Design of Energy-Efficient On-Chip Networks

Vladimir Stojanović Integrated Systems Group MIT

Manycore System Roadmap

The rise of manycore machines

Only way to meet future system feature set, design cost, power, and performance requirements is by programming a processor array

- Multiple parallel general-purpose processors (GPPs)
- Multiple application-specific processors (ASPs)

Interconnect bottlenecks

Scaling to many cores TILE64

- Today's approaches
- Many meshes
 - Slow, latency varies greatly
 - Easy to implement
- Large crossbars
 - Fast, predictable latency
 - Hard to build and scale

Rainbow-Falls 2-stage Crossbar

On-chip network topology spectrum

In **power constrained** systems – Need to look at networks in a **cross-cut** approach Connect physical implementation (channels, routers, power) with **network topology, routing and flow-control**

> Radix – Number of inputs and outputs of each switching node Diameter – largest minimal hop count over all node pairs

NOCs Tutorial Roadmap

- Networking Basics
- Building Blocks
- Evaluation

NOCs Tutorial Roadmap

- Networking Basics
 - Topologies
 - Routing
 - Flow-Control
- Building Blocks
- Evaluation

- Basic trade-off
 - Minimize overheads (large size)
 - Efficient use of resources (small size)

Latency Components

Zero-load latency

- Average latency w/o contention

Ideal network throughput (capacity)

- Maximum traffic that can be sustained by all cores
- Mesh throughput
 - 50% of data crosses the bisection assuming uniform random traffic
 - Bisection bandwidth = $2\sqrt{N}b$
- Data crossing the bisection $=\frac{1}{2}Nb_{core}$
- Maximum on-chip throughput

$$\Theta_{ideal} = Nb_{core} = 4\sqrt{Nb}$$

N = number of cores b = router-to-router link bandwidth

 b_{core} = rate at which each core generates traffic

Tori

- Low-radix, large diameter networks
- N-ary, K-cube (mesh)
 - N nodes per dimension
 - K dimensions

Cubes have 2x larger bisection bandwidth

ISSCC 2010 Tutorial

[Dally04]

TILE64

- Memory BW 25 GB/s
- 240 GB/s bis. Bw

[Bell08]

TILE64 Networks

[Wentzlaff07]

5-port routers with credit-based flow-control

STN – Scalar operand network

TDN and MDN implement the memory sub-system

UDN/IDN – Directly accessible by processor ALU (message-based, variable length)

Improving Tori - Express cubes

Increase bisection bandwidth, reduce latency
 Add expressways - long "express" channels

One dimension of 16-ary express cube with 4-hop express channels -0-1-2-3-4-5-6-7-8-9-A-B-O-D-E-F-

One dimension of 16-ary express cube with 4-hop express channels

Add extra channels to diversify and/or increase bisection

Buterflies

- N-ary, K-fly

 N nodes per switch
 K stages
- Example
 - -2-ary 4 fly

Path diversity problem

[Dally04]

- Buterflies have no path diversity
- Bad performance for some traffic patterns
 - e.g. shuffle permutation
- Wide spread in BW
- Inherently blocking
- Fixed in Clos topologies

Clos networks

[Clos53]

Redundant paths – more uniform throughput

Logical to Physical Mapping

Three 8 x 8 Routers (I-VIII, a-h, A-H) **Two 8 x 8 Routers** (I-VIII,a-h)

8-ary 3-stage Clos

Eight 8 x 8 Routers (middle stage A-H)

Same topology – different physical mapping

Topology comparison

[Joshi09]

Mesh

CMesh

Clos

Crossbar

		Channels			Routers		Latency					
Topology	N_C	b_C	N_{BC}	$N_{BC} \cdot b_C$	N_R	radix	Η	T_R	T_C	T_{TC}	T_S	T_0
Crossbar	*64	*128	*64	8,192	1	64x64	1	10	n/a	0	4	14
Mesh	224	256	16	4,096	64	5x5	2-15	2	1	0	2	7-46
CMesh	48	512	8	4,096	16	8x8	1-7	2	2	0	1	3-25
Clos	128	128	64	8,192	24	8x8	3	2	2-10	0-1	4	14-32

Table 1: Example Network Configurations – Networks sized to support 128 b/cyc per tile under uniform random traffic. N_C = number of channels, b_C = bits/channel, N_{BC} = number of bisection channels, N_R = number of routers, H = number of routers along data paths, T_R = router latency, T_C = channel latency, T_{TC} = latency from tile to first router, T_S = serialization latency, T_0 = zero load latency.

