Design of a Balanced-Cantilever Bridge

$\mathrm{L}=80 \mathrm{ft} \Rightarrow$ Bridge Span $=2.6 \mathrm{~L}=2.6 \times 80^{\prime}=208^{\prime}$
Bridge Width $=30^{\prime}$
No. of girders $=6$, Width of each girder $=15^{\prime \prime}$
Loads: LL $=$ HS20, Wearing Surface $=30 \mathrm{psf}$
Material Properties: $\mathrm{f}_{\mathrm{c}}{ }_{\mathrm{c}}=3 \mathrm{ksi}, \mathrm{f}_{\mathrm{s}}=20 \mathrm{ksi}$

1. Design of Slab

Bridge width $=30^{\prime}$, Number of girders $=6 @ 15^{\prime \prime}$
\therefore Clear span between girders $S=\left(30^{\prime}-6 \times 15^{\prime \prime}\right) / 5=4.5^{\prime}$
\therefore The c / c distance between girders $=4.5^{\prime}+15^{\prime \prime}=5.75^{\prime}$
Assuming slab thickness $=6^{\prime \prime} \Rightarrow$ Slab weight $=75 \mathrm{psf}=0.075 \mathrm{ksf}$
\therefore Wearing Surface $=30 \mathrm{psf} \Rightarrow \mathrm{w}_{\mathrm{DL}}=75+30=105 \mathrm{psf}=0.105 \mathrm{ksf}$
\therefore Dead-load moment, $\mathrm{M}_{\mathrm{DL}}= \pm \mathrm{w}_{\mathrm{DL}} \mathrm{S}^{2} / 10=0.105 \times 4.5^{2} / 10=0.213 \mathrm{k}^{\prime} /{ }^{\prime}$
AASHTO specifies Live-load moment, $\mathrm{M}_{\mathrm{LL}}= \pm 0.8(\mathrm{~S}+2) / 32 \mathrm{P}_{20}$

$$
= \pm 0.8[(4.5+2) / 32] \times 16= \pm 2.6 \mathrm{k}^{\prime} / \prime
$$

Impact factor, $\mathrm{I}=50 /(\mathrm{S}+125)=0.386>0.3 \Rightarrow \mathrm{I}=0.3$
Impact moment, $\mathrm{M}_{\mathrm{IMP}}=\mathrm{M}_{\mathrm{LL}} \times \mathrm{I}= \pm 2.6 \times 0.3= \pm 0.78 \mathrm{k}^{\prime} /{ }^{\prime}$
\therefore Total moment, $\mathrm{M}_{\mathrm{T}}=\mathrm{M}_{\mathrm{DL}}+\mathrm{M}_{\mathrm{LL}}+\mathrm{M}_{\mathrm{IMP}}= \pm(0.213+2.6+0.78)= \pm 3.593 \mathrm{k}^{\prime} /{ }^{\prime}$
For design, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=3 \mathrm{ksi} \Rightarrow \mathrm{f}_{\mathrm{c}}=0.4 \mathrm{f}^{\prime}{ }_{\mathrm{c}}=1.2 \mathrm{ksi}$
$\therefore \mathrm{n}=9, \mathrm{k}=9 /(9+20 / 1.2)=0.351, \mathrm{j}=1-\mathrm{k} / 3=0.883$
$\therefore \mathrm{R}=1 / 2 \times 1.2 \times 0.351 \times 0.883=0.186 \mathrm{ksi}$
$\Rightarrow \mathrm{d}_{\text {req }}=\sqrt{ }\left(\mathrm{M}_{\mathrm{T}} / \mathrm{Rb}\right)=\sqrt{ }(3.593 / 0.186 \times 1)=4.40^{\prime \prime}$
$\mathrm{t}=6^{\prime \prime} \Rightarrow \mathrm{d}=6^{\prime \prime}-1.5^{\prime \prime}=4.5^{\prime \prime}>\mathrm{d}_{\mathrm{req}}$
$\Rightarrow \mathrm{d}=4.5^{\prime \prime}, \mathrm{t}=6^{\prime \prime}(\mathrm{OK})$.
\therefore Required reinforcement, $\mathrm{A}_{\mathrm{s}}=\mathrm{M}_{\mathrm{T}} /\left(\mathrm{f}_{\mathrm{s}} \mathrm{dd}\right)=3.593 \times 12 /(20 \times 0.883 \times 4.5)=0.543 \mathrm{in}^{2} / \prime$
\therefore Use \#5 @ $7^{\prime \prime} \mathrm{c} / \mathrm{c}$ [or \#6 @ 10" c/c]
Also, $2.2 / \sqrt{ } \mathrm{S}=2.2 / \sqrt{ } 4.5=1.04>0.67$
\therefore Distribution steel, $\mathrm{A}_{\mathrm{s}(\mathrm{dist})}=0.67 \mathrm{~A}_{\mathrm{s}}=0.67 \times 0.543=0.364 \mathrm{in}^{2} / \prime$
$\therefore \mathrm{A}_{\mathrm{s}(\text { dist })}$ per c/c span $=5.75^{\prime} \times 0.364 \mathrm{in}^{2} /{ }^{\prime}$
$=2.09 \mathrm{in}^{2}$; i.e., $7 \# 5$ bars (to be placed within the clear spans).

2. Dead Load Analysis of Interior Girders

Girder depths remain constant between A-D and vary parabolically between D-I and I-N.
The variation is symmetric about I . If the girder depths at D and N are both $40^{\prime \prime}$ ($\mathrm{L} / 2$ in inches) and that at I is $70^{\prime \prime}$ (about $70-80 \%$ larger), the depths at the other sections can be calculated easily. The depths calculated are the following
$\mathrm{h}_{\mathrm{A}}=40^{\prime \prime}, \mathrm{h}_{\mathrm{B}}=40^{\prime \prime}, \mathrm{h}_{\mathrm{C}}=40^{\prime \prime}, \mathrm{h}_{\mathrm{D}}=40^{\prime \prime}, \mathrm{h}_{\mathrm{E}}=41.2^{\prime \prime}, \mathrm{h}_{\mathrm{F}}=44.8^{\prime \prime}, \mathrm{h}_{\mathrm{G}}=50.8^{\prime \prime}, \mathrm{h}_{\mathrm{H}}=59.2^{\prime \prime}, \mathrm{h}_{\mathrm{I}}=70^{\prime \prime}$, $\mathrm{h}_{\mathrm{J}}=59.2^{\prime \prime}, \mathrm{h}_{\mathrm{K}}=50.8^{\prime \prime}, \mathrm{h}_{\mathrm{L}}=44.8^{\prime \prime}, \mathrm{h}_{\mathrm{M}}=41.2^{\prime \prime}, \mathrm{h}_{\mathrm{N}}=40^{\prime \prime}$

Using these dimensions (with an additional 30 psf; i.e., $2.4^{\prime \prime}$ concrete layer) for the analysis of the girder for self-weight using the software GRASP, the following results are obtained.

Table 2.1 Dead Load Shear Forces and Bending Moments

Section	x from left ($\left.{ }^{\prime}\right)$	$\mathrm{h}\left({ }^{\prime \prime}\right)$	$\mathrm{V}(\mathrm{k})$	$\mathrm{M}\left(\mathrm{k}^{\prime}\right)$
A	0	40	27.40	0.00
B	8	40	18.32	182.84
C	16	40	9.24	293.04
D	24	40	0.16	330.59
E	32	41.2	-9.00	295.21
F	40	44.8	-18.46	185.39
G	48	50.8	-28.51	-2.48
H	56	59.2	-39.47	-274.39
I (L)	64	70	-51.62	-638.72
I (R)	64	70	51.78	-638.72
J	72	59.2	39.62	-273.14
K	80	50.8	28.67	0.00
L	88	44.8	18.61	189.10
M	96	41.2	9.16	300.16
N	104	40	0.00	336.78

3. Live Load Analysis of Interior Girders

The live load analysis of interior girders is carried out for HS20 loading with wheel loads of $4 \mathrm{k}, 16 \mathrm{k}$, and 16 k at 14^{\prime} distances, as shown below.

For live-load analysis, each wheel load ($4 \mathrm{k}, 16 \mathrm{k}, 16 \mathrm{k}$) needs to be multiplied by a factor

$$
\mathrm{S} / 5 \geq 1.0
$$

In this case, $\mathrm{S}=5.75$ '; \therefore Factor $=5.75 / 5=1.15>1.0$, OK
\therefore Wheel Loads for live load analysis are
$(16 \times 1.15=) 18.4 \mathrm{k},(16 \times 1.15=) 18.4 \mathrm{k}$ and $(4 \times 1.15=) 4.6 \mathrm{k}$
Also, the impact factor $\mathrm{I}=50 /\left(\mathrm{L}_{0}+125\right) \leq 0.30$, where $\mathrm{L}_{0}=$ Loaded length
Assuming $\mathrm{L}_{0}=0.6 \mathrm{~L}=48^{\prime}$ (conservatively), $\mathrm{I}=50 /(48+125)=0.289$
\therefore The impact shear forces and bending moments can be obtained by multiplying live load shears and moments by I (= 0.289).

As an alternative to using separate moments for live load and impact, one can do them simultaneously by multiplying the wheel loads by $(1+\mathrm{I})=1.289$; i.e., taking wheel loads to be $(18.4 \times 1.289=) 23.72 \mathrm{k},(18.4 \times 1.289=) 23.72 \mathrm{k}$ and $(4.6 \times 1.289=) 5.93 \mathrm{k}$.

The combined (live load + impact) shears and bending moments can be obtained by moving the wheels from A to N (keeping W_{1} or W_{3} in front) and recording all the shear forces (V) and bending moments (M). The software GRASP can be used for this purpose.

Instead of such random wheel movements, Influence Lines can be used to predict the critical position of wheels in order to get the maximum forces. This can considerably reduce the computational effort. The subsequent discussions follow this procedure.

The IL for V and M at the 'simply supported span' K-L-M-N and the critical wheel arrangements are as follows.

Using $\langle x\rangle=x$, if $x \geq 0$, or $=0$ otherwise
$\mathrm{V}_{\mathrm{LL}+\mathrm{IMP}}\left(\mathrm{x}_{\mathrm{s}}\right)=\left(23.72 / \mathrm{L}_{\mathrm{s}}\right)\left[\left(\mathrm{L}_{\mathrm{s}}-\mathrm{X}_{\mathrm{s}}\right)+\left(\mathrm{L}_{\mathrm{s}}-\mathrm{X}_{\mathrm{s}}-14\right)+\left\langle\mathrm{L}_{\mathrm{s}}-\mathrm{X}_{\mathrm{s}}-28>/ 4\right]\right.$
$\mathrm{M}_{\text {LL+IMP }}\left(\mathrm{x}_{\mathrm{s}}\right)=\mathrm{x}_{\mathrm{s}} \mathrm{V}_{\text {LL+IMP }}\left(\mathrm{x}_{\mathrm{s}}\right)$; if $\mathrm{x}_{\mathrm{s}} \leq \mathrm{L}_{\mathrm{s}} / 3$.

$$
=\left(23.72 / \mathrm{L}_{\mathrm{s}}\right)\left[\mathrm{x}_{\mathrm{s}}\left(\mathrm{~L}_{\mathrm{s}}-\mathrm{x}_{\mathrm{s}}\right)+\mathrm{x}_{\mathrm{s}}\left(\mathrm{~L}_{\mathrm{s}}-\mathrm{x}_{\mathrm{s}}-14\right)+\left(\mathrm{x}_{\mathrm{s}}-14\right)\left(\mathrm{L}_{\mathrm{s}}-\mathrm{x}_{\mathrm{s}}\right) / 4\right] ; \text { otherwise. }
$$

Using these equations, with $\mathrm{L}_{\mathrm{s}}=48^{\prime}$, the following values are obtained [These calculations can be carried out conveniently in EXCEL]

Table 3.1 $\mathbf{V}_{\text {LL+IMP }}$ and $M_{L L+I M P}$ for K-N

Section	$\mathrm{x}_{\mathrm{s}}\left({ }^{\prime}\right)$	$\mathrm{V}(\mathrm{k})$	$\mathrm{M}\left(\mathrm{k}^{\prime}\right)$
K	0	42.99	0.00
L	8	34.10	272.78
M	16	25.20	403.24
N	24	16.81	432.89

The IL for V and M at the span 'cantilever span' $I(R)-J-K$ and the critical wheel arrangements are as follows.

Using $\langle x\rangle=x$, if $x \geq 0$, or $=0$ otherwise

$$
\begin{aligned}
\mathrm{V}_{\mathrm{LL}+\mathrm{IMP}}\left(\mathrm{x}_{\mathrm{c}}\right) & =23.72\left[1+\left\{1-<14-\mathrm{x}_{\mathrm{c}}>/ \mathrm{L}_{\mathrm{s}}\right\}+\left\{1-\left(28-\mathrm{x}_{\mathrm{c}}\right) / \mathrm{L}_{\mathrm{s}}\right\} / 4\right] \\
& =23.72\left[2.25-\left\{<14-\mathrm{x}_{\mathrm{c}}>+\left(28-\mathrm{x}_{\mathrm{c}}\right) / 4\right\} / \mathrm{L}_{\mathrm{s}}\right] \\
\mathrm{M}_{\mathrm{LL}+\mathrm{IMP}}\left(\mathrm{x}_{\mathrm{c}}\right) & =-23.72\left(\mathrm{x}_{\mathrm{c}} / \mathrm{L}_{\mathrm{s}}\right)\left[\mathrm{L}_{\mathrm{s}}+\left(\mathrm{L}_{\mathrm{s}}-14\right)+\left(\mathrm{L}_{\mathrm{s}}-28\right) / 4\right] \\
& =-\left(23.72 \mathrm{x}_{\mathrm{c}}\right)\left[2.25-21 / \mathrm{L}_{\mathrm{s}}\right]
\end{aligned}
$$

Using these equations, with $\mathrm{L}_{\mathrm{s}}=48^{\prime}$, the following values are obtained

Table 3.2 $\mathbf{V}_{\text {LL+IMP }}$ and $\mathbf{M}_{\text {LL+IMP }}$ for $\mathbf{I}(\mathbf{R})$-J

Section	$\mathrm{x}_{\mathrm{c}}\left({ }^{\prime}\right)$	$\mathrm{V}(\mathrm{k})$	$\mathrm{M}\left(\mathrm{k}^{\prime}\right)$
$\mathrm{I}(\mathrm{R})$	16	51.89	-687.88
J	8	47.93	-343.94

The IL for V and M at the 'end span' A-B-C-D-E-G-H-I(L) and the critical wheel arrangements are as follows.
23.72 k 23.72 k

$23.72 \mathrm{k} \quad 23.72 \mathrm{k}$

Here the results for $x_{e} \leq L_{e} / 2$ will be calculated and symmetry will be used for the other half.
Using $\langle x\rangle=x$, if $x \geq 0$, or $=0$ otherwise
For positive shear and moment

$$
\begin{aligned}
\mathrm{V}_{\text {LL+IMP }}^{+}\left(\mathrm{x}_{\mathrm{e}}\right) & =\left(23.72 / \mathrm{L}_{\mathrm{e}}\right)\left[\left(\mathrm{L}_{\mathrm{e}}-\mathrm{x}_{\mathrm{e}}\right)+\left(\mathrm{L}_{\mathrm{e}}-\mathrm{X}_{\mathrm{e}}-14\right)+\left(\mathrm{L}_{\mathrm{e}}-\mathrm{X}_{\mathrm{e}}-28\right) / 4\right] \geq 0 \\
\mathrm{M}_{\text {LL+IMP }}^{+}\left(\mathrm{x}_{\mathrm{e}}\right) & =\mathrm{x}_{\mathrm{e}} \mathrm{~V}^{+}{ }_{\text {LL+IMP }}\left(\mathrm{X}_{\mathrm{e}}\right) ; \text { if } \mathrm{x}_{\mathrm{e}} \leq \mathrm{L}_{\mathrm{e}} / 3 . \\
& =\left(23.72 / \mathrm{L}_{\mathrm{e}}\right)\left[\mathrm{x}_{\mathrm{e}}\left(\mathrm{~L}_{\mathrm{e}}-\mathrm{x}_{\mathrm{e}}\right)+\mathrm{x}_{\mathrm{e}}\left(\mathrm{~L}_{\mathrm{e}}-\mathrm{x}_{\mathrm{e}}-14\right)+\left(\mathrm{x}_{\mathrm{e}}-14\right)\left(\mathrm{L}_{\mathrm{e}}-\mathrm{x}_{\mathrm{e}}\right) / 4\right] ; \text { otherwise. }
\end{aligned}
$$

For negative shear and moment

$$
\begin{aligned}
\mathrm{V}_{\mathrm{LL}+\mathrm{IMP}}^{-}\left(\mathrm{x}_{\mathrm{e}}\right) & =-\left(23.72 / \mathrm{L}_{\mathrm{e}}\right)\left[\mathrm{x}_{\mathrm{e}}+\left(\mathrm{x}_{\mathrm{e}}-14\right)+\left(\mathrm{x}_{\mathrm{e}}-28\right) / 4\right] \leq 0 \\
\text { or } & =-\left(23.72 \mathrm{~L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{e}}\right)\left[1+\left(1-14 / \mathrm{L}_{\mathrm{s}}\right)+\left(1-28 / \mathrm{L}_{\mathrm{s}}\right) / 4\right] \\
\mathrm{M}_{\mathrm{LL}+\mathrm{IMP}}^{-}\left(\mathrm{x}_{\mathrm{e}}\right) & =-\left(23.72 \mathrm{x}_{\mathrm{e}} \mathrm{~L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{e}}\right)\left[1+\left(1-14 / \mathrm{L}_{\mathrm{s}}\right)+\left(1-28 / \mathrm{L}_{\mathrm{s}}\right) / 4\right]
\end{aligned}
$$

Using the derived equations, with $L_{c}=16^{\prime} \& L_{e}=64^{\prime}$, the following values are obtained

Table 3.3 $\mathbf{V}_{\text {LL+IMP }}$ and $M_{L L+I M P}$ for A-I(L)

Section	$\mathrm{x}_{\mathrm{e}}\left({ }^{\prime}\right)$	$\mathrm{V}^{+}(\mathrm{k})$	$\mathrm{M}^{+}\left(\mathrm{k}^{\prime}\right)$	$\mathrm{V}^{-}(\mathrm{k})$	$\mathrm{M}^{-}\left(\mathrm{k}^{\prime}\right)$
A	0	45.59	0.00	-10.75	0.00
B	8	38.92	311.33	-10.75	-85.99
C	16	32.24	515.91	-10.75	-171.97
D	24	25.57	624.13	-12.23	-257.96
E	32	18.90	646.37	-18.90	-343.94
F	40	$*$	624.13	-25.57	-429.93
G	48	$*$	515.91	-32.24	-515.91
H	56	$*$	311.33	-38.92	-601.90
$\mathrm{I}(\mathrm{L})$	64	$*$	0.00	-45.59	-687.88

The 'simply supported span' K-L-M-N

$$
\begin{aligned}
\mathrm{V}_{\mathrm{LL}+\mathrm{IMP}}\left(\mathrm{x}_{\mathrm{s}}\right) & =\left(23.72 / \mathrm{L}_{\mathrm{s}}\right)\left[\left(\mathrm{L}_{\mathrm{s}}-\mathrm{x}_{\mathrm{s}}\right)+\left(\mathrm{L}_{\mathrm{s}}-\mathrm{x}_{\mathrm{s}}-14\right)+<\mathrm{L}_{\mathrm{s}}-\mathrm{x}_{\mathrm{s}}-28>/ 4\right] \\
\mathrm{M}_{\mathrm{LL}+\mathrm{IMP}}\left(\mathrm{x}_{\mathrm{s}}\right) & =\mathrm{x}_{\mathrm{s}} \mathrm{~V}_{\mathrm{LL}+\mathrm{IMP}}\left(\mathrm{x}_{\mathrm{s}}\right) ; \text { if } \mathrm{x}_{\mathrm{s}} \leq \mathrm{L}_{\mathrm{s}} / 3 . \\
& =\left(23.72 / \mathrm{L}_{\mathrm{s}}\right)\left[\mathrm{x}_{\mathrm{s}}\left(\mathrm{~L}_{\mathrm{s}}-\mathrm{x}_{\mathrm{s}}\right)+\mathrm{x}_{\mathrm{s}}\left(\mathrm{~L}_{\mathrm{s}}-\mathrm{x}_{\mathrm{s}}-14\right)+\left(\mathrm{x}_{\mathrm{s}}-14\right)\left(\mathrm{L}_{\mathrm{s}}-\mathrm{x}_{\mathrm{s}}\right) / 4\right] ; \text { otherwise. }
\end{aligned}
$$

Using these equations, with $L_{s}=48^{\prime}$, the following values are obtained

Table 3.1 $\mathrm{V}_{\text {LL+IMP }}$ and $\mathrm{M}_{\text {LL+IMP }}$ for $\mathrm{K}-\mathrm{N}$

Section	$\mathrm{x}_{\mathrm{s}}\left({ }^{\prime}\right)$	$\mathrm{V}(\mathrm{k})$	$\mathrm{M}\left(\mathrm{k}^{\prime}\right)$
K	0	42.99	0.00
L	8	34.10	272.78
M	16	25.20	403.24
N	24	16.81	432.89

The 'cantilever span' $\mathrm{I}(\mathrm{R})$-J-K
$\left.\mathrm{V}_{\text {LL+IMP }}\left(\mathrm{x}_{\mathrm{c}}\right)=23.72\left[2.25-\left\{<14-\mathrm{x}_{\mathrm{c}}\right\rangle+\left(28-\mathrm{x}_{\mathrm{c}}\right) / 4\right\} / \mathrm{L}_{\mathrm{s}}\right]$
$\mathrm{M}_{\mathrm{LL}+\mathrm{IMP}}\left(\mathrm{x}_{\mathrm{c}}\right)=-\left(23.72 \mathrm{x}_{\mathrm{c}}\right)\left[2.25-21 / \mathrm{L}_{\mathrm{s}}\right]$
Using these equations, with $L_{s}=48^{\prime}$, the following values are obtained

Table $3.2 \mathrm{~V}_{\mathrm{LL}+\mathrm{IMP}}$ and $\mathrm{M}_{\mathrm{LL}+\mathrm{IMP}}$ for $\mathbf{I}(\mathbf{R})$-J

Section	$\mathrm{x}_{\mathrm{c}}\left({ }^{\prime}\right)$	$\mathrm{V}(\mathrm{k})$	$\mathrm{M}\left(\mathrm{k}^{\prime}\right)$
$\mathrm{I}(\mathrm{R})$	16	51.89	-687.88
J	8	47.93	-343.94

The 'end span' A-B-C-D-E-G-H-I(L)
Here the results for $x_{e} \leq L_{e} / 2$ will be calculated and symmetry will be used for the other half.
For positive shear and moment
$\mathrm{V}^{+}{ }_{\mathrm{LL}+\mathrm{IMP}}\left(\mathrm{x}_{\mathrm{e}}\right)=\left(23.72 / \mathrm{L}_{\mathrm{e}}\right)\left[\left(\mathrm{L}_{\mathrm{e}}-\mathrm{x}_{\mathrm{e}}\right)+\left(\mathrm{L}_{\mathrm{e}}-\mathrm{X}_{\mathrm{e}}-14\right)+\left(\mathrm{L}_{\mathrm{e}}-\mathrm{X}_{\mathrm{e}}-28\right) / 4\right] \geq 0$
$\mathrm{M}_{\text {LL+IMP }}^{+}\left(\mathrm{x}_{\mathrm{e}}\right)=\mathrm{X}_{\mathrm{e}} \mathrm{V}_{\text {LL+IMP }}^{+}\left(\mathrm{X}_{\mathrm{e}}\right)$; if $\mathrm{x}_{\mathrm{e}} \leq \mathrm{L}_{\mathrm{e}} / 3$.

