could be used to compute multiplication
of two variable bit numbers. The algorithm was reported to solely depend on the ratio of the
number of 1’s and 0’s used to represent a number in binary, rather than on the magnitude
of the number. It was mentioned that as the ratio approaches 1, the number of operations
required for the multiplication increases and decreases as the ratio tends to move close to 0.

Ramachandran.S, et al, 2012, have thought of an Integrated Vedic multiplier architecture,
which by itself selects the appropriate multiplication sutra (UT or Nikhilam) based on the
inputs. So depending on inputs, whichever sutra is faster, that sutra is to be selected by
the proposed integrated Vedic multiplier architecture. It was implemented for 16 bits but
there has not been a clear report on the results or the design.

Kabiraj Sethi, et al, 2012, have proposed a high speed squaring circuit for binary numbers
is proposed. High speed Vedic multiplier is used for design of the proposed squaring circuit.
Only one Vedic multiplier is used instead of four multipliers as reported previously. In
addition, one squaring circuit is used twice.

In paper presented by G.Ganesh Kumar, et al, 2012, the Verilog HDL coding of Urdhva
tiryakbhyam Sutra for 32×32 bits multiplication and their FPGA implementation by Xilinx
Synthesis Tool on Spartan 3E kit have been done and the output has been displayed on LCD
of Spartan 3E kit. The synthesis results show that the computation time for calculating the
product of 32× 32 bits is 31.526 ns.

The designs of 16 × 16 bits, 32 × 32 bits and 64 × 64 bits Vedic multiplier have
been implemented as reported by Vinay Kumar, 2009 on Spartan XC3S500-5-FG320 and
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XC3S1600-5-FG484 device according to this thesis. The computation delay for 16× 16 bits
Booth multiplier was 20.09 ns and for 16× 16 bits Vedic multiplier was 6.960 ns. Also
computation delays for 32× 32 bits and 64× 64 bits Vedic multiplier was obtained 7.784
ns and 10.241 ns respectively.

A new reduced-bit multiplication algorithm based on Vedic mathematics has been
proposed by Honey Durga Tiwari, et al, 2008. The framework of the proposed algorithm
is taken from Nikhilam Sutra and is further optimized by use of some general arithmetic
operations such as expansion and bit shifting to take full advantage of bit-reduction in mul-
tiplication. The computational efficiency of the algorithm has been illustrated by reducing
a general 44 multiplication to a single 22 multiplication operation.

Manoranjan Pradhan, et al, 2011, have presented the concepts behind the ”Urdhva
Tiryagbhyam Sutra” and ”Nikhilam Sutra” multiplication techniques in their paper. It
then shows the architecture for a 1616 Vedic multiplier module using Urdhva Tiryagbhyam
Sutra. The paper then extends multiplication to 1616 Vedic multiplier using ”Nikhilam
Sutra” technique. The 1616 Vedic multiplier module using Urdhva Tiryagbhyam Sutra uses
four 88 Vedic multiplier modules; one 16− bit carry save adders, and two 17− bit full adder
stages. The carry save adder in the multiplier architecture increases the speed of addition
of partial products. The 1616 Vedic multiplier is reported to have been coded in VHDL,
synthesized and simulated using Xilinx ISE 10.1 software. This multiplier is implemented
on Spartan 2 FPGA device XC2S30-5pq208.

An integer multiplication algorithm was proposed by Shri Prakesh Dwivedi, 2013, using
Nikhilam method of Vedic mathematics which can be used to multiply two binary numbers
efficiently taking advantage of the fact that this sutra can convert large-digit multiplication
to corresponding small digit multiplication.

Himanshu Thapliyal, et al, 2009, have proposed parallel architectures for computing
square and cube of a given number based on Vedic mathematics. For the Xilinx FPGA
family, it is observed that for8− bit, the gate delay of the proposed square architecture is
28 ns with area of 90(device utilized) while it is 70 ns for previously reported squares with
area of 77. For the same operand size, the gate delay in the proposed cube architecture is
28 ns with area of 90 while for the cube previously reported is 79 ns with area of 768.
As the operand width is increased to 16, the gate delay of the proposed square architecture
increases slightly to 38 ns with area of 348(device utilized) while for the square proposed
earlier, it significantly increases to 70 ns with area of 441. For the operand size of 16, the
cube statistics are found to be 54 ns with area of 1336 for the proposed Vedic cube while
it is 186 ns with area of 6550 for the cube proposed before.
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Chapter 3

Theoretical Background – Algorithms

3.1 Urdhva Tiryakbhyam

This multiplication scheme is best understood by using an example. To illustrate, consider
the multiplication of two decimal numbers 325× 738. As shown in figure 3.1, the digits on
either side of a line are multiplied and the products from each line are added along with the
carry from the previous step. This generates one bit of the result as well as a carry. This
carry is added in the next step and the process goes on. In each step, the least significant
bit (LSB) acts as the result bit and all other bits act as carry for the next step. Initially,
the carry is taken to be zero. (Vinay Kumar, 2009 )

Figure 3.1: UT for a 3× 3 Decimal Multiplication
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The UT algorithm is based on a novel concept through which the generation of all
partial products can be done with the concurrent addition of these partial products. The
algorithm can be easily generalized for n× n bit multiplication due to its highly modular
structure. Since the partial products and their sums are calculated in parallel, the multiplier
is independent of the clock frequency of the processor in case of a synchronous design.
Thus the multiplier will require the less amount of time to calculate the product. The net
advantage is that it reduces the need of microprocessors to operate at increasingly high
clock frequencies. (Vinay Kumar, 2009 )

While a higher clock frequency generally results in increased processing power, its
disadvantage is that it also increases power dissipation which results in higher device oper-
ating temperatures. By adopting the Vedic multiplier, microprocessor designers can easily
circumvent these problems to avoid catastrophic device failures. The processing power of
multiplier can easily be increased by increasing the input and output data bus widths since
it has a quite a regular structure. Due to this, layout can be made on a silicon chip easily.
The multiplier has the advantage that as the number of bits increases, gate delay and area
increases very slowly as compared to other multipliers. Therefore it is time, space and
power efficient. (Vinay Kumar, 2009 )

