DESIGN OF POST-TENSIONED PRESTRESSED CONCRETE BEAM USING EXCEL SPREADSHEET WITH VISUAL BASIC APPLICATIONS

RIMMON S. LABADAN

Department of Civil Engineering Mindanao State University Main, Marawi City E-mail: rimmonlabs@gmail.com

Abstract- The design of pre-stressed beams is more complicated problem specially when dealing with continuous beams. It is basically a trial-and-error process in an effort to reach the best proportions. Manual computations of the design may take a time for the engineers to arrive in best design. The study on spreadsheet design on post-tensioned prestressed concrete using Excel spreadsheet with Visual Basics applications was developed. The program calculates the required prestressing force, concrete area, steel area, and tendon eccentricities. The developed spreadsheet can compute secondary moments on indeterminate beams, additional non prestressing bars and shear reinforcement designs. The objective of the study to simplify the design computation of post-tensioned prestressed concrete were achieved. The traditional approach of iterative and distinct phases of the design of post-tensioned prestressed concrete was considerably enhanced. The design process had reduced in its duration and complexity by the interaction of the designer at various stages of the design, and the ability to selectively automate those components of the design process that were repetitive and time consuming. Proper judgment from the user/designer could be applied and can be rectified almost instantaneously. The developed program may serve as academic aid since the computation process was systematically reflected on the spreadsheet. The presence of VBA applications has improved the program development capability of Excel spreadsheet. The use of VBA GUIs inside the spreadsheet somehow should be limited because it can result to higher file size and may cause overflow during the execution.

Key words- Prestressed Concrete, Post-Tensioned, Excel Visual Basics

I. INTRODUCTION

Prestressed concrete is a method for overcoming concrete's natural weakness in tension. Prestressing results in lighter members, longer spans, and an increase in the economical range of application of reinforced concrete. It can be used to produce beams, floors or bridges with a longer span than what is practical with ordinary reinforced concrete. Prestressed concrete could be pre-tensioned or posttensioned.

The design of prestressed beams is more complicated problem specially when dealing with continuous beams. The design of prestressed concrete is basically a trial-and-error process in an effort to reach the best proportions (T. Y. Lin, 1981). Manual computations of the design may take a time for the engineers to arrive in best design. Somehow, with the possible iterations in steps, some values are assumed, the engineer may lose patience and come up with a noneconomical proportion.

The Excel Spreadsheet on the other hand is a powerful tool not only in Accounting but also in Engineering. Spreadsheet is mostly used in modification of the traditional hand written method of calculations. The equations are solved exactly the same way in the computer. The computer only makes it easier by doing the calculations and keeping a record for reuse. One has only to become familiar with the Excel functions, many of which are similar to Microsoft Word. In addition to Excel's extensive list of worksheet functions and array of calculation tools for scientific and engineering calculations. Excel contains a programming language Visual Basic and it allows users to create procedures sometimes referred to as macros, and build a Graphical User Interface (GUI) icons, that can perform even more advanced calculations or that can automate repetitive calculations.

This study seek to enhance the lengthy and trial-anderror design computation of post-tensioned prestressed concrete beams by developing a spreadsheet with Visual Basic applications. Also, the study attempted to develop an automated design process wherein the user may see and interact on the flow of the design and a design computations that can be used not only by the designer but also can serve as classroom instructions for professors handling the subject matter.

The study aimed the following:

1. Simplify the trial and error manual calculation of post-tensioned prestressed concrete design by developing a spreadsheet program that will enhance the design of post-tensioned prestressed concrete beam.

2. In the spreadsheet developed, user can change the design parameters and immediately see the effect on the results, and the capability to instantly view the acceptable results.

3. Develop a design aid that adapts to changes on design codes.

4. Show almost entire computations, procedures and formula to the user that he/she may have proper judgement and understanding in the design of post-tensioned prestressed concrete.

5. Develop a design aid that can be used for classroom instructions.

6. Take advantages of the capabilities of to today's spreadsheet specifically MS Excel 2013 spreadsheet in the design of post tension prestressed concrete. The lengthy and trial-and-error computation will be simplified by simple clicks of Graphic User Interface (GUI) through Visual Basic which is embedded in today's MS Excel software and by simply scrolling the spreadsheet to easily go back to the inputted parameters that needs to be rectified.

The following were the set limitations of the developed spreadsheet.

1. Prestressing force are assumed constant all throughout the tendon length.

2. The program can only compute moment loads based on given distributed loads of beam on simple span beams.

3. For indeterminate beams, live load moments and any service loads were input parameters from the user.

4. Critical points on shear design were all user defined.

5. Only practical tendon layout which is compound parabolic drapes were available for continuous beams.

6. Double shaped beams and unsymmetrical sections with respect to vertical axis were not considered.

7. The spreadsheet was saved as MS Excel 2013 Macros Enabled. Hence, it will run only to MS excel with VBA applications.

II. METHODOLOGY

Program Description

The program developed was a MS Excel Spreadsheets with Visual Basics forms and macros that computes the required prestressing force for the given loads, tendon profile, concrete section and material properties. It can check the adequacy of the design and can allow user to have trial-and-error process and instantly see the effect on the design upon input change.

Analysis Method

A constant force approach was used in the design or analysis, in which the effective prestress force was assumed to be constant throughout the member. This design employed the concept of moment distribution method in determining the secondary moment due to prestressing force. The concept of Elastic Design in prestressed concrete was used in flexural design while Ultimate Design concept was used for shear design.

Design Code

The user could choose from ACI, AASHTO, or PCI Code in determining the maximum allowable stresses of concrete and Prestressing steel. The user could also accept the suggested value or change the allowable stresses on his/her preferences.