Routing Algorithms

Deterministic routing algorithms

- Always same path between x and y
 - Poor load balancing (ignore inherent path diversity)
 - Quite common in practice
 - Easy to implement and make deadlock-free.

Oblivious algorithms

- Choose a route w/o network's present state
 - E.g. random middle-node in Clos

Adaptive algorithms

- Use network's state information in routing
 - Length of queues, historical channel load, etc ISSCC 2010 Tutorial

Deterministic Routing

2-ary 3-fly з

6-ary 2-cube

Destination-tag Butterflies Dimension-order Tori

ISSCC 2010 Tutorial

[Dally04]

Oblivious Routing

[Dally04]

Valiant's algorithm (Randomized Routing)

Randomly select nearest common ancestor switch

Randomly select middle node Dimension-order to/from node

Flow Control

- Bufferless flow-control (Circuit Switching)
- Buffered flow-control (Packet Switching)

 Packet-based (store&forward, cut-through)
 Flit-based (wormhole, virtual channels)

Buffer Management

 Credit-based, on-off, flit-reservation

Circuit switching

• Pros

- Simple to implement (simple routers, small buffers)

- Cons
 - High latency (R+A) and low throughput

Example - Pipelined Circuit Switching

Packet-buffered Flow Control

Buffer and channel allocated to whole packet

[Dally04]

Store-and-forward

Cut-through

Flit-buffered Flow Control

• Wormhole vs. Virtual-Channel [Dally92]

Virtual-channels – Bandwidth Allocation

Virtual-channel Router

Each channel only as deep as round-trip credit latency

More buffering, more virtual channels

Credit-based buffer management

[Dally04]

NOCs Tutorial Roadmap

- Networking Basics
- Building Blocks
 - Channels
 - Routers
- Evaluation

Building block costs

- Simple routers and channels roughly balanced
- Narrower networks scale better

90nm technology
Channels: Electrical technology

- Design constraints
 - 22 nm technology
 - 500 nm pitch
 - 5 GHz clock
- Design parameters
 - Wire width
 - Repeater size
 - Repeater spacing

Channels: Equalized interconnects

- FFE shapes transmitted pulse
- DFE cancels first trailing ISI tap
- Lower energy cost due to output voltage swing attenuation

Repeated interconnects vs Equalized interconnects

Data-dependent energy (DDE) is 4-10x lower for equalized interconnects, while fixed energy (FE) is comparable ISSCC 2010 Tutorial 39

Channels: Silicon photonic technology

Silicon photonic link – WDM

 Dense WDM improves bandwidth density – E.g. 128 λ/wg, 10 Gbps/λ

Silicon photonic link – Energy cost

- E-O-E conversion cost 50-150 fJ/bt (independent of length)
- Thermal tuning energy 2-20µW/K/heater
 - Increases with ring count
- External laser power
 - Dependent on losses in photonic devices

Electrical vs Optical links – Energy cost

ISSCC 2010 Tutorial

Channel Technologies

On-chip links	Latency (cyc)	Energy (fJ/b)	Density (Gb/s/µm)
Optimally repeated wire (2.5 mm)	1	100	10
Equalized link (2.5 mm)	2	80	10
Photonic link (2.5 mm)	2	100-200	320
Optimally repeated wire (10 mm)	2	500	10
Equalized link (10 mm)	2	120	10
Photonic link (10 mm)	2	100-200	320

Routers

Input VC state

Router pipeline

Pipelined routing of a packet

RC – route computation

- VA virtual channel allocation
- SA switch allocation
- ST switch traversal

Pipeline stalls (virtual allocation stall)

Speculation and Lookahead

Speculative allocation

Lookahead routing (pass routing for next hop in head flit)

Crossbar switches

$$\Theta = s_o \left(1 - \left(\frac{k-1}{k}\right)^{\frac{s_i k}{s_o}} \right)$$

2x Output Speedup – 87% capacity

2x Input Speedup – 90% capacity

2x Input & Output Speedup – 137% capacity

Router design space exploration - Setup

[Shamim09]

Matrix Crossbar

Mux Crossbar

Example System

Router

- 64 tiles.
- 1GHz frequency
- 1 Message = 512-bits
- 4 Messages per input port (2048-bits)
- Router Aspect Ratio 1
- p = 5, 8, 12
- w = 32, 64, 128 (bits)
- Matrix xbar
- Mux xbar

5x5 Router Floorplan (128bit)

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

8x8 Routers Floorplan (128bit)