Figure 3.2: UT for a 4− bit multiplication
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3.2 Nikhilam

Nikhilam Sutra literally means “All from 9 and last from 10”. Although it is applicable
to all cases of multiplication, it is more efficient when the numbers involved are close to
the base. It finds the complement of the large number from its nearest base to perform the
multiplication operation on it and thus nearer the original number to the base, lesser the
complexity of the multiplication. This can be mathematically proven very easily as well.
(Honey Durga Tiwari, et al, 2008 )

Let the two numbers be n and m. Consider a base, b.

b− n = p (3.1)

b−m = q (3.2)

n×m = (b− p) (b− q) = b2 − (p+ q) b+ pq (3.3)

n×m = b (b− p− q) + pq (3.4)

To illustrate, consider the example of multiplying 96× 93 in figure 3.3. The base is 100
and hence the complements are 4 and 7 respectively. The product of the complements is
given by 4 × 7 = 28. The common difference is given by 96 − 7 = 93 − 4 = 89. This is
multiplied with the base and added with the previous product, which turns out to be just a
simple concatenation, 8928.

Figure 3.3: Nikhilam Example in Decimal Numbers
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3.3 Karatsuba-Ofman Algorithm

The Karatsuba-Ofman algorithm is considered as one of the fastest ways to multiply long
integers. It is fundamentally useful in scaling lower bit multipliers to higher bit multipliers.
It is based on the ‘Divide and Conquer’ strategy and has been proved to be asymptotically
faster than the standard multiplication algorithm. (M.Ramalatha, et al, 2009 )

For a 2n−bit multiplication, consider X and Y to be the the multiplicand and multiplier
respectively. Then, when XH , XL, YH and YL are n− bit numbers, we can write,

X = 2nXH +XL (3.5)

Y = 2nYH + YL (3.6)

Thus the product of X and Y can be computed as follows,

P = X.Y = (2nXH +XL).(2nYH + YL) (3.7)

Or,

P = 22n(XH .YH) + 2n(XH .YL +XL.YH) +XL.YL (3.8)

It can be observed that

XH .YL +XL.YH = (XH +XL)(YH + YL)−XH .YH −XL.YL (3.9)

i.e.,

P = 22n(XH .YH) + 2n{(XH +XL)(YH + YL)−XH .YH −XL.YL}+XL.YL (3.10)

The standard multiplication algorithm requires four n− bit multiplications. But this
has just three n− bit multiplications along with additions and subtractions as compared
to the previous four. But since each multiplication causes more delay as compared to an
adder or a subtractor, this will hence result in a more optimized multiplier.

The figures 3.4 & 3.5 show the block diagram for the standard scaling multiplication
algorithm and the Karatsuba-Ofman Algorithm respectfully.
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Figure 3.4: Standard Scaling Multiplication Algorithm

Figure 3.5: Karatsuba-Ofman Algorithm
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3.4 Carry Look Ahead Adder

The Carry Look Ahead (CLA) Adder generates carries before the sum is produced using
the propagate and generate logic to make addition much faster. Thus the carry chain (the
logic that propagates the carry through the full adders of the RCA) is separated from the
sum logic (the part of the full adders that produce the sum).

Figure 3.6: Partial Full Adder (PFA)

Consider a 4− bit CLA. There are two additional variables called the Generate (G) and
Propagate (P ) which are fundamental for the CLA logic.

Let A and B be the two 4− bit input variables.

Gi = Ai.Bi (3.11)

Pi = Ai ⊗Bi (3.12)

C1 = G0 + P0.C0 (3.13)

C2 = G1 + P1.C1 = G1 + P1.G0 + P1.P0.C0 (3.14)

C3 = G2 + P2.C2 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0 (3.15)

C4 = G3 + P3.C3 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 + P3.P2.P1.P0.C0 (3.16)

Si = Pi ⊗ Ci (3.17)

GG = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 (3.18)

PG = P3.P2.P1.P0 (3.19)

These equations show that every carryout in the adder can be determined with just the
input operands and initial carryin (C0). The size of a CLA adder block is chosen as 4 bits.
An 8− bit CLA can be built from two 4− bit CLA blocks, a 16− bit CLA from four while
a 32− bit CLA can be built from two 16− bit CLA blocks and so on with the help of the
Group Generate (GG) and Group Propagate (PG) pins.
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Figure 3.7: 4− bit CLA

Figure 3.8: 16− bit CLA adder from 4− bit CLA adders
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Critical Path Determination

Assuming that all gate delays are the same, the delay for a 4− bit CLA adder includes
one gate delay to calculate the propagate and generate signals, two gate delays to calculate
carry signals, and one gate delay to calculate the sum signals; i.e four gate delays. (Michael
Andrew Lai, 2002 )

For a 16 − bit CLA adder there is one gate delay to calculate the propagate and
generate signal (from the PFA), two gate delays to calculate the group propagate and
generate in the first level of carry logic, two gate delays for the carryout signals in the
second level of carry logic, and one gate delay for the sum signals. The second level of carry
logic for the 16− bit CLA adder contributes an additional two gate delays over the 4− bit
CLA adder, thus increasing the total to six gate delays. Hence,

CLA levels (groupsize = 4) = log4N (3.20)

CLA levels (groupsize = k) = logkN (3.21)

CLA gate delay = 2 + 2.log4N (3.22)

Figure 3.9: Critical Path of a 16− bit CLA

In table 3.1, the delay of a CLA adder is logarithmically dependent on the size of
the adder which theoretically results in one of the fastest adder architectures. And it has the
regularity that will allow size adjustment of the adder without much additional design time.
It is for these reasons that the CLA architecture is chosen as the adder after comparison
with the Ripple Carry Adder (RCA), the Carry Skip Adder (CSKA) and the Linear Carry
Select Adder (CSLA). Power consumption of the CLA might be slightly higher as compared
to Kogge-Stone Adders, etc but the ease of scaling higher bit adders, the lower area and
the lesser delay make this trade-off very slight. (Michael Andrew Lai, 2002 )
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Table 3.1: Adder Comparison – N : input size, k: group size

