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Abstract—The aim of this work is to design a fractional-Order PIα controller for Integer-order type systems so that to improve the performance 
and robustness of integer-order type systems. The design of FO-PIα controller in the sense that good set-point tracking and load disturbance 
rejection is minimized by increasing fractional-order element “α” putting constraint on peak sensitivity function. The method used in this paper is 
generalized method i.e. Fractional-Ms Constrained integral gain optimization (F-MIGO). In this method it is assumed that model of the plant is 
given to us. The method is very effective and simple to use. At the end comparison between fractional PIα and classical PI controllers is give. 

Index Terms—Fractional order Calculus; Integer order systems; constraint optimization; robust controller design

——————————      —————————— 
 

 

1 INTRODUCTION 
The Classical PID (Proportional+Integral+Derivative) 

controllers are dominated the industry because of their 
performance, robustness to system’s variations, simplicity 
and available of different kinds of tuning rules [1]. Now-a-
days 90% of industrial closed loops contain PID/PI 
controllers [2,3]. In the field of dynamic research 
improvement in the performance is the primary concern.   

In the last few years Fractional Calculus (FC) opened the 
doors for research [4,5,6] and its applications in the field of 
control systems [7,8]. Fractional calculus became very hot 
topic in these years in the field of control [9,10,11,12] for 
fractional order controller design for integer order systems 
as well as for fractional order systems [13]. Fractional 
Calculus provides us powerful tool for memory and 
hereditary effects in various materials [14]. 

Clearly, in closed loop control systems we have 
four combinations: (1) integer-order (IO) controllers for 
integer-order (IO) systems; (2) integer-order (IO) controllers 
for fractional-order (FO) systems; (3) fractional-order (FO) 
controllers for integer-order (IO) systems; (4) fractional-
order (FO) controllers for fractional-order (FO) systems. In 
this paper fractional order proportional integral controller 
is designed for integer order systems to improve the 
performance and robustness of integer order systems. The 
method used in this paper to design fractional order 
proportional integral controller is the generalized form of 
MIGO which is used in [15,16].  

As shown in [15,16] that increase fractional order 
“α” putting constraint on peak sensitivity function “Ms” 
load disturbance rejection can be minimized. The 
assumption of this method is that the model of the plant is 
already provided to us. By using the same method an 

integer order proportional integral order (IOPI) can be 
designed. At the end comparison between fractional order 
proportional integral controller (FOPI) and integer order 
proportional integral controller (IOPI) is also made. 

The rest of this paper is organized as follows. In section 
II, the introduction of fractional calculus is given. In section 
III, the design goal and problem is formulated. In section IV, 
the design procedure is considered. In section V, the 
simulation results and comparison is established. 
Conclusion and future work is given in section VI, and at 
the end references will close the paper. 

2 INTRODUCTION OF FRACTIONAL CALCULUS 
The origin of fractional calculus is old as classical calculus. 
The history of fractional calculus began at the end of 17th 
century with the exchange of letters between two most 
prominent mathematicians at that time i.e. Leibniz and 
L’Hobital. In particular, in one of those letters, Leibniz 
wrote a letter to L’Hobital that and asked a question [17] 
“Can the integer order be generalized to non-integer 
orders”. L’Hobital became very surprised and replied with 
another question “What if the order will be 1/2?. Leibniz 
replied in a letter dated 30th September 1695 wrote the very 
famous words that “One day it will led to paradox from 
which useful results can be drawn”.  

Now-a-days, on the basis of those letters many 
mathematicians and researchers agreed that exact birth of 
fractional calculus is 30th September 1695 and Gottfried 
Leibniz is father of fractional calculus [18]. 
2.1 Definition of Fractional Calculus: 
The fractional-order fundamental differential arithmetic 
operator “ a𝐷𝑡

𝑞 “ is introduced as follows [19]: 
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a𝐷𝑡𝑟 =�

𝑑𝑟

𝑑𝑡𝑟
               ,𝑅𝑒(𝑟 > 0)

1                   ,𝑅𝑒(𝑟 = 0)
∫ (𝑑𝜏)−𝑟    ,𝑅𝑒(𝑟 < 0)𝑡
𝑎

�   (2.1)  

Where ‘r’ is the fractional order and can be complex and 
real number. The constants ‘a’ and ‘t’ are initial conditions. 
There are commonly three definitions used for fractional 
differentiations and integrations i.e. 