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

12x12 Routers Floorplan (128bit)

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

- Mux crossbar always better
- 5-12 port routers scale well (sub p², b²) ISSCC 2010 Tutorial

Power vs Port Width and Radix

- Mux crossbar always better
- 5-12 port routers scale well (sub p², b²) ISSCC 2010 Tutorial

Router Power Breakdown

Router Area per core vs. # Ports

[Balfour06]

Effects of Concentration

- Mesh to Cmesh
 - 5p routers to 8p routers

Ц
Q
Ц
Ц

Matrix Design	Area (mm²)	Power (mW)	Mux Design	Area (mm²)	Power (mW)
4 x 5p32b-mat	1.1664	332.304	4 x 5p32b-mux	1.1664	268.3056
1 x 8p64b-mat	0.4356	246.3924	1 x 8p64b-mux	0.3721	203.268
4 x 5p64b-mat	1.2996	484.4544	4 x 5p64b-mux	1.2544	410.5872
1 x 8p128b-mat	0.8836	568.2672	1 x 8p128b-mux	0.7225	391.0116
2 x 8p32b-mat	0.5832	264.6312	2 x 8p32b-mux	0.5832	215.8464
1 x 12p64b-mat	0.6889	546.8928	1 x 12p64b-mux	0.5625	389.5896
2 x 8p64b-mat	0.8712	492.7848	2 x 8p64b-mux	0.7442	406.536
1 x 12p128b-mat	1.7424	1584.54	1 x 12p128b-mux	1.2769	926.2188
8 x 5p32b-mat	2.3328	664.608	8 x 5p32b-mux	2.3328	536.6112
1 x 12p128b-mat	1.7424	1584.54	1 x 12p128b-mux	1.2769	926.2188

Works well for small flits and number of ports

Orion 1.0 vs P & R design

Orion 2.0 vs P & R design

[Kahng09]

[Shamim09]

Ratio (Power of Synthesized designs / Dynamic (no leakage) Power of Analytical Models)

NOCs Tutorial Roadmap

- Networking Basics
- Building Blocks
- Evaluation

Landscape of on-chip photonic networks

Mesh

[Shacham'07] [Petracca'08]

CMesh

Crossbar

Router Group & Photonic Transmitter-Receiver Block R 0,6 7

[Vantrease'08] [Psota'07] [Kirman'06] 64

ISSCC 2010 Tutorial

Clos with electrical interconnects

8-ary 3-stage Clos

- 10-15 mm channels
- Equalized
- Pipelined Repeaters

Two 8 x 8 Routers
Eight 8 x 8 Routers

Centralized Multiplexer Crossbar

Electrical design

Photonic design

Clos network using point-to-point channels R 0,0 R 1,0 R 2,0 O_0 **I**₀ 1 O_2 **l**₂ **I**3 D_3 R 1,1 R 2,1 R 0,1 **Electrical design** R 0,0 R 1,0 R 2,0 0 **0**|–⊳ O O_0 0 1 0 2 **○**|-> O_2 3 O_3 R 2,1 1,1 R 0,1R **Photonic design**

ISSCC 2010 Tutorial

ISSCC 2010 Tutorial

Photonic device requirements in a Clos

Optical laser power (W) contour

Percent area of photonic devices contour

Waveguide loss and Through loss limits for 2 W optical laser power (30% laser efficiency) constraint

Photonic device requirements in a Clos

Optical laser power (W) contour

Percent area of photonic devices contour

Optical loss tolerance for Crossbar

Optical loss tolerance for Clos

Photonic Crossbar vs Photonic Clos

- 10 W power for thermal tuning circuits (1 µW/ring/K)
- For 2 W optical laser power
 - Waveguide loss < 1 dB/cm
 - Through loss < 0.002 dB/ring

- 0.56 W power for thermal tuning circuits (1 µW/ring/K)
 - For 2 W optical laser power
 - Waveguide loss < 2dB/cm
 - Through loss < 0.05 dB/ring

Simulation setup

- Cycle-accurate microarchitectural simulator
- Traffic patterns based on partition application model
 - Global traffic UR, P2D, P8D
 - Local traffic P8C
- 64-tile system, 512-bit messages
- Events captured during simulations to calculate power

Partition application model

- Tiles divided into logical partitions and communication is within partition [Joshi'09]
- Logical partitions mapped to physical tiles
 - Co-located tiles \rightarrow Local traffic
 - Distributed tiles \rightarrow Global traffic

Uniform random (UR)

2 tiles per partition that are distributed across the chip (P2D)

are distributed across the chip (P8D)

8 tiles per partition that 8 tiles per partition that are co-located (P8C)

Ideal Throughput $\theta_T = 8 \text{ kb/cyc}$ for UR

- flatFlyX2 vs mesh/cmeshX2
 - Saturation BW \rightarrow comparable (UR, P8D, P2D)
 - Latency → flatFlyX2 has lower latency
- clos vs mesh/cmeshX2/flatFlyX2
 - Saturation BW \rightarrow uniform for all traffic, comparable to UR of mesh
 - Latency \rightarrow uniform for all traffic, comparable to UR of mesh

Mesh vs CMeshX2

mesh

cmeshX2

cmeshX2

- Repeater-inserted interconnects
 - cmeshX2 lower power than mesh at comparable throughput
- Equalized interconnects
 - cmeshX2 has further 1.5x reduction in power
 - Channel gains masked by router power

Power vs BW plots –repeater inserted pipelined vs equalized

Power split

- Channel DDE reduces by 4-10x using equalized links
- Channel fixed power and router power need to be tackled

Latency vs BW – no VC vs 4 VCs

Saturation throughput improves using VCs Small change in power at comparable throughput

Latency vs BW – no VC vs 4 VCs

Power vs BW – no VC vs 4 VCs, repeater inserted pipelined

Power vs BW– no VC case, repeater inserted pipelined vs 4 VCs, equalized

Power split

VCs an indirect way to increase impact of channel power

Narrower networks, lower power for same throughput, keep utilization high
 ISSCC 2010 Tutorial

Power-Bandwidth tradeoff

Power-Bandwidth tradeoff

Summary

Mesh

CMesh

Clos

Crossbar

- Cross-cut approach for NOC design needed
 - Application mapping
 - Topology, Routing, Flow-control
 - Improving Routers and Channels equally important
 - Opportunities for new technologies
 - New circuit design (low-swing, equalized)
 - System DVFS, bus-encoding

To probe further (tools and sites)

- Orion Router Design Exploration Tool
 - http://www.princeton.edu/~peh/orion.html
- Router RTLs
 - Bob Mullins' Netmaker
 (<u>http://www-dyn.cl.cam.ac.uk/~rdm34/wiki</u>)
- Network simulators
 - Garnet (<u>http://www.princeton.edu/~niketa/garnet.html</u>)
 - Booksim (<u>http://nocs.stanford.edu/booksim.html</u>)

Integrated Systems Group at MIT (vlada@mit.edu) http://www.rle.mit.edu/isg/

Bibliography

- [Agarwal09] N. Agarwal, T. Krishna, L.-S. Peh and N. K. Jha, "GARNET: A Detailed On-Chip Network Model inside a Full-System Simulator "In Proceedings of IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Boston, Massachusetts, April 2009.
- [Anders08] M. Anders, H. Kaul, M. Hansson, R. Krishnamurthy, S. Borkar "A 2.9Tb/s 8W 64-Core Circuit-switched Networkon-Chip in 45nm CMOS," *European Solid-State Circuits Conference, 2008*.
- [Balfour06] J. Balfour and W. Dally ,"Design tradeoffs for tiled CMP on-chip networks.," Int'l Conf. on Supercomputing, June 2006.
- [Bell08] S. Bell et al "TILE64TM Processor: A 64-Core SoC with Mesh Interconnect," ISSCC pp. 88-598, 2008.
- [Benini02] L. Benini and G. de Micheli, "Networks on Chips: A New SoC Paradigm," in Computer Magazine, vol. 35 issue 1, pp. 70-78, 2002.
- [Clos53] C. Clos. A study of non-blocking switching networks. Bell System Technical Journal, 32:406–424, 1953.
- [Dally92] W. J. Dally, "Virtual-channel flow control," IEEE Transactions on Parallel and Distributed Systems, vol. 3, no. 2, pp. 194–205, 1992.
- [Dally01] W. J. Dally and B. Towles, "Route Packets, Not Wires: On-chip Interconnection Networks," DAC 2001, pp. 684-689.
- [Dally04] W. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004.
- [Gunn06] C. Gunn, "CMOS photonics for high-speed interconnects,"IEEE Micro, 26(2):58–66, Mar./Apr. 2006.
- [Joshi09a] A. Joshi, et al, "Silicon-Photonic Clos Networks for Global On-Chip Communication," 3rd ACM/IEEE International Symposium on Networks-on-Chip, San Diego, CA, pp. 124-133, May 2008.
- [Joshi09b] Joshi, A., B. Kim, and V. Stojanović,"Designing Energy-efficient Low-diameter On-chip Networks with Equalized Interconnects," *IEEE Symposium on High-Performance Interconnects,* New York, NY, 10 pages, August 2009.
- [Kahng09] A. Kahng, B. Li, L-S. Peh and K. Samadi "ORION 2.0: A Fast and Accurate NoC Power and Area Model for Early-Stage Design Space Exploration" in Proceedings of *Design Automation and Test in Europe (DATE), Nice, France, April* 2009