Adder Delay Normalized Area Normalized Design Time

RCA N 1 1
CSKA N/k 1.14 2
CLA logkN 1.88 8

CSLA logkN
(N/k)

2.56 10

The Delay column expresses how the delay of the adder is proportional to the length
(input size). The next column, Area, normalizes the area for the RCA (based on the subcells)
and compares the relative sizes of the other adders to this normalized value. And finally, the
Design Time column is an estimate of the normalized time required to design the particular
adder based on the RCA design time. (Michael Andrew Lai, 2002 )
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Chapter 4

Design & Implementation

4.1 Synthesizable Code for Hardware Efficiency

The process of automatically converting the description in RTL to gates from the target
technology is called Synthesis . It converts the design from a higher level description to a
lower one. Normal programming and HDL (Hardware Description Language) programming
are usually built over the same platform C. But both are fundamentally different. HDL’s
(eg. Verilog) are aimed at both simulation and synthesis of digital circuits. All descriptions
can be simulated, but only some can be synthesized. And by changing the method of coding,
the synthesized design can be made optimum.

Figure 4.1: Structural Programming

Verilog has two major programming models - Behavioural and Structural, the former
more useful for simulations and the latter for hardware level. However, structural mode is
more time consuming and requires more effort. An overall plan is required for implementing
structural codes. Developing code as the project progresses will not yield optimal results.
But for making the codes truly synthesizable as well as for true hardware optimization,
structural programming is a must.
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Here, the design of each of the modules along with its implementation using various
optimization methods and logical techniques is presented. Also, several new designs and
original combinations of existing designs have also been implemented in order to increase
the efficiency.

4.2 Vedic UT

The basic unit of the 128− bit multiplier is the 4− bit Vedic multiplier built using the
Urdhva Tiryakbhyam logic which was explained for decimal numbers in the previous chapter.

Consider the inputs to be the 4− bit numbers A[3 : 0] and B[3 : 0].

A[3 : 0] = a3a2a1a0 (4.1)

B[3 : 0] = b3b2b1b0 (4.2)

Then we have,

c0p0 = a0b0 (4.3)

c1p1 = a1b0 + a0b1 + c0 (4.4)

c2p2 = a2b0 + a1b1 + a0b2 + c1 (4.5)

c3p3 = a3b0 + a2b1 + a1b2 + a0b3 + c2 (4.6)

c4p4 = a3b1 + a2b2 + a1b3 + c3 (4.7)

c5p5 = a3b2 + a2b3 + c4 (4.8)

c6p6 = a3b3 + c5 (4.9)

Here, the ci’s can be multi-bit numbers while the pi’s are single-bit numbers. The
additions are performed using CLA adders as mentioned before. The code is optimized for
synthesis with power and delay in consideration. Higher order UT blocks are built according
to the proposed scaling plan mentioned below.

4.3 Scaling – The overall plan

Figure 4.2: Multiplication of two 2n− bit numbers
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An n− bit multiplier is used to build a 2n− bit multiplier. This uses the Karatsuba-
Ofman Algorithm mentioned before, as well as innovative logic and coding techniques for
maximum efficiency. After this is implemented, 8−bit, 16−bit, 32−bit, 64−bit and 128−bit
multipliers can easily be built by substituting n = 4, 8, 16, 32 and 64 respectively starting
with the basic 4− bit UT multiplier as the building block. The n− bit additions are done
using n− bit CLA’s.

The scaling up procedure is as follows:

Given:

A[(n− 1) : 0]×B[(n− 1) : 0]→ Prod[(2n− 1) : 0] n-bit multiplier

To build:

A[(2n− 1) : 0]×B[(2n− 1) : 0]→ Prod[(4n− 1) : 0] 2n-bit multiplier

The input operands are split into higher order and lower order terms as shown.

AH [(n− 1) : 0] = A [(2n− 1) : n] (4.10)

AL [(n− 1) : 0] = A [(n− 1) : 0] (4.11)

BH [(n− 1) : 0] = B [(2n− 1) : n] (4.12)

BL [(n− 1) : 0] = B [(n− 1) : 0] (4.13)

X = AH ×BH (4.14)

Y = AL×BL (4.15)

P = X + Y (4.16)

Z1 = AH + AL (4.17)

Z2 = BH +BL (4.18)

T1 = Z1 [(n− 1) : 0]× Z2 [(n− 1) : 0] (4.19)

T2 = Z1 [(n− 1) : 0] << n.Z2 [n] (4.20)

T3 = Z2 [(n− 1) : 0] << n.Z1 [n] (4.21)

TX = T1 + T2 (4.22)

TY = TX + T3 (4.23)

x = Z1[n] . Z2[n] (4.24)

y = x+ TX [2n] + TY [2n] (4.25)

Z = {y, TY } (4.26)

R = Z + P + 1 (4.27)

Prod = {X, Y }+ (R << n) (4.28)
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4.3.1 Where have the optimizations taken place?

1. A more efficient 4− bit Vedic Multiplier is developed in structural modelling

2. The faster and efficient CLA adder is used throughout

3. The traditional behavioural left shift operator (<<) is replaced with AND logic

4. (2n+ 1)− bit addition (which will have to be done by a 4n− bit adder) is converted
to a 2n− bit addition and a single bit addition (Full adder)

5. An efficient combiner logic is developed which requires only one addition and a
concatenation

4.4 UT Squaring

It can be seen easily that a special case of multiplication, i.e. Squaring, is much simpler
in terms of hardware and software design as compared to the normal situations. This can
be exploited to build the integrated multiplier.

For squaring a 4− bit number, i.e A[3 : 0] = B[3 : 0]

c0p0 = a0 (4.29)

c1p1 = 2.a1a0 + c0 (4.30)

c2p2 = 2.a2a0 + a1a1 + c1 (4.31)

c3p3 = 2.a3a0 + 2.a2a1 + c2 (4.32)

c4p4 = 2.a3a1 + a2a2 + c3 (4.33)

c5p5 = 2.a3a2 + c4 (4.34)

c6p6 = a3a3 + c5 (4.35)

Thus, since multiplication by 2 is just a left shift by 1 bit, the square is a very special
case that is easy to implement and which consumes less area, power and delay as compared
to the normal Vedic multiplier.

