DESIGN OF PENSTOCKS

BY
CGS GUNASEKARA NCP DE LIYANAGE

Introduction

From the forbay tank down to the turbine water is conveyed through the penstock.

Major components

- Forbay

Penstock value

- Vent pipe
- Support pier

Components.....

Anchors

- Drain valve
- Air bleed value
- Bends

Thrust block

Major components (joint types)

flanged

Figure 6.2 Flanged joint

Socket

Figure 6.3 Spigot and socket joint

Figure 6.4 Sleeve-type expansion joint

Components of penstock

Material used for construction...

Mild steel
uPVC (unplastizied polyvinyl chloride)

- HDPE (high density polyethylene)
- Ductile iron
- Prestressed concrete
- GRP (glass reinforced plastic)

Important factors to be considered when selecting material

- Design Pressure
- Surface Roughness
- Weight of material
- Fase of transportation
- Method of jointing
- Cost of material etc

Constraints in deciding diameter

Price

- Head loss

Compromiser Minimum cost (smallest diameter)
or
Minimum head loss? (acceptable head loss)

Major contributions to head loss, h_{f}

* Friction (due to surface roughness)

$$
h_{f}=1 / 2 \cdot V^{2} \cdot L \cdot f / g \cdot D
$$

Darcy's equation
V-flow velocity
L - penstock length
D-diameter
f -- friction constant

Major contributions to head loss, h_{f}

-Turbulence (caused by due to bends, inlet, valves ,reductions etc)
$h_{f}=\sum K_{i}, V_{i}{ }^{2} / 2 . g$
$\mathrm{K}_{\mathrm{i}}=$ turbulence loss coefficient

Calculation of head loss \& diameter

- CASE STUDY:- A steel penstock ,500 m long has a design flow of $0.42 \mathrm{~m}^{3} / \mathrm{s}$ and a gross head of 220 m . Calculate and diameter and wall thickness. head loss < 2\% of gross head.
- Select diameter as , D =300 mm
- Flow velocity $V=4 . Q / \mathrm{pi}, \mathrm{D}^{2}$

$$
\begin{aligned}
& =5.9 \mathrm{~m} / \mathrm{s} \\
& =\mathrm{V} . \mathrm{D} \times 10^{6} \\
& =1.8 \times 10^{6}
\end{aligned}
$$

Renolds no $=$ V.D $\times 10^{6}$

Surface roughness of mild steel is, $\mathbf{f}=\mathbf{0 . 3}$
So , $K / D=0.3 / 300=1 \times 10^{-3}$
from Moody chart $f=0.005$
From Darcy's eqn
$h_{f}=1 / 2 \times 5.9^{2} \times 500 \times 0.0046 / 9.81 \times 0.25$
$=15.0 \mathrm{~m}$
in our case gross head $=220 \mathrm{~m}$
$H_{f}=(15 / 220) \times 100=6.8 \%$

Calculation of diameter is an iterative process ,
increase D by 10 mm , now $V=5.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{K} / \mathrm{D}=0.3 / 310=9.6 \times 10^{-4}$
$\operatorname{Re}=\mathrm{VXD}=5.5 \times .310=1.7 \times 10^{6}$ corresponding $f=0.005$
$\mathbf{h}_{\mathrm{f}}=12.7 \mathrm{~m}$

$$
h_{f}=5.77 \%
$$

Results of 15 iterations

iterations	Diameter (mm)	$\mathrm{hf} /(\mathrm{m})$	$\mathrm{V} /(\mathrm{m} / \mathrm{s})$	$\% \mathrm{hf}$
1	300	15	5.9	6.82
2	310	12.7	5.5	5.77
3	315	11.8	5.3	5.36
4	320	10.8	5.22	4.91
5	325	10	5	4.55
6	330	9.3	4.9	4.23
7	335	8.2	4.7	3.73
8	340	7.7	4.6	3.50
9	350	6.6	4.3	3.00
10	355	6.2	4.2	2.82
11	360	5.7	4.1	2.59
12	365	5.4	4	2.45
13	370	5	3.9	2.27
14	375	4.7	3.8	2.14
15	380	4.3	3.7	1.95

Constraints in deciding wall thickness

Cost

- Strength (withstanding pressure)

Compromize: Minimum cost or
Minimum strength ?