Cross-section Types

Beam cross-section types available are shown in the figure below. The sections were pre-drawn with corresponding dimensions which requires an input from the user. Only symmetrical sections were considered.

Tendon Profiles

The program supports only four types of tendon profile. Any of these tendon profile may be used but has constraints on profile elevation at end-span of the beam. For simple beam end-span profile elevation was always assumed to be at the elevation of the centroid of the concrete. For indeterminate beam only continuous compound parabolic profile elevation was available considering the practical and realistic elevation of tendon.

Programming of Procedure

The programing platform was Microsoft Office 2013 Professional Edition, specifically Excel. The analysis were done through macros specially programmed for prestressed concrete design. The user may not see the step by step computation but may follow through the necessary step by step output reflected in the spreadsheet cells. Programing was done by developing functions or formula inside the cell or using the Visual Basic Editor. The latter was used on procedures that are iterative or procedures cannot be found on Excel list of functions. Also for simplicity of programing, the Visual Basic Editor is more preferable especially on cells that varies formula.

Proceedings of 34th The IRES International Conference, Jeju Island, South Korea, 02td May 2016, ISBN: 978-93-86083-03-6

Figure 7 Continuous Beam

Debugging

Just like human creation, computer programs are less than perfect. A series of sample problems different books were tried and compared in order to attain a satisfactory results and find out source code errors. Transferring files to other computer were also done to detect compatibility problems.

III. RESULTS AND DISCUSSIONS

General

The developed spreadsheet program is capable of computing for the design of post-tensioned prestressed concrete beam. It can give the required prestressing force, tendon eccentricities, and shear reinforcements based on the user's preferences. The spreadsheet program (workbook) is composed of seven sheets. Each sheet contained one design method.

Sheet 1 (Introduction)
 Sheet 2 (Elastic Design)
 Sheet 3 (Elastic Design by Magnel)
 Sheet 4 (Elastic Design by T.Y. Lin)
 Sheet 5 (Indeterminate Beam)
 Sheet 6 (Shear Design for Indeterminate Beam)
 Sheet 7 (Moment Distribution)
 Opening the Workbook

The spreadsheet uses macros and Visual Basic language programming and thereby saved as Macro Enabled Workbook. Thus, the user must click first the "Enable Content" Button located below the ribbon of the spreadsheet. Some program procedures run upon opening of the workbook, thus the user is suggested to always enable the macros content of this program.

4.1.2 Workbook Layout

Figure 4.1 shows the main program (sheet) view as it appears once it is opened. Design method to be selected appears on the active sheet name located below the sheet screen as shown in the figure marked by red annotations. The right side of the screen were notes and suggestions. Notes and suggestions were not be printable but will served as a guide and manual for the user.

1	A D	Landar of D	U E	, r	0	n	1	,	N		m	- 74		0
5 10	e. I	Jesing of B	nage Girder			-	-							
4 De	SIGIRI.	ingi. Laoz		- (Design In	forma	tion							
5 Dr	nipany.	ingneening					-							
7 Me	thod 8	Plastic Desig	n By T. Y. Lin							Notes and	Superview			
8			in the second second				_			(This man	will not be conta	41		
9 80	am Length:													
10	Simple Beam Length	(L)=	28.96 m					Use the cen	ter to cente	r distance be	tween supports			and
1 Lo	ads		A CONTRACTOR											
12 Liv	re Load:		\frown		Anut									
.3	Live Load		13.92 ktom		iput									
14	Add. Live Load		0.00 kN/m					Added live k	adı nolud	es impact loa	ds and other con	siderab	e ive load	k.
15	Total Live Load (M LI)	1459.31 kN-m		8 - B									
16 De	ad Load:													
17	Girder weight (W G)		13.99 kM/m	Girder N	loment(M _G)= 1	466.35	kN-m	Girder weigh	t is assum	ed and may b	e revised later.			
18	Toppings (wtoppings)		4.21 kN/m					Toppings in	here are no	t considered	composite with th	he groe	r in analys	8
19	Add. Deadload		0.00 kN/m	-1	Jutnut									
20	Total Dead Load (M	su)	(1907.81) WI-m	6	utput									
21			-											
22	Max. Moment (Mt) =		3367.12 kN-m	M _G /M _T	= 0.43549 La	argel		Ratic of Mg	Mt greater I	than 0.2 is co	nsidered large			
23								When the ra	to of MgN	t is small, c.g	p.s. is located ou	tside lt	e kern and	inside the pr
24							_	When the ra	to of MgN	t is Large, th	e computed c.g.s	n will be	called outs	ide the practi
25 Co	ncrete:								IS NECCES	ary to place th	he c.g.s as low a	practic	able	
26	Strength @ 28 days	fc') =	31.023 Mpa		Active	Sheet	0	Compression	e strength i	(r) is based o	or standard Gin b	y 12n c	yinders (ASTM C - 39
27	Strength @ transfer (fc/)=	27.576 Mpa			oneer	/		A					
28	Modulus of Elasticity	Ec)=	27576 Mpa		/									
29	Mod. of Elasticity @ trans (E	:CI) =	20000 Mpa	/			_							

Figure 9 Workbook Layouts

Input Cells

The cells of spreadsheet were protected. Only cells allocated for user input can be edited. Input cells were formatted green and italic fonts, and underlined while output cells are italics and has a red color font. Output Cells

The output cellsare protected and cannot be altered. Output results were preliminary computations, prestressing force, tendon eccentricity, tendon profile type, non-prestressing bars, and section properties. A summary of all design output was formed on the latter part of the program. A detailed step by step computation with shown formula is shown for the user to follow.