4.4.1 Scaling – Adapted for Squares

Figure 4.3: 2n− bit Squaring Unit
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Building a 2n − bit squaring unit from an n − bit squaring unit is much easier than
building a 2n− bit multiplier from an n− bit multiplier.

AH [(n− 1) : 0] = A [(2n− 1) : n] (4.36)

AL [(n− 1) : 0] = A [(n− 1) : 0] (4.37)

X = AH2 (4.38)

Y = AL2 (4.39)

Z = 2 (AH × AL) (4.40)

Prod = {X, Y }+ (Z << n) (4.41)

As can be seen, the 15 steps in scaling the normal UT multiplier have been reduced to
just 4 for scaling the UT square. Again, the multiplication by 2 is just a left shift by 1 bit
as mentioned before.

4.5 Proposed Design D

Given two operands A and B, assuming without loss of generality, A > B, it can be
observed that,

A×B =
4.AB

4
(4.42)

=
(A+B)2 − (A−B)2

4
(4.43)

=
(
A+B

2

)2

−
(
A−B

2

)2

(4.44)

=
(
A+B

2

)2

−
(
A+B

2
−B

)2

(4.45)

(4.46)

Thus,
A×B = (av)2 − (dev)2 (4.47)

A multiplication is broken down into the difference between two squares. Since only
integers are being dealt with here, this would work only when the operands are both even
or both odd. Otherwise the average would turn out to be a floating point.

Squaring is less costly in power expenditure, area occupancy and delay. This design
takes advantage of this fact and makes it possible for it to be used for non-square integers
too.
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4.6 Thresholding Nikhilam

Here the basic idea of Nikhilam is extended to binary. Since Nikhilam is efficient when the
inputs are very near to the base, a threshold is chosen, upto which we can consider Nikhilam
to be better. It is estimated that the most optimum threshold would be (1/4)th the input size.

For a 16 − bit multiplier, a possible threshold can be 4 bits. This means that if the
difference between the base and number comes out to be a 4− bit integer, then Nikhilam is
considered better. For the multiplication of the 4− bit complements, the already optimized
4− bit Vedic Multiplier will be used. Thus, a 16− bit multiplication will be reduced to a
4− bit multiplication along with addition & subtraction.

Table 4.1: Thresholds for various multipliers

Input size Threshold Value

8 bits 2 bits
16 bits 4 bits
32 bits 8 bits
64 bits 16 bits
128 bits 32 bits

Range of Inputs

Since Nikhilam is efficient for a certain range of inputs, it should be determined if the
given inputs belong to that range.

Given the size of the input as is and the threshold size as ts, we can find the range of
values that can be used effectively with Nikhilam, range, as follows. Base, B = 2(is−1) and
threshold value, Th = 2ts − 1

range ε [B − Th,B + Th] (4.48)

Consider the input to be m and n, and the base, b.

Case 1: Both inputs are greater than the base

Table 4.2: Multiplication of m× n, base r

Integer Base difference

Multiplicand m m− r = a
Multiplier n n− r = b

m+ n− r a× b
Result r(m+ n− r) + ab
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Case 2: Both inputs are less than the base

Table 4.3: Multiplication of m× n, base r

Integer Base difference

Multiplicand m r −m = a
Multiplier n r − n = b

r −m− n a× b
Result r(r −m− n) + ab

Case 3: One input (m) is greater than the base & the other (n), less

Table 4.4: Multiplication of m× n, base r

Integer Base difference

Multiplicand m m− r = a
Multiplier n [n− r = b = −q]→ [r − n = q]

m+ n− r a× (−q)
Result r(m+ n− r)− aq

Steps to be followed

1. Choose base r for the inputs m and n

2. Decide if the inputs belong to the correct range of inputs for Nikhilam

3. Decide which case of Thresholding Nikhilam to use

Optimization Points

1. Base can always be chosen as 2(is−1) for optimum performance.

2. The adders used are CLA adders.

3. A higher order multiplication is reduced to a few addition operations and a lower
order multiplication.

4.7 Successive Nikhilam

Instead of applying Nikhilam only for a select few numbers as given by the threshold,
we can use it for all integers by applying it successively. In this case, the entire process of
multiplication is broken down into addition and subtraction.
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Table 4.5: Nikhilam – 1111× 1111, base = 1000

Bits Base Difference Next Difference Next Difference

m = 1111 1111− 1000 = 111 111− 100 = 11 11− 10 = 1
n = 1111 1111− 1000 = 111 111− 100 = 11 11− 10 = 1

1× 1 = 1
10(11 + 1) + 1 = x1

100(111 + 11) + x1 = x2
1000(1111 + 111) + x2 = x3

Ans = 11100001

Consider the example in table 4.5 – 1111× 1111. This has reduced to just one AND
(1− bit) operation, additions and shifting (multiplying by the base is basically left-shifting).
To account for multiplications which involve different sizes, a little more thought has to be
given. The final algorithm designed is as given below.

Given is− bit inputs, m and n

p = m⊗ n (4.49)

q = m⊗ (is)′b0 (4.50)

S0 = m[0]× n[0] (4.51)

for −→ i = 1 : (is− 1) (4.52)

case(p[i], q[i]) (4.53)

00 → Si = 0 (4.54)

01 → Si = m[i : 0] + n[(i− 1) : 0] (4.55)

10 → Si = m[(i− 1) : 0] (4.56)

11 → Si = n[(i− 1) : 0] (4.57)

endcase (4.58)

m× n =
(is−1)∑
i=0

Si (4.59)

Optimization Points

1. Since only one 1− bit AND operation is required along with aditions and shiftings, as
the input size increases, Successive Nikhilam will grow more efficient.