Calculation of wall thickness

Wall should be thick enough to withstand the maximum water pressure

Maximum pressure $=$ static + surge

- Surge pressure :- worst possible case (instantanious closure of valve)
$\mathbf{h}_{\text {surge }}=\mathbf{C} . \mathbf{V} / \mathbf{g}$
- V - flow velocity
- C - velocity of pressure wave
$C=1 /[\rho(1 / k+D / E . t)]^{1 / 2}$
- D - diameter
- t - Wall thickness

E- Young's modulus of elasticity

- K - Bulk modulus of water
- ρ - density of water

Thickness,

$$
t_{\min }=\rho \cdot g_{\cdot} h_{\max } \cdot \mathrm{D} /\left(2 . \sigma_{\mathrm{T}} / \mathrm{S}\right)
$$

- $\quad \sigma_{T}-$ ultimate tensile strength
- S - safety factor typically 3

Procedure: this is an iterative process

1 Estimate t
2 Calculate $\mathbf{C}, \boldsymbol{h}_{\max }, t_{\min }$
3 Compare t with $t_{\text {min }}$
4 If $t<t_{\text {min }}$ increase t
5 if $t>t_{\text {min }}$ reduce t close to $t_{\min }$
6 Repeat 2 and 3

Calculation of penstock wall Thickness

Let us select t as $5 \mathrm{~mm}, \mathrm{D}=380 \mathrm{~mm}$

- Iteration 1
- Iteration 2
- Iteration 3

Iteration 4

Penstock Wall thickness

References :

Micro hydro power -Adam Harvey ,Andrew Brown , Rod Edward, VAris Bokalders

Thank You !

Reynolds Number Re $=\mathrm{VD} \times 10^{6}$
Figure 6.8 Moody's chart for finding the friction factor f of pipes

Results of iterations

Wall Thickness	$\mathbf{t}=$	5.00	mm
Diameter	$\mathrm{D}=$	380	mm
Velocity	$\mathrm{V}=$	3.70	$\mathrm{~m} / \mathrm{s}$
Surge wave velocity $\mathrm{C}=$	m	m / s	
h serge	1088.93	m	
P max =hstatic+hserge	410.71	m	
t min	626.41	mm	

Wall Thickness	$\mathbf{t}=$	7.30	mm
Diameter	$\mathrm{D}=$	380	mm
Velocity	$\mathrm{V}=$	3.70	$\mathrm{~m} / \mathrm{s}$
Surge wave velocity C =		m / s	
h serge	1172.29	m	
P max =hstatic+hserge	442.15	m	
t min	657.85	mm	

Wall Thickness	$\mathbf{t}=$	7.66	mm
Diameter	$\mathrm{D}=$	380	mm
Velocity	$\mathrm{V}=$	3.70	$\mathrm{~m} / \mathrm{s}$
Surge wave velocity $\mathrm{C}=$	$\mathbf{~}=$	m / s	
h serge	$=$	445.78	m
P max =hstatic+hserge	661.48	m	
t min	7.71	mm	

Wall Thickness	$\mathbf{t}=$	7.71	mm
Diameter	$\mathrm{D}=$	380	mm
Velocity	$\mathrm{V}=$	3.70	$\mathrm{~m} / \mathrm{s}$
Surge wave velocity $\mathrm{C}=$	\mathbf{m}		
h serge	1183.21	$\mathrm{~m} / \mathrm{s}$	
P max =hstatic+hserge	446.27	m	
t min	661.97	m	