Proceedings of 34th The IRES International Conference, Jeju Island, South Korea, 02nd May 2016, ISBN: 978-93-86083-03-6

Design Of Post-Tensioned Prestressed Concrete Beam Using Excel Spreadsheet With Visual Basic Applications

$e = max(e_1, e_2) \le \Theta_3 = 505 mm$	Diamter (mm) = <u>16</u> mm	
Required Prestress Area: A _s = P _o / F _{ac} = 1385.0 mm ²	Min. Conc. Cover = <u>125</u> mm	
Tendons	Utemate Moment Pace <u>1.4</u> DL + <u>1.7</u> LL Mu = <u>1835.00</u> KN-m	
Tendond Area = <u>98.7</u> mm ²	$\rho = \frac{A_s}{bd} = \frac{0.003127}{0.003127}$	
Prefered Num. of Tendons = <u>14</u>	$f_{ps} = f_{pu} \left[1 - \frac{1}{2} \left(\rho \frac{f_{pu}}{\epsilon} \right) \right] = \frac{1704.74}{100} \text{ MPa}$	
Total Steel Area(Aps) = 1381.8 mm ²	$\int I_{ps} = 0.15$	
Adual P _a = 1812.92 MPa	$\omega_{\rho} - \frac{p}{f_{c}} = 0.00$	
tradición mena	$m_{\mu prov} = \phi n_s / \rho_s a (1 - 0.5\omega) = 2161.03$ KN-m No Req. Steel Reinforcem	
Seneral Equation:	$A_{xb} = \frac{m_u m_u prov}{0 f_v d} = 0.00$	
$f = \overline{A} \pm \overline{Z} \pm \overline{Z}$	Asb _{min} = <u>570.00</u> mm ²	
nitial Stage: (P = Po, M = Mg) Allowable (MPa) Top fiber: ft = -0.76 MPa -1.47 Ok!	Number of Bars = 3	
Bottom fiber: fb = 13.48 MPa 14.22 Ok!	Shear Design	
Final Stage: (P = P _e , M = Mt)	Concrete: Strength @ 28 days (fe') = 34 47 MPa	
Top fiber: ft = 10.25 MPa 13.79 Ok! Bottom Poer: fb = 0.18 MPa 13.79 Ok!	Tendon Fpu = <u>1862</u> MPa	
	Total Prestressing steel Area = <u>1381.8</u> mm*	
Cracking Moment	P _s = 1486.60 kN	
Resisting Moment up to zero stress in bottom fiber:	Critical Distance: @H/2 @ U 5 @ U 3 from the support (x) = 0.60 m 4.00 m 6.67 m	
$Mr = P(e + k_T) = 1420.12$ KN-m Modulus of rupture:	Ecentricity (e _x): -49.70 mm 150.84 mm 308.14 mm	
f = 0.14 fc' = 4.83 MPa	Tendon Angle (8): 0.05891604 radians 0.0589 radians 0.0589 radians	
$M = \frac{fl}{c} = 383.15$ KN-m	M = w (vP)/0 v/v	
Cy Tatal Boolefine Memori for genetican	M ₀ = (wo/2)(L/2-x)= 40.74 KN.m 224.00 KN.m 311.11 KN.m V ₀ = (wo/2)(L/2-x)= 32.90 KN 21.00 KN 11.67 KN	
$M_{CR} = M_T + M = \frac{1803.27}{1803.27}$ KN-m	M _{D+L} = w _{D+L} (x/2)(L-x)= 93.12 KN.m 512 KN.m 711.11 KN.m	
Earlier of Salahi for Pranking	V _{D+L} = (w _{D+L} /2)(L/2-x)= 75.2 KN 48 KN 26.667 KN	
autor or Garety no Graditing.	Shear load Factor:	
$Fs = \frac{1.57}{M_T} = 1.57$	<u>1.7</u> LL <u>1.7</u> LL <u>1.7</u> LL	
actor of Safety for Liveload:	VU = 344.98 KN 220.20 KN 122.33 KN	
$F_S = \frac{M_{CR} - M_G - M_D}{1.87}$	H = 1200 mm	
ML ML	bw = <u>150</u> mm	
This would mean that the beam starts to crack	Cb = 600.00 mm Ct = 600.00 mm	
If live load is increased to 87%	Ac = 285000.00 mm ²	
	Ic = <u>4.76E+10</u> mm ⁴	
	r = 16/149.122 mm	
	Effective depth:	
	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm	
	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm	
	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm	
	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm	
	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960.00 mm	
Page 3/8	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960.00 mm d = max(d1,d2) = 960.00 mm 960.00 mm 960.00 mm	
Page 3/8 Mile Type Type:	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960.00 mm d = max(d1,d2) = 960.00 mm 960.00 mm 960.00 mm Reinforcement Shear Rein: Fy (f _{ey}) = 275 MPa Diameter = 10 mm	
Page 3/8 Sfile Type Type:	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960.00 mm 960.00 mm d = max(d1,d2) = 960.00 mm 960.00 mm 960.00 mm Shear Reinforcement Shear Rein. Fy (f _w) = 275 MPa Diameter = 10 mm No. of Leg = 2	
Page 3/8 bfile Type Type: Select Tendon Profile Type: Single Harp	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d = nax(d1,d2) = 960 mm 960 mm 960.00 mm 960.00 mm Reinforcement Shear Rein. Fy (f _w) = 275 MPa Diameter = 10 mm No. of Leg = 2 Rein. Area (A _v) = 157.08 mm ² C = C = 6 600 mm 660.00 mm 660.00 mm	
