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ABSTRACT

In complex engineering systems, complexity may arise by
design, or as a by-product of the system’s operation. In either
case, the root cause of complexity is the same: the unpredictable
manner in which interactions among components modify sys-
tem behavior. Traditionally, two different approaches are used
to handle such complexity: (i) a centralized design approach
where the impacts of all potential system states and behaviors
resulting from design decisions must be accurately modeled; and
(ii) an approach based on externally legislating design decisions,
which avoid such difficulties, but at the cost of expensive exter-
nal mechanisms to determine trade-offs among competing design
decisions. Our approach is a hybrid of the two approaches, pro-
viding a method in which decisions can be reconciled without
the need for either detailed interaction models or external mech-
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anisms. A key insight of this approach is that complex system
design, undertaken with respect to a variety of design objectives,
is fundamentally similar to the multiagent coordination problem,
where component decisions and their interactions lead to global
behavior. The design of a race car is used as the case study.
The results of this paper demonstrate that a team of autonomous
agents using a cooperative coevolutionary algorithm can effec-
tively design a Formula racing vehicle.

INTRODUCTION

Complex engineering systems, such as state-of-the-art air-
craft, advanced power systems, unmanned aerial vehicles, and
autonomous automobiles, are required to operate dependably in
an ever widening variety of environmental conditions, over a
wide range of missions. Such systems must be cost-effective
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while being dependable in potentially extreme conditions and
adaptable to a given environment. When a large system is de-
signed, multiple design teams are involved. These teams often
are formed according to disciplinary lines, and each team is re-
sponsible for the design of a subsystem. Each team aims to max-
imize the performance of their subsystem, but must be aware of
interactions between subsystems and system-level constraints in
order to result in high overall system performance. In some oc-
casions the goal of one team can be in conflict with the interests
of another team. In many design problems, design engineering
teams share design variables or constraints, which is also con-
trolled by a systems engineering team. Different tradeoffs are
required between many design teams before all the subsystems
can be implemented in the final systems.

As the complexity of the system increases, it becomes ex-
ceedingly difficult to model such interactions and explore the de-
sign space in a manner that allows system level certification goals
to be met. A systematic method that explores this space, while
providing the necessary adaptability to meet mission needs and
dependability with respect to mission requirements is needed.
The key insight of this paper is that complex system design, un-
dertaken with respect to a variety of design objectives, is funda-
mentally similar to the multiagent coordination problem. In both
instances, the decisions at the component level (subsystems or
agents), and the interactions among those components, lead to
global behavior (complex system or multiagent system.)

In multiagent coordination, a key research challenge is to
determine what each agent needs to do so that the system as a
whole achieves a predetermined objective. This does not in it-
self “solve” the design problem; rather, it shifts the focus from
modeling interactions to determining how to evaluate/incentivize
components so that their collective behavior achieves the sys-
tem design goals. This shift in focus is critical to enabling a
new paradigm to emerge: multiagent coordination approaches
can now be used to determine how to distribute credit (or blame)
in a design process to the components/stages in the design that
are critical to success (or failure).

The overall goal of this research is to formulate design
agents that will explore all the possible design solutions for a
complex engineering system. To be able to achieve more com-
plex solutions, it is necessary to coordinate the actions of all the
design teams. Figure 1 ilustrates the design process envisioned
in this paper. The approach we explore is to implement a team of
autonomous agents responsible for selecting the best concept us-
ing multiagent coordination. After the customer and engineering
requirements are defined, engineers will create a team of agents
suitable for the problem related to the system level objectives.
A cooperative coevolutionary algorithm will perform the design
exploration and multiagent coordination. The algorithm will au-
tonomously evaluate, select and refine the design solution that
results from the best tradeoffs between all the subsystems.