$$
=\left(23.72 / \mathrm{L}_{\mathrm{e}}\right)\left[\mathrm{x}_{\mathrm{e}}\left(\mathrm{~L}_{\mathrm{e}}-\mathrm{x}_{\mathrm{e}}\right)+\mathrm{x}_{\mathrm{e}}\left(\mathrm{~L}_{\mathrm{e}}-\mathrm{x}_{\mathrm{e}}-14\right)+\left(\mathrm{x}_{\mathrm{e}}-14\right)\left(\mathrm{L}_{\mathrm{e}}-\mathrm{X}_{\mathrm{e}}\right) / 4\right] ; \text { otherwise. }
$$

For negative shear and moment
$\mathrm{V}_{\text {LL+IMP }}^{-}\left(\mathrm{x}_{\mathrm{e}}\right)=-\left(23.72 / \mathrm{L}_{\mathrm{e}}\right)\left[\mathrm{x}_{\mathrm{e}}+\left(\mathrm{x}_{\mathrm{e}}-14\right)+\left(\mathrm{x}_{\mathrm{e}}-28\right) / 4\right] \leq 0$

$$
\text { or }=-\left(23.72 \mathrm{~L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{e}}\right)\left[1+\left(1-14 / \mathrm{L}_{\mathrm{s}}\right)+\left(1-28 / \mathrm{L}_{\mathrm{s}}\right) / 4\right]
$$

$\mathrm{M}_{\text {LL+IMP }}^{-}\left(\mathrm{x}_{\mathrm{e}}\right)=-\left(23.72 \mathrm{x}_{\mathrm{e}} \mathrm{L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{e}}\right)\left[1+\left(1-14 / \mathrm{L}_{\mathrm{s}}\right)+\left(1-28 / \mathrm{L}_{\mathrm{s}}\right) / 4\right]$
Using the derived equations, with $L_{c}=16^{\prime}$ and $L_{e}=64^{\prime}$, the following values are obtained

Table 3.3 $\mathrm{V}_{\mathrm{LL}+\mathrm{IMP}}$ and $\mathrm{M}_{\mathrm{LL}+\mathrm{IMP}}$ for A-I(L)

Section	$\mathrm{x}_{e}\left({ }^{\prime}\right)$	$\mathrm{V}^{+}(\mathrm{k})$	$\mathrm{M}^{+}\left(\mathrm{k}^{\prime}\right)$	$\mathrm{V}^{-}(\mathrm{k})$	$\mathrm{M}^{-}\left(\mathrm{k}^{\prime}\right)$
A	0	45.59	0.00	-10.75	0.00
B	8	38.92	311.33	-10.75	-85.99
C	16	32.24	515.91	-10.75	-171.97
D	24	25.57	624.13	-12.23	-257.96
E	32	18.90	646.37	-18.90	-343.94
F	40	$*$	624.13	-25.57	-429.93
G	48	$*$	515.91	-32.24	-515.91
H	56	$*$	311.33	-38.92	-601.90
$\mathrm{I}(\mathrm{L})$	64	$*$	0.00	-45.59	-687.88

上 $x_{e}-L_{e}-x_{e} \longrightarrow L_{c}+\quad L_{s} \longrightarrow$

4. Combination of Dead and Live Loads

The dead load and (live load + Impact) shear forces and bending moments calculated earlier at various sections of the bridge are now combined to obtain the design (maximum positive and/or negative) shear forces and bending moments.
[These calculations can be conveniently done in EXCEL, and subsequent columns should be kept for shear \& flexural design]

Table 4.1 Combination of DL \& LL+IMP to get $V_{\text {Design }}$ and $M_{\text {Design }}$

Section	$\mathrm{V}_{\text {DL }}$ (k)	$\mathrm{V}_{\text {LL+IMP }}$ (k)	$\mathrm{V}_{\text {Design }}$ (k)	$\mathrm{M}_{\text {DL }}$ $\left(\mathrm{k}^{\prime}\right)$	$\mathrm{M}_{\text {LL+IMP }}$ $\left(\mathrm{k}^{\prime}\right)$	$\mathrm{M}_{\text {Design }}^{+}$ $\left(\mathrm{k}^{\prime}\right)$	$\mathrm{M}_{\text {Design }}^{-}$ $\left(\mathrm{k}^{\prime}\right)$
A	27.40	45.59 -10.75	72.99	0.00	0.00	0.00	0.00
B	18.32	38.92 -10.75	57.24	182.84	311.33 -85.99	494.17	0.00
C	9.24	32.24 -10.75	41.48	293.04	515.91 -171.97	808.95	0.00
D	0.16	25.57 -12.23	25.73	330.59	624.13 -257.96	954.72	0.00
E	-9.00	18.90 -18.90	-27.90	295.21	646.37 -343.94	941.58	-48.75
F	-18.46	-25.57	-44.03	185.39	624.13 -429.93	809.52	-244.24
G	-28.51	-32.24	-60.75	-2.48	515.91 -515.91	513.43	-518.39
H	-39.47	-38.92	-78.39	-274.39	311.33 -601.90	36.94	-876.29
I(L)	-51.62	-45.59	-97.21	-638.72	-687.88	0.00	-1326.60
I(R)	51.78	51.89	103.67	-638.72	-687.88	0.00	-1326.60
J	39.62	47.93	87.55	-273.14	-343.94	0.00	-617.08
K	28.67	42.99	71.66	0.00	0.00	0.00	0.00
L	18.61	34.10	52.71	189.10	272.78	461.88	0.00
M	9.16	25.20	34.36	300.16	403.24	703.40	0.00
N	0.00	16.81	16.81	336.78	432.89	769.67	0.00

5. Design of Interior Girders

Shear Design

The shear design of interior girders is performed by using the conventional shear design equations of RCC members. The stirrup spacing is given by the equation

$$
S_{(\text {req })}=A_{s} f_{s} d /\left(V-V_{c}\right)
$$

where $f_{s}=20 \mathrm{ksi}$. If 2-legged \#5 stirrups are used, $A_{s}=0.62 \mathrm{in}^{2}$.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=0.95 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{bd}=0.95 \sqrt{ }(0.003) 15 \mathrm{~d}=0.7805 \mathrm{~d} \\
& \mathrm{~S}_{(\text {req })}=12.4 \mathrm{~d} /(\mathrm{V}-0.7805 \mathrm{~d}) \\
& \mathrm{d}_{(\text {req) }}=\mathrm{V} /\left(2.95 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}\right)=\mathrm{V} / 2.4237
\end{aligned}
$$

where d and V vary from section to section.
ACI recommends that the maximum stirrup spacing (S) shouldn't exceed

$$
\mathrm{d} / 2 \text {, or } 24^{\prime \prime} \text { or } \mathrm{A}_{s} / 0.0015 \mathrm{~b}=0.62 / 0.0225=27.56^{\prime \prime}
$$

The calculations are carried out in tabular form and listed below.
It is convenient to perform these calculations in EXCEL.

Table 5.1 Design for Shear Force

Section	x from left $\left({ }^{\prime}\right)$	h $\left({ }^{\prime \prime}\right)$	d $\left({ }^{\prime \prime}\right)$	V $($ kips $)$	$\mathrm{d}_{\text {(req) }}\left({ }^{\prime \prime}\right)$	$\mathrm{S}_{\text {(req) }}$ from formula $\left({ }^{\prime \prime}\right)$	$\mathrm{S}_{\text {(provided) }}$ $\left({ }^{\prime \prime}\right)$
A	0.00	40.00	33.50	72.99	30.12	8.87	8
B	8.00	40.00	33.50	57.24	23.62	13.36	13
C	16.00	40.00	33.50	41.48	17.11	16.75	16
D	24.00	40.00	33.50	25.73	10.62	16.75	16
E	32.00	41.20	34.70	-27.90	11.51	17.35	16
F	40.00	44.80	38.30	-44.03	18.17	19.15	16
G	48.00	50.80	44.30	-60.75	25.06	20.99	16
H	56.00	59.20	52.70	-78.39	32.34	17.54	16
I(L)	64.00	70.00	63.50	-97.21	40.11	16.53	16
I(R)	64.00	70.00	63.50	103.67	42.77	14.55	14
J	72.00	59.20	52.70	87.55	36.12	14.08	14
K(*)	80.00	50.80	$44.30\left(^{*}\right)$	71.66	Articulation	$*$	$*$
L	88.00	44.80	38.30	52.71	21.75	19.15	16
M	96.00	41.20	34.70	34.36	14.18	17.35	16
N	104.00	40.00	33.50	16.81	6.94	16.75	16

Flexural Design

The flexural design of interior girders is performed by using the conventional flexural design equations for singly/doubly reinforced RCC members (rectangular or T-beam section).

For positive moments, the girders are assumed singly reinforced T-beams with

$$
\mathrm{A}_{\mathrm{s}}=\mathrm{M} /\left[\mathrm{f}_{\mathrm{s}}(\mathrm{~d}-\mathrm{t} / 2)\right]
$$

However, the compressive stresses in slab should be checked against f_{c} ($=1.2$ ksi here).
For negative moments, the girders are rectangular beams. For singly reinforced beams, the depth $d \geq d_{(r e q)}=\sqrt{ }(M / R b)$, and the required steel area $\left(A_{s}\right)$ at top is

$$
\mathrm{A}_{\mathrm{s}}=\mathrm{M} /\left(\mathrm{f}_{\mathrm{s}} \mathrm{j} \mathrm{~d}\right)
$$

For doubly reinforced beams, $\mathrm{d}<\mathrm{d}_{\text {(req })}$; i.e., $\mathrm{M}>\mathrm{M}_{\mathrm{c}}\left(=\operatorname{Rbd}^{2}\right)$. The moment is divided into two parts; i.e., $M_{1}=M_{c}$ and $M_{2}=M-M_{c}$. The required steel area $\left(A_{s}\right)$ at top is given by

$$
\mathrm{A}_{\mathrm{s}}=\mathrm{A}_{\mathrm{s} 1}+\mathrm{A}_{\mathrm{s} 2}=\mathrm{M}_{1} /\left(\mathrm{f}_{\mathrm{s}} \mathrm{j} \mathrm{~d}\right)+\mathrm{M}_{2} /\left\{\mathrm{f}_{\mathrm{s}}\left(\mathrm{~d}-\mathrm{d}^{\prime}\right)\right\}
$$

Here d^{\prime} is the depth of compression steel from the compression edge of the beam. In addition, compressive steels are necessary (in the compression zone at bottom), given by

$$
\mathrm{A}_{\mathrm{s}}^{\prime}=\mathrm{M}_{2} /\left\{\mathrm{f}_{\mathrm{s}}^{\prime}\left(\mathrm{d}^{\prime}-\mathrm{d}^{\prime}\right)\right\} \text {, where } \mathrm{f}_{\mathrm{s}}^{\prime}=2 \mathrm{f}_{\mathrm{s}}\left(\mathrm{k}-\mathrm{d}^{\prime} / \mathrm{d}\right) /(1-\mathrm{k}) \leq \mathrm{f}_{\mathrm{s}}
$$

Development Length of \#10 bars $=0.04 \times 1.27 \times 40 / \sqrt{ } 0.03 \times 1.4=51.94^{\prime \prime}$

