

DESIGN OF RETAINING WALLS

Dr. Izni Syahrizal bin Ibrahim

Faculty of Civil Engineering Universiti Teknologi Malaysia **Email: <u>iznisyahrizal@utm.my</u>**

- Retaining wall is used to retain earth or other material in vertical (or nearly vertical) position at locations where an abrupt change in ground level occurs
- Prevent the retained earth from assuming its natural angle of repose
- The retained earth exerts lateral pressure on the wall – overturn, slide & settlement
- The wall must be design to be **stable** under the effects of lateral pressure

Failure in Retaining Wall

Gravity Wall

- Depends entirely on its own weight to provide necessary stability
- Usually constructed of plain concrete or stone masonry
- Plain concrete gravity wall height
 < 3 m
- In designing this wall, must keep the thrust line within the middle third of the base width – **no tensile stress** to be developed

Cantilever Wall

- Economical for height of up to **8 m**
- Structure consist of a vertical cantilever spanning from a large rigid base slab
- **Stability** is maintained essentially by the weight of the soil on the base slab + self weight of structure

Counterfort Wall

- When the overall height of the wall is **too large** to be constructed economically as a cantilever
- Wall & base are tied together at intervals by counterfort or bracing walls
- Bracing in tension
- Economical for high wall usually above 6 – 7 m of backfill

Buttress Wall

- Similar to counterfort wall, but bracing is constructed **in front** of the wall
- Bracing in compression
- More efficient than counterforts, but **no usable** space in front of the wall

Gabion Wall

- Made of **rectangular containers**
- Fabricated of heavily galvanized wire, filled with stone and stacked on one another, usually in tiers that step back with the slope
- Advantages: conform to ground movement, dissipate energy from flowing water & drain-freely

Crib Wall

- Interlocking individual boxes made from timber or precast concrete members
- Boxes are filled with crushed stone or other granular materials to create free-draining structure

Tieback Wall

- Tieback is a horizontal wire or rod, or a helical anchor use to reinforce retaining wall for stability
- One end of the tieback is secured to the wall, while the other end is anchored to a stable structure i.e. concrete deadman driven into the ground or anchored into the earth with sufficient resistance
- Tieback-deadman structure resists forces that will cause the wall to lean

Keystone Wall

- Made up of segmental block units, made to last
- Based around a system with interlocking fibreglass pins connecting the wall unit and soil reinforcement
- Combination of these resulted in a strong, stable and durable wall system
- Offers aesthetic appeal, cost efficiency, easy installation & strength

Analysis & Design

(1) Overturning

- Occurs because of unbalanced moment
- When overturning moment about toe to due lateral pressure >> resisting moment of self weight of wall & weight of soil above the heel slab
- Critical condition occur when maximum horizontal force acts with minimum vertical load
 - $\gamma_f = 0.9$ applied to the **permanent vertical load**, ΣV_k , which is "favourable"

 - *γ_f* = 1.5 applied to variable surcharge loading (if any), which is "unfavourable"

(1) Overturning (continued)

Stability Criteria:

 $\gamma_f\left(\sum V_k x\right) \geq \gamma_f H_k y$ or $0.9\left(\sum V_k x\right) \geq \gamma_f H_k y$

(2) Sliding

- Resistance against sliding provided by **friction** between the bottom surface of the base slab and soil beneath
- Resistance provided by **passive earth pressure** on the front face of the base gives some contribution (often ignored because it is often backfilled)
 - $\gamma_f = 1.0$ applied to the **permanent vertical load**, ΣV_k , which is "favourable"
 - γ_f = 1.35 applied to the permanent earth loading, H_k at rear face of the wall, which is "unfavourable"
 - *γ_f* = 1.5 applied to variable surcharge loading (if any), which is "unfavourable"

(2) Sliding (continued)

Stability Criteria:

(3) Settlement

- Width of base slab must be **adequate** to distribute the vertical force to the foundation soil
- To determine the required size of base, bearing pressure underneath is assessed on the basis of the **ultimate limit state** (GEO)
- Since the base slab of the wall is subjected to the combined effects of an eccentric vertical coupled with an overturning moment, the analysis is similar to that of **foundation design**

(3) Settlement (continued)

Stability Criteria:

The maximum bearing pressure ≤ Soil bearing capacity

$$I = \frac{\sum N}{A} \pm \frac{\sum M}{Z} = \frac{\sum N}{A} \pm \frac{\sum My}{I}$$

where:

Q

$$\sum M = \sum Ne + \sum H_k y$$

A = Area of base slab

- *e* = Eccentricity
- Z = Section modulus of base about the centroidal axis

Stability Analysis

(3) Settlement (continued)

Ultimate Limit State (ULS)

Load Combination 1

- Moment due to horizontal load on the maximum bearing pressure at the toe of wall is "unfavourable"
- Moment due to weight of wall and earth acting on the heel of wall act in the opposite direction are "favourable"
 - $\gamma_f = 1.0$ for weight of wall & soil
 - $\gamma_f = 0$ for weight of surcharge
 - $\gamma_f = 1.35$ for lateral earth pressure
 - $\gamma_f = 1.5$ for lateral surcharge

Load Combination 2

- *y_f* = 1.0 for permanent action of both "unfavourable" & "favourable" effects
- \$\gamma_f = 1.3\$ for variable action of "unfavourable" effect
- *γ_f* = 0 for variable action of "favourable" effect

Element Design & Detailing

- Three elements of retaining wall: Stem, Toe slab & Heel slab are designed as cantilever slab
- **Stem:** Designed to resist moment caused by force $\gamma_f H_k$ (γ_f = load combination 1)
- **Toe Slab:** Net pressure is obtained by deducting the weight of concrete in the toe slab from upward acting soil pressure
- **Heel slab:** Designed to resist moment due to downward pressure from the weight of retained earth (plus surcharge, if any) and concrete slab
- Safety factor γ_{f1} , $\gamma_{\phi2}$ and γ_{f3} should be considered to provide a combination which gives the **critical design conditions** (worst combination of 1 & 2)
- Temperature & shrinkage reinforcement should be provided transverse to the main reinforcement & near the front face of the stem

Example 1

CANTILEVER RC RETAINING WALL

Example 1: Cantilever RC Retaining Wall

Suggest Suitable Dimensions for the RC Retaining Wall

Suggest Suitable Dimensions for the RC Retaining Wall

Active Soil Pressure, $P = (\gamma H + w)K_a$ where $K_a = \frac{(1-\sin \emptyset)}{(1+\sin \emptyset)} = \frac{(1-\sin 35)}{(1+\sin 35)} = 0.27$

 $\therefore P = (19H + 10)0.27 = 5.15H + 2.71$

At H = 0 m $\rightarrow 2.71 \text{ kN/m}^2$ At H = 4.5 m $\rightarrow 25.9 \text{ kN/m}^2$ At H = 4.9 m $\rightarrow 27.9 \text{ kN/m}^2$

Taking Moment at Point A

Stability Analysis

Element		Load (kN)	Lever Arm (m)	Moment at Point A (kNm)	
Wall	2	1. $(0.5 \times 0.16 \times 4.50 \times 1 \text{ m width}) \times 25.0 = 9.0$ 2. $(0.24 \times 4.5 \times 1 \text{ m width}) \times 25.0 = 27.0$ 3. $(0.40 \times 3.20 \times 1 \text{ m width}) \times 25.0 = 32.0$	0.91 1.08 1.60	8.2 29.2 51.2	
Soil		(4.50 \times 2.00 \times 1 m width) \times 19.0 = 171.0	2.2	376.2	
Surcharge		$(2.00 \times 1 \text{ m width}) \times 10.0 = 20.0$	2.2	44.0	
Active PressureSurchargeSoil		$2.71 \times (4.9 \times 1 \text{ m width}) = 13.3$ (27.9 - 2.71) × (4.9 × 1 m width) = 61.8	2.45 1.63		32.5 100.9
Total	Moment, M	Permanent = Variable =		464.7 44.0	100.9 32.5
	Vertical Load, V _k	Permanent = 239.0 Variable = 20.0	-	-	-
	Horizontal Load, <i>H_k</i>	Permanent = 61.8 Variable = 13.3	-	-	-