AGENTS
’/’V V\\‘ CUSTOMER ENGINEERING ENGINEERING
EIEN PROCESS | REQUIREMENTS REQUIREMENTS DESIGN TEAMS
MULTIAGENT COORDINATION
EVAULATE DESIGN RESEARCH DESIGN
REFINE CONCEPT SELECT CONCEPT SOLUTIONS SOLUTIONS
J
DESIGN e\
Acé)cy\éi‘grig MANUFACTURING ~ ——»{ MANUFACTURING )
PLAN \ /
YES
FIGURE 1: Design Process

Complex System Design

Selection of design architecture while considering various
design criteria and sources of uncertainty is a fundamental re-
search problem in designing complex systems. Explicitly com-
puting quantitative and qualitative objectives of a complex sys-
tem is generally viewed as the preferred method for formalizing
the design process; however, one of the key problems in typical
large-scale engineering system design is the over-emphasis on
requirement satisfaction for evaluating design alternatives [17].
This focus is primarily the result of the acquisition process, but
is exacerbated by overly simplistic design objectives, such as
minimizing weight or cost, that do not reflect the true value of
the designed system. As an example, rather than making de-
sign decisions based primarily upon requirement (i.e., constraint)
satisfaction, Value-Centric Design (or Value-Driven Design) of-
fers an alternative approach with the formulation of a system-
level design objective that reflects the true value of the system,
which can be subsequently optimized [11]. This is a dramatic
change in perspective for system design, promising a reduction
(or elimination) of cost and schedule overruns [7, 10] by identi-
fying high value designs for development. Value-Centric Design
can be considered part of the larger field of Decision-Based De-
sign (DBD) [15,25]. DBD has been specifically developed in
the system design community as a decision-theoretic approach
to selecting a preferred system design from among the alterna-
tives. DBD takes an enterprise-level view of the design prob-
lem, considering not only typical engineering concerns but also
broader objectives that comprise the total value of the system to
the enterprise.
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In this research, we seek an alternative process that enables
distributed design of complex systems based on multiagent coor-
dination, described next.

Multiagent Coordination

Multiagent coordination is a key research area in agent-
based approaches to automation [24]. One of the biggest chal-
lenges in such an approach is decentralization of control, and in
particular the question of how to incentivize the individual agents
such that they work together [9] to achieve the system objective.
The key challenge is that a system designer needs to address
two major credit assignment problems: structural and tempo-
ral [9,24] credit. The first addresses who should get credit (or
blame) for system performance, and the second addresses which
key action (at which key time step) is responsible for fulfilling
the objective [2,23].

The temporal credit assignment problem has been exten-
sively studied through single-agent reinforcement learning [9,
21]. The structural credit assignment problem has also received
attention, and has been addressed by two broad approaches: feed-
back shaping and organizational structures. Feedback shaping
aims to shape the system objective such that the action of agents
optimizing local objectives results in desirable system-level per-
formance [6, 8]. Organizational structures decompose the agents
themselves into roles that enable coordinated behavior [1,29].

One particular research area in the credit assignment prob-
lem focuses upon ensuring that agents’ objectives are aligned
with the system objective (i.e., what is good for the agent is
good for the system), and that the system objective is sensitive
to agents’ actions [27]. Providing agents with objectives that
satisfy these two properties (formalized in [4,27]) leads to a so-
lution where key interactions among the agents are implicitly ac-
counted for. A particular set of agent objectives that achieves
these goals are the difference objectives, which are based on the
difference between the actual performance of the system and
the performance of a counter-factual system in which certain
agents have been removed. Difference objectives have been ex-
tensively studied and applied to real world applications including
air traffic control, multi-robot coordination, and resource alloca-
tion [3,5,26,27].

The success of the difference objective approach in devel-
oping appropriate agent learning objectives suggests that the ap-
proach is applicable to complex system design where a struc-
tural credit assignment problem exists when designing individual
components.

One implementation of this approach is based on coevolu-
tionary algorithms, descibed next.

