

DESIGN OF PENSTOCKS

BY CGS GUNASEKARA NCP DE LIYANAGE

Introduction

From the forbay tank down to the turbine water is conveyed through the penstock.

Major components
Forbay
Penstock value
Vent pipe
Support pier

Components.....

Anchors
Drain valve
Air bleed value
Bends
Thrust block

Major components (joint types)

flanged

Socket

Sleeve type

Components of penstock

Material used for construction...

Mild steel
uPVC (unplastizied polyvinyl chloride)
HDPE (high density polyethylene)
Ductile iron
Prestressed concrete
GRP (glass reinforced plastic)

Important factors to be considered when selecting material

Design Pressure
Surface Roughness
Weight of material
Ease of transportation
Method of jointing
Cost of material etc

Constraints in deciding diameter

Price Head loss

<u>*Compromise:*</u> Minimum cost (smallest diameter)

or Minimum head loss ? (acceptable head loss)

Major contributions to head loss, h_f

Friction (due to surface roughness) $h_f = \frac{1}{2} \cdot V^{2} \cdot L \cdot f / g \cdot D \leftarrow Darcy's$

V – flow velocity

L – penstock length

D-diameter

*

f -- friction constant

from moody chart

Major contributions to head loss, h_f

Turbulence (caused by due to bends , inlet, valves , reductions etc)

 $h_f = \sum K_i . V_i^2 / 2.g$

K_i = turbulence loss coefficient

Calculation of head loss & diameter

 CASE STUDY:- A steel penstock ,500 m long has a design flow of 0.42 m³/s and a gross head of 220 m. Calculate and diameter and wall thickness. head loss < 2% of gross head.

 Select diameter as , D = 300 mm
 Flow velocity V = 4.Q / pi .D² = 5.9 m/s
 Renolds no = V.D x 10⁶ = 1.8x 10⁶ Surface roughness of mild steel is, f = 0.3
 So, K/D = 0.3/300 = 1x 10⁻³
 from Moody chart f = 0.005,

From Darcy's eqⁿ,

 $h_f = \frac{1}{2} \times 5.9^2 \times 500 \times 0.0046 / 9.81 \times 0.25$ = 15.0 m in our case gross head = 220 m H_f = $(15 / 220) \times 100 = 6.8 \%$

Calculation of diameter is an iterative process ,

increase D by 10 mm, now V = 5.5 m/s K/D = 0.3/310 = 9.6 x 10⁻⁴ Re = V X D = 5.5 X .310 = 1.7 x 10⁶ corresponding f = 0.005 $h_f = 12.7 m$ $h_f = 5.77 \%$

Results of 15 iterations					
iterations	Diameter (mm)	hf / (m)	V /(m/s)	%hf	
1	300	15	5.9	6.82	
2	310	12.7	5.5	5.77	
3	315	11.8	5.3	5.36	
4	320	10.8	5.22	4.91	
5	325	10	5	4.55	
6	330	9.3	4.9	4.23	
7	335	8.2	4.7	3.73	
8	340	7.7	4.6	3.50	
9	350	6.6	4.3	3.00	
10	355	6.2	4.2	2.82	
11	360	5.7	4.1	2.59	
12	365	5.4	4	2.45	
13	370	5	3.9	2.27	
14	375	4.7	3.8	2.14	
15	380	4.3	3.7	1.95	

Constraints in deciding wall thickness

CostStrength (withstanding pressure)

<u>ze:</u> Minimum cost or Minimum strength ?

Calculation of wall thickness

Wall should be thick enough to withstand the maximum water pressure

Maximum pressure = static + surge

 Surge pressure :- worst possible case (instantanious closure of valve) Surge pressure , h_{surge} **h**_{surge} = C.V / g

V – flow velocity
C – velocity of pressure wave

• C = 1/ [ρ (1/k+D/E.t)]^{1/2}

D – diameter
t – Wall thickness
E- Young's modulus of elasticity
K – Bulk modulus of water
ρ – density of water

• Thickness, $t_{min} = \rho.g.h_{max}.D/(2.\sigma_T/S)$

• σ_{T} – ultimate tensile strength

S - safety factor typically 3

Procedure: this is an iterative process

- **Estimate t**
- 2 Calculate C, h_{max}, t_{min}
- **3** Compare t with t_{min}
- 4 If t < t_{min} increase t
- **if** $t > t_{min}$ reduce t close to t_{min}
- 6 Repeat 2 and 3

Calculation of penstock wall Thickness

Let us select t as 5 mm , D = 380 mm
Iteration 1
Iteration 2
Iteration 3
Iteration 4

References :

Micro hydro power – Adam Harvey ,Andrew Brown , Rod Edward , VAris Bokalders

Thank You !

Results of iterations

Wall Thickness t =	5.00	mm
Diameter D =	380	mm
Velocity V =	3.70	m/s
Surge wave velocity C =	1088.93	m/s
h serge =	410.71	m
P max =hstatic+hserge	626.41	m
t min	7.30	mm

2		
Wall Thickness t =	7.30	mm
Diameter D =	380	mm
Velocity V =	3.70	m/s
Surge wave velocity C =	1172.29	m/s
h serge =	442.15	m
P max =hstatic+hserge	657.85	m
t min	7.66	mm

B		
Wall Thickness t =	7.66	mm
Diameter D =	380	mm
Velocity V =	3.70	m/s
Surge wave velocity C =	1181.93	m/s
h serge =	445.78	m
P max =hstatic+hserge	661.48	m
t min	7.71	mm

Wall Thickness t =	7.71 ^{mm}	
Diameter D =	380 mm	
Velocity V =	3.70 m/s	
Surge wave velocity C =	1183.21 m/s	
h serge =	446.27 m	
P max =hstatic+hserge	661.97 m	
t min	7.71 ^{mm}	