Design of Mat/Raft Foundation

- Mat or raft foundation is a large concrete slab supporting several columns in two or more rows.
- It is used where the supporting soil has low bearing capacity.
- The bearing capacity increased by combining all individual footings in to one mat -since bearing capacity is proportional to width and depth of foundations.
- In addition to increasing the bearing capacity, mat foundations tend to bridge over irregularities of the soil and the average settlement does not approach the extreme values of isolated footings.
- Thus mat foundations are often used for supporting structures that are sensitive to differential settlement.
- Design of uniform mat
- Design Assumptions
- mat is infinitely rigid
- planner soil pressure distribution under mat
- Design Procedure
I. Determine the line of action of the resultant of all the loads acting on the mat
II. Determine the contact pressure distribution as under
- If the resultant passes through the center of gravity of the mat, the contact pressure is given by

$$
\sigma=\frac{Q}{A}
$$

- If the resultant has an eccentricity of e_{x} and e_{y} in the x and y direction

$$
\sigma_{\max \min }=\frac{Q}{A} \pm \frac{Q e_{x}}{I y y} x \pm \frac{Q e_{y}}{I x x} y
$$

The maximum contact pressure should be less than the allowable soil pressure

- Divide the slab mat into strips in x and y directions. Each strip is assumed to act as independent beam subjected to the contact pressure and the columns loads.
- Determine the modified column loads
- Draw the shear force and bending moment diagrams for each strip.
- Select depth of mat for shear requirement
- Select steel reinforcement for moment requirement

- Example

- A mat foundation is to be design by the conventional method (rigid method) for the loadings shown in Fig. below.
- All columns are $40 \times 40 \mathrm{~cm}$
- Ultimate soil bearing pressure , $\mathrm{q}_{\mathrm{ult}}=100 \mathrm{kPa}$
- $f_{y k}=300 \mathrm{MPa} \Rightarrow f_{y d}=300 / 1.15=260.87 \mathrm{Mpa}$
- $\mathrm{C} 25 \Rightarrow \mathrm{f}_{\mathrm{ck}}=20 \mathrm{MPa} \Rightarrow \mathrm{f}_{\mathrm{ctk}}=1.5 \mathrm{MPa}$,

- Location of c.g. of loads
- $\sum \mathrm{P}=(600+750+600) * 2+(1800+1800+1320) * 2=13740 \mathrm{kN}$
- $13740 \overline{\mathrm{X}}=(750+1800+1800+750) * 5+(600+1320+1320+600) * 10$

$$
\bar{x}=4.65 \mathrm{~m}
$$

$$
e_{x}=5-4.65=0.35
$$

$$
X^{\prime}=5+0.35=5.35 m
$$

- $B_{\text {min }}=2 *(5.35+0.20+0.15)=11.40 \mathrm{~m}$
- $13740 \overline{\mathrm{Y}}=(600+750+600) * 18+(1800+1800+1320) * 12+(1800$ $+1800+1320)^{*} 6$
$\bar{Y}=9 m$

$$
e_{y}=6+6 / 2-9=0
$$

- $L_{\text {min }}=2^{*}(9+0.20+0.15)=18.70 \mathrm{~m}$
- Dimension of Mat $11.40 \times 18.70 \mathrm{~m}$
- Actual contact pressure

$$
\sigma=\Sigma \mathrm{P} /(\mathrm{BL})=13740 /(11.40 * 18.70)=64.45 \mathrm{kPa}<\sigma_{\mathrm{ult}}=100 \mathrm{kPa}
$$

- Thickness of the mat
- Punching shear
- Punching shear under 1800 kN load

Take $d=0.70 \mathrm{~m}$ and $\rho=\rho_{\text {min }}=0.50 / \mathrm{f}_{\mathrm{yk}}=0.50 / 30$

$$
\begin{gathered}
\mathrm{k}_{1}=(1+50 \rho)=(1+50 * 0.0017)=1.085 \\
\mathrm{k}_{2}=1.6-\mathrm{d}=1.6-0.70=0.90, \text { Take } \mathrm{K}_{2}=1 \\
\mathrm{P}_{\mathrm{r}}=(0.85+0.4+1.105) 2+(0.4+3(0.70) \\
=7.21 \mathrm{~m}
\end{gathered}
$$

- Net shear force developed
- $V_{d}=1800-\sigma^{*}\left(2.355^{*} 2.50\right), \sigma=64.45 \mathrm{kP}$
- $\mathrm{V}_{\mathrm{d}}=1800-64.45 *\left(2.355^{*} 2.50\right)=1420.55 \mathrm{kN}$
- Punching shear resistance

$$
\mathrm{V}_{\text {up }}=0.25 \mathrm{f}_{\mathrm{ctd}} \mathrm{k}_{1} \mathrm{k}_{2} \mathrm{ud} \quad(\mathrm{MN})
$$

- $\mathrm{V}_{\text {up }}=0.25$ *1000* $1.085 * 1.00 * 7.21 * 0.70$ $=1369.00 \mathrm{kN}<\mathrm{V}_{\mathrm{d}} .$. NOT OK! Increase the depth