Table 5.2 Design for Bending Moment

Section	x from left (')	$\begin{gathered} \mathrm{d} \\ \left({ }^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & \mathrm{M}^{+} \\ & \left(\mathrm{k}^{\prime}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s}}^{+} \\ & \left(\mathrm{in}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{M}^{-} \\ & \left(\mathrm{k}^{\prime}\right) \end{aligned}$	$\begin{aligned} & \mathrm{M}_{\mathrm{c}}^{-} \\ & \left(\mathrm{k}^{\prime}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 1}{ }^{-} \\ & \left(\mathrm{in}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 2}{ }^{-} \\ & \left(\mathrm{in}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s}}^{-} \\ & \left(\mathrm{in}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{s}}^{\prime} \\ \left(\mathrm{in}^{2}\right) \end{gathered}$
A	0.00	33.50	0.00	0.00	0.00	260.92	0.00	0.00	0.00	0.00
B	8.00	33.50	494.17	9.72	0.00	260.92	0.00	0.00	0.00	0.00
C	16.00	33.50	808.95	15.91	0.00	260.92	0.00	0.00	0.00	0.00
D	24.00	33.50	954.72	18.78	0.00	260.92	0.00	0.00	0.00	0.00
E	32.00	34.70	941.58	17.82	-48.75	279.95	0.95	0.00	0.95	0.00
F	40.00	38.30	809.52	13.76	-244.24	341.05	4.33	0.00	4.33	0.00
G	48.00	44.30	513.43	7.46	-518.39	456.28	7.00	0.89	7.89	0.98
H	56.00	52.70	36.94	0.45	-876.29	645.72	8.32	2.76	11.08	2.95
I(L)	64.00	63.50	0.00	0.00	-1326.60	937.50	10.03	3.83	13.86	3.99
I(R)	64.00	63.50	0.00	0.00	-1326.60	937.50	10.03	3.83	13.86	3.99
J	72.00	52.70	0.00	0.00	-617.08	645.72	7.96	0.00	7.96	0.00
K (*)	80.00	44.30 (*)	0.00	0.00	0.00	456.28	Articulation	*	*	*
L	88.00	38.30	461.88	7.85	0.00	341.05	0.00	0.00	0.00	0.00
M	96.00	34.70	703.40	13.31	0.00	279.95	0.00	0.00	0.00	0.00
N	104.00	33.50	769.67	15.14	0.00	260.92	0.00	0.00	0.00	0.00

6. Design of Articulation

The width of the girder will be doubled at the articulation; i.e., $b_{a}=30^{\prime \prime}$, the gradual widening will start at a distance $=6 \mathrm{~b}=90^{\prime \prime}$. The design parameters are the following,

Weight of the cross-girder $=0.15 \times 2 \times\left(50.8^{\prime \prime} / 12\right) \times 5.75^{\prime}=7.30 \mathrm{k}$
Design shear force $=V_{K}=(71.66+7.30) k=78.96 \mathrm{k}$
Length of the articulation, $\mathrm{A}_{\mathrm{L}}=2^{\prime} ; \therefore$ Design moment $\mathrm{M}_{\mathrm{K}(\mathrm{a})}=78.96 \times 2^{\prime} / 2=78.96 \mathrm{k}^{\prime}$

A bearing plate or pad will be provided to transfer the load.
Assume bearing strength $=0.5 \mathrm{ksi} \Rightarrow$ Required bearing area $=78.96 / 0.5=157.92 \mathrm{in}^{2}$
\therefore The bearing area is $\left(12^{\prime \prime} \times 16^{\prime \prime}\right)$, with thickness $=6^{\prime \prime}$ (assumed for pad)

The depth of girder at K is $=50.8^{\prime \prime}$
\therefore Design depth at articulation $=(50.8-6) / 2=22.4^{\prime \prime} \Rightarrow$ Effective depth $\mathrm{d}_{\mathrm{K}} \cong 19.4^{\prime \prime}$

The required depth from shear $\mathrm{d}_{(\mathrm{req})}=\mathrm{V} /\left(2.95 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{b}_{\mathrm{a}}\right)=16.29^{\prime \prime}$, which is $<19.4^{\prime \prime}$, OK.
\therefore Stirrup spacing, $\mathrm{S}_{(\text {req })}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{s}} \mathrm{d} /\left(\mathrm{V}-\mathrm{V}_{\mathrm{c}}\right)$
where $\mathrm{f}_{\mathrm{s}}=20 \mathrm{ksi}$. If 2-legged $\# 5$ stirrups are used, $\mathrm{A}_{\mathrm{s}}=0.62 \mathrm{in}^{2}$.
$\mathrm{V}_{\mathrm{c}}=0.95 \mathrm{ff}^{\prime}{ }_{\mathrm{c}} \mathrm{bd}_{\mathrm{K}}=0.95 \sqrt{ }(0.003) 30 \mathrm{~d}_{\mathrm{K}}=1.561 \mathrm{~d}_{\mathrm{K}}$
$\Rightarrow \mathrm{S}_{(\mathrm{req})}=12.4 \mathrm{~d}_{\mathrm{K}} /\left(\mathrm{V}-1.561 \mathrm{~d}_{\mathrm{K}}\right)=12.4 \times 19.4 /(76.22-1.561 \times 19.4)=4.94^{\prime \prime}$
\therefore Provide 2-legged \#5 stirrups @ $4.5^{\prime \prime} \mathrm{c} / \mathrm{c}$
In addition, inclined bars will be provided for the diagonal cracks. These will be the same size as the main bars and their spacing will be governed by $\mathrm{d} / 2$ (of the main girder).

Here, $\mathrm{d}=44.3^{\prime \prime} \Rightarrow$ Spacing $=22.15^{\prime \prime}$
Since the length of articulation is $2^{\prime}=24^{\prime \prime}$, provide $2 \# 10$ bars @ $12^{\prime \prime} \mathrm{c} / \mathrm{c}$

The required depth from bending, $\mathrm{d}_{(\mathrm{req})}=\sqrt{ }\left(\mathrm{M} / \mathrm{Rb}_{\mathrm{a}}\right)=13.04^{\prime \prime}$, which is $<19.4^{\prime \prime}$
\Rightarrow Singly reinforced section, with required steel,
$\mathrm{A}_{\mathrm{s}}=\mathrm{M} /\left(\mathrm{f}_{\mathrm{s}} \mathrm{j} \mathrm{d}\right)=78.96 \times 12 /(20 \times 0.883 \times 19.4)=2.77 \mathrm{in}^{2}$
These will be adjusted with the main reinforcements in design.

Fig. 1: Design for Shear

Fig. 2: Design for Moment

Longitudinal Section of Articulation
$\begin{aligned} \mathrm{A}_{\mathrm{s}} & =(200 / 40000) \times 12 \times 44.3 \\ & =2.66 \text { in }^{2}\end{aligned}$

$$
=2.66 \mathrm{in}^{2}
$$

Provide 2 \#10 Bars
(Both top \& bottom)
O \#10 Bars

- \#5 Bars
\#10 Bars

Cross-Girder at Articulation

7. Design of Railings and Kerb

The following arrangement is chosen for the railing

Assume (for the assignment)

- Span of Railing, $\mathrm{S}_{\mathrm{r}}=\mathrm{L}_{\mathrm{s}} / 8$, Width (b) of railing section $=\left(\mathrm{S}_{\mathrm{r}}+2\right)$ in
- Height of Railpost $=\mathrm{S}_{\mathrm{r}} / 4+\mathrm{S}_{\mathrm{r}} / 4+\mathrm{S}_{\mathrm{r}} / 6$, Width (b) of railpost section $=\left(\mathrm{S}_{\mathrm{r}}+4\right)$ in

Railing

The assumed load on each railing $=5 \mathrm{k}$
\therefore Design bending moment $\mathrm{M}_{(\pm)}=0.8(\mathrm{PL} / 4)=0.8(5 \times 6 / 4)=6.0 \mathrm{k}^{\prime}$
If the width $b=8^{\prime \prime}, d_{(\text {req })}$ from bending $=\sqrt{ }\left(\mathrm{M}_{(\pm)} / R b\right)=\sqrt{ }\{6 \times 12 /(0.197 \times 8)\}=6.76^{\prime \prime}$
Shear force $\mathrm{V}=5.0 \mathrm{k} \Rightarrow \mathrm{d}_{\text {(req) }}$ from shear $=\mathrm{V} / 2.95 \sqrt{ } \mathrm{f}^{\prime}{ }_{c} \mathrm{~b}=5.0 /(2.95 \sqrt{ }(0.003) \times 8)=3.87^{\prime \prime}$
\therefore Assume d $=7^{\prime \prime}, \mathrm{h}=8.5^{\prime \prime}$
$\therefore \mathrm{A}_{\mathrm{s}}=\mathrm{M}_{(\pm)} /\left(\mathrm{f}_{\mathrm{sj}} \mathrm{d}\right)=6 \times 12 /(20 \times 0.883 \times 7)=0.59 \mathrm{in}^{2} ;$ i.e., use $2 \# 5$ bars at top and bottom
$\mathrm{V}_{\mathrm{c}}=0.95 \mathrm{~V}^{\mathrm{f}^{\prime}}{ }_{\mathrm{c}}$ bd $=0.95 \sqrt{ }(0.003) \times 8 \times 7=2.91 \mathrm{k}$
\therefore Spacing of 2-legged \#3 stirrups, $\mathrm{S}_{(\mathrm{req})}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{s}} \mathrm{d} /\left(\mathrm{V}-\mathrm{V}_{\mathrm{c}}\right)=0.22 \times 20 \times 7 /(5.0-2.91)=14.76^{\prime \prime}$
\therefore Provide 2-legged \#3 stirrups @ $3.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ (i.e., d/2)

Rail Post

Design bending moment $\mathrm{M}_{(-)}=5 \times 1.5+5 \times 3.0=22.5 \mathrm{k}^{\prime}$
If the width $b=10^{\prime \prime}$, the $d_{(\text {req })}$ from bending $=\sqrt{ }\left(M_{(-)} / R b\right)=\sqrt{ }\{22.5 \times 12 /(0.197 \times 10)\}=11.71^{\prime \prime}$
Shear force V $=10.0 \mathrm{k}$
$\Rightarrow \mathrm{d}_{(\text {req })}$ from shear $=\mathrm{V} / 2.95 \mathrm{Vf}^{\prime}{ }_{\mathrm{c}} \mathrm{b}=10.0 /(2.95 \sqrt{ }(0.003) \times 10)=6.19^{\prime \prime}$
\therefore Assume d $=12^{\prime \prime}, \mathrm{h}=13.5^{\prime \prime}$
$\therefore \mathrm{A}_{\mathrm{s}}=\mathrm{M}_{(-)} /\left(\mathrm{f}_{\mathrm{s}} \mathrm{dd}\right)=22.5 \times 12 /(20 \times 0.883 \times 12)=1.27 \mathrm{in}^{2} ;$ i.e., use $3 \# 6$ bars inside
$\mathrm{V}_{\mathrm{c}}=0.95 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}$ bd $=0.95 \sqrt{ }(0.003) \times 10 \times 12=6.24 \mathrm{k}$
If 2-legged \#3 stirrups are used, $\mathrm{A}_{\mathrm{s}}=0.22 \mathrm{in}^{2}$
\therefore Stirrup spacing, $\mathrm{S}_{(\mathrm{req})}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{s}} \mathrm{d} /\left(\mathrm{V}-\mathrm{V}_{\mathrm{c}}\right)=0.22 \times 20 \times 12 /(10.0-6.24)=14.06^{\prime \prime}$
\therefore Provide 2-legged \#3 stirrups @ 6 "c/c (i.e., $\mathrm{d} / 2$)

Edge Slab and Kerb

Edge Slab

Design load $=16 \mathrm{k}$, assumed width $=4 \mathrm{ft}$
Design bending moment for edge slab $\mathrm{M}_{(-)}=16 / 4 \times 18 / 12=6.0 \mathrm{k}^{\prime} / \mathrm{ft}$
$d_{(\text {req })}=\sqrt{ }\left(M_{(-)} / R b\right)=\sqrt{ }\{6.0 / 0.197\}=5.52^{\prime \prime}$
Assuming $\mathrm{d}=5.5^{\prime \prime}, \mathrm{t}=7.5^{\prime \prime}$
$\therefore \mathrm{A}_{\mathrm{s}}=\mathrm{M}_{(-)} /\left(\mathrm{f}_{\mathrm{s}} \mathrm{jd}\right)=6.0 \times 12 /(20 \times 0.883 \times 5.5)=0.74 \mathrm{in}^{2} / \mathrm{ft}$,
which is greater than the reinforcement $\left(=0.54 \mathrm{in}^{2} / \mathrm{ft}\right)$ for the main slab.
There are two alternatives, using
(a) $\mathrm{d}=5.5^{\prime \prime}, \mathrm{t}=7^{\prime \prime}$, with \#6 @ $10^{\prime \prime} \mathrm{c} / \mathrm{c}$ (like main slab) + one extra \#6 after 2 main bars
(b) $\mathrm{d}=7.5^{\prime \prime}, \mathrm{t}=9^{\prime \prime}$, with $\# 6$ @ $10^{\prime \prime} \mathrm{c} / \mathrm{c}$ (like main slab)

