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Abstract 

 Design patterns are important techniques that programmers can use to solve 

common problems and make their code more robust. The goal of this project is to provide 

a tool that supports inserting design patterns into existing code. We manipulate abstract 

syntax trees to achieve this goal. We created a graphical user interface that lets users 

generate different design patterns. We provide instructions on how to extend our program 

by adding more design patterns. 
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1. Introduction 

A design pattern is a proven solution for a general problem. By utilizing design 

patterns, one’s code often becomes more organized, readable, and expandable [19]. For 

these reasons, it is import for programmers to structure their code with design patterns in 

mind. Our goal is to design a tool that allows for the insertion of design patterns into 

existing code for the purpose of teaching good coding practices. Due to the fact that 

design patterns can only be applied under certain conditions, our tool also has the side 

effect of educating the programmer as to when patterns can be used. 

Our project required us to select a suitable implementation language and an 

appropriate set of patterns to implement. Python is a popular programming language for 

beginners due to its readable syntax and ease of use [22]. The patterns we selected were 

ones that work well with Python, are useful for beginners to know, and have a standard 

structure regardless of code context. We decided to implement the class adapter, 

observer, abstract factory, and class decorator design patterns. 

Our method of generating patterns utilized abstract syntax trees generated by 

Python. An abstract syntax tree (AST) is a tree representation of the abstract syntactic 

structure of source code. Each node of this tree can be anything from a main function to a 

single string. With the help of standard and third party libraries, we were able 

successfully apply design patterns to existing code. We designed a graphical user 

interface that allows the user to select a file, a design pattern, and the classes or methods 

to apply the pattern to. We also created a guide for how a user could add their own design 

pattern to our program. Future work includes more comprehensive error checking for 

design pattern generation and working to preserve all comments and whitespace. 
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This paper is organized in the following way. Section 2 discusses design patterns 

and syