DESIGN OF NEW INTERLOCKING BRICKS MAKING MACHINE

MOHD RIDHWAN BIN RAMLI

A project report submitted in partial fullfilment of the requirements for the award of the degree of Master of Engineering (Mechanical – Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering, Universiti Teknologi Malaysia

> > MAY 2010

To my beloved my wife Zariwani Zakaria, dedicated supervisor Associate Professor Zainal Abidin Ahmad, Tn. Haji Fadhil Ahmad, Tn. Haji Azhar Zubir, and Mr. Helmi Ahya Ilmuddin . Thank for all your support .

ACKNOWLEDGEMENT

Alhamdullilah, thank to Allah, because of Him we are still here, breathing His air, pleasuring His entire gift in this world. And most of all, for giving me opportunities to learn His knowledge.

This work was supervised by Associates Professor Zainal Abidin Ahmad at the Universiti Teknologi Malaysia. I greatly appreciate all his help and guidance.

I am indebted to lovely wife, Zariwani Zakaria whose help, encouragement and patience I would never have gotten this thesis completed and who made it all worthwhile.

I would also like to thank my friends, Imran Ibrahim, Huzaimi A. Hamid, and Hamzah Mahmood for their support and encouragement and other help throughout. I am also grateful to Tuan Haji Fadhil Ahmad and Tuan Haji Azhar Zubir who also gave me a great deal of support and encouragement.

Finally, thank you to all the other people who have supported me during the course of this work. Thank You! Thank You!

ABSTRACT

This report presents a systematic approach to enhance the current design of interlocking brick machine. The design starts with data gathering from the literature review and information given by the interlocking bricks maker. Product specification is then being developed and refine to the specific points. The weaknesses of the current design are being analyzed by looking at the movement waste done by the machine operator and the machine limitation is being identified. The interlocking bricks are different from other normal bricks as it requires no mortar or cement for masonry work. This bricks interlocked with each other by means of positives and negative frogs on the top and bottom of the bricks which disallow the horizontal movement of bricks. Selection of best design is chosen from the several design concepts proposed. Finally, the drawing and detail design is produced according to standard and ready to be built by the machine developer.

ABSTRAK

Kertas ini mempersembahkan penyampaian sistematik tentang bagaimana untuk menambahbaikan rekabentuk sedia ada bagi mesin membuat bata. Pengubahsuaian dan penambahbaikan mesin yang sedia ada adalah bertujuan untuk meningkatkan produktiviti pengeluaran bata. Langkah pertama untuk membuat rekabentuk baru bagi projek ini adalah mengumpul maklumat dengan membuat kajian ilmiah tentang rekabentuk sedia ada dan mengumpul maklumat daripada pengeluar bata tempatan. Kelemahan yang terdapat pada mesin sedia ada diuji dengan melihat pergerakkan operator mesin dimana segala pergerakkan yang membazir akan dikenalpasti untuk penambahbaikan. Had penggunaan mesin juga akan dikenakpasti untuk dilakukan proses yang sama. Bata yang dihasilkan oleh mesin ini adalah berbeza dengan bata yang lain kerana penggunaannya tidak memerlukan semen untuk dilekatkan antara satu sama lain. Bata jenis ini mempunyai kunci positif dan negative yang membolehkan ianya melekat sendiri tanpa menggunakan semen. Setelah beberapa konsep rekabentuk dihasilkan, Cuma yang terbaik akan dipilih untuk diteruskan dengan menghasilkan lukisan kejuruteraan mengikut piawaiannya dan sedia digunakan oleh pengilang untuk menghasilkan mesin ini.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	X
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiii
	LIST OF SYMBOLS	xiii
	LIST OF APPENDICES	xiv

INTRODUCTION

1.0	Introduction	1
1.1	Objective	4
1.2	Scope of Work	5

-	

1

LITERATURE REVIEW

2.0	Introduction	7

2.1	Overview of the Previous Data on	
	Bricks Making Machine	7
2.2	Overview on the Previous Data Regarding	
	Research on the Interlocking Bricks	16

METHODOLOGY

3

4

3.0	Introd	uction	17
3.1	Conce	ept development phase	18
	3.1.1	Identifying customer needs	18
	3.1.2	Establishing target specifications	18
	3.1.3	Concept generation	19
	3.1.4	Concept selection	19
	3.1.5	Setting final specification	20
3.2	Conce	ept development	
	3.2.1	Identifying customer needs	21
	3.2.2	Establishing target specifications	22
	3.2.3	Concept generation	29
	3.2.4	Concept selection	39
3.3	Discu	ssion	43

RESULT AND DISCUSSION

4.1 Produ		ct architecture	
	4 .1.1	Detail Design	47
	4.1.2	Material and Process Selection	55
	4.1.3	Detail Drawing	65
4.2	Comp	onents analysis	77
	4.2.1	Top Structure	78
	4.2.2	Table Structure	80

	4.2.3	Compactor Structure	82
	4.2.4	Planar base Structure	84
4.3	Cost a	nalysis	86
	4.3.1	Guideline for Calculating	
		Bricks selling Price	86
	4.3.2	Machine component and	
		Raw Material Cost	90
4.4	Produ	ct design specification	101

5 CONCLUSION

5.1	Introduction	103
5.2	Conclusion	104
5.3	Future Development	105

REFERENCES

APPENDICES

vii

111

108

LIST OF TABLES

TABLE NO.

TITLE

PAGE

3.1	Customer statement and interpretation	21
3.2	Customer needs	22
3.3	Matrix table	28
3.4	Needs-matrix table	28
3.5	Concept 1 description	35
3.6	Concept 2 description	37
3.7	Concept 3 description	39
3.8	Concept screening matrix	40
3.9	Concept scoring matrix	42
4.1	Material and process selection	55
4.2	Hydraulic function diagram	71
4.3	Material cost	97
4.4	Screw and nuts cost	98
4.5	Mechanical system and equipment cost	99
4.6	Manufacturing cost	100
4.7	Final product design specification	101
5.1	Project 1 schedule	106
5.2	Project 2 schedule	107

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Type of Interlocking Brick	4
1.2	Flow chart represents the scope of work	6
2.1`	Brick making machine by Hans C. Sumpf	8
2.2	Brick making machine by Judson A. Hereford	9
2.3	Brick inverter machine by Nicholas Lyons and C.K. George	10
2.4	Brick making machine by C.D. Vernon	11
2.5	Brick making machine by Lewis Polak	12
2.6	Brick making machine by Donald P. Chennells	13
2.7	Small size bricks making machine	14
2.8	Medium size bricks making machine	15
2.9	Large size bricks making machine	16
3.1	Method of designing the interlocking brick making machine	20
3.2	Cement charging/loading	30
3.3	Operator leveled the cement	30
3.4	Device to turn the brick	30
3.5	Process of turn the brick	31
3.6	Before compaction process	31
3.7	Pressure loading on bricks	32
3.8	Operator manually pick-up the brick one by one	32
3.9	Operator manually insert lower mold plate one by one.	33
3.10	Concept 1-Cantilever concept (3D view)	34
3.11	Concept 1-Cantilever concept (Drawing view)	34
3.12	Concept 2-Center cylinder concept (3D view)	36
3.13	Concept 2-Center cylinder concept (Drawing view)	36

3.14	Concept 3-Horizontal compaction concept (3D view)	38
3.15	Concept 3-Horizontal compaction concept (Drawing view)	38
4.1	Total assembly design	48
4.2	Mold assembly design	49
4.3	Table structure assembly design	50
4.4	Top structure assembly design	51
4.5	Charging system assembly design	52
4.6	Inside control panel	53
4.7	Electrical Wiring Diagram	66
4.8	PLC Wiring Diagram	67
4.9	Indicator Lamp Wiring diagram	68
4.10	Hydraulic circuit diagram	69
4.11	Top structure stress analysis	78
4.12	Top structure displacement result	79
4.13	Table structure stress analysis	80
4.14	Table structure displacement result	81
4.15	Compactor structure stress analysis	82
4.16	Compactor structure displacement result	83
4.17	Planar Base structure stress analysis	84
4.18	Planar base structure displacement result	85
4.19	Total assembly drawing	92
4.20	Mold assembly	93
4.21	Table assembly drawing	94
4.22	Top structure assembly drawing	95
4.23	Charging system assembly drawing	96