Use $\mathrm{A}_{\mathrm{s}(\mathrm{temp})}=0.03 \mathrm{t}=0.21 \mathrm{in}^{2} / \mathrm{ft}$, or $0.27 \mathrm{in}^{2} / \mathrm{ft}$, i.e., $\# 5 @ 14^{\prime \prime} \mathrm{c} / \mathrm{c}$ or $12^{\prime \prime} \mathrm{c} / \mathrm{c}$ transversely

Kerb

Design load $=10 \mathrm{k} / 4^{\prime} \Rightarrow$ Design bending moment for $\operatorname{kerb} \mathrm{M}_{(-)}=10 / 4 \times 10 / 12=2.08 \mathrm{k}^{\prime} / \mathrm{ft}$
\therefore The required depth, $\mathrm{d}_{(\text {req })}=\sqrt{ }\left(\mathrm{M}_{(-)} / R b\right)=\sqrt{ }\{2.08 / 0.197\}=3.25^{\prime \prime} \ll$ assumed $\mathrm{d}=20^{\prime \prime}, \mathrm{t}=24^{\prime \prime}$
$\therefore \mathrm{A}_{\mathrm{s}}=\mathrm{M}_{(-)} /\left(\mathrm{f}_{\mathrm{s}} \mathrm{d}\right)=2.08 \times 12 /(20 \times 0.883 \times 20)=0.071 \mathrm{in}^{2} / \mathrm{ft}$, which is not significant
$\therefore \mathrm{A}_{\mathrm{s}(\text { temp })}=0.03 \mathrm{~h}=0.03 \times 17.5=0.525 \mathrm{in}^{2} / \mathrm{ft}$
\therefore Provide \#6 bars @ $10^{\prime \prime} \mathrm{c} / \mathrm{c}$ over the span (i.e., consistent with \#6 bars @ $10^{\prime \prime} \mathrm{c} / \mathrm{c}$ for the slab) and $=0.525 \times 24 / 12=1.05 \mathrm{in}^{2}$; i.e., $4 \# 5$ bars within the width of kerb.

8. Design of Substructure

Design of Abutment and Wing Walls

Stability Analysis

The effect of front soil is ignored and wall geometry is simplified (denoted by the dotted lines).

Sliding

Approximate Vertical load $=12.69+0.12 \times\{(3+14) \times 8+4 \times 8.75\}+0.15 \times\{14.5 \times 2+2 \times 14\}$
$=12.69+16.32+4.2+4.35+4.2=41.76 \mathrm{k} /^{\prime}$
\therefore Horizontal resistance $\mathrm{H}_{\mathrm{R}}=0.45 \times 41.76=18.79 \mathrm{k} /{ }^{\prime}$
Horizontal load $\mathrm{H}=1.90+0.12 \times 3 / 3 \times 20+0.12 \times 20 / 3 \times 20 / 2=1.90+2.4+8.0=12.30 \mathrm{k} /{ }^{\prime}$
\therefore Factor of Safety against sliding $=\mathrm{H}_{\mathrm{R}} / \mathrm{H}=18.79 / 12.30=1.53>1.5, \mathrm{OK}$

Overturning

Approximate resisting moment

$$
\begin{aligned}
\mathrm{M}_{\mathrm{R}} & =12.69 \times(4.5+0.625)+16.32 \times(6.5+4)+4.2 \times(5.75+4.375)+4.35 \times 7.25+4.2 \times 5.5 \\
& =336.18 \mathrm{k}^{\prime} / \prime
\end{aligned}
$$

Overturning moment $\mathrm{M}=1.90 \times 16+2.4 \times 20 / 2+8.0 \times 20 / 3=107.78 \mathrm{k}^{\prime} /{ }^{\prime}$
\therefore Factor of Safety against overturning $=\mathrm{M}_{\mathrm{R}} / \mathrm{M}=336.18 / 107.78=3.12>1.5, \mathrm{OK}$

Design of Back-wall

Design wheel load $=16 \mathrm{k}$ and assumed loaded length $\cong 4^{\prime}$
\therefore Load per unit width $\mathrm{V}=16 / 4=4 \mathrm{k} /{ }^{\prime}$
Moment per unit width $\mathrm{M}=4 \times 2 / 2=4 \mathrm{k}^{\prime} /{ }^{\prime}$
$\therefore \mathrm{d}_{(\text {req) }}$ for moment $=\sqrt{ }(4 / 0.186)=4.64^{\prime \prime}$
$\therefore \mathrm{d}=18-3=15^{\prime \prime} \gg \mathrm{d}_{(\mathrm{req})}$
$\mathrm{A}_{\mathrm{s}}=4 \times 12 /(20 \times 0.883 \times 15)=0.18 \mathrm{in}^{2} / \prime$
$\mathrm{A}_{\mathrm{s}(\text { temp })}=0.03 \times 18=0.54 \mathrm{in}^{2} / \prime$

This should be adjusted with stem reinforcement.

Design of Stem

Design V/length $=1.9+0.12 \times 18+0.72 \times 18 / 2=1.9+2.16+6.48=10.54 \mathrm{k} /^{\prime}$
Design M/length $=1.9 \times 14+2.16 \times 18 / 2+6.48 \times 18 / 3=84.92 \mathrm{k}^{\prime} /{ }^{\prime}$
$\therefore \mathrm{d}_{(\text {req })}$ for shear $=10.54 /(0.95 \times \sqrt{ }(0.003) \times 12)=16.88^{\prime \prime}$
and $\mathrm{d}_{\text {(req) }}$ for moment $=\sqrt{ }(84.92 / 0.186)=21.38^{\prime \prime}$
$\mathrm{d}=24-3.5=20.5^{\prime \prime}<\mathrm{d}_{(\text {req })} \Rightarrow \mathrm{t}=25^{\prime \prime}, \mathrm{d}=21.5^{\prime \prime}$
$\mathrm{A}_{\mathrm{s}}=84.92 \times 12 /(20 \times 0.883 \times 21.5)=2.68 \mathrm{in}^{2} /{ }^{\prime}$
\therefore Use \#10 @ $5.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ (along the length near soil)
$\mathrm{A}_{\mathrm{s}(\text { temp })}=0.03 \times 25=0.75 \mathrm{in}^{2} / \prime$
\therefore Use \#5 @ $5^{\prime \prime} \mathrm{c} / \mathrm{c}$ (along the width and length farther from soil)

This should also be adequate for the back-wall
(both along length and width)

Design of Toe and Heel

Total vertical force on the soil below the wall $=41.76 \mathrm{k} /{ }^{\prime}$
The resultant moment about the far end to the toe $=\mathrm{M}_{\mathrm{R}}-\mathrm{M}=336.18-107.78=228.40 \mathrm{k}^{\prime} /{ }^{\prime}$
$\therefore \mathrm{e}_{\mathrm{o}}=228.40 / 41.76=5.47^{\prime}$, which is $>14.5 / 3$ and $<14.5 \times 2 / 3 \Rightarrow$ uplift avoided.
The maximum soil pressure $=(41.76 / 14.5) \times[1+6(14.5 / 2-5.47) / 14.5]=5.00 \mathrm{ksf}$, which is $>2 \mathrm{ksf}$.
\therefore Pile foundation is suggested, and the toe and heel should be designed as pile cap.

Design of Piles and Pile-cap

The following arrangement of piles is assumed for the width of the toe and heel (i.e., 14.5') and within the c / c distance of girders (i.e., width $=5.75^{\prime}$).

Pile Forces

For the total width of one row of piles, $\mathrm{V}=41.76 \mathrm{k} /^{\prime} \times 5.75^{\prime}=240.10 \mathrm{k}$

$$
\text { and } \mathrm{M}=(41.76 \times 7.25-228.40) \mathrm{k}^{\prime} /{ }^{\prime} \times 5.75^{\prime}=483.19 \mathrm{k}^{\prime}
$$

Pile reactions are given by $\mathrm{F}_{\mathrm{i}}=\mathrm{V} / \mathrm{n}+\mathrm{My}_{\mathrm{i}} / \sum \mathrm{y}_{\mathrm{i}}{ }^{2}$
where $\mathrm{n}=$ Number of piles $=4, \sum \mathrm{y}_{\mathrm{i}}{ }^{2}=2 \times 1.75^{2}+2 \times 5.25^{2}=61.25 \mathrm{ft}^{2}$
\therefore Here, $\mathrm{F}_{\mathrm{i}}=240.10 / 4+483.19 \mathrm{y}_{\mathrm{i}} / 61.25=60.03+7.89 \mathrm{y}_{\mathrm{i}}$

$$
\begin{aligned}
\therefore \mathrm{F}_{1} & =60.03+7.89 \times 5.25=101.44 \mathrm{k}, \mathrm{~F}_{2}=60.03+7.89 \times 1.75=73.83 \mathrm{k} \\
\mathrm{~F}_{3} & =60.03+7.89 \times(-1.75)=46.22 \mathrm{k}, \mathrm{~F}_{4}=60.03+7.89 \times(-5.25)=18.61 \mathrm{k}
\end{aligned}
$$

Design of Piles

Using 3% steel, $P=0.85\left(0.25 f_{c}{ }^{\prime}+0.03 f_{s}\right)(\pi / 4) D^{2}$
$\Rightarrow 101.44=0.85(0.25 \times 3+0.03 \times 20)(\pi / 4) \mathrm{D}^{2} \Rightarrow \mathrm{D}=10.61^{\prime \prime}$
\therefore Use $11^{\prime \prime}$ diameter piles with 6 \#5 bars and \#5 ties @ $11^{\prime \prime} \mathrm{c} / \mathrm{c}$
Smaller sections can be used for the piles other than Pile 1
The piles should be long enough to transfer the axial loads safely to the surrounding soil. Assuming the entire pile load for pile 1 to be resisted by skin friction, $\mathrm{F}_{1}=\alpha_{2}(\pi \mathrm{DL}) \mathrm{q}_{\mathrm{a}} / 2$ where $\alpha_{2}=$ Reduction factor for soil disturbance $\cong 0.8, \mathrm{D}=$ Pile diameter $=11^{\prime \prime}$
$\mathrm{L}=$ Pile length, $\mathrm{q}_{\mathrm{a}}=$ Allowable compressive stress on soil $=2 \mathrm{ksf}$
$\therefore 101.44=0.8 \times(\pi \times 11 / 12 \times \mathrm{L}) \times 2 / 2 \Rightarrow \mathrm{~L}=44.03^{\prime}, \therefore$ Provide 45^{\prime} long piles.

Design of Pile-cap

For the design of pile-cap, the pile loads per girder are considered along with the soil pressure converted to soil load per girder width. The pile loads on the pile-cap for c/c girder width (5.75') are shown below.

1. Design of Toe

The assumed thickness $=2^{\prime}=24^{\prime \prime}$.
The pile-cap is assumed to have $3^{\prime \prime}$ effective cover and $6^{\prime \prime}$ embedment for piles.
Maximum Punching shear $=101.44 \mathrm{k}$, allowable punching stress $=1.9 \times \sqrt{ }(0.003)=0.104 \mathrm{ksi}$
Punching area around a $12^{\prime \prime}$ pile $=\pi(11+\mathrm{d}) \mathrm{d}=101.44 / 0.104 \Rightarrow \mathrm{~d}_{(\mathrm{req})} \cong 13.3^{\prime \prime}$; i.e., $\mathrm{t}_{(\text {req })}=22.5^{\prime \prime}$
Maximum flexural shear $=101.44 \mathrm{k}$, allowable shear stress $=0.95 \times \sqrt{ }(0.003)=0.052 \mathrm{ksi}$
Shearing area $=5.75 \times 12 \mathrm{~d}=101.44 / 0.052 \Rightarrow \mathrm{~d}_{(\mathrm{req})}=28.25^{\prime \prime} ;$ i.e., $\mathrm{t}_{(\mathrm{req})}=37.25^{\prime \prime}$
Maximum bending moment $=101.44 \times 2.5=253.60 \mathrm{k}^{\prime}$
$\Rightarrow \mathrm{d}_{(\mathrm{req})}=\sqrt{ }\{253.60 /(0.186 \times 5.75)\}=15.41^{\prime \prime}$; i.e., $\mathrm{t}_{(\text {req })}=24.41^{\prime \prime}$
$\therefore \mathrm{t}=38^{\prime \prime}, \mathrm{d}=29^{\prime \prime} \Rightarrow \mathrm{A}_{\mathrm{s}}=253.60 \times 12 /(20 \times 0.883 \times 29)=5.94 \mathrm{in}^{2}$; i.e., $5.94 / 5.75=1.03 \mathrm{in}^{2} / \mathrm{ft}$
$\mathrm{A}_{\mathrm{s}(\text { temp })}=0.03 \times 38=1.14 \mathrm{in}^{2} / \mathrm{ft}$

2. Design of Heel

Maximum flexural shear $=14.49 \times 7-46.22-18.61=36.60 \mathrm{k}$, allowable shear stress $=0.052 \mathrm{ksi}$
Shearing area $=5.75 \times 12 \mathrm{~d}=36.60 / 0.052 \Rightarrow \mathrm{~d}_{(\text {req })}=10.19^{\prime \prime} ;$ i.e., $\mathrm{t}_{(\text {req })}=19.19^{\prime \prime}$
Maximum bending moment $=-14.49 \times 8 \times 8 / 2+46.22 \times 2.5+18.61 \times 6=-236.47 \mathrm{k}^{\prime}$
$\Rightarrow \mathrm{d}_{(\text {req })}=\sqrt{ }\{236.47 /(0.186 \times 5.75)\}=14.88^{\prime \prime}$; i.e., $\mathrm{t}_{(\text {req })}=23.88^{\prime \prime}$
$\therefore \mathrm{t}=38^{\prime \prime}, \mathrm{d}=29^{\prime \prime} \Rightarrow$ It will be OK for punching shear also
$\therefore \mathrm{A}_{\mathrm{s}}=236.47 \times 12 /(20 \times 0.883 \times 29)=5.54 \mathrm{in}^{2}$; i.e., $0.96 \mathrm{in}^{2} / \mathrm{ft}, \mathrm{A}_{\mathrm{s}(\text { temp })}=0.03 \times 38=1.14 \mathrm{in}^{2} / \mathrm{ft}$

Abutment Reinforcements

Pile Length $=45^{\prime}$
Pile Reinforcements

5. Design of Interior Girders (USD)

Shear Design

The shear design of interior girders is performed by using the conventional shear design equations of RCC members. The stirrup spacing is given by the equation

$$
\mathrm{S}_{(\mathrm{req})}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \mathrm{~d} /\left(\mathrm{V}_{\mathrm{u}} / \phi-\mathrm{V}_{\mathrm{c}}\right)
$$

where $f_{y}=40$ ksi. If 2-legged \#5 stirrups are used, $A_{s}=0.62 \mathrm{in}^{2}$.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=1.9 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{bd}=1.9 \sqrt{ }(0.003) 15 \mathrm{~d}=1.561 \mathrm{~d} \\
& \mathrm{~S}_{(\text {req })}=24.8 \mathrm{~d} /\left(\mathrm{V}_{\mathrm{u}} / 0.85-1.561 \mathrm{~d}\right) \\
& \mathrm{d}_{\text {(req) }}=\mathrm{V} /\left(5.9 \phi \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}}\right)=\mathrm{V} / 4.120
\end{aligned}
$$

where d and V vary from section to section.
ACI recommends that the maximum stirrup spacing (S) shouldn't exceed

$$
\mathrm{d} / 2 \text {, or } 24^{\prime \prime} \text { or } \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.06 \mathrm{~b}_{\mathrm{w}}=24.8 / 0.90=27.56^{\prime \prime}
$$

The calculations are carried out in tabular form and listed below.
It is convenient to perform these calculations in EXCEL.

Table 5.1 Design for Shear Force

Section	x from left $\left({ }^{\prime}\right)$	h $\left({ }^{\prime \prime}\right)$	d $\left({ }^{\prime \prime}\right)$	V_{u} (kips)	$\mathrm{d}_{\text {(req) }}$ $\left({ }^{\prime \prime}\right)$	$\mathrm{S}_{\text {(req) }}$ from formula $\left({ }^{\prime \prime}\right)$	$\mathrm{S}_{(\text {provided }}$ $\left({ }^{\prime \prime}\right)$
A	0.00	40.00	33.50	115.86	28.12	9.89	8.0
B	8.00	40.00	33.50	91.81	22.28	14.91	13.0
C	16.00	40.00	33.50	67.74	16.44	16.75	16.0
D	24.00	40.00	33.50	43.69	10.60	16.75	16.0
E	32.00	41.20	34.70	-44.73	10.86	17.35	16.0
F	40.00	44.80	38.30	-69.31	16.82	19.15	16.0
G	48.00	50.80	44.30	-94.72	22.99	22.15	20.0
H	56.00	59.20	52.70	-121.42	29.47	21.57	20.0
I(L)	64.00	70.00	63.50	-149.77	36.35	20.43	20.0
I(R)	64.00	70.00	63.50	160.70	39.00	17.51	16.0
J	72.00	59.20	52.70	136.95	33.24	16.57	16.0
K(*)	80.00	50.80	$44.30\left(^{*}\right)$	113.22	Articulation	$*$	$*$
L	88.00	44.80	38.30	84.02	20.39	19.15	16.0
M	96.00	41.20	34.70	55.66	13.51	17.35	16.0
N	104.00	40.00	33.50	28.58	6.94	16.75	16.0

Flexural Design

$\mathrm{p}_{\max }=\left(0.75 \alpha \mathrm{f}^{\prime} / \mathrm{f}_{\mathrm{y}}\right)\left[87 /\left(87+\mathrm{f}_{\mathrm{y}}\right)\right]=0.0277, \mathrm{R}_{\mathrm{u}}=\phi \mathrm{p}_{\max } \mathrm{f}_{\mathrm{y}}\left[1-0.59 \mathrm{p}_{\max } \mathrm{f}_{\mathrm{y}} / \mathrm{f}_{\mathrm{c}}{ }_{\mathrm{c}}\right]=0.781 \mathrm{ksi}$
The section shown is chosen for all the beams.
\therefore For 3 layers of rods, $\mathrm{d}=\mathrm{h}-6.5=13.5^{\prime \prime}, \mathrm{d}^{\prime}=2.5^{\prime \prime}$
All the beams are likely to be Singly Reinforced [i.e., $\mathrm{M}_{\mathrm{c}(-)}>\mathrm{M}_{(-)}$]

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}(-)} & =\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right)\left[1-\sqrt{ }\left\{1-2 \mathrm{M}_{(-)} /\left(\phi \mathrm{f}_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}^{2}\right)\right\}\right] \mathrm{b}_{\mathrm{w}} \mathrm{~d} \\
& =(2.55 / 40) \times\left[1-\sqrt{ }\left\{1-2 \mathrm{M}_{(-)} \times 12 /\left(0.9 \times 2.55 \times 15 \times \mathrm{d}^{2}\right)\right\}\right] \times 15 \times \mathrm{d} \\
& =0.956 \mathrm{~d}\left[1-\sqrt{ }\left\{1-0.697 \mathrm{M}_{(-)} / \mathrm{d}^{2}\right\}\right]
\end{aligned}
$$

For T-beams (possible for positive moments), b_{f} is the minimum of
(i) $16 \mathrm{t}_{\mathrm{f}}+\mathrm{b}_{\mathrm{w}}=111^{\prime \prime}$, (ii) Simple Span $/ 4=0.6 \mathrm{~L} \times 12 / 4=1.8 \mathrm{~L}=144^{\prime \prime}$, (iii) $\mathrm{c} / \mathrm{c}=69^{\prime \prime}$

$$
\Rightarrow b_{f}=69^{\prime \prime} ; \text { i.e., }
$$

$\left.\mathrm{A}_{\mathrm{s}(+)}=\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right)\left[1-\sqrt{ }\left\{1-2 \mathrm{M}_{(+)}\right)\left(\phi \mathrm{f}_{\mathrm{c}} \mathrm{b}_{\mathrm{f}} \mathrm{d}^{2}\right)\right\}\right] \mathrm{b}_{\mathrm{f}} \mathrm{d}$

$$
=(2.55 / 40) \times\left[1-\sqrt{ }\left\{1-2 \mathrm{M}_{(+)} \times 12 /\left(0.9 \times 2.55 \times 69 \times \mathrm{d}^{2}\right)\right\}\right] \times 69 \times \mathrm{d}=4.40 \mathrm{~d}\left[1-\sqrt{ }\left\{1-0.152 \mathrm{M}_{(+)} / \mathrm{d}^{2}\right\}\right]
$$

Development Length of \#10 bars $=0.04 \times 1.27 \times 40 / \sqrt{ } 0.03 \times 1.4=51.94^{\prime \prime}$

These calculations, performed in EXCEL, are listed below.

Table 5.2 Design for Bending Moment

Section	x from left (')	$\begin{gathered} \mathrm{d} \\ \left({ }^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & \mathrm{M}_{+} \\ & \left(\mathrm{k}^{\prime}\right) \end{aligned}$	$\begin{gathered} \mathrm{A}_{s+} \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{M}_{-} \\ & \left(\mathrm{k}^{\prime}\right) \end{aligned}$	$\begin{aligned} & \mathrm{M}_{\mathrm{c}-} \\ & \left(\mathrm{k}^{\prime}\right) \end{aligned}$	$\begin{gathered} \mathrm{A}_{s-} \\ \left(\mathrm{in}^{2}\right) \end{gathered}$	$\mathrm{N}_{\mathrm{s}+}$	$\mathrm{N}_{\text {s- }}$	$\mathrm{N}_{\text {bot }}$	$\mathrm{N}_{\text {top }}$
A	0.00	33.50	0.00	0.00	0.00	1095.60	0.00	0.00	0.00	6	4
B	8.00	33.50	785.24	8.03	0.00	1095.60	0.00	6.32	0.00	8	4
C	16.00	33.50	1287.30	13.42	0.00	1095.60	0.00	10.57	0.00	12	4
D	24.00	33.50	1523.85	16.04	0.00	1095.60	0.00	12.63	0.00	14	4
E	32.00	34.70	1512.12	15.29	-171.44	1175.49	1.69	12.04	1.33	14	4
F	40.00	38.30	1320.57	11.91	-470.83	1432.05	4.36	9.38	3.43	12	6
G	48.00	44.30	873.58	6.69	-880.52	1915.88	7.24	5.27	5.70	8	8
H	56.00	52.70	145.12	0.92	-1407.38	2711.33	9.87	0.72	7.77	4	10
I(L)	64.00	63.50	0.00	0.00	-2063.60	3936.48	12.02	0.00	9.47	4	10
I(R)	64.00	63.50	0.00	0.00	-2063.60	3936.48	12.02	0.00	9.47	4	10
J	72.00	52.70	0.00	0.00	-967.09	2711.33	6.54	0.00	5.15	4	10
K (*)	80.00	$44.30{ }^{*}$)	*	*	*	*	*	*	*	*	*
L	88.00	38.30	728.47	6.46	0.00	1432.05	0.00	5.09	0.00	8	4
M	96.00	34.70	1105.73	11.02	0.00	1175.49	0.00	8.68	0.00	10	4
N	104.00	33.50	1207.41	12.55	0.00	1095.60	0.00	9.88	0.00	10	4

Fig. 1: Design for Shear (USD)

Fig. 2: Design for Moment (USD)

Sections	A	B	C	D	E	F	G	H	I	J	K	L	M	N
Top \#10	4	4	4	4	4	6	8	10	10	10	$*$	4	4	4
Bottom \#10	6	8	12	14	14	12	8	4	4	4	$*$	8	10	10
\#5 Stirrup S	8	13	16	16	16	16	20	20	16	16	$*$	16	16	16

6. Design of Articulation (USD)

The width of the girder will be doubled at the articulation; i.e., $b_{a}=30^{\prime \prime}$, the gradual widening will start at a distance $=6 b=90^{\prime \prime}$. Length of the articulation, $A_{L}=2^{\prime}$.