The Grunwald-Letnikov (GL) definition is given 
below: 

a𝐷𝑡𝑟𝑓(𝑡) = limℎ ℎ−𝑟 ∑ (−1)𝑗 �
𝑟
𝑗� 𝑓(𝑡 − 𝑗ℎ)

[𝑡−𝑎]
ℎ

𝑗=0  (2.2) 
Where [.] is an integer part. 
The Riemann-Liouville (RL) definition is given below: 
 
a𝐷𝑡𝑟𝑓(𝑡)= 1

Г(𝑛−𝑟)
𝑑𝑛

𝑑𝑡𝑛
∫ 𝑓(𝜏)

(𝑡−𝜏)𝑟−𝑛+1
𝑑𝜏𝑡

𝑎    (2.3) 

 
for (n-1<r<n) and where Г(.) is the Gamma function. 
The Caputo definition can be written as: 
 
a𝐷𝑡𝑟𝑓(𝑡) = 1

Г(𝑛−𝑟)
∫ 𝑓𝑛(𝜏)

(𝑡−𝜏)𝑟−𝑛+1
𝑑𝜏𝑡

𝑎    (2.4) 
for (n-1<r<n). 

These above definitions are the key of fractional order 
control systems. These equations provide and awesome 
instruments for the description of memory and hereditary 
properties of many materials and process dynamics [20]. 

Comparison between these three fractional derivatives and 
integrals shows that, the improvement of Grunwald-
Letnikov definition are Riemann-Liouville and Caputo 
definitions. The fractional derivative calculation can be 
simplified by using Riemann-Letnikiv definition and with 
the help of Caputo definintion the Laplace transform can be 
more summarized for the discussion of fractional 
differential equations. 

3 THE DESIGN GOAL 
The design aim of this paper is that load disturbances 
rejection is minimized and good set-point tracking. Load 
disturbances and set-point signals are very low frequency 
signals and their attenuation is the primary task of any 
controller. 
 It is shown in [21] that maximizing integral gain Ki 
the load disturbance at the output can be minimized. Load 
disturbance is defined by  
 
 𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡∞

0    (3.1) 
 
 𝐼𝐸 = ∫ 𝑒(𝑡)𝑑𝑡∞

0     (3.2) 

It is proved in [21] that IE= 1
𝐾𝑖

 , thus maximizing integral 

gain reduces the effect of load disturbance at the output. 

3.1 THE DESIGN PROBLEM 
The design problem can be stated as: 
“Maximize Ki to obtain parameters of Proportional Integral 
(PIα) so that the closed loop system if and only if nyquist 
curve lies outside the circle with centre at s=-C and with 
radius R”. 

4         THE DESIGN PROCEDURE 
The design procedure comprises the following steps. 
 
4.1 The design parameters:  
The defined loop transfer function of typical plant is  
P(s)=C(s)G(s), where C(s) is the controller transfer function 
and G(s) is the plant transfer function. Now we define two 
functions for load disturbance rejection and set-point 
tracking. 
 
 𝑆(𝑠) = 1

1+𝐶(𝑠)𝐺(𝑠)
    (4.1) 

 
 𝑇(𝑠) =  𝐶(𝑠)𝐺(𝑠)

1+𝐶(𝑠)𝐺(𝑠)
    (4.2) 

Where equation (4.1) is called sensitivity function and it 
determines the robustness to noises and unmodeled 
systems dynamics and equation (4.2) is called 
complementary sensitivity function and it is used to 
determine the load disturbance rejection at output and 
good set-point tracking. 
Following fig. shows the bode graph of sensitivity and 
complementary functions of typical system. 
 

 
Fig. 1: Bode plots of sensitivity function and complementary function of 
typical system.(Blue for S(s) and Green for T(s). 
 
The maximum values of these functions are given below. 
 𝑀𝑠 = 𝑚𝑎𝑥0<𝜔<∞ |𝑆(𝑗𝜔)|   (4.3) 
And 𝑀𝑝 = 𝑚𝑎𝑥0<𝜔<∞ |𝑇(𝑗𝜔)|   (4.4) 
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The concept of Ms and Mp is defined by following fig. 2. 
 

 
Fig. 2: Illustration of Ms and Mp and unit circle for a typical system. 

Figure 2 shows that the centre and radius of typical 
system is as follows: 

To overcome design problem Ms and Mp should encloses 
the circle defined by centre and radius. 

 𝐶 = 𝑀𝑠−𝑀𝑠𝑀𝑝−2𝑀𝑠𝑀𝑝
2+𝑀𝑝

2−1

2𝑀𝑠(𝑀𝑝
2−1)

   (4.5) 

 𝑅 = 𝑀𝑠−𝑀𝑝−1

2𝑀𝑠(𝑀𝑝
2−1)

    (4.6) 

Let us now define a non-linear function: 

𝑓(𝐾,𝐾𝑖 , ,𝜔,𝛼) = |𝐶 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)|2 P

 (4.7) 

sensitivity constraint can be defined as follows: 

 𝑓(𝐾,𝐾𝑖 , ,𝜔,𝛼) ≥ 𝑅2   (4.8) 

where C(j𝜔) is the transfer function of PIα controller which 
is given below in frequency domain: 

𝐶(𝑗𝜔) = 𝐾 + 𝐾𝑖
𝑆𝛼

 ,  𝑠𝛼 = (𝑗𝜔) (4.9) 

𝐾 = Proportional gain of controller. 

𝐾𝑖 = Integral gain of controller. 

In time domain controller’s transfer function is given below: 

𝑢(𝑡) = 𝐾�𝑠𝑝(𝑡) − 𝑦(𝑡)� +𝐾𝑖𝐷𝑡−𝛼(𝑠𝑝(𝑡)− 𝑦(𝑡)) (4.10) 

Where u(t) is control input, sp(t) is set-point signal, y(t) is 
control output, 𝐾is the proportional gain of controller, 𝐾𝑖 is 

the integral gain of controller, 𝐷𝑡−𝛼  is the fractional order 
operator as explained in [17]. 

The plant transfer function is: 

G(j𝜔)=𝑥(𝜔) + 𝑗𝑦(𝜔)   (4.11) 

(j𝜔)α=𝑒𝑗𝜋𝛼/2𝜔𝛼= 𝜔𝛼 𝑐𝑜𝑠 𝛽 + 𝑗𝜔𝛼 𝑠𝑖𝑛 𝛽  (4.12) 

Where  𝛾 = 𝜋𝛼
2

,  

𝑥(𝜔) = 𝑧(𝜔) 𝑐𝑜𝑠𝜑 𝜔, 𝑦(𝜔) = 𝑧(𝜔) 𝑠𝑖𝑛 𝜑𝜔 and  

𝑍2(𝜔) =𝑥2(𝜔) + 𝑦2(𝜔) , 

Putting equation (4.9) and (4.11) in equation (4.7) we have 
following equation of non-linear type. 

𝑓 = |𝐶 + (𝐾 + 𝐾𝑖
(𝑗𝜔)𝛼)(𝑥(𝜔) + 𝑗𝑦(𝜔)|2  (4.13) 

𝑓 = |𝐶 + (𝐾 − 𝑗𝛼 𝐾𝑖
𝜔𝛼)(𝑥(𝜔) + 𝑗𝑦(𝜔)|2  (4.14) 

𝑓 = |𝐶 +𝐾𝑥(𝜔) − 𝑗𝛼 𝐾𝑖
𝜔𝛼 𝑥(𝜔) − 𝑗(𝑗𝛼 𝐾𝑖

𝜔𝛼 𝑦(𝜔) −
        𝐾𝑝𝑦(𝜔))|2 ≥ 𝑅2    (4.15) 

Equation (4.15) contains real and imaginary parts so 
solving above equation we get: 

𝑓 = |𝐶2 +𝐾2𝑥2(𝜔) + 𝑗2𝛼 𝐾𝑖
2

𝜔2𝜔 𝑥2(𝜔) +         2𝐶𝐾𝑥(𝜔) −

2𝐶𝑗𝛼 𝐾𝑖
𝜔𝛼 𝑥(𝜔) −         2𝑗𝛼 𝐾𝐾𝑖

𝜔𝛼 𝑥2(𝜔) + 𝑗2𝛼 𝐾𝑖
2

𝜔2𝜔 𝑦2(𝜔)−

        2𝑗𝛼 𝐾𝐾𝑖
𝜔𝛼 𝑦2(𝜔) +𝐾2𝑦2(𝜔)|2 ≥ 𝑅2  

      (4.16) 