Stability Analysis

1. Stability Against Overturning (at point A):

Check 0.9 $(\sum V_k x) \ge \gamma_f H_k y$

Overturning Moment = $(1.10 \times 100.9) + (1.50 \times 32.5) = 160$ kNm Restraining Moment = $(0.90 \times 464.7) + (0 \times 44.0) = 418$ kNm

Since Overturning Moment < Restraining Moment → OK

Stability Analysis (continued)

2. Sliding

Check $\mu(1.0 \sum V_k) \ge \gamma_f H_k$

Sliding Force = $(1.35 \times 61.8) + (1.50 \times 13.3) = 103$ kN Friction Force = $0.45 [(1.0 \times 239.0) + (0 \times 20.0)] = 108$ kN

Since Sliding Force < Friction Force → OK

Stability Analysis (continued)

3. Settlement

 ΣV_k = 239.0 + 20.0 = 259.0 kN ΔM = 464.7 + 44.0 - 100.9 - 32.5 = 375.3 kNm

$$\therefore x = \frac{\Delta M}{\sum V_k} = \frac{375.3}{259.0} = 1.45 \text{ m}$$

Eccentricity, e = B/2 - x = 1.60 - 1.45 = 0.15 m < B/6 = 0.53 m**No negative pressure** Stability Analysis (continued)

3. Settlement

Main Reinforcement

h = 400 mm, b = 1000 mmEffective depth, $d = h - c - 1.5 \phi_{bar} = 400 - 45 - (0.5 \times 12) = 349 \text{ mm}$

(i) Wall Stem

$$M_{ab} = 1.5 \left[2.71 \times \frac{4.5^2}{2} \right] + 1.35 \left[(25.9 - 2.71) \times \frac{4.5}{2} \times \frac{4.5}{3} \right] = 41.1 + 105.5 = 146.7 \text{ kNm/m}$$

$$K = \frac{M_{Ed}}{f_{ck}bd^2} = \frac{146.7 \times 10^6}{30 \times 1000 \times 349^2} = 0.040 < K_{bal} = 0.167$$

$$\therefore \text{ Compression reinforcement is NOT required}$$

$$z = d \left[0.25 - \left(\frac{K}{1.134}\right) \right] = 0.96d > 0.95d$$

$$A_{s,req} = \frac{M_{Ed}}{0.87f_{ykZ}} = \frac{146.7 \times 10^6}{0.87 \times 500 \times 0.95 \times 349} = 1017 \text{ mm}^2/\text{m}$$

Provide H12-100 (A_s = 1131 mm²/m)

Main Reinforcement (continued)

(ii) Toe

$$M_{ac} = 1.35 \left[82.4 \times \frac{0.80^2}{2} \right] + 1.35 \left[(93.9 - 82.4) \times \frac{0.80}{2} \times \frac{2}{3} \times 0.80 \right] = 35.6 + 3.3 = 38.9$$
 kNm/m

$$K = \frac{M_{Ed}}{f_{ck}bd^2} = \frac{38.9 \times 10^6}{30 \times 1000 \times 349^2} = 0.011 < K_{bal} = 0.167$$

$$\therefore \text{ Compression reinforcement is NOT required}$$

$$z = d \left[0.25 - \left(\frac{K}{1.134}\right) \right] = 0.99d > 0.95d$$

$$A_{s,req} = \frac{M_{Ed}}{0.87f_{ykZ}} = \frac{38.9 \times 10^6}{0.87 \times 500 \times 0.95 \times 349} = 270 \text{ mm}^2/\text{m}$$

Provide H12-150 ($A_s = 754 \text{ mm}^2/\text{m}$ **)**

Main Reinforcement (continued)