Reaction from interior girder $=113.22 \mathrm{k}$
Weight of the cross-girder $=0.15 \times 2 \times\left(50.8^{\prime \prime} / 12\right) \times 5.75^{\prime} \times 1.4=10.23 \mathrm{k}$
Design shear force $=\mathrm{V}_{\mathrm{K}}=(113.22+10.23) \mathrm{k}=123.45 \mathrm{k}$
$\therefore \mathrm{A}_{\mathrm{L}}=2^{\prime} \Rightarrow$ Design moment $\mathrm{M}_{\mathrm{K}(\mathrm{a})}=123.45 \times 2^{\prime} / 2=123.45 \mathrm{k}^{\prime}$

A bearing plate or pad will be provided to transfer the load.
Assume bearing strength $=1.0 \mathrm{ksi} \Rightarrow$ Required bearing area $=123.45 / 1.0=123.45 \mathrm{in}^{2}$
\therefore The bearing area is $\left(12^{\prime \prime} \times 12^{\prime \prime}\right)$, with thickness $=6^{\prime \prime}$ (assumed for pad)

The depth of girder at K is $=50.8^{\prime \prime}$
\therefore Design depth at articulation $=(50.8-6) / 2=22.4^{\prime \prime} \Rightarrow$ Effective depth $\mathrm{d}_{\mathrm{K}} \cong 19.4^{\prime \prime}$

The required depth from shear $\mathrm{d}_{(\mathrm{req})}=\mathrm{V}_{\mathrm{K}} /\left(5.9 \phi \sqrt{\mathrm{f}}^{\prime}{ }_{\mathrm{c}} \mathrm{b}_{\mathrm{a}}\right)=12.73^{\prime \prime}$, which is $<19.4^{\prime \prime}$, OK.
\therefore Stirrup spacing, $\mathrm{S}_{(\text {req })}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \mathrm{d} /\left(\mathrm{V}_{\mathrm{u}} / \phi-\mathrm{V}_{\mathrm{c}}\right)$
If 2-legged \#5 stirrups are used, $\mathrm{A}_{\mathrm{s}}=0.62 \mathrm{in}^{2}$.
$\mathrm{V}_{\mathrm{c}}=1.9 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{bd}_{\mathrm{K}}=1.9 \sqrt{ }(0.003) 30 \mathrm{~d}_{\mathrm{K}}=3.122 \mathrm{~d}_{\mathrm{K}}$
$\Rightarrow \mathrm{S}_{\text {(req) }}=24.8 \mathrm{~d}_{\mathrm{K}} /\left(\mathrm{V}_{\mathrm{K}} / 0.85-3.122 \mathrm{~d}_{\mathrm{K}}\right)=24.8 \times 19.4 /(145.23-3.122 \times 19.4)=5.68^{\prime \prime}$
\therefore Provide 2-legged \#5 stirrups @ $5.5^{\prime \prime} \mathrm{c} / \mathrm{c}$
In addition, inclined bars will be provided for the diagonal cracks. These will be the same size as the main bars and their spacing will be governed by $\mathrm{d} / 2$ (of the main girder).

Here, $\mathrm{d}=44.3^{\prime \prime} \Rightarrow$ Spacing $=22.15^{\prime \prime}$
Since the length of articulation is $2^{\prime}=24^{\prime \prime}$, provide $2 \# 10$ bars @ $12^{\prime \prime} \mathrm{c} / \mathrm{c}$

The required depth from bending, $\mathrm{d}_{(\mathrm{req})}=\sqrt{ }\left(\mathrm{M}_{\mathrm{K}(\mathrm{a})} / \mathrm{R}_{\mathrm{u}} \mathrm{b}_{\mathrm{a}}\right)=7.95^{\prime \prime}$, which is $<19.4^{\prime \prime}$
\Rightarrow Singly reinforced section, with required steel,

$$
\mathrm{A}_{\mathrm{s}}=\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right)\left[1-\sqrt{ }\left\{1-2 \mathrm{M}_{\mathrm{K}(\mathrm{a})} /\left(\phi \mathrm{f}_{\mathrm{c}} \mathrm{~b}_{\mathrm{a}} \mathrm{~d}^{2}\right)\right\}\right] \mathrm{b}_{\mathrm{a}} \mathrm{~d}=2.19 \mathrm{in}^{2}
$$

These will be adjusted with the main reinforcements in design.

Longitudinal Section of Articulation

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} & =(200 / 40000) \times 12 \times 44.3 \\
& =2.66 \mathrm{in}^{2}
\end{aligned}
$$

Provide 2 \#10 Bars
(Both top \& bottom)
O \#10 Bars

- \#5 Bars

Cross-Girder at Articulation

7. Design of Railing and Rail Post (USD)

The following arrangement is chosen for the railing

Railing

The assumed load on each railing $=5 \mathrm{k}$
\therefore Design bending moment $\mathrm{M}_{(\pm)}=0.8(\mathrm{PL} / 4)=0.8(1.7 \times 5 \times 6 / 4)=10.2 \mathrm{k}^{\prime}$
If the width $b=6^{\prime \prime}$, the required depth from bending is
$d_{(\mathrm{req})}=\sqrt{ }\left(\mathrm{M}_{(\pm)} / \mathrm{R}_{\mathrm{u}} \mathrm{b}\right)=\sqrt{ }\{10.2 \times 12 /(0.781 \times 6)\}=5.11^{\prime \prime}$; i.e., assume $\mathrm{d}=6^{\prime \prime}, \mathrm{t}=7.5^{\prime \prime}$
$\therefore \mathrm{A}_{\mathrm{s}}=\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right)\left[1-\sqrt{ }\left\{1-2 \mathrm{M}_{(\pm)} /\left(\phi \mathrm{f}_{\mathrm{c}} \mathrm{bd} \mathrm{d}^{2}\right)\right\}\right] \mathrm{bd}=0.662$ in 2; i.e., use $2 \# 6$ bars at top and bottom
Shear force $\mathrm{V}_{\mathrm{u}}=1.7 \times 5=8.5 \mathrm{k}, \mathrm{V}_{\mathrm{c}}=1.9 \mathrm{Vf}^{\prime}{ }_{\mathrm{c}} \mathrm{bd}=1.9 \sqrt{ }(0.003) \times 6 \times 6=3.75 \mathrm{k}$
If 2-legged \#3 stirrups are used, $\mathrm{A}_{\mathrm{s}}=0.22 \mathrm{in}^{2}$
\therefore Stirrup spacing, $\mathrm{S}_{(\text {req })}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \mathrm{d} /\left(\mathrm{V}_{\mathrm{u}} / \phi-\mathrm{V}_{\mathrm{c}}\right)=0.22 \times 40 \times 6 /(8.5 / 0.85-3.75)=8.44^{\prime \prime}$
\therefore Provide 2-legged \#3 stirrups @ 3 "c/c (i.e., $\mathrm{d} / 2$)

Rail Post

Design bending moment $\mathrm{M}_{(-)}=1.7 \times 5 \times 1.5+1.7 \times 5 \times 3.0=38.25 \mathrm{k}^{\prime}$
If the width $b=6^{\prime \prime}$, the required depth from bending is

$$
\mathrm{d}_{(\mathrm{req})}=\sqrt{ }\left(\mathrm{M}_{(-)} / \mathrm{R}_{\mathrm{u}} \mathrm{~b}\right)=\sqrt{ }\{38.25 \times 12 /(0.781 \times 8)\}=8.57^{\prime \prime} ; \text { i.e., assume } \mathrm{d}=10^{\prime \prime}, \mathrm{t}=11.5^{\prime \prime}
$$

$\therefore \mathrm{A}_{\mathrm{s}}=\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right)\left[1-\sqrt{ }\left\{1-2 \mathrm{M}_{(-)} /\left(\phi \mathrm{f}_{\mathrm{c}} \mathrm{bd}^{2}\right)\right\}\right] \mathrm{bd}=1.494 \mathrm{in}^{2}$; i.e., use $3 \# 6$ bars inside
Shear force $\mathrm{V}_{\mathrm{u}}=1.7 \times 10=17 \mathrm{k}, \mathrm{V}_{\mathrm{c}}=1.9 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{bd}=1.9 \sqrt{ }(0.003) \times 8 \times 10=8.33 \mathrm{k}$
If 2-legged \#3 stirrups are used, $\mathrm{A}_{\mathrm{s}}=0.22 \mathrm{in}^{2}$
\therefore Stirrup spacing, $\mathrm{S}_{(\text {req })}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \mathrm{d} /\left(\mathrm{V}_{\mathrm{u}} / \phi-\mathrm{V}_{\mathrm{c}}\right)=0.22 \times 40 \times 10 /(17 / 0.85-8.33)=7.54^{\prime \prime}$
\therefore Provide 2-legged \#3 stirrups @ $5^{\prime \prime} \mathrm{c} / \mathrm{c}$ (i.e., $\mathrm{d} / 2$)

Kerb

Design bending moment $\mathrm{M}_{(-)}=1.7 \times 5 / 4^{\prime} \times(12 / 12)=2.13 \mathrm{k}^{\prime} /{ }^{\prime}$
If the width $b=12^{\prime \prime}$, the required depth from bending is
$\mathrm{d}_{(\text {req })}=\sqrt{ }\left(\mathrm{M}_{(-)} / \mathrm{R}_{\mathrm{u}} \mathrm{b}\right)=\sqrt{ }\{2.13 \times 12 /(0.781 \times 12)\}<$ assumed $\mathrm{d}=7.5^{\prime \prime}, \mathrm{t}=9^{\prime \prime}$
$\therefore \mathrm{A}_{\mathrm{s}}=\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right)\left[1-\sqrt{ }\left\{1-2 \mathrm{M}_{(-)} /\left(\phi \mathrm{f}_{\mathrm{c}} \mathrm{bd}^{2}\right)\right\}\right] \mathrm{bd}=$ in 2; i.e., use $3 \# 6$ bars inside
Shear force $\mathrm{V}_{\mathrm{u}}=1.7 \times 10=17 \mathrm{k}, \mathrm{V}_{\mathrm{c}}=1.9 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}$ bd $=1.9 \sqrt{ }(0.003) \times 8 \times 10=8.33 \mathrm{k}$
If 2-legged \#3 stirrups are used, $\mathrm{A}_{\mathrm{s}}=0.22 \mathrm{in}^{2}$
\therefore Stirrup spacing, $\mathrm{S}_{(\text {req })}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \mathrm{d} /\left(\mathrm{V}_{\mathrm{u}} / \phi-\mathrm{V}_{\mathrm{c}}\right)=0.22 \times 40 \times 10 /(17 / 0.85-8.33)=7.54^{\prime \prime}$
\therefore Provide 2-legged \#3 stirrups @ $5^{\prime \prime} \mathrm{c} / \mathrm{c}$ (i.e., $\mathrm{d} / 2$)

8. Design of Substructure

Design of Abutment and Wing Walls

Stability Analysis (Using Working Load and Allowable Pressure)

The effect of front soil is ignored and wall geometry is simplified (denoted by the dotted lines).