2. One disadvantage is for an n− bit input, it requires n steps.

3. This is basically recursion. Hence implementing it in Structural Modelling is more
difficult and it can prove costly in terms of power and delay.
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Since addition is performed using CLA’s, for an n− bit multiplier,

Table 4.6: Total No. of Adders Required – Successive Nikhilam

CLA Type # required

CLA(2n) n/2
CLA(n) n/2
CLA(n/2) n/4

. .

. .
CLA(2) 1

Because the number of adders can be predetermined for a multiplier based on its input
size, it is very easy to give a nearly estimate of the power consumption and the area occupied,
given the details of the adders. More than any other multiplier, Successive Nikhilam almost
solely depends on the adders since the only multiplication that takes place is a 1− bit AND
operation.
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Chapter 5

Sampoornam – the Proposed
Integrated Multiplier

A novel multiplier, which will integrate maximum of the advantages in each design
implemented in the above chapter, is proposed. It is designed to have a specialized logic unit
that will decide which multiplier is to be used for optimum results of all the given choices,
based on the input values. This will be a thorough multiplier with no human intervention
required. Since it is meant to be absolute and completely based on Vedic roots, it would be
apt to name it as “Sampoornam” or the “Absolute Vedic” multiplier.

5.1 Sampoornam: Specifications

There are around 7 possible designs to choose from, as proposed in this report, in order
to multiply two given integers, apart from the case when one of the inputs is a 0 (Output 0).

They are:

1. Vedic multiplier based solely on Urdhva Tiryakbhyam – Vedic UT

2. Proposed design D for multiplication derived from squaring logic – Design D

3. Nikhilam multiplier with both inputs above the base – Nikh GG

4. Nikhilam multiplier with both inputs below the base – Nikh SS

5. Nikhilam multiplier with one input above and one below – Nikh SG

6. Squaring logic based on Urdhva Tiryakbhyam – UT Square

7. When either of the numbers is equal to the base – Left Shift

The Successive Nikhilam is not a good candidate for integrating into the Sampoornam
multiplier since it is based on recursion while rest of the blocks are not. And the power
consumed, area occupied and the delay will be more than normal if it is to be included. So
the only possible options are those listed above. Henceforth in this report, Nikhilam refers
to Thresholding Nikhilam unless otherwise specified.
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5.2 Sampoornam: Logic

Consider the inputs to be x and y, with the base as b. Let t be the threshold value for
Nikhilam.

Table 5.1: Designs and their input constraints

Design Input Constraints

Left Shift x or y = b
UT Square x = y
Nikh SG x ε (b, b+ t) and y ε (b− t, t)
Nikh GG x, y ε (b, b+ t)
Nikh SS x, y ε (b− t, b)
Design D x− y = 2k, k is an integer
Output 0 x or y = 0

However, on performing the analyses, as will be seen in the Chapter 6, it is found that
Design D implemented with CLA Adder comes to be less optimum than the Vedic UT
multiplier. For this reason, the Design D is not included in the final integrated multiplier –
Sampoornam . Other inferences about this will be pointed out in Chapter 7.

Figure 5.1: Sampoornam Logic – Flowchart
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5.3 Sampoornam: Implementation

Figure 5.2: Sampoornam – Implementation

The code is implemented according to the algorithm given above. A point to be noted is
that, this is implemented completely using Combinational Logic Gates along with compara-
tors. This could have been very simply written as a set of if conditions, which would give
the same output. However, then the logic block will not be optimum and will tend to draw
more power, as well as occupy more area. This is so designed in order to be in accordance
with Structural Programming.

Table 5.2: Priority Encoder – Output

S2S1S0 Design Selected

111 Left Shift y
110 Left Shift x
101 UT Square
100 Nikh SG
011 Nikh SS
010 Nikh GG
001 Vedic UT
000 Output 0
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5.4 Sampoornam: Advantages

1. Only one of the designed modules will be ON at any given time. Hence, the power
drawn overall will be split among them.

2. The Logic block (which decides which module will be ON) is completely separated
from the modules. That is, the modules and the logic block can be independently
optimized.

3. Since some modules are very highly optimum for a given range of inputs, using them
only for those inputs is going to increase the overall efficiency of the multiplier.

4. This multiplier is easily hardware realizable as well, having proper modularity and
structure. Multiplexers can be employed instead of the Priority Encoder in certain
situations.

5. No manual intervention is required during any step for implementing the logic.

It is hoped that the Sampoorna Multiplier will be truly complete and absolute. The
results of various analyses that was done on it is given in the following chapters.
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Chapter 6

Simulations and Results

The code is written in Verilog HDL using the Xilinx ISE 14.3 Design Suite. Test benches
are written to validate the codes. Then the codes are fed to the Cadence Encounter RC
Compiler, i.e RTL Compiler and the parameters and paths are specified to perform the
power analysis, to determine the area occupancy and the worst path delay for each module.

6.1 Vedic UT

6.1.1 RTL Schematics

Figure 6.1: 2− bit Vedic UT

Figure 6.2: 4− bit Vedic UT
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Figure 6.3: 8− bit Vedic UT

Figure 6.4: 16− bit Vedic UT
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Figure 6.5: 32− bit Vedic UT

Figure 6.6: 64− bit Vedic UT
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Figure 6.7: 128− bit Vedic UT
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6.1.2 RTL Results

Table 6.1: Vedic UT

# bits Area(nm2) Power(nW) Delay(ps)

2 10 954.171 62.8
4 71 7782.601 340
8 454 63223.888 814.90
16 1913 360307.407 1500.20
32 6909 1688282.769 2321.50
64 23346 7212137.495 3522.10
128 75013 28739302.317 4970.80

6.2 Vedic Square

6.2.1 RTL Schematics

Figure 6.8: 2− bit Vedic Square

Figure 6.9: 4− bit Vedic Square
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Figure 6.10: 8− bit Vedic Square

Figure 6.11: 16− bit Vedic Square
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6.2.2 RTL Results

Table 6.2: Vedic Square

# bits Area(nm2) Power(nW) Delay(ps)

2 4 378.573 39.2
4 35 3285.703 240.3
8 187 19757.673 518
16 943 119473.143 1029.10
32 4049 663927.624 1791
64 15542 3231041.100 2615.60
128 55720 14399463.453 3933.2