LIST OF ABBREVIATIONS

CAE	-	Computer Aided Engineering
CATIA	-	Computer Aided Three-Dimentional Interactive Application
D	-	Bore Diameter
DfX	-	Design for Assembly, Manufacturing, and Environment
EDM	-	Electrical Discharge Machine
Kg	-	Kilogram
KN	-	KiloNewton
PDS	-	Product Design Specification
PLC	-	Programmable Logic Controller

LIST OF SYMBOLS

π	-	pi (3.1415)
Р	-	Pressure
°C	-	Degree Celsius
٥F	-	Degree Fahrenheit

LIST OF APPENDICES

APPENDIX NO.

TITLE

PAGE

A-1	Machine assembly drawing	112
A-2	Mold assembly drawing	113
A-3	Table assembly drawing	114
A-4	Top structure assembly drawing	115
A-5	Charging system assembly drawing	116
A-6	Brick pusher drawing	117
A-7	Charger drawing	118
A-8	Compactor drawing	119
A-9	Container drawing	120
A-10	Cover drawing	121
A-11	Hinge drawing	122
A-12	Middle bar drawing	123
A-13	Mold drawing	124
A-14	Movable base drawing	125
A-15	Planar base drawing	126
A-16	Horizontal plate structure drawing	127
A-17	Pusher base drawing	128
A-18	Pusher shaft drawing	129
A-19	Rod drawing	130
A-20	Slider base drawing	131
A-21	Slider compactor drawing	132

A-22	Slider pusher drawing	133
A-23	Structure table 1 drawing	134
A-24	Structure table 2 drawing	135
A-25	Structure base drawing	136
A-26	Table structure drawing	137
A-27	Top mold drawing	138
A-28	Top structure 1 drawing	139
A-29	Top structure 2 drawing	140
B-1	Hydraulic cylinder	141
B-2	Hydraulic power pack 1	142
B-3	Hydraulic power pack 2	143
B-4	Vibration motor	144
C-1	Socket hex cap screw	145
C-2	Bolt, washer and nut	146
C-3	Bearing bush	147
D	Steel; cost estimation	148

CHAPTER 1

INTRODUCTION

1.0 Introduction

No construction is possible without bricks. Since many centuries brick making has been practiced by human beings. Presently, bricks are easily made by using machines using new technologies. Generally two types of bricks are manufactured by using machines that are concrete block machines and clay brick machines. Different types of automatic machines use different techniques to make bricks. The raw materials used by the machines for making interlocking bricks are fly ash, sand lime, iron oxide, lime sludge, quarry wastes etc.

The focus of this project is on the production of concrete bricks, specifically interlocking bricks which offer a speedier, cost effective, environmentally sound alternative to conventional walling materials. It is based on the principle of densification of a lean concrete mix to make a regular shape, uniform, high performance masonry unit. Concrete Block Technology can be easily adapted to suit special needs of users by modifying some design parameters such as mix proportion, water to cement ratio and type of production system. It is an effective means of utilizing wastes generated by stone crushers, quarrying and stone processing units. The technology has high potential in areas where raw materials are easily available. The new technique in producing this interlock brick can generate a highly profitable business for micro and small scale building material producers and construction companies. The market for this type of brick in Malaysia is not yet growing at a rapid rate, even though there are demands in construction industries due to low production rate which reflect the cost of brick itself.

1.0.1 Interlocking Brick Specification

The interlocking bricks are different from other normal bricks as it requires no mortar or cement for masonry work. This bricks interlocked with each other by means of positives and negative frogs on the top and bottom of the bricks which disallow the horizontal movement of bricks. There are various application of this bricks namely; load bearing wall, lintels, sills, wall corners etc. The specifications and the characteristics of this brick depend on the machine used to manufacture it. The most common size of brick is 300x150x120mm. The basic raw material is cement, fine aggregate and coarse aggregate. Very little water is used. This is possible only with mechanized compaction and vibration and gives the block high quality in spite of the lean mix, which uses very little cement. Weight of this brick is about 2 - 3 Kg.