Coevolutionary Algorithms
Evolutionary Algorithms (EAs) are a class of stochastic
population-based search algorithms which can often outperform

classical optimization techniques, particularly in complex do-
mains where gradient information is not available [13]. An evo-
lutionary algorithm typically contains three basic mechanisms:
solution generation, a mutation operator, and a selection opera-
tor. These mechanisms are used on an initial set of candidate so-
lutions, or a population to generate new solutions and retain solu-
tions that show improvement. Simple EAs are excellent tools, but
need to be modified to be applicable to large multiagent search
problems for distributed optimization. One such modification is
coevolution, where multiple populations evolve simultaneously
in order to develop policies for interacting agents.

Coevolution: Coevolutionary Algorithms (CEAs) are an
extension of evolutionary algorithms and are often well-suited
for multiagent coordination domains [12]. In a CEA, the fitness
of an individual is based on its interactions with other agents it
collaborates with. Thus, assessing the fitness of each agent is
context-sensitive and subjective [19]. In cooperative coevolu-
tion, individuals succeed or fail as a team. This paper is focused
on Cooperative Coevolutionary Algorithms (CCEAs) for design-
ing optimized complex systems.

One of the key advantages to coevolution is that the al-
gorithm only needs to search subspaces of the overall solution
space, rather than the entire solution space. This reduced state
space often makes the learning process simpler for the cooperat-
ing agents, because as each agent is only optimizing a portion of
the overall system, they can focus on a projection of the overall
solution space which is typically of lower dimensionality than
the original solution space.

However, these simpler subspaces represent a large loss in
information; the consequence of this is that the policies obtained
by using these state projections are strongly influenced by other
populations. The result is that agents evolve to partner well with
a broad range of other agents, rather than evolving to form opti-
mal partnerships [20]. Thus, in addition to trying to decrease the
complexity of the learning process, research in coevolution aims
to achieve optimal policies rather than stable ones.

Cooperative Coevolutionary Algorithms: Coopera-
tive Coevolutionary Algorithms (CCEAs) are a natural approach
in domains where agents need to develop local solutions (such as
subsystem design), but the metric for success or failure is related
to overall system performance [22]. In CCEAs, distinct pop-
ulations evolve simultaneously, and agents from these popula-
tions collaborate to reach good system solutions. One issue with
CCEAs is that they tend to favor stable solutions, rather than opti-
mal solutions [28]. This phenomena occurs because the different
evolving populations adapt to each other, rather than adapting to
form an optimal policy. Another issue that arises with CCEAs
is the problem of credit assignment. Since the agents succeed
or fail as a team, the fitness of each agent becomes subjective
and context-dependent (e.g. an agent might be a “good” agent,
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but the agents it collaborates with are “bad,” and the objective
isn’t reached. In this case, the “good” agent may be perceived as
“bad”) [28].

Difference Evaluation Function Theory: The agent-
specific difference evaluation function is defined as:

Di(z) = G(z) ~ Glz—i +c) (M)

where z is the overall system state, G(z) is the system evaluation
function, z_; is the system state without the effects of agent i,
and ¢; is the counterfactual term used to replace agent i. Intu-
itively, the difference evaluation compares system performance
with and without agent i, to approximate the agent’s impact on
overall system performance. Note that:

aG(Z) o 8D,»(z)
aa,- N 8a,~ (2)

where g; is the action taken by agent i. This means that any ac-
tion an agent takes which increases the value of the difference
evaluation also increases the value of the overall system perfor-
mance. This property is termed alignment. Also note that the
second term in Equation 23 removes the portions of the system
evaluation which are not affected by agent i. This reduces noise
in the feedback signal, meaning that difference evaluations are
highly sensitive to the actions of an individual agent.

In addition to the theoretical properties of alignment and
sensitivity, difference evaluations have been proven to increase
the probability of finding optimal solutions in cases where the
optimal Nash equilibrium is deceptive. In these cases, one agent
deviating from the optimal strategy results in a large decrease in
the overall system payoff, meaning that finding these Nash equi-
libria is typically extremely difficult.

METHODOLOGY

This paper demonstrates that, in a design problem, a team of
autonomous agents can replicate or outperform a team of engi-
neers. The first step is to define the design process for the agents
as shown in Figure 2. To begin with, it is necessary to define
the system level objectives and the system constraints. Then we
select the team of agents, where each agent will be responsible
for optimizing a specific subsytem. Secondly, using the differ-
ent system-level objectives, it is necessary to define the overall
system objective. The overall system objective will be used by
the algorithm to measure the impact of the design concept for
each agent team. Using CCEAs (cooperative coevolutionary al-
gorithm), the agents will evaluate all the possible combinations
of solutions and choose the best one. In this paper we will com-
pare the final design of a system designed by a team of engineers
against the design reached by a team of autonomous agents.

Formula SAE design problem

This paper will illustrate the proof-of-concept of the ap-
proach using the design of a formula SAE racing vehicle. For-
mula SAE is a collegiate design competition that requires stu-
dents to design, build, test and, compete with an racing automo-
bile [16]. Formula SAE works as a fictional company, where
teams of students are contracted to create and build a functional
small formula racing vehicle. The final design is tested based
on a series of rules which ensure safety of all operations, and
promote a design challenge for engineers.

The objective is to design a racing vehicle, which will win
the acceleration event of a Formula SAE race. The accelera-
tion event evaluates the car acceleration in a straight line on flat
pavement. The course layout has a length of 75 m and 4.9 m
wide from starting to finish line [16]. In this paper, we compare
the design process of a Formula SAE engineering team against
a team of autonomous design agents. The design process for the
autonomous agents will follow the same design principles as the
one followed by the team of engineers, using the parameters in
Figure 1. We will set some customer requirements for the ve-
hicle performance. Secondly, we will define the system-level
objectives and constraints. Finally, the autonomous design teams
(agents) will be defined and an algorithm will be implemented.
The key factor of the presented design process will be the design
agent’s selection.

For the purpose of this project the system to be analyzed
is going to be simplified. The design of the suspension system
and steering system will not be analyzed in this document. The
selection of components such as the differential, clutch and trans-
mission will be ignored for this first part of the project. All the
subsystems and components mentioned will be implemented as
part of future work.

Formulating the System level objective

The first step is to investigate the form of a system-level de-
sign objective that ensures an intrinsically dependable and adapt-
able system directly from the design process. The key principle
here is that the objective function should capture the designer’s
underlying preferences for the system while ensuring the design
is both adaptable and dependable. To win the competition the
system needs to maximize the vehicle acceleration and aerody-
namic grip, and minimize weight, drag and the location of the
center of gravity. Engineering teams are responsible for design-
ing the system as shown in Figure 3. Consistent with the phi-
losophy of engineering design, the goal is to make the decisions
as accurately as possible without having to build prototypes or
conduct costly testing.

Formulating the Agents as Design Teams

There are eight design teams (agents) each responsible for a
subsystem in the overall design problem. These teams, as well
as the design parameters they are responsible for, are given in
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Table 1. Note that for each component, 4 corresponds to height, /
N PROCESS corresponds to length, w corresponds to w.1<.1th, a corresponds to
angle of attack, x corresponds to an x-position, y corresponds to

a y-position, p corresponds to density, P corresponds to pressure,
r corresponds to radius, m corresponds to mass, @ corresponds
to power, T corresponds to torque, ¢ corresponds to thickness,
N E SYSTEM and E corresponds to a material’s modullus. of e}astlglty. Further,
LEVEL OBJECTIVES note that each team name has an abbreviation given in Table 1 to

define variable naming conventions. So, for example, the height
of the rear wing is denoted /;,,.

SET
CONSTRAINTS

Continuous variables such as height are chosen from a con-
strained portion of R (constraints based on SAE competition

DEFINE AGENTS rules), while discrete variables such as engine power are deter-
TEAMS mined by choosing from a discrete list of available engines.
Y TABLE 1: Description of Design Teams (Agents)
CONCEPT
EVALUATION
CeeAs Team Continuous Discrete
Name Parameters Parameters
Rear Wing (rw) | h, l,w, o, x, y P
SELECT BEST
CONCEPT Front Wing (fw) | h,l,w, a, x,y P
Side Wings (sw) | h, I, w, o, x,y P
. Rear Tires (rt) P, x r,m
FIGURE 2: Design Process for Agents
Front Tires (ft) P, x r,m
Engine (e) X,y D hT
Cabin (¢) hl,w,t,x,y P
Impact hlw,x,y p,E
Attenuator (ia)

For the purpose of this analysis, the customer requirement
for the designed vehicle is to win the acceleration event of a For-
mula SAE race. The following assumptions will be used as the
requirements for the system levels objectives and the environ-

DESIGN TEAMS : ment:

e 1 Rear win * 5 Front tire . .

e 2 Front Wiig 5 G Bz 1. The car’s top velocity vy, is 26.8m/s (60mph)

« 3 Side Wing e 7 Cabin 2. The car’s engine speed @, is 3600 rpm

* 4 Rear tire * 8 Impact Attenuator 3. The density of air p,;, during the race is 1.225kg/m>

FIGURE 3: Racing vehicle Model L.
System level objectives

We now discuss the objectives to be optimized for the entire
system in the following sections.
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Mass: The first design objective is to minimize the mass
of the car. The rear wing, front wings, side wings, and impact
attenuator are all modeled as cuboids, and their mass is given by:

m=I[-w-h-p

The cabin is modeled as a cuboid shell with thickness ¢, and its
mass is given by:

me=2(hele-te+he -we-te+1e-he-t:)pe

The mass of the rear tires, front tires, and engine are defined
once a set of tires and an engine are chosen. The total mass of
the vehicle is thus:

Myotal :mrw+mfw+2'msw+2'mrt+2'mft+me+mc+mia

3)

Note that as there are two side wings, two rear tires, and two
front tires, these mass values are doubled in the overall mass cal-
culation.

Center of Gravity Height: The second objective is to
minimize the center of gravity height (CGy) of the car, or to keep
the center of gravity as low as possible. The y-position of the
center of gravity is defined as:

My Yrw T Mgy fw + MeYe + MY + MigYia
Myotal
+ z(mswysw + My Ty +mftrft)

Myotal

CG, = +o

“4)

Drag and Downforce: The third and fourth objectives
are to minimize the overall drag of the vehicle and to maximize
the downforce of the vehicle. We assume that the components
which influence drag are the rear wing, front wing, side wings,
and cabin. We also assume that only the wings influence vehicle
downforce. We will first analyze the wings, and then the cabin.
The aspect ratio AR of a wing is defined as:

wCos &

AR
l

The lift coefficient C; of a wing is defined as:

C =2n a ®)

AR+2

The drag coefficient C; of a wing is defined as:
2
Cl

Cyj=——
d TAR

(6)

The overall downforce F; of a wing is given by:

1
Fi = 5 0hwPairvea, Ci ©)

The overall drag Fy of a wing is given by:

1
Fr= EpairvgaerWh (8)

For the cabin, we assume a drag coefficient Cz . of 0.04 for a
streamlined body [18].
The overall drag of the vehicle is thus:

FR,mtal = Fd,rw + Fd,fw + 2Fa’,sw + Fd,c 9

and the overall downforce of the vehicle is:
Fd,total = FR,rw + FR,fw + 2FR,sw (10)

Acceleration: The fifth objective of the design process
is to maximize the acceleration of the car in the x-direction. The
rolling resistance coefficient C of the car is given by:

1
C =0.005+ ;(0.01 40.0095v2,,) an

where p is the tire pressure. The overall rolling resistance R,

of the car is given by:
Cmyoig

Ryoit = (12)

where g is the gravitational constant and r is the tire radius. Thus,
the total resistance of the car R, is given by the sum of drag and
rolling resistance:

Riot = Fy goral + Ryol (13)

The efficiency 1 of the engine is given by:

Riorvear
n b, (14)

The wheel force F, ;s at the rear tires is given by:
TeN O,

e (15)
T'rt Wyheels

Foneets =

where .5 15 the rotational speed of the rear wheels, given by:

v
WOyheels = e (1 6)

rt

We can thus find the acceleration of the car a.,, as follows:
ZF = MyotalAcar

Foheets — Rrotal = MioraiQcar

Qear = theels _Rtotal (17)
Myotal
Copyright © 2016 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 02/06/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Crash Force: The sixth objective of the design problem
is to minimize the crash force of the car. The axial deformation
6 of the impact attenuator is given by:

_ Ferashlia (18)

WiahiaEiq

The crash force F,,, is defined as:

2
Forash = o car (19)

Combining Equations 18 and 19 yields:

2
F _ mtol‘alvcur
crash — F I3
2 crashtia
WiahiaEiq

2
= chsh(chmshliu) = mtotalvwrwiuhquia

2
N F2 o mtotalvcarwiahiaEia
crash — 21
ia
| mygaviwiahiaEia )
= Fcrash - 2 ( 0)
ia

Impact Attenuator Volume: The seventh and final ob-
jective of the design problem is to minimize the impact attenuator

volume Vj,, given by:
Via = liaWiahia 210

Overall System Objective

In a Formula SAE competition the car prototype is judged in
a number of different events. In this paper we are not replicating
a Formula SAE competition, however, it is necessary to judge the
design of the vehicle. A weighted linear sum is our approxima-
tion on how to judge the design with respect to its performance.

The overall system objective is given by a weighted linear
combination of the individual objectives. Given a candidate de-
sign solution z, the system evaluation function G(z) is defined as:

G(Z) = —WmMtotal — WCGCGy - WRFR,total + WdFd,total +...

+ Walcar — WerashFerash — WiavVia (22)

where w; is a weight corresponding to objective i.
Recall that the agent-specific difference evaluation func-
tion is defined as:

Di(z) = G(z) — G(z—i + i) (23)

where z is the overall system state, G(z) is the system evaluation
function, z_; is the system state without the effects of agent i,
and ¢; is the counterfactual term used to replace agent i. Intu-
itively, the difference evaluation compares system performance
with and without agent i, to approximate the agent’s impact on
overall system performance.

Constraints

The constraints used for the vehicle were set according to
the Rules of the 2016 Formula SAE Rules [16]. The SAE rules
present the competition regulations technical and design require-
ments. The SAE rules were use to define the minimal dimensions
and the areas where the structural components are allowed to al-
located.

CCEAs Implementation

The approach to optimizing the vehicle design using coop-
erative coevolution is shown in Algorithm 1. Initially, N popula-
tions are seeded with k random solutions. In this case, there are
8 populations, one for each subsystem agent (rear wings, front
wings, etc.). In each generation, each population creates mutated
solutions, and then the solutions are used to create teams, where
a team consists of an entire vehicle design. The solution pre-
sented by the team is then evaluated, and each member of the
team is assigned a fitness score. Once each member of each pop-
ulation has been assigned a fitness, solutions in each population
are selected to survive to the next generation. Each of these evo-
lutionary mechanisms are explained in the following paragraphs.

A “solution” in the Cooperative Coevolutionary Algorithms
consists of two elements: a continuous element and a discrete
element. For any given team (optimized by a single population),
the continuous element of the solution contains an array of val-
ues corresponding to that team’s subsystem. For example, for
the rear wing team, the continuous portion of the solution is an
array of the form {h,l,w, a,x,y}. The discrete element of the so-
lution contains an array of choices corresponding to that team’s
subsystem. For the rear wing team, the discrete portion of the so-
lution is of the form {p}, where the density p was chosen from
a list of available materials for wing construction. A random
solution is chosen by drawing the continuous variables from a
uniform probability distribution, and drawing discrete variables
where each discrete choice has an equal probability of selection.
Each population (corresponding to different design subsystems)
is initially populated with random solutions.