Page 3/8 Mile Type Type: Select Tendon Profile Type: Single Harp	Effective depth: d1 = $C_1 + e_z = 550.30 \text{ mm}$ 750.84 mm 908.14 mm d2 = 0.8h = d = max(d1,d2) = max(d1,d2) = Bein. Fy (f_m) = Diameter = C_2 = C_5 = 600.00 mm 960 mm 960 mm 960.00 mm Rein. Area (A_i) = C_2 = C_5 = 600.00 mm 960.00 mm 600.00 mm 600.00 mm 600.00 mm	
Page 3/8 bille Type Type: Select Tendon Profile Type: Sangle Harp 7 VL VR	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960 mm d = max(d1,d2) = 960.00 mm 960.00 mm 960.00 mm 960.00 mm 960.00 mm Reinforcement 100 mm 100 mm 960.00 mm 960.00 mm 960.00 mm Rein. Area (A ₁) = 157.08 mm ² 0 0 0 600.00 mm 600.00 mm $f_{2we} = \frac{F_{e_1}^2 + (\frac{1+W_{e_1}^2}{W_{e_1}^2}) = 4.29 MPa 8.04 MPa 10.99 MPa 0.951 MPa 0.951 MPa 0.51 MPa $	
Page 3/8 pfile Type Type: Select Tendon Profile Type: Single Harp 7 VL VL VR	Effective depth: $d1 = C_1 + e_z = 550.30 \text{ mm}$ 750.84 mm 908.14 mm $d2 = 0.8h = 960 \text{ mm}$ d = max(d1,d2) = 960.00 mm 960 mm 960 mm 960.00 mm $d = max(d1,d2) = 960.00 mm$ 960.00 mm 960.00 mm 960.00 mm 960.00 mm Reinforcement No. of Leg = 2 Rein. Area (A.) = 157.08 mm ² $C_2 = C_0 = 600.00 \text{ mm}$ 600.00 mm 600.00 mm 600.00 mm $f_{20^{*}} = \frac{F_{0}}{A_{0,2}} \frac{(1 + C_{0,2}^{*})}{A_{0,2}} = 4.29 \text{ MPa}$ 8.04 MPa 10.99 MPa 0.51 MPa $f_{20^{*}} = \frac{F_{0,2}}{A_{0,2}} \frac{M_{0,2}}{M_{0,2}} \text{ for } 0.51 \text{ MPa}$ 0.51 MPa 0.51 MPa 0.51 MPa	
Page 3/8 pfile Type Type: Select Tendon Profile Type: YL U U U U U U U U U U U U U	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960 mm 960.00 mm	
Page 3/8 offile Type Type: Select Tendon Profile Type: Single Hamp VL U Single Hamp Single Hamp Single Hamp Finden Profile: Supposed Supp	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960 mm 960.00 mm	
Page 3/8 Select Tendon Profile Type: Single 35app 7 VL SINGLE HARP Endon Profile: Suggested User's Prefilerence(Dist from N.A. (mm) VL BOD mm SI 200 mm 85 Above	Effective depth: $d1 = C_1 + e_x = 550.30 \text{ mm}$ 750.84 mm 908.14 mm d = C_1 + e_x = 550.30 mm 750.84 mm 908.14 mm d = C_1 + e_x = 550.30 mm 960 mm 960 mm 960 mm 960 mm 960 mm 960.00 mm 600.00 mm 600.00 mm 600.00 mm 600.00 mm 600.00 mm 600.00 mm <td colspan<="" td=""></td>	
Page 3/8 Select Tendon Profile Type: Single Harp 7 VL VIII VIII SINGLE HARP Endon Profile: Suggested User's Preference (Dist from N.A. (mm) YER 6000 mm 515 mm 85 Above YER 600 mm 515 mm 85 Above YER 600 mm 515 mm 85 Above VIII 600 mm 515 mm 85 Above VIII 600 mm 515 mm 85 Above	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm $d2 = 0.8h =$ 960 mm 960 mm 960 mm 960 mm 960 mm $d = max(d1,d2) =$ 960.00 mm 960.00 mm 960.00 mm 960.00 mm 960.00 mm Reinforcement Diameter = 10 mm 225 MPa 600.00 mm 960.00 mm 960.00 mm Rein. Area (A.) = 157.08 mm ² C ₂ = 0.66 600.00 mm 600.00 mm 600.00 mm 600.00 mm $f_{29e_e} = \frac{F_e}{A_{be}} (1 + \frac{e^2}{A_{be}}) = 4.29 MPa 8.04 MPa 10.99 MPa 0.51 MPa $	
Page 3/8 offle Type Type: Select Tendon Profile Type: Single Harp T VI U VIII SiNGLE HARP Frendon Profile: Suggested User's Preference (Dist from N.A. (mm) VIII 00 mm S15 mm S5 Above S05 Below User g N.A.	Effective depth: d1 = C ₁ + e ₂ = 550.30 mm 750.84 mm 908.14 mm $d2 = 0.8h =$ 960 mm 960 mm 960 mm 960 mm 960.00 mm $d = max(d1,d2) =$ 960.00 mm 960.00 mm 960.00 mm 960.00 mm 960.00 mm Reinforcement Diameter = 10 mm 900.00 mm 960.00 mm 960.00 mm Rein. Area (A _i) = 157.08 mm ² 2 860.00 mm 600.00 mm 600.00 mm $f_{29e} = \frac{F_{e}}{A_{bg}} (1 + 6x_{b}) = 4.29 MPa 0.51 MPa 0.51 MPa 0.51 MPa Cracking Moment (Mw): 0.51 MPa 0.51 MPa 0.51 MPa 0.51 MPa W_{ar} = \frac{F_{e}}{A_{bg}} (1 + 6x_{b}) = - 532.58 KN.m 830.71 KN.m 1064.54 KN.m V_{ar} = 205 / fc h_{ar} + f_{ar} = \frac{F_{ar}}{A_{br}} = -\frac{F_{ar}}{A_{br}} $	
Page 3/8 offile Type Type: Select Tendon Profile Type: Single Hamp v Vi U U Vints v SINCLE PARP Fendon Profile: Suggested User's Profilerence (Dist from N.A. (mm) VL 600 mm 015 mm 05 Above VL 600 mm 010 meters 0 N.A. 000 mm	Effective depth: $d1 = C_1 + e_z = 550.30 \text{ mm}$ 750.84 mm 908.14 mm $d2 = 0.8h = 960 \text{ mm}$ $d = \max(d1, d2) = 960.00 \text{ mm}$ 960 mm 960 mm 960.00 mm Reinforcement Shear Rein. Fy (t_w) = 275 MPa Diameter = 10 mm 960.00 mm 960.00 mm 960.00 mm Rein. Area (A_v) = 157.08 mm ² $C_2 = C_0 = 600.00 \text{ mm}$ 600.00 mm 600.00 mm 600.00 mm $f_{2we} = \frac{F_0}{A_0}(1 + \frac{e_{00}}{A_0}) = 4.29 \text{ MPa}$ 0.51 MPa 0.51 MPa 0.51 MPa Cracking Moment (M_w):	