1.0.2 Production of Interlocking Brick Process

Current process of producing the interlocking brick is produced using a semimechanized stationary type machine. The other production systems are - manual moulds that require hand tamping, a mobile semi-mechanized egg-laying machine and fully mechanized system that combines compression and manual concrete filling in mould. The machine also compacts and consolidates the mix so that the blocks are uniform in size and attain desired physical properties. The blocks are cured for a minimum period of 14 days, before they are ready to use. On an average 600-800 blocks can be in 8 hours by 1 skilled and 6-8 semi-skilled workers.

In this project, a high quality machines in which optimize from the current machine design is going to propose according to the feedback and the need from the interlocking brick maker.

1.0.3 Types of Interlocking Bricks

There are various types of interlocking bricks. The most commonly used cement interlocking bricks are;

- i. Regular Shaped Brick
- ii. Half Size Brick
- iii. U-Shaped Brick

See figure 1.1 for types of interlocking brick

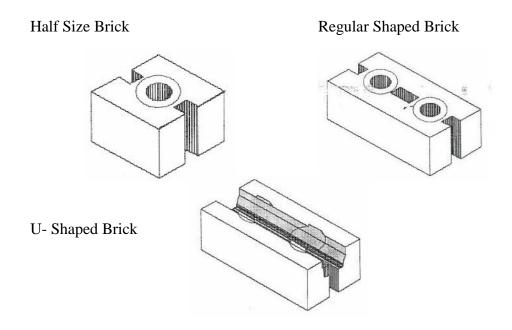


Figure 1.1: Type of Interlocking Brick

1.1 Objective

The main objective of this project is to design a new bricks making machine with new features and simplifying the machine for one man operation in order to reduced operational cost and maximizes the production rate. Furthermore, the purpose of this is to design the interlocking bricks making machine that suitable for SME entrepreneurs.

1.2 Scope of project

The scope of project is clearly define the specific field of the research and ensure that the entire content of this thesis is confined the scope. This project is start with the literature review on product specification in order to satisfy the project objectives. After obtaining the product specification, this project is done base on the scope below;

- Project will focus on interlocking brick making machine only.
- Designing the inter-locking brick making machine that fulfill the project objective.
- Machine design to suit the regular interlocking bricks (Figure 1.1).
- The project goes until detail design of interlocking brick making machine.
- The major output of this project is to produce the detail drawing for the machine design.
- Fabrication of machine is excluded in this project.

The scope of work can be described in terms of flowchart as per the following Figure 2.

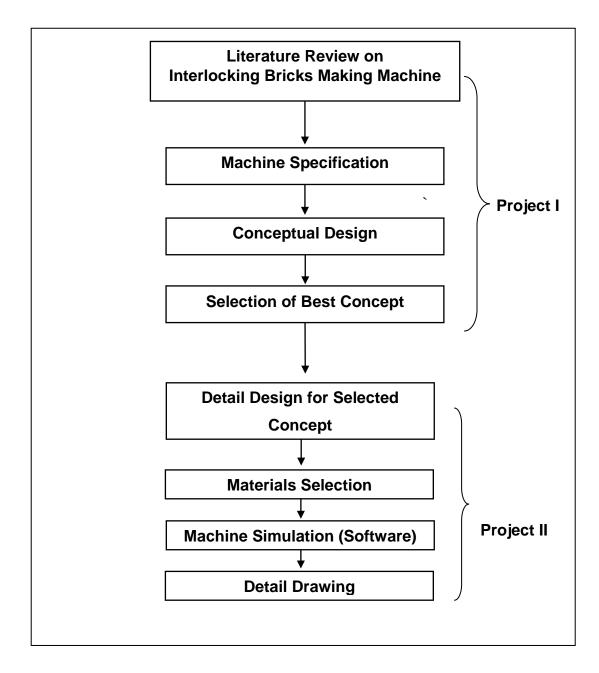


Figure 1.2: Flow chart represents the scope of work