𝑓 = (𝐶2 +𝐾2𝑍2(𝜔) + 2𝐶𝐾𝑥(𝜔) + 𝑗2𝛼 𝐾𝑖
2𝑍2(𝜔)

𝜔2𝛼 −

         2𝑗𝛼 𝐾𝐾𝑖𝑍2(𝜔)
𝜔𝛼 − 2𝐶𝑗𝛼 𝐾𝑖𝑥(𝜔)

𝜔𝛼 ) ≥ 𝑅2  (4.17) 

Where, 𝑧2(𝜔) =𝑥2(𝜔) + 𝑦2(𝜔)  and  

(𝑗𝜔)𝛼 = 𝑒𝑗𝜋𝛼/2𝜔𝛼 = 𝜔𝛼 𝑐𝑜𝑠 𝛽 + 𝑗𝜔𝛼 𝑠𝑖𝑛 𝛽 

Equation (4.17) is the simplified optimization problem for 
sensitivity constraint. 

Since, optimization problem as explained earlier is that 
maximizing integral gain 𝐾𝑖 , defined by following 
equations: 

𝑓 = (𝐾,𝐾𝑖 ,𝜔,𝛼) = 𝑅2, 𝜕𝑓
𝜕𝜔

(𝐾,𝐾𝑖 ,𝜔,𝛼)  (4.18) 
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The above equation (4.18) shows that the derivative of 
function  𝑓 with respect to frequency is zero i.e. in the case 
of continuous derivative we have following equations. 

𝑑𝑓 = 𝜕𝑓
𝜕𝐾
𝑑𝐾 + 𝜕𝑓

𝜕𝐾𝑖
𝑑𝐾𝑖 + 𝜕𝑓

𝜕𝜔
𝑑𝜔 = 0  (4.19) 

In this case fractional order α is kept constant. From 
equation (4.19) we observe following results: 

1. From (4.18) we have 𝜕𝑓
𝜕𝜔

= 0. 

2. For maximum 𝐾𝑖 ,𝑑𝐾𝑖 = 0. 

3. And also for random variations 𝜕𝑓
𝜕𝐾

= 0. 

Hence for the above explained conditions the maximum 
of 𝐾𝑖 occur at the point of continuous derivative which is 
given below: 

𝑓 = (𝐾,𝐾𝑖 ,𝜔,𝛼) = 𝑅2, 𝜕𝑓
𝜕𝜔

(𝐾,𝐾𝑖 ,𝜔,𝛼) = 0.     
𝜕𝑓
𝜕𝐾

(𝐾,𝐾𝑖 ,𝜔,𝛼) = 0.    (4.20) 

The above three equations are non-linear and the solution 
of these non-linear equations can be found by the method 
so called Newton-Raphson as explained in [21].  

From equation (4.17) we have 

𝑓 = (𝐶2 +𝐾2𝑍2(𝜔) + 2𝐶𝐾𝑥(𝜔) + 𝑗2𝛼 𝐾𝑖
2𝑍2(𝜔)

𝜔2𝛼 −

         2𝑗𝛼 𝐾𝐾𝑖𝑍2(𝜔)
𝜔𝛼 − 2𝐶𝑗𝛼 𝐾𝑖𝑥(𝜔)

𝜔𝛼 ) = 𝑅2   (4.21) 

Putting 
(𝑗𝜔)𝛼 = 𝑒𝑗𝜋𝛼/2𝜔𝛼 = 𝜔𝛼 𝑐𝑜𝑠 𝛽 + 𝑗𝜔𝛼 𝑠𝑖𝑛 𝛽 

In (4.21) we have 

𝑓 =
(𝐶2 + 𝐾2𝑧2(𝜔) + 2𝐶𝐾𝑥(𝜔) + 𝐾𝑖

2𝑍2(𝜔)