6.3 Design D

6.3.1 RTL Results

Table 6.3: Design D

# bits Area(nm2) Power(nW) Delay(ps)

8 527 77934.629 787.20
16 2259 445024.996 1446.80
32 8944 23973.226 2343.40
64 32880 109168939.094 3336.30
128 115260 47426654.289 4811.20

6.4 Nikhilam GG

6.4.1 RTL Schematics

Figure 6.12: 8− bit Nikh GG
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Figure 6.13: 16− bit Nikh GG

Figure 6.14: 32− bit Nikh GG

Figure 6.15: 64− bit Nikh GG
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6.4.2 RTL Results

Table 6.4: Nikh GG

# bits Area(nm2) Power(nW) Delay(ps)

8 18 1663.124 62.8
16 87 9331.961 340
32 497 68958.150 814.90
64 2011 370320.247 1500.2
128 7121 1738297.467 2326.70

6.5 Nikhilam - SG

6.5.1 RTL Schematics

Figure 6.16: 8− bit Nikh SG

.

.
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Figure 6.17: 16− bit Nikh SG

Figure 6.18: 32− bit Nikh SG
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6.5.2 RTL Results

Table 6.5: Nikh SG

# bits Area(nm2) Power(nW) Delay(ps)

8 52 4700.96 262.40
16 155 16786.435 590.40
32 635 80516.342 1185.00
64 2276 396173.188 1968.90
128 7649 1706659.996 2915.60

6.6 Nikhilam SS

6.6.1 RTL Schematics

Figure 6.19: 8− bit Nikh SS

Figure 6.20: 16− bit Nikh SS

.
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Figure 6.21: 32− bit Nikh SS

.

.

.

6.6.2 RTL Results

Table 6.6: Nikh SS

# bits Area(nm2) Power(nW) Delay(ps)

8 28 2739.485 144.10
16 122 13466.568 408
32 575 81261.636 960.10
64 2174 379401.386 1691.20
128 7452 1760731.869 2577.60

.

.
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6.7 Logic Block

6.7.1 RTL Schematics

Figure 6.22: 8− bit Nikh SS

6.7.2 RTL Results

Table 6.7: Logic

# bits Area(nm2) Power(nW) Delay(ps)

8 51 3605.177 190.60
16 88 5701.256 209.50
32 165 9414.358 367.30
64 307 17494.020 382.40
128 608 33077.098 775.50
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6.8 CLA Blocks

6.8.1 RTL Analysis

Table 6.8: CLA Analysis

CLA Area(nm2) Power(nW) Delay(ps)

cla2 10 1222.249 76
cla4 27 2740.212 112
cla8 82 7792.435 189
cla16 115 12547.3 252
cla32 232 26374.588 359
cla64 464 50265.548 407
cla128 938 104861.319 511
cla256 1882 210065.503 568

6.9 Test Bench Output

Figure 6.23: 64− bit Vedic UT

45



Figure 6.24: 128− bit Vedic UT
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Chapter 7

Inferences

The schematics and the RTL results for each of the blocks were given in the previous
chapter. However, just the results alone are insufficient to gain a complete understanding
of the project. Rather, knowing what blocks/what codes/what logic caused these results
and how they caused the results to come, can help us to evaluate it as well as predict the
outcomes for optimization if the project is expanded to a higher scale in the future.

Not only this, but a complete analysis of the results can be made only by comparing each
block with the other as well as comparing with the existing literature. These comparisons
can yield insight into knowing which module would be most optimum in which situation as
well as for estimating the efficiency and the drawbacks.

7.1 Comparison –

Vedic UT, Vedic Square & Design D

Power Consumption

Figure 7.1: Power Consumption in nW
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Area occupancy

Figure 7.2: Area occupied in nm2

Delay

Figure 7.3: Worst Path Delay in ps

It is clear that the Vedic Square is the most optimum – having a clean, almost linear
graph with a very low slope. It is not surprising too that values increase less rapidly with
the increase in number of bits as compared to the other two, for after all, the input size is
just a fraction of what it is for the rest.

It is observed that the increase is more for Design D in both Area and Power as compared
to Vedic UT when the number of bits increases. However, for the Delay, it is seen that
Design D is slightly better than Vedic UT. Thus it is more advisable to go for Design D
only when the speed is of primary importance and power dissipation and area occupancy
are of no concern. Then, better delay will be obtained, however slight it may be.
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7.2 A look at the 3 cases of Nikhilam

With the power given in nW, Area in nm2 and the delay in ps.

Figure 7.4: Comparison between the 3 cases of Nikhilam

All the 3 cases of Nikhilam have almost the same Power Consumption curve. The Area
curves are slightly different while maximum variance can be observed in the Delay curves.
When both the inputs are larger than the base with the Nikhilam threshold (Nikhilam GG),
the delay is the least, followed by Nikhilam SS which requires both the inputs to be below
the base within the said threshold. Nikhilam SG which deals with one input being larger
and the other being smaller than the base has the maximum delay associated with it. This
can be put to use in application specific design of multipliers.

Another important fact the graphs of Nikhilam yield is that all the 3 cases have the
same power, more or less. This has a huge impact while doing the power analysis, since
all the 3 cases can be considered as one and need not be dealt as separate cases. This will
simplify the power analysis tremendously.
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7.3 Analytical Comparisons with the Vedic UT

Table 7.1: Vedic UT to Vedic Square: % reduction

# bits Power(%) Area(%) Delay(%)

2 60.3 60 37.6
4 58.1 50.7 29.4
8 68.8 58.8 36.4
16 66.8 50.7 36.4
32 60.7 41.4 22.9
64 55.2 33.4 25.7
128 49.9 25.7 20.9

Table 7.2: Vedic UT to Design D: % reduction

# bits Power(%) Area(%) Delay(%)

8 -23.2 -16.1 4.3
16 -23.5 -18.1 3.6
32 -42.0 -29.5 -0.9
64 -51.4 -40.8 5.3
128 -65.0 -53.7 3.2

Table 7.3: Vedic UT to Nikhilam (maximum): % reduction

# bits Power(%) Area(%) Delay(%)

8 92.6 88.5 67.8
16 735.3 91.9 60.6
32 95.2 91.9 60.6
64 94.5 90.3 49.0
128 94.0 89.8 41.3

The above tables indicate the exact percentage of improvement of the designs from the
Vedic UT. Since the values of Design D are negative, it can be inferred that

The performance of

Nikhilam > V edic Square > V edic UT > Design D
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7.4 Analysis of the Logic Block and CLA Adder

7.4.1 Logic Block

Figure 7.5: Logic Modules – Variation of Parameters

As can be seen, there is a linear relationship between the Power and number of bits
as well as between the area and number of bits. The delay is almost linear with just one
outlier. This fact can be used for estimating the values for larger logic blocks.