Take $\mathrm{d}=0.75 \mathrm{~m}$ and $\rho=\rho_{\min }=0.50 / \mathrm{f}_{\mathrm{yk}}=0.50 / 300=0.0017$

$$
\begin{gathered}
\mathrm{k}_{1}=(1+50 \rho)=(1+50 * 0.0017)=1.085 \\
\mathrm{k}_{2}=1.6-\mathrm{d}=1.6-0.75=0.85, \text { Take } \mathrm{K}_{2}=1 \\
\mathrm{P}_{\mathrm{r}}=(0.85+0.4+1.125) 2+(0.4+3(0.75) \\
=7.40 \mathrm{~m}
\end{gathered}
$$

- Net shear force developed
- $V_{d}=1800-\sigma^{*}\left(2.375^{*} 2.65\right), \sigma=64.45 \mathrm{kP}$
- $\mathrm{V}_{\mathrm{d}}=1800-64.45 *(2.375 * 2.65)=1394.37 \mathrm{kN}$
- Punching shear resistance

$$
V_{u p}=0.25 f_{c t d} k_{1} k_{2} u d \quad(M N)
$$

- $\mathrm{V}_{\text {up }}=0.25 * 1000 * 1.085 * 1.00 * 7.40 * 0.75$ $=1505.44 \mathrm{kN}>\mathrm{V}_{\mathrm{d}}$. . OK!
- Check punching shear under 1320kN

$$
P_{r}=(1.125+0.15+0.4) 2+(0.4+3(0.75))=6.00 \mathrm{~m}
$$

- Net shear force developed
- $\mathrm{V}_{\mathrm{d}}=1320-64.45^{*}\left(1.675^{*} 2.65\right)=1033.92 \mathrm{kN}$
- Punching shear resistance

$$
V_{\text {up }}=0.25 f_{\text {ctd }} \mathrm{k}_{1} \mathrm{k}_{2} \mathrm{ud}
$$

(MN)

- $\mathrm{V}_{\text {up }}=0.25 * 1000 * 1.085 * 1.00 * 6.00 * 0.75$ $=1220.63 \mathrm{kN}>\mathrm{V}_{\mathrm{d}} .$. OK!
- Check punching shear under 600kN
- $\quad P_{r}=(1.125+0.15+0.4)+(1.125+0.15+0.4)$ $=3.35 \mathrm{~m}$
- Net shear force developed
- $V_{d}=600-64.45 *(1.675 * 1.675)=419.18 \mathrm{kN}$
- Punching shear resistance

$$
V_{\text {up }}=0.25 f_{\text {ctd }} k_{1} k_{2} u d
$$

(MN)

- $\mathrm{V}_{\text {up }}=0.25$ *1000* 1.085*1.00*3.35*0.75 $=681.52 \mathrm{kN}>\mathrm{V}_{\mathrm{d}} .$. OK!
- Soil reaction analysis:- Divide the slab mat into strips in x and y

- Strip A, $(64.45) * 3.55=228.80 \mathrm{kN} / \mathrm{m}$
- Strip B , $(64.45) * 5.00=322.25 \mathrm{kN} / \mathrm{m}$
- Strip C, $(64.45)^{*} 2.85=183.68 \mathrm{kN} / \mathrm{m}$
- Strip 1 \&Strip 4, $\quad(64.45) * 3.35=215.91 \mathrm{kN} / \mathrm{m}$
- Strip 2 \& Strip 3 (64.45)*6.00 = 386.70kN/m
- Shear force and Bending moment diagrams for each strip
- Strip A

$$
\sum_{i=1}^{4} P_{i}=600+1800+1800+600=4800 k N
$$

- $\Sigma R=228.80^{*} 18.70=4278.56 \mathrm{kN}$
- $\Sigma \mathrm{V}=\Sigma \mathrm{P}-\Sigma \mathrm{R}=4800-4278.56=521.44 \neq 0$
- Hence take average of $\Sigma \mathrm{P}$ and $\Sigma \mathrm{R}$
- l.e., $(4800+4278.56) / 2=4539.28 k N$
- $\sigma_{\text {avg }}=(4539.28) / 18.70=242.74 \mathrm{kN} / \mathrm{m}$
- $P_{\text {1avg }}=P_{4 \text { avg }}=(4539.28 / 4800) * 600=567.41 \mathrm{kN}$
- $P_{2 a v g}=P_{\text {3avg }}=(4539.28 / 4800) * 1800=1702.23 \mathrm{kN}$

- Strip 1 \&Strip 4, (64.45)*3.35 = $215.91 \mathrm{kN} / \mathrm{m}$

$\sum_{i=1}^{4} P_{i}=600+750+600=1950 k N$
- $\Sigma R=215.91 * 11.40=2461.37 \mathrm{kN}$
- $\Sigma \mathrm{V}=\Sigma \mathrm{P}-\Sigma \mathrm{R}=1950-2461.37=-511.37 \neq 0$
- Hence take average of $\Sigma \mathrm{P}$ and $\Sigma \mathrm{R}$
- I.e., $(1950+2461.37) / 2=2205.69 \mathrm{kN}$
- $\sigma_{\text {avg }}=(2205.69) / 11.40=193.48 \mathrm{kN} / \mathrm{m}$
- $P_{1 \text { avg }}=P_{3 \text { avg }}=(2205.69 / 1950) * 600=678.67 \mathrm{kN}$
- $P_{\text {2avg }}=(2205.69 / 1950) * 750=848.34 \mathrm{kN}$