𝜔2𝛼 + 2𝐾𝐾𝑖𝑍2(𝜔)𝑐𝑜𝑠 𝛽
𝜔𝛼 +

2𝐶𝐾𝑖(𝑥(𝜔) 𝑐𝑜𝑠𝛽+𝑦(𝜔) 𝑠𝑖𝑛𝛽)
𝜔𝛼 ) = 𝑅2    (4.22) 

𝜕𝑓
𝜕𝜔

=

2𝐾𝑟𝑟` + 2𝐶𝐾𝑎𝑥` +𝐾𝑖2 �
𝑧2

𝜔2𝛼�
`

+           2𝐾𝐾𝑖 𝑐𝑜𝑠 𝛽 �
𝑍2

𝜔𝛼�
`
+

2𝐶𝐾𝑖 �
𝑥
𝜔𝛼�

`
𝑐𝑜𝑠 𝛽 +           2𝐶𝐾𝑖 �

𝑦
𝜔𝛼�

`
𝑠𝑖𝑛 𝛽 = 0  

      (4.23) 

𝜕𝑓
𝜕𝐾

= 2𝐾𝑍2 + 2𝐶𝑥(𝜔) + 2𝑍2𝐾𝑖 𝑐𝑜𝑠𝛽
𝜔𝛼 = 0  (4.24) 

In the above equation (4.23) (`) means derivative with 
respect to the frequency in radians.  

Using equations (4.22-4.24) we can find controller gains 
which are given below. 

𝐾𝑖 = − 𝑅𝜔𝛼

𝑍 𝑠𝑖𝑛𝛽
− 𝐶𝑦𝜔𝛼

𝑍2 𝑠𝑖𝑛 𝛽
  (4.25) 

𝐾 = 𝑅 𝑐𝑜𝑠 𝛽
𝑠𝑖𝑛𝛽

+ 𝐶𝑦
𝑍2

𝑐𝑜𝑠 𝛽
𝑠𝑖𝑛𝛽

− 𝐶𝑥
𝑍2

  (4.26) 

Since equations (4.25), (4.26) are the solutions of 
controller’s gains and these are dependent on frequency 
“𝜔”, so we need to find this frequency. Putting equations 
(4.25) and (4.26) in (4.24) we get final solution for our 
optimization problem. 

𝜕𝑓
𝜕𝜔

= 2𝑅2

𝑍
𝑍` + 4𝑅𝐶𝑦

𝑍2
𝑍` − 2𝛼𝑅2

𝜔
− 2𝛼𝑅𝐶𝑦

𝑍𝜔
− 2𝑅𝐶

𝑍
𝑦 ` (4.27) 

Where ` shows the derivative with respect to the frequency 
“𝜔”. Equation (4.27) can be simplified as explained in [21] 
to have simplified algebraic expression given below. 

𝑇(𝜔) = 𝜕𝑓
𝜕𝜔

= 2𝑅 ��𝐶 𝑦
𝑍

+ 𝑅� �𝑍
`

𝑍
− 𝛼

𝜔
� − 𝐶 �𝑦

𝑍
� `� (4.28) 

Now we are at the position to solve equation (4.28) to find 
optimal value of “𝜔𝑜” at which integral gain “𝐾𝑖 ” has 
maximum value, and after that we can compute values of 
controller’s gains 𝐾𝑖 ,𝑎𝑛𝑑 𝐾  by using equations (4.25) and 
(4.26) respectively. 

Hence, now we apply this procedure on the test batch, so 
that we can conclude that fractional order controllers are 
superior to the integer order controllers. 

4.2 Test Batch: 
The test batch is used so that the developed method is 
applied and conclude the results and check the validity of 
developed procedure. First of all choice for the test batch 
was the set of systems given in [22]. However, most of the 
systems can be approximated by the fractional order plus 
delay time (FOPDT) model, whose structure is given below: 
  
 𝐺(𝑠) = 𝑘 𝑒−𝐿𝑠

𝑇𝑠+1
    (4.29) 

 
Where 𝑘 is process gain which is assumed to be unity for all 
systems; L and T are delay and time constant of the system, 
respectively. The FOPDT models are qualify by a very 
important parameter which is relative dead time of the 
system which is given below: 
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 𝜏 = 𝐿
𝐿+𝑇

     (4.30) 
Where parameter 𝜏 ranges from 0 to 1. There are two type 
of systems here that depends upon on𝐿 and 𝑇i.e. “Delay 
Dominated” and “Lag Dominated” if 𝐿 ≫ 𝑇 then it is delay 
dominated and if 𝑇 ≫ 𝐿 then it is termed as lag dominated.  
 

5 SIMULATION AND COMPARISON 
In this section, we took some process and applied this 
method on these systems and show their results. Some 
systems are listed below: 
 

𝐺1(𝑠) =
1

0.05𝑠 + 1
𝑒−𝑠 ,     𝐺2(𝑠) =

1
(𝑠 + 1)3 𝑒

−15𝑠 

𝐺3(𝑠) =
1

(1 + 𝑠)(1 + 0.2𝑠)(1 + 0.04𝑠)(1 + .008𝑠) 

 𝐺4(𝑠) = 1
(𝑠+1)(0.2𝑠+1) 

Thus from the above four systems we have 2 delay 
dominated systems 𝐺1(𝑠)  and 𝐺2(𝑠) , and two lag 
dominated systems 𝐺3(𝑠) and 𝐺4(𝑠). 

TABLE 1 

FOPDT parameters for systems 𝐺1(𝑠) to 𝐺4(𝑠) 

System 𝑘 𝐿 𝑇 𝜏 Type 

𝐺1(𝑠) 1 1 0.09 0.92 Delay 
Dominant 

𝐺2(𝑠) 1 16.23 1.76 0.9 Delay 
Dominant 

𝐺3(𝑠) 1 0.1436 2.65 0.051 Lag 
Dominant 

𝐺4(𝑠) 1 0.105 1.11 0.09 Lag 
Dominant 

Following table shows the controller parameters for the above 
four systems. In this table controller’s gains and Integral 
Squared Error (ISE) and maximum sensitivity is given using 
F-MIGO algorithm and compare it with other tuning rules. 

 

 

TABLE 2 

 Parameters of controller for given systems 

 𝐺1(𝑠) 𝐺2(𝑠) 

Method 𝛼 𝐾    𝐾𝑖    𝑀𝑠  ISE 𝐾     𝐾𝑖     𝑀𝑠    ISE 

FMIGO 
 

1.1 .32 .53  1.4  1.32 .33   .03    1.4    20.8 

NZ 1 .41 .24  1.7    2 .42   .014  1.7    32.3 

  𝐺3(𝑠) 𝐺4(𝑠) 

Method 𝛼 𝐾    𝐾𝑖    𝑀𝑠  ISE 𝐾    𝐾𝑖    𝑀𝑠    ISE 

FMIGO .7 5.8   5.7   1.4 .29 3.4  7.6   1.4    .2 

NZ 1 11.8 26.3  2.4  .3 6.9  21.3  2.3   .2 

Following figures are the simulation results of four above 
mentioned systems: 

 

Fig.3 Delay Dominant system response 𝐺1(𝑠) 
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Fig. 4 Delay Dominant system response 𝐺2(𝑠) 

 

Fig. 5 Lag Dominant system response 𝐺3(𝑠) 

 

Fig. 6 Lag Dominant system response 𝐺4(𝑠) 

From figures 3 to 6 it is shown that step response and load 
disturbance response of F-MIGO and NZ method is given 
and compared. Both graphs show that fractional order 
controller is more robust and performance wise better that 
integer order controller. 

Figures 3 and 4 are the delay dominant systems and these 
responses show that F-MIGO controllers systems have 
better response in comparison with that of integer order 
systems. 

Figures 5 and 6 are the lag dominant systems in these 
responses we can see that step response and load 
disturbance responses are better that integer order 
controller scheme. 

6 CONCLUSION AND FUTURE WORKS: 
The method proposed in this paper is that the fractional 
order controllers for integer order systems show that the 
responses have better closed loop performance than the 
integer order controllers for integer order systems. 
Fractional order controllers and systems provide the 
excellent tool for the description of system’s memory and 
hereditary properties that’s why fractional order controllers 
and systems have become hot topic in the dynamical 
research field since last decade.  
With the use of fractional order controllers we can get 
minimum steady state error and good closed loop 
performance of integer order and fractional order systems. 
In future work design of fractional order 𝑃𝐼𝛼𝐷𝛽 can be 
considered for both integer order and fractional order 
systems as well. 
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