Sliding

Approximate Vertical load $=12.69+0.12 \times\{(3+14) \times 8+4 \times 8.75\}+0.15 \times\{14.5 \times 2+2 \times 14\}$
$=12.69+16.32+4.2+4.35+4.2=41.76 \mathrm{k} /{ }^{\prime}$
\therefore Horizontal resistance $\mathrm{H}_{\mathrm{R}}=0.45 \times 41.76=18.79 \mathrm{k} /{ }^{\prime}$
Horizontal load $\mathrm{H}=1.90+0.12 \times(3 \times 20+20 \times 20 / 2) / 3=1.90+2.4+8.0=12.30 \mathrm{k} /{ }^{\prime}$
\therefore Factor of Safety against sliding $=\mathrm{H}_{\mathrm{R}} / \mathrm{H}=18.79 / 12.30=1.53>1.5, \mathrm{OK}$
Overturning
Approximate resisting moment

$$
\begin{aligned}
\mathrm{M}_{\mathrm{R}} & =12.69 \times(4.5+0.625)+16.32 \times(6.5+4)+4.2 \times(5.75+4.375)+4.35 \times 7.25+4.2 \times 5.5 \\
& =329.36 \mathrm{k}^{\prime} /^{\prime}
\end{aligned}
$$

Overturning moment $\mathrm{M}=1.90 \times 16+2.4 \times 20 / 2+8.0 \times 20 / 3=107.73 \mathrm{k}^{\prime} /{ }^{\prime}$
\therefore Factor of Safety against overturning $=\mathrm{M}_{\mathrm{R}} / \mathrm{M}=329.36 / 107.73=3.06>2.5, \mathrm{OK}$

Design of Back-wall

Design wheel load $=16 \times 1.7=27.2 \mathrm{k}$, assumed loaded length $\cong 4^{\prime}$

Design of Stem

Design shear/length $=(0.12 \times 18+0.72 \times 18 / 2) \times 1.4=3.02+9.07=12.09 \mathrm{k} /{ }^{\prime} \quad 0.12$
Design moment/length $=3.02 \times 18 / 2+9.07 \times 18 / 3=81.60 \mathrm{k}^{\prime} /{ }^{\prime}$
$\therefore \mathrm{d}_{(\text {req })}$ for shear $=12.09 / 1.062=11.39^{\prime \prime}$
and $\mathrm{d}_{(\text {req })}$ for moment $=\sqrt{ }(81.60 / 0.781)=10.22^{\prime \prime}$
$\mathrm{d}=24-3.5=20.5^{\prime \prime}>\mathrm{d}_{\text {(req) }}$
$\therefore \mathrm{A}_{\mathrm{s}}=\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right)\left[1-\sqrt{ }\left\{1-2 \mathrm{M} /\left(\phi \mathrm{f}_{\mathrm{c}} \mathrm{bd}^{2}\right)\right\}\right] \mathrm{bd}=1.39 \mathrm{in}^{2} /{ }^{\prime}$
\therefore Use \#10 @ $10.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ (along the length near soil)
$\mathrm{A}_{\mathrm{s}(\text { temp })}=0.03 \times 24=0.72 \mathrm{in}^{2} /{ }^{\prime}$
\therefore Use \#5 @ $5^{\prime \prime}$ c/c (along the width and length farther from soil)
This should also be adequate for the back-wall

Design of Toe and Heel

Total vertical force on the soil below the wall $=41.76 \mathrm{k} /{ }^{\prime}$
The resultant moment about the far end to the toe $=\mathrm{M}_{\mathrm{R}}-\mathrm{M}=329.36-107.73=221.63 \mathrm{k}^{\prime} /{ }^{\prime}$ $\therefore \mathrm{e}_{0}=221.63 / 41.76=5.31^{\prime}$, which is $>14.5 / 3$ and $<14.5 \times 2 / 3 \Rightarrow$ uplift avoided.

The maximum soil pressure $=(41.76 / 14.5) \times[1+6(14.5 / 2-5.31) / 14.5]=5.20 \mathrm{ksf}$, which is $>2 \mathrm{ksf}$.
\therefore Pile foundation is suggested, and the toe and heel should be designed as pile cap.

Design of Piles and Pile-cap

The following arrangement of piles is assumed for the width of the toe and heel (i.e., 14.5') and within the c / c distance of girders (i.e., width $=5.75^{\prime}$).

Pile Forces

Vertical force and resultant moment in USD are $=60.84 \mathrm{k} /{ }^{\prime}$ and $=473.27-156.61=316.67 \mathrm{k}^{\prime} /{ }^{\prime}$
For the total width of one row of piles, $\mathrm{V}=60.84 \mathrm{k} /{ }^{\prime} \times 5.75^{\prime}=349.82 \mathrm{k}$

$$
\text { and } \mathrm{M}=(60.84 \times 7.25-316.67) \mathrm{k}^{\prime} / /^{\prime} \times 5.75^{\prime}=715.38 \mathrm{k}^{\prime}
$$

Pile reactions are given by $\mathrm{F}_{\mathrm{i}}=\mathrm{V} / \mathrm{n}+\mathrm{My}_{\mathrm{i}} / \sum \mathrm{y}_{\mathrm{i}}{ }^{2}$
where $\mathrm{n}=$ Number of piles $=4, \sum \mathrm{y}_{\mathrm{i}}{ }^{2}=2 \times 1.75^{2}+2 \times 5.25^{2}=61.25 \mathrm{ft}^{2}$
\therefore Here, $\mathrm{F}_{\mathrm{i}}=349.82 / 4+715.38 \mathrm{y}_{\mathrm{i}} / 61.25=87.46+11.68 \mathrm{y}_{\mathrm{i}}$
$\therefore \mathrm{F}_{1}=87.46+11.68 \times 5.25=148.77 \mathrm{k}, \mathrm{F}_{2}=87.46+11.68 \times 1.75=107.90 \mathrm{k}$

$$
\mathrm{F}_{3}=87.46+11.68 \times(-1.75)=67.02 \mathrm{k}, \mathrm{~F}_{4}=87.46+11.68 \times(-5.25)=26.14 \mathrm{k}
$$

Design of Piles

For the $\operatorname{load} \mathrm{F}_{1}, 148.77=0.80 \phi \mathrm{~A}_{\mathrm{g}}\left\{\mathrm{f}_{\mathrm{c}}+\mathrm{p}\left(\mathrm{f}_{\mathrm{y}}-\mathrm{f}_{\mathrm{c}}\right)\right\}=0.80 \times 0.70 \mathrm{~A}_{\mathrm{g}}\{2.55+0.03 \times(40-2.55)\}$
$\therefore \mathrm{A}_{\mathrm{g}}=72.32 \mathrm{in}^{2} \Rightarrow \mathrm{D}=9.60^{\prime \prime}$; i.e., Provide $10^{\prime \prime}$-dia piles with 4 \#6 bars and \#3 ties @ $10^{\prime \prime} \mathrm{c} / \mathrm{c}$
The same pile will be used for all piles though smaller sections can be used for the others
The piles should be long enough to transfer the axial loads safely to the surrounding soil by skin friction and end bearing.

Assuming the entire pile load for Pile1 to be resisted by skin friction, $\mathrm{F}_{1(\mathrm{WSD})}=\alpha_{2}(\pi D L) q_{a} / 2$ where $\alpha_{2}=$ Reduction factor for soil disturbance $\cong 0.8, \mathrm{D}=$ Pile diameter $=10^{\prime \prime}=0.833^{\prime}$, $\mathrm{L}=$ Pile length, $\mathrm{q}_{\mathrm{a}}=$ Allowable compressive stress on soil $=2 \mathrm{ksf}$ $\therefore 100.02=0.8 \times(\pi \times 0.83 \times \mathrm{L}) \times 2 / 2 \Rightarrow \mathrm{~L}=47.76^{\prime}, \therefore$ Provide 48^{\prime} long piles

Design of Pile-cap

For the design of pile-cap, the pile loads per girder are considered along with the soil pressure converted to soil load per girder width. The pile loads on the pile-cap for c/c girder width (5.75') are shown below.

1. Design of Toe

The pile-cap is assumed to have $3^{\prime \prime}$ effective cover and $6^{\prime \prime}$ embedment for piles.
Maximum punching shear $=148.77 \mathrm{k}$, shear strength $=3.8 \times 0.85 \times \sqrt{ }(0.003)=0.177 \mathrm{ksi}$
Punching area around a $10^{\prime \prime}$ pile $=\pi(10+d) d=148.77 / 0.177 \Rightarrow d_{(r e q)} \cong 12.1^{\prime \prime}$; i.e., $\mathrm{t}_{(\mathrm{req})}=21.1^{\prime \prime}$
Maximum flexural shear $=148.77 \mathrm{k}$, shear strength $=1.9 \times 0.85 \times \sqrt{ }(0.003)=0.088 \mathrm{ksi}$
Shearing area $=5.75 \times 12 \mathrm{~d}=148.77 / 0.088 \Rightarrow \mathrm{~d}_{(\mathrm{req})}=24.4^{\prime \prime}$; i.e., $\mathrm{t}_{(\text {req })}=33.4^{\prime \prime}$
Maximum bending moment $=148.77 \times 2.5=371.93 \mathrm{k}^{\prime}$

$$
\begin{aligned}
& \Rightarrow \mathrm{d}_{(\text {req })}=\sqrt{ }\{371.93 /(0.781 \times 5.75)\}=9.1^{\prime \prime} ; \text { i.e., } \mathrm{t}_{(\mathrm{req})}=18.1^{\prime \prime} \\
& \therefore \mathrm{t}=34^{\prime \prime}, \mathrm{d}=25^{\prime \prime} \Rightarrow \mathrm{A}_{\mathrm{s}}=\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right)\left[1-\sqrt{ }\left\{1-2 \mathrm{M} /\left(\phi \mathrm{f}_{\mathrm{c}} \mathrm{bd}{ }^{2}\right)\right\}\right] \mathrm{bd}=7.69 \mathrm{in}^{2} ; \text { i.e., } 7.69 / 5.75=1.34 \mathrm{in}^{2} / \mathrm{ft} \\
& \mathrm{~A}_{\mathrm{s}(\text { temp })}=0.03 \times 34=1.02 \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

2. Design of Heel

Maximum flexural shear $=20.29 \times 7-67.02-26.14=48.85 \mathrm{k}$, allowable shear stress $=0.088 \mathrm{ksi}$
Shearing area $=5.75 \times 12 \mathrm{~d}=48.85 / 0.088 \Rightarrow \mathrm{~d}_{(\text {req })}=8^{\prime \prime}$; i.e., $\mathrm{t}_{(\text {req })}=17^{\prime \prime}$
Maximum bending moment $=-20.29 \times 8 \times 8 / 2+67.02 \times 2.5+26.14 \times 6=-324.78 \mathrm{k}^{\prime}$
$\Rightarrow \mathrm{d}_{(\mathrm{req})}=\sqrt{ }\{324.78 /(0.781 \times 5.75)\}=8.5^{\prime \prime}$; i.e., $\mathrm{t}_{(\mathrm{req})}=17.5^{\prime \prime}$
$\therefore \mathrm{t}=34^{\prime \prime}, \mathrm{d}=25^{\prime \prime} \Rightarrow$ It will be OK for punching shear also
$\therefore \mathrm{A}_{\mathrm{s}}=\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right)\left[1-\sqrt{ }\left\{1-2 \mathrm{M} /\left(\phi \mathrm{f}_{\mathrm{c}} \mathrm{bd}{ }^{2}\right)\right\}\right] \mathrm{bd}=5.62 \mathrm{in}^{2}$; i.e., $0.98 \mathrm{in}^{2} / \mathrm{ft}, \mathrm{A}_{\mathrm{s}(\text { temp })}=0.03 \times 34=1.02 \mathrm{in}^{2} / \mathrm{ft}$

Abutment Reinforcements

Pile Length $=48^{\prime}$

Pile Reinforcements