Page 3/8 offle Type Type: Select Tendon Profile Type: Select Tendon Profile: SiNGLE FAARP Endon Profile: SiNGLE FAARP SiNGLE FAARP Type 600 mm 615 mm 85 Above 505 Below 1et 10 meters Nat: Select Systemsce with used in the computation if applicable.	Effective depth: d1 = C ₁ + e _z = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm d = max(d1,d2) = 960.00 mm 960 mm 960.00 mm 960 mm 960 mm 960 mm 960 mm 960 mm 960 mm 960 mm 960 mm 960 mm 9	
Page 3/8 offile Type Type: Select Tendon Profile Type: SinciLE HARP SinciLE HARP SinciLE HARP SinciLE HARP Via 600 mm 615 mm 65 Above Via 600 mm 615 mm 65 Above Via 600 mm 615 mm 65 Above SinciLe HARP Via 000 mm 615 mm 615 mm 65 Above SinciLe HARP Via 000 mm 615	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960.00 mm d = max(d1,d2) = 960.00 mm 960.00 mm 960.00 mm 960.00 mm 960.00 mm Reinforcement Diameter = 10 mm 960.00 mm 960.00 mm 960.00 mm No. of Leg = 2 Rein. Area (A.) = 157.08 mm ² 600.00 mm 600.00 mm 600.00 mm fage = $\frac{K_{1}}{K_{2}} (1 + \frac{C_{2}}{K_{2}}) = 4.29 MPa 8.04 MPa 10.99 MPa 0.51 MPa$	
Page 3/8 Select Tendon Profile Type: Y Y Y Single 1600 YIL Single 1600 <th colspa<="" td=""><td>Effective depth: d1 = C₁ + e_x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960.00 mm</td></th>	<td>Effective depth: d1 = C₁ + e_x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960.00 mm</td>	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960.00 mm
Price 2 process Sector Tension Profile Trype:	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm $d = c_1 + e_x =$ 550.30 mm 750.84 mm 908.14 mm $d = max(d1,d2) =$ 960 mm 960 mm 960 mm 960 mm $d = max(d1,d2) =$ 960.00 mm 960.00 mm 960.00 mm 960.00 mm Reinforcement 10 mm 225 MPa 0 0 960.00 mm Rein. Area (A.) = 107.08 mm ² 0 600.00 mm 600.00 mm 600.00 mm $f_{2w} = \frac{F_v}{A_{bw}^2} [\frac{1 + e_x}{A_{bw}^2}]_{a} = 4.29 MPa 0.51 MPa 0.51 MPa 0.51 MPa Cracking Moment (M_w): 0.51 MPa 0.51 MPa 0.51 MPa 0.51 MPa V_{av} = \frac{E_a (A, fc^2 + f_{2w} - f_{av}) - f_{av} - f_$	
Page 3/8 Select Tendon Profile Type: 	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = d = max(d1,d2) = 960 mm 960 mm 960 mm 960.00 mm 960.00 mm Reinforcement Shear Rein. Fy (t _w) = Diameter = 275.084 mm 960.00 mm 960.00 mm 960.00 mm 960.00 mm Rein. Area (A.) = 1275.08 mm ² C ₂ = C ₉ = 600.00 mm 600.00 mm 600.00 mm f _{20x} = $\frac{F_{x}}{F_{y}} (t_{x}^{-1}C_{y}) =$ 4.29 MPa 605.10 MPa 0.51 MPa 0.51 MPa Cracking Moment (M _w): 4.29 MPa 0.51 MPa 0.51 MPa 0.51 MPa 0.51 MPa M _w = $\frac{F_{y}}{F_{y}} (t_{y}) (t_{y}^{-1} + t_{yx} - t_{yx}) -$ 502.26 KN 141.15 KN 90.86 KN Imit: 0.14 \screwsstart_{w} - 505.26 KN 141.15 KN 90.86 KN Imit: 0.14 \screwsstart_{w} - 505.26 KN 141.15 KN 90.86 KN Vp = P_sin 0 = 87.53 KN 87.53 KN 87.53 KN 87.53 KN Vp = P_sin 0 = 87.53 KN 558.05 KN 558.05 KN 558.05 KN Shear Force Vc = Mn(VcL Vcw) = 505.26 KN 14	
Priction Losses 2010 Support Support State State State State State T Image: Support Support Image: Support Support Image: Support Support Image: Support Support Image: Support Support Image: Support Support Image: Support Support Image: Support Support Support Image: Support	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = d = max(d1,d2) = 960 mm 960 mm 960 mm 960.00 mm 960.00 mm Reinforcement Shear Rein. Fy (f _w) = Diameter = 10 mm 960.00 mm 960.00 mm 960.00 mm 960.00 mm $Rein. Area (A_i) =$ 157.08 mm ² C ₂ = C ₉ = 600.00 mm 600.00 mm 600.00 mm 600.00 mm $f_{2w} = \frac{F_{0}}{A_{0}} (1 + \frac{e_{0}}{A_{0}}) =$ 0.51 MPa 0.51 MPa 0.51 MPa 0.51 MPa Cracking Moment (M _w): 0.51 MPa 0.51 MPa 0.51 MPa 0.51 MPa $W_{w} = \frac{E_{0}}{A_{0}} (5.3/\Gamma^{2} + f_{xw} - f_{xw}) - 532.58 KN.m 830.71 KN.m 1064.54 KN.m Imit: 0.14/\Gamma^{2}h_{wd} = 178.36 KN 111.55 KN 93.66 KN Imit: 0.14/\Gamma^{2}h_{wd} = 522.26 KN 141.15 KN 178.36 KN Vp = P_{sin} 0 = 87.53 KN 87.53 KN 87.53 KN f_{wa} = (23/\Gamma^{2} + 0.3/\mu_{w}) A_{w} - 552.65 KN 558.05 KN 558.05 KN 558.05 KN Shear Force V_c atsection = 344.98 KN 220.20 KN 122.33 KN 223.30 MV $	