(iii) Heel

$$M_{bd} = 1.35 \left[18.8 \times \frac{2.00^2}{2} \right] + 1.35 \left[(47.5 - 18.8) \times \frac{2.00}{2} \times \frac{2}{3} \times 2.00 \right] = 50.8 + 51.6 = 102.4$$

kNm/m

$$K = \frac{M_{Ed}}{f_{ck}bd^2} = \frac{102.4 \times 10^6}{30 \times 1000 \times 349^2} = 0.011 < K_{bal} = 0.167$$

$$\therefore \text{ Compression reinforcement is NOT required}$$

$$z = d \left[0.25 - \left(\frac{K}{1.134}\right) \right] = 0.97d > 0.95d$$

$$A_{s,req} = \frac{M_{Ed}}{0.87f_{yk}z} = \frac{102.4 \times 10^6}{0.87 \times 500 \times 0.95 \times 349} = 710 \text{ mm}^2/\text{m}$$

Provide H12-150 (A_s = 754 mm²/m)

Minimum & Maximum Area of Reinforcement

$$A_{s,min} = 0.26 \left(\frac{f_{ctm}}{f_{yk}}\right) bd = 0.26 \left(\frac{2.90}{500}\right) 0.0013 bd \ge 0.0013 bd$$

$$\therefore A_{s,min} = 0.0013 bd = 0.0013 \times 1000 \times 349 = 454 \text{ mm}^2/\text{m}$$

 $A_{s,max} = 0.04A_{c} = 0.04bh = 0.04 \times 1000 \times 400 = 16000 \text{ mm}^2/\text{m}$

Provide Secondary Bar H12-200 (A_{s,prov} = 566 mm²/m)

Shear

(i) Wall

$$V_{ab} = 1.50[2.71 \times 4.5] + 1.35 \left[(25.9 - 2.71) \times \frac{4.5}{2} \right] = 88.7 \text{ kN/m}$$

$$V_{ac} = 1.35(93.9 + 82.4) \times \frac{0.80}{2} = 95.2 \text{ kN/m}$$

$$V_{bd} = 1.35 \left(18.8 + 47.5 \times \frac{2.00}{2} \right) = 89.5 \text{ kN/m}$$

$$\therefore V_{Ed} = 95.2 \text{ kN/m}$$

$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{349}} = 1.76 < 2.0$$
$$\rho_l = \frac{A_{sl}}{bd} = \frac{754}{1000 \times 349} = 0.0022 \le 0.02$$

Shear

 $V_{Rd,c} = \left[0.12k(100\rho_l f_{ck})^{1/3}\right]bd$ = $\left[0.12 \times 1.76(100 \times 0.0022 \times 30)^{1/3}\right]1000 \times 349 = 137199 \text{ N} = 137.2 \text{ kN}$

$$\begin{split} V_{min} &= \left[0.035 k^{3/2} \sqrt{f_{ck}} \right] bd \\ &= \left[0.035 \times 1.76^{3/2} \sqrt{30} \right] 1000 \times 349 = 155817 \, N = 155.8 \, \text{kN} \end{split}$$

 V_{Ed} (95.2 kN) < V_{min} (155.8 kN) \rightarrow OK

Cracking

h = 400 mm > 200 mm

Steel stress under quasi-permanent action, $f_s = \left(\frac{f_{yk}}{1.15}\right) \left(\frac{A_{s,req}}{A_{s,prov}}\right) \left(\frac{N_{quasi}}{N_{ult}}\right)$ = $\left(\frac{500}{1.15}\right) \left(\frac{1017}{1131}\right) \left(\frac{245}{352.7}\right)$ = 272 N/mm²

For design crack width 0.3 mm: Maximum allowable bar spacing = 150 mm

- Wall: 100 mm < 200 mm
- Toe: 150 mm < 200 mm
- Heel: 150 mm < 200 mm

Cracking OK

Example 1: Cantilever RC Retaining Wall

Detailing