For mutation, each population of size k is doubled in size to
2k solutions. Each solution in the original population is copied,
and then mutated to create a child solution. For the continuous
portion of the solution, mutation is carried out by first adding a
value drawn from a Gaussian distribution N( = 0,0 =0.001) to
each element, and then ensuring the resulting value is still within
the allowable constraints. For example, if a mutated parameter is
a+ €, but the maximum value (based on vehicle constraints) that
the parameter may take is a, then the value is changed to a.

For team formation, one solution is drawn from each pop-
ulation to form a complete vehicle design. Each solution in a
population has an equal probability of being selected for a team,
and each solution is used only once (i.e, if each population has a
size of 2k, then 2k teams are tested).
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For fitness assignment (line 11 in Algorithm 1), we test two
fitness assignment operators. First, we use the global evaluation
G(z) to assign fitness to each agent in a team. This means that
the performance of each subsystem design is assigned using the
overall system performance. Next, we use the difference evalua-
tion D;(z) to assign fitness to each agent. In this case, we assign
a counterfactual of 0, meaning we analyze performance of the
car if a component was removed from the design. This provides
an estimate of the impact on the overall system performance pro-
vided by a single component.

For selection, we use binary tournament selection, which re-
duces a population of size 2k to size k using the following pro-
cedure. Two solutions are drawn from the population (each so-
lution may be drawn only once). The solution with the higher
fitness value is returned to the population, and the solution with
the lower fitness value is discarded. Binary tournament selec-
tion ensures that the best solution in the population is retained
and that the worst solution in the population is discarded. For
all other solutions in the population, their probability of survival
increases with their fitness value.

1 Initialize N populations of k subsystem solutions

2 foreach Generation do

3 foreach Population do

4 produce k cloned solutions

5 mutate cloned solutions

6 end

7 fori=1—2kdo

8 randomly select one agent (previously
unselected) from each population

9 add selected agents to team T;

10 simulate 7; in domain

11 assign fitness to each agent in 7;

12 end

13 foreach Population do

14 select k solutions using binary tournament
selection

15 end

16 end

Algorithm 1: Cooperative Coevolutionary Algorithm

RESULTS

The results from the Cooperative Coevolutionary Algorithm
were validated by comparing them to a real Formula SAE vehi-
cle. The current formula SAE Michigan champion since 2010
is the Global Formula Racing GFR [14]. GFR is a Formula
SAE team formed by an international cooperation between the
BA Racing Team from Duale Hochschule Baden-Wiirttemberg-
Ravensburg (DHBW), Germany, and the Beaver Racing Team

TABLE 2: Weights for Overall System Objective

Objective Weight
Mass 15
CG,y 5
Drag 3
Downforce 2.5
Acceleration 10
Crash Force 10
IA Volume 1

from Oregon State University (OSU), USA. GFR team has
proven to be the best student engineering team, winning more
than 15 competitions worldwide since 2010. The results from
the coevolutionary algorithm will be compared to the GFR 2013
combustion car.

For the simulation run the population size was set to 50 and
the number of generations for evolution 10,000. The weights for
the Overall System Objective (Eqn 22) are defined in Table 2.

Since the primary objective is to reduce the overall mass of
the vehicle while maximizing the car’s acceleration, these objec-
tives have the higher weight. Future work will analyze the effects
of weight variation between systems objectives, and modify the
Overall System Objective to enclose the entire complexity of the
system. For example, if the weight value for the downforce ob-
jective is increased, the design agents will create larger wings.
However, the use of large wings will increase the drag forces
on the vehicle, thus causing a lower overall system performance.
The current model does not include the analysis of the dynamics
behind suspension or lateral accelerations because the vehicle is
only moving on a smooth, straight track. In a real model, where
the vehicle would be turning at high speeds, downforce plays an
important role and would be considered in future work.

Figure 4 shows how the system performance increases for
G(z) and D;(z) as the number of generations increases. The sys-
tem performance has negative values because five of the seven
objectives need to be minimized.

Difference Reward D;(z) usually provides better perfor-
mance than system evaluation function G(z). This is due to the
fact that each team member is given better feedback on their per-
formance. G(z) outperforms D;(z) when weights are chosen that
significantly favor acceleration and crash forces being optimized.
This is because these parameters are the most coupled as they
depend on the mass of each component as well as engine specs.
So basically every team member affects these parameters; and
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D;(z) has problems when there is extremely high coupling be-
tween agents.

More importantly, in these cases where D;(z) struggles, we
see the effect of one agent being very good with one team but
very bad with another team. This type of behavior is also difficult
for D;(z) to handle, because it will only provide good feedback
to an agent if its teammates are reasonably well-suited to work
with that agent. For example, an agent that works extremely well
with engine A but extremely poorly with engine B will get a bad
difference evaluation if it is paired with a teammate which selects
engine B, even if it is actually a decent solution.

The result from the design process is shown in Table 3,
where we compare a solution found using the CCEA with the
GFR solution. The design of the agents does better on all but one
objective, which is drag.

System Performance

-1,000 |-

—@— Difference Evaluation
--- 4 --- Global Evaluation
1,200 i i i i i
0 2,000 4,000 6,000 8,000 10,000
Generation

FIGURE 4: Preliminary results: difference evaluations provide
better designs than global evaluatons.

CONCLUSIONS

The long-term goal of this project is to enable new design
paradigms for complex systems to ensure that design space ex-
ploration, system architecture selection, and system integration
are conducted in a way to produce a certifiably dependable and
adaptable system meeting high-level design objectives.

The work done in this paper is primary evidence that dis-
tributed artificial intelligence can be used in design processes by

TABLE 3: Comparison of design found using CCEA vs. the SAE
solution.

Objective CCEA Solution | SAE Solution
Mass 34.4210 34.8772
CG,y 0.1919 0.2778
Drag 281.7162 217.1085
Downforce 390.5887 318.7476
Acceleration 0.3336 0.2497
Crash Force 18.0697 40.9255
IA Volume 0.0135 0.00864

splitting up the overall system into specific teams.

More specifically, the results from Table 3 ilustrate that a
team of autonomous agents using a cooperative coevolutionary
algorithm (CCEA) can effectively design a Formula racing ve-
hicle. The CCEA results in better performance than the Global
Furmula Racing (GFR) design on 6 objectives, and is worse on 1
objective (drag). One of the reasons why the autonomous agents
have a worse performance on Drag could be the selected weight
for the system objectives. Drag and Downforce objectives are
highly related, if the weight value for the downforce objective
is increased, the design agents will create larger wings. How-
ever, the use of large wings will increase the drag forces on the
vehicle, thus causing a lower overall system performance. In a
higher fidelity model, where the vehicle would be turning at high
speeds, downforce and drag will play an important role.

FUTURE WORK

The next step in this research is to obtain results increasing
the complexity of the system. In this paper the case study was
simple, but a real Formula racing vehicle needs to consider all
the dynamics between the system and the environment. The sys-
tem needs to simulate the lateral accelerations caused while the
vehicle is turning at a high speed. Different types of mechanical
and electrical components most be included using a large num-
ber agents. Suspension and brake systems needs to be included
as part of the engineering requirements. The system objective
must also consider the cost of manufacturing operations and the
cost of the components. The weights used and the linear form
of Overall System Objective will be analyzed in more detail. As
the complexity of the system increases, it will be necessary to
analyze how the team of agents behave with multiobjectives.
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