Splet Type Type: Image: Splet Support Select Tendon Profile Type: Image: Splet Support Image: Splet Support Image: Splet Support Image: Spl	Effective depth: $d1 = C_1 + e_x = 550.30 \text{ mm}$ 750.84 mm 908.14 mm $d2 = 0.8h = 960 \text{ mm}$ $d = \max(d1, d2) = 960.00 \text{ mm}$ 960 mm 960 mm 960.00 mm Reinforcement Shear Rein. Fy (fw) = 1275 MPa Diameter = 10 mm 960.00 mm 960.00 mm 960.00 mm $Rein. Area (A_i) = 157.08 mm^2$ $C_2 = C_0 = 600.00 mm$ 600.00 mm 600.00 mm 600.00 mm $f_{2wc} = \frac{1}{4} \int_{C_0}^{1.1 + \frac{4C_0}{4}} \int_{C_0}^{1.2} - 4.29 MPa$ 0.51 MPa 0.51 MPa 0.51 MPa Cracking Moment (M_w): 0.51 MPa 0.51 MPa 0.51 MPa 0.51 MPa 0.51 MPa $V_{wr} = \frac{1}{4} (0.5) / \sqrt{12} + f_{xw} - f_{xv} - 5 (0.52.60 KN)$ 141.15 KN 1084.54 KN.m 1084.54 KN.m $V_{wr} = 0.5 / \sqrt{12} + 4.3 t_{w} + \frac{126}{2} M_{wr} - 5 (0.52.60 KN)$ 141.15 KN 178.36 KN 178.36 KN therefore Vci = 505.26 KN 141.15 KN 178.36 KN 52.20 MPa 5.22 MPa $V_{wr} = (a.23 / \sqrt{7} + 0.3 t_{w}) A_{w} 4 + V_{\mu} - 552.05 KN 558.05 KN 558.05 KN 558.05 KN 558.05 KN 558.05 KN Shear Force V_c at section = Vci = 344.98 KN 220.20 KN 122.33 KN 20.52.31 KN 20.52.31 KN 20.52.31 KN 20.52.31 KN 20$	
State Type Type: Single stamp: C •••••••••••••••••••••••••••••	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960.00 mm d = max(d1,d2) = 960.00 mm 960.00 mm 960.00 mm 960.00 mm 960.00 mm Rein Area (A) = 1275 MPa Diameter = 10 mm 960.00 mm 960.00 mm 960.00 mm $f_{2w} = \frac{7}{4} \int_{0.5}^{1.1 + (\frac{1}{2})} = 4.29 MPa0.51 MPa 8.04 MPa0.51 MPa 10.99 MPa0.51 MPa 0.51 MPa0.52 MPa 0.51 MPa0.52 MPa 0.51 MPa0.52 MPa 0.51 MPa 0.51 MPa 0.51 MPa$	
Specific Topologic Specific Topologic Specific Topologic Specific Topologic <td>Effective depth: d1 = Cq + e_x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960 mm 960.00 mm d = max(d1,d2) = 960.00 mm 960.00 mm 960.00 mm 960.00 mm 960.00 mm Reinforcement 10 mm 225 MPa 0 0 960.00 mm 960.00 mm Rein.Area (A.) = 10 mm 20.60 mm 600.00 mm 600.00 mm 600.00 mm 600.00 mm f₂₀ = $\frac{F_{0}}{A_{0}} (\frac{1 + C_{0}}{A_{0}}) = 157.08 mm2 600.00 mm 600.00 mm$</td>	Effective depth: d1 = Cq + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960 mm 960.00 mm d = max(d1,d2) = 960.00 mm 960.00 mm 960.00 mm 960.00 mm 960.00 mm Reinforcement 10 mm 225 MPa 0 0 960.00 mm 960.00 mm Rein.Area (A.) = 10 mm 20.60 mm 600.00 mm 600.00 mm 600.00 mm 600.00 mm f ₂₀ = $\frac{F_{0}}{A_{0}} (\frac{1 + C_{0}}{A_{0}}) = 157.08 mm2 600.00 mm 600.00 mm $	
Price Type Type: Select Tendon Profile Type: Image: Select Tendon Type:	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = d = max(d1,d2) = 960 mm 960 mm 960 mm 960 mm 960 mm 960.00 mm Reinforcement No. of Leg = 2 Rein. Area (A.) = 225 MPa 10 mm 000.00 mm 600.00 mm 600.00 mm 600.00 mm $f_{2w} = \frac{F_{y}}{A_{y}} (\frac{1 + K_{y}}{2}) = 2.25 MPa2.2 Rein. Area (A.) = 157.08 mm22.2 Rein. Area (A.) = 600.00 mm 600.00 mm 600.00 mm 600.00 mm f_{2w} = \frac{F_{y}}{A_{y}} (\frac{1 + K_{y}}{2}) = 0.51 MPa0.51 MPa 0.51 MPa 0.51 MPa 0.51 MPa Cracking Moment (M_w): 112.36 KN 112.36 KN 112.36 KN 112.36 KN W_{w} = \frac{E_{y}}{A_{y}} (F^{2} + f_{xw} - f_{w}) - 532.58 KN m 830.71 KN m 1064.54 KN m W_{w} = \frac{E_{y}}{A_{y}} (F^{2} + f_{xw} - f_{w}) - 532.58 KN m 111.55 KN 112.36 KN W_{w} = \frac{E_{y}}{A_{y}} (F^{2} + f_{xw} - f_{w}) - 552.26 KN 141.15 KN 112.36 KN W_{w} = 0.34 MPa = 5.22 MPa 5.22 MPa 5.22 MPa 5.22 MPa V_{w} = (a2x)/(F^{2} + a3/w) k_{w} d^{+} t_{w} - 558.05 KN 558.05 KN$	
<section-header> Price Topson Select Tendon Profile Type: Select Tendon Profile Type: Image: Select Tendon Profile Type: Image: Select Tendon Profile Type: Image: Select Tendon Profile Type: Image: Select Tendon Profile Type: Image: Select Tendon Profile Type: Image: Select Tendon Profile Type: Image: Select Tendon Profile: Image: Select Tendon Profile: Image: Select Tendon Profile: Image: Select Tendon Profile: Image: Select Tendon Profile: Select Tendon Profile: Image: Select Tendon Type: Select Tendon Type: Image: Select Tendon Type: Select Tendon Type: Image: Select Tendon Type: Select Tendon Type: Image:</section-header>	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = d = max(d1,d2) = 960 mm 960 mm 960 mm 960.00 mm 600.00 mm	
<section-header><text><text></text></text></section-header>	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960 mm 960.00 mm 600.00 mm	
<section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960 mm 960.00 mm 600.00 mm	
<section-header><section-header><section-header></section-header></section-header></section-header>	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = 960 mm 960 mm 960 mm 960 mm 960 mm 960.00 mm 600.00 mm 505.26 KN 111.55 KN 112.36 KN	
<section-header><section-header> Part Part Part Part Part Part Part Part</section-header></section-header>	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = d = max(d1,d2) = 960 mm ge0.00 mm Rein Area (A.) = $L_{2w} = \frac{F_0}{A_0} [\frac{1}{2} + C_0] =$ 275 MPa 10 mm 000.00 mm 600.00 mm 600.00 mm $L_{2w} = \frac{F_0}{A_0} [\frac{1}{2} + C_0] =$ 4.29 MPa 0.51 MPa 0.04 MPa 0.51 MPa 10.99 MPa 0.51 MPa 0.51 MPa $L_{2w} = \frac{F_0}{A_0} [\frac{1}{2} + L_{2w} - L_{2w}] =$ 0.51 MPa 0.51 MPa 0.51 MPa $L_{2w} = \frac{F_0}{A_0} [\frac{1}{2} + L_{2w} - L_{2w}] =$ 532.58 KNm 830.71 KNm 1064.54 KNm $V_{u} = 0.51/c^{2}N_{u} = 4 \frac{V_{u}}{V_{u}} + \frac{V_{u}$	
<section-header><section-header><section-header> Page 25 Set Text me Set Text me</section-header></section-header></section-header>	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = d = max(d1,d2) = 960 mm 960 mm 960 mm 960 mm 960.00 mm Reinforcement Shear Rein. Fy (t _w) = Diameter = 10 mm 225 MPa 10 mm 00.00 mm 600.00 mm 600.00 mm $f_{2w} = \frac{f_w}{t_w} (t_w) =$ 275 MPa 10 sp mba 00.00 mm 600.00 mm 600.00 mm $f_{2w} = \frac{f_w}{t_w} (t_w) =$ 275 MPa 0.51 MPa 0.51 MPa 0.51 MPa 0.51 MPa Cracking Moment (M _w): 4.29 MPa 0.51 MPa 0.51 MPa 0.51 MPa 0.51 MPa M _w = $\frac{f_w}{t_w} (t_w) (t_w) =$ 552.58 KN.m 830.71 KN.m 1044.54 KN.m 1044.54 KN.m V _w = 0.05 /// F_{wd} + t_{w} - t_{w} t_{w} t_{w} t_{w} - t_{0.51} KN 552.56 KN 141.15 KN 93.66 KN Bimit: 0.14 // (F) wd = 178.36 KN 178.36 KN 178.36 KN V _w = 0.05 // F_{w} + 0.14 // (F) wd = 552.56 KN 558.05 KN 558.05 KN Shear Force Vc = Mn(VcL Vcw) = 558.05 KN 558.05 KN 558.05 KN Shear Force Vc = Mn(VcL Vcw) = 505.26 KN 122.33 KN 20.0	
<section-header><page-header></page-header></section-header>	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = d = max(d1,d2) = 960 mm 960 mm 960 mm 960.00 mm 600.00 mm 600.60 km	
<section-header><section-header><section-header> page 28 stringention Strin St</section-header></section-header></section-header>	Effective depth: d1 = C ₁ + e _x = 550.30 mm 750.84 mm 908.14 mm d2 = 0.8h = d = max(d1,d2) = 960 mm 960 mm 960 mm 960 mm 960.00 mm Reinforcement Shear Rein. Fy (f _w) = Diameter = 10 mm 900.00 mm 960.00 mm 960.00 mm 960.00 mm $f_{2m} = \frac{F_{11}}{F_{12}} = \frac{F_{12}}{F_{12}} = \frac{429}{157.08 mm^2}$ $C_2 = C_8 = \frac{600.00 mm}{0.51 MPa}$ 600.00 mm 600.00 mm 600.00 mm $f_{2m} = \frac{F_{11}}{F_{12}} = \frac{F_{12}}{F_{12}} = \frac{429}{F_{12}} MPa$ 8.04 MPa 0.51 MPa 0.51 MPa Cracking Moment (M _w): 800.71 KNm 1099 MPa 0.51 MPa 0.51 MPa $V_{ar} = \frac{F_{11}}{F_{12}} (F_{12r} - f_{20}) - 532.58 KNm 800.71 KNm 1064.54 KNm V_{ar} = 405 / (F_{2r} d + K_{2r} - f_{20}) - 532.58 KN 141.15 KN 1084.54 KN V_{ar} = 405 / (F_{2r} d + K_{2r} - 532.58 KN 87.53 KN 87.53 KN V_{ar} = 62/F_{ar}^{2} h \Phi_{a}^{2} - 522 MPa 522 MPa 522 MPa V_{ar} = (23/F^{2} + 63/\mu_{a}) k_{a} 4 + k_{p}^{2} - 558.05 KN 558.05 KN 558.05 KN Shara Force Vc = Mn(Vcl, Vcw) = 505.26 KN 141.15 KN 122.33 KN 20Vc $	

Page 4/8

Proceedings of 34th The IRES International Conference, Jeju Island, South Korea, 02nd May 2016, ISBN: 978-93-86083-03-6

Page 6/8

IV. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The study on spreadsheet design on post-tensioned prestressed concrete using Excel spreadsheet with visual basis applications was developed. The program requires the user to input loads, dimensions, and design codes, and material properties. The program then calculates the required prestressing force, concrete area, steel area, and tendon eccentricities. The developed spreadsheet can compute secondary moments on indeterminate beams, additional non prestressing bars and shear reinforcement designs.

The objective of the study to simplify the design computation of post-tensioned prestressed concrete

were achieved. The traditional approach of iterative and distinct phases of the design of post-tensioned prestressed concrete was considerably enhanced. The design process had reduced in its duration and complexity by the interaction of the designer at various stages of the design, and the ability to selectively automate those components of the design that were repetitive process and time consuming.Proper judgment from the user/designer could be applied and can be rectified almost instantaneously. The developed program may serve as academic aid since the computation process was systematically reflected on the spreadsheet.

ACKNOWLEDGEMENT

The senior author would like to acknowledge the Engineering Research and Development for Technology-Department of Science and Technology (ERDT-DOST) for the scholarship and research grants.

REFERENCES

- ADAPT, "Post-Tensioned and Reinforced Concrete Slab and Beam Design Software ADAPT-PT/RC 2014". Online. 2015 http://www.adaptsoft.com/specs-pt.php
- [2]. American Concrete Institute (2008), Building Code Requirements for Structural Concrete and Commentary., USA.
- [3]. Billo, E. Joseph (2007), Excel For Scientist and Engineers, John Wiley & Sons, Inc., Hoboken, New Jersey.
- [4]. Chou, Karen C. (2001), "Enhancing the Teaching of Moment Distribution Analysis Using Spreadsheet", 2001 ASEE Southeast Section Conference.
- [5]. CSIAmerica, "Sap2000". Online. December 2014. https://wiki.csiamerica.com/display/sap2000/Home
- [6]. Nawy, Edward G. (2010), Prestressed Concrete: A Fundamental Approach, Pearson Education Inc., New Jersey.
- [7]. Gerwick, Ben C. Jr.(1993), Construction of Prestressed Concrete Structure, John Wiley & Sons, Inc., New York.
- [8]. Lin, Tung-Yen (1981), Design of Prestressed Concrete Structures Third Edition, John Wiley & Sons, Inc., New York.
- [9]. Microsoft. "How to use Visual Basic for Applications in Excel." Online. 2015. https://support.microsoft.com/enus/kb/304494/en-us
- [10]. Nelson, A. (1980), Design of Concrete Structures, McGraw-Hill Companies, Inc. New York.
- [11]. Precast/Prestressed Concrete Institute (1999), PCI Design Handbook 5th Edition, USA.
- [12]. Shoemaker, W. Lee & Williams, Steve (1988), Prestressed Concrete Design
- [13]. Using Spreadsheets, PCI JOURNAL March-April 1988.
- [14]. Walkenbach, John (2007), Excel® 2007 VBA Programming For Dummies®,
- [15]. Wiley Publishing, Inc., 111 River Street Hoboken, NJ 07030-5774.
- [16]. Webb, Jeff (1996), Using Excel Visual Basic for Applications Second Edition, Philippine Arts, Inc., 163 Tandang Sora St., Caloocan City.