Bibliography

- [Kim07] J. Kim, J. Balfour, and W. J. Dally, "Flattened butterfly topology for on-chip networks," in Proc. 40th Annual IEEE/ACM International Symposium on Microarchitecture MICRO 2007, 1–5 Dec. 2007, pp. 172–182
- [Kim08] B. Kim and V. Stojanovic "Characterization of equalized and repeated interconnects for NoC applications," IEEE Design and Test of Computers, 25(5):430–439, 2008.
- [Kim09] B. Kim and V. Stojanovic, "A 4Gb/s/ch 356fJ/b 10mm equalized on-chip interconnect with nonlinear charge injecting

transmitter filter and transimpedance receiver in 90nm cmos technology," in Proc. Digest of Technical Papers. IEEE International Solid-State Circuits Conference ISSCC 2009, pp. 66–67, 8–12 Feb. 2009.

- [Kirman06] N. Kirman et al "Leveraging optical technology in future bus-based chip multiprocessors," Int'l Symp. on Microarchitecture, Dec. 2006.
- [Krishna08] T.Krishna, A. Kumar, P. Chiang, M. Erez and L-S. Peh, "NoC with Near-Ideal Express Virtual Channels Using Global-Line Communication "In Proceedings of Hot Interconnects (HOTI), Stanford, California, August 2008.
- [Kumar08] A. Kumar, L-S. Peh and N. Jha, " Token Flow Control ," in Proceedings of 41st International Symposium on Microarchitecture (MICRO), Lake Como, Italy, November 2008.
- [Mensink07] E. Mensink et al., "A 0.28pJ/b 2Gb/s/ch transceiver in 90nm CMOS for 10 mm on-chip interconnects," in Proc. Digest of Technical Papers. IEEE International Solid-State Circuits Conference ISSCC 2007, 11–15 Feb. 2007, pp. 414–612.
- [Nawathe08] U. Nawathe et al., "Implementation of an 8-core, 64-thread, power-efficient SPARC server on a chip," IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 6–20, Jan. 2008
- [Orcutt08] J. Orcutt et al "Demonstration of an electronic photonic integrated circuit in a commercial scaled bulk CMOS process," Conf. on Lasers and Electro-Optics, May 2008.

Bibliography

- [Pan09] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary, "Firefly: illuminating future network-on-chip with nanophotonics," *SIGARCH Comput. Archit. News* 37, pp. 429-440, Jun. 2009.
- [Patel09] S. Patel "Rainbow Falls: Sun's Next Generation CMT Processor", Hot Chips 2009.
- [Petracca08] M. Petracca, B. G. Lee, K. Bergman and L.P. Carloni, "Design Exploration of Optical Interconnection Networks for Chip Multiprocessors," 16th Annual IEEE Symposium on High-Performance Interconnects (Hotl), 2008
- [Psota07] J. Psota et al "ATAC: On-chip optical networks for multicore processors," Boston Area Architecture Workshop, Jan. 2007.
- [Shacham07] A. Shacham et al "Photonic NoC for DMA communications in chip multiprocessors," Symp. on High Performance Interconnects, Aug. 2007.

[Shamim09] I. Shamim, Energy Efficient Links and Routers for Multi-Processor Computer Systems, M.S. Thesis, MIT

- [Vangal07] S. Vangal et al., "80-tile 1.28 TFlops network-on chip in 65 nm CMOS," Int'l Solid-State Circuits Conf., Feb. 2007
- [Vantrease08] D. Vantrease et al "Corona: System implications of emerging nanophotonic technology," Int'l Conf. on Computer Architecture, Jun 2008.
- [Wang03] H. Wang, L. Peh, and S. Malik, "Power-driven design of router microarchitectures in on-chip networks," *IEEE Micro-36, pp.105–116, 2003*
- [Wentzlaff07] D. Wentzlaff et al "On-chip Interconnection Architecture of the Tile Processor," *IEEE Micro*, Volume 27, no. 5, pp.15 31, Sept.-Oct. 2007.