This linearity probably comes from the fact that all the logic blocks have the same
dependence on comparators and the comparators are built linearly.

7.4.2 CLA Adder

Another block that shows linearity is the CLA adder.
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Figure 7.6: CLA Adder – Variation of Parameters

The power and area again follow a linear relationship with the number of bits while the
delay is completely non-linear. This should not be surprising as we proved that CLA adder
has a logarithmically growing delay. Hence, for lower power applications of the multiplier,
some other adder should be chosen but for most of its part, the CLA is an excellent choice.
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Chapter 8

Comparison with Existing Work

On comparison with other reported multipliers, it is seen that even the Vedic UT, the
maximum valued block in Sampoornam is more efficient. Hence, it can be concluded that
the Sampoornam multiplier is very efficient.

Table 8.1: As reported in Literature

# bits Power(uW) Area(nm2) Delay(ps) Reference

8 2342 13555 2342 Proposed Design [19]
8 2654 22674 2816 Array [19]
8 1688 12374 2632 Booth [19]
8 - - 17995 Vedic [13]
8 - - 15416 Vedic [14]
16 - - 22604 Vedic [14]
32 - - 35760 Vedic [14]
64 - - 44870 Vedic [14]
8 - - 18699 Nikhilam [17]
16 - - 20094 Nikhilam [17]
32 - - 24075 Nikhilam [17]
64 - - 32816 Nikhilam [17]
8 168000 - 26825 Array [4]
8 99000 - 23079 UT [4]
8 148000 - 27878 Nikh [4]
16 250000 - 53276 Array [4]
16 118000 - 41350 UT [4]
16 118000 - 51323 Nikh [4]
32 382000 - 107128 Array [4]
32 315000 - 72332 UT [4]
32 315000 - 90747 Nikh [4]

- −→ Data not given.
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Table 8.2: Vedic UT

# bits Area(nm2) Power(uW) Delay(ps)

2 10 0.954171 62.8
4 71 7.782601 340
8 454 63.223888 814.90
16 1913 360.307407 1500.20
32 6909 1688.282769 2321.50
64 23346 7212.137495 3522.10
128 75013 28739.302317 4970.80

As can be seen from the tables, the Vedic UT (and hence the Sampoornam) multiplier
are more efficient than those reported in the literature.

With the 21 multipliers compared here, only one 64− bit bit multiplier is reported. Its
delay, 32.82 ns is even more than the 128− bit Vedic UT’s delay of 4.97 ns. That is almost
a 84.72% reduction for a higher order multiplier. Similarly, there’s a steep change from the
existing multipliers to the proposed multiplier.

Thus we can conclude that the multipliers designed in this report are more optimum
than the current multipliers.
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Chapter 9

Power Analysis

The disadvantage with performing the power analysis in software, like Cadence here, is
that they won’t give accurate results as will occur in real life in a few cases. One such case is
when many submodules are present but only one of them should be ON at a time based on
individual ENABLE pins dependent on the input values. Since conditional instantiation
of a module is not possible in Verilog, the power as calculated by the software will invariably
assume all the submodules are ON at the same time and thus give an exorbitantly high value.

However, this is an inaccurate result. The Sampoornam multiplier precisely falls
under the above category. And power analysis is a must for Sampoornam in order to
judge its performance.

A novel method of analysis is proposed based on mathematical principles of probability.
Since the multiplier is now input dependent, consider the following mathematical model
presented below.

Let the submodules be A1, A2, . . . , Am with power as given below.

Table 9.1: Submodules & their Power consumption

Module Power

A1 P1

A2 P2

. .

. .
Ai Pi

. .

. .
Am Pm
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Let the range of inputs for the module be denoted by range = [p, q] and let

|range| = R (9.1)

Let the inputs be denoted by x, y.

Let the range (set of inputs for which the submodule should be ON) of each submodule
Ai be given by Si.

And let pi be the probability that x, y ∈ Si.

Note,
S1 ∪ S2 . . . ∪ Sm = range (9.2)

m∑
i=1

pi = 1 (9.3)

Now the actual power dissipated contributed by the submodules can be found by

Pmod =
m∑
i=1

pi.Pi (9.4)

= p1.P1 + p2.P2 + . . .+ pm.Pm (9.5)

Adding the power dissipated by the logic block, we get

Pnet = Pmod + Plogic

9.1 Power analysis – Sampoornam

Considering the 3 cases of Nikhilam as one, since their power consumption is almost the
same, we have the modules as Vedic UT, Nikhilam and Vedic Square (say). If Design D,
Left Shift, or any other modules are to be added, they can be done by following the same
steps as shown below.

Table 9.2: Submodules – Sampoornam

Module Power

A1 Vedic Square
A2 Nikhilam
A3 Vedic UT
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Let the inputs be n− bit in size. Let the threshold size be k bits.

Probabilities that the inputs belong to a module are given by,

p1 = prob (inputs ∈ Vedic Square set)

p2 = prob (inputs ∈ Nikhilam set)

p3 = prob (inputs ∈ Vedic UT set)

For Vedic Square, to find the probability when the inputs are to be equal, consider that
you are selecting out out of 2n first. The probability of doing so is 1. Now the probability of
picking the same number chosen before again implies now the choices are just one number,
i.e, that which was picked before. So, the probability is given by

p1 = 1.
1

2n
=

1

2n
(9.6)

For Nikhilam, the number of favourable outcomes is given by 2(2k − 1) for one input.
The total number of outcomes are 2n. So the probability is given by,

p2 =

(
2(2k − 1)

2n

)2

=

(
2k − 1

22n−1

)2

(9.7)

For Vedic UT, finding probability is easy. From eq (8.3), it is given by

p3 = 1− p1 − p2 (9.8)

After this, the parameters are substituted in eq (8.4) and Pnet is then calculated by
adding Plogic

For a 16−bitmultiplier, the value comes to 366004.256 nW as compared to 502273.461

nW given by Cadence RTL analysis.
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Chapter 10

Conclusion

A 128− bit digital multiplier is built stage by stage starting with a 2− bit and a 4− bit
multiplier. The Vedic algorithms – Urdhva Tiryakbyam and Nikhilam are effectively utilized
in order to increase its efficiency. Along with the Vedic principles, the Karatsuba-Ofman
algorithm is implemented to scale a higher order multiplier from a lower order multiplier.

Many designs based on known Vedic algorithms for decimal numbers are adapted for
digital systems and implemented with many innovations. To summarize, the major designs
are the Vedic UT – based purely on the Urdhva Tiryakbyam, Vedic Square – which
exploits the ease of squaring digital numerbs using Vedic principles, the Thresholding
Nikhilam which uses the Nikhilam algorithm with a threshold, the Successive Nikhilam
which recursively uses Nikhilam to reduce the multiplication to just a 1− bit AND operation
and Design D – which is based on a famous algebraic manipulation.

A unique integrated multiplier – the Sampoornam multiplier is proposed and a sepa-
rate logic block is built to make use of all the modules mentioned above. These various
designs proposed above are most optimum for a specific set of inputs particularly. This
has been incorporated into Sampoornam in order to make it a complete multiplier. The
features of Sampoornam include the presence of a logic block to determine which design
is to be used for a given set of inputs along with well optimized multiplier designs which
makes it unique.

Each module of the integrated multiplier is compared with other modules designed as
well those reported in literature. A detailed analysis has been done and parameters such
as time delay, power dissipation and area occupied are found for each case. These are
compared with the existing multipliers and the proposed multiplier is found to be more
optimum than many of the existing multipliers.
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10.1 Future Scope

The multiplier can be made more optimum by using different adders apart from the one
proposed using CLA. This is possible because of its modularity. Each multiplier module
can be made more optimum by designing a more efficient adder since almost every block
depends on an adder. Better designed comparators can also highly optimize the integrated
multiplier since the Logic unit makes use of comparators.

The multiplier can be extended for signed numbers (which just involves an XOR op-
eration of the MSBs) as well as for floating point numbers. Globally synchronous, locally
asynchronous or globally asynchronous, locally synchronous MAC units can be developed
using this multiplier.

This multiplier can be fabricated after making the layout. Also, the results obtained
from the RTL analysis can be made better by using more updated technology like 90
nm processes. Like in ASIC design, the multiplier can be customized for each constraint
criterion with respect to specific applications.

There is always a huge demand for an optimized multiplier in the industry and it is truly
amazing to see that the ancient centuries-old Vedic principles can be used to satisfy the
present day demands. More research should be done to uncover these hidden facts which
can reshape our future completely.
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APPENDIX A

Vedic Sutras

The 16 Vedic Sutras as mentioned in (.....) are as follows

1. (Anurupye) Shunyamanyat - If one is in ratio, the other is zero.

2. Chalana Kalanabyham - Differences and Similarities.

3. Ekadhikina Purvena - By one more than the previous One.

4. Ekanyunena Purvena - By one less than the previous one.

5. Gunakasamuchyah - The factors of the sum is equal to the sum of the factors.

6. Gunitasamuchyah - The product of the sum is equal to the sum of the product.

7. Nikhilam Navatashcaramam Dashatah - All from 9 and last from 10.

8. Paraavartya Yojayet - Transpose and adjust.

9. Puranapuranabyham - By the completion or noncompletion.

10. Sankalana vyavakalanabhyam - By addition and by subtraction.

11. Shesanyankena Charamena - The remainders by the last digit.

12. Shunyam Saamyasamuccaye - When the sum is the same that sum is zero.

13. Sopaantyadvayamantyam - The ultimate and twice the penultimate.

14. Urdhva tiryakbhyam - Vertically and crosswise.

15. Vyashtisamanstih - Part and Whole.

16. Yaavadunam - Whatever the extent of its deficiency.
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APPENDIX B

Cadence Encounter

In this project, the various modules are designed in Verilog using Xilinx ISE Design

Suite 14.3 (Project Navigator and ISim Simulator in particular) and then are synthesized

using the Cadence Encounter EDA tool called RTL Complier (Cadence 6.1 RC Compiler

is the commercial name which uses 180 nm technology). RTL Compiler also gives other

necessary information like Propagation Delay (PD), Area occupied by the circuit and Power

consumed by the circuit.

Cadence Design Systems, Inc. is an electronic design automation (EDA) software and

engineering services company, founded in 1988 by the merger of SDA Systems and ECAD,

Inc. For years it had been the largest company in the EDA industry producing software for

designing chips and printed circuit boards.

Encounter RTL Compiler is a key technology of the Cadence Encounter digital design

and implementation platform. Encounter RTL Compiler offers a unique set of patented

global-focus algorithms that perform true top-down global RTL design synthesis to accelerate

silicon realization. With concurrent multi objective optimization (timing, area, and power

intent) and support for advanced low-power design techniques, Encounter RTL Compiler

reduces chip power consumption while meeting frequency goals.

According to Cadence, RTL Compiler, “with its combination of breakthrough algorithms,

efficient data structures, and modern programming techniques” delivers “the best speed, area,

and power after physical implementation for the most challenging designs. New advanced

global synthesis technology further improves these results while delivering even faster run

times. At the core of Encounter RTL Compiler is a breakthrough synthesis algorithmglobal

focus mapping (GFM). This technique devotes more time to examining the overall solution

space to deliver an optimized netlist for meeting the design intent goals throughout physical

design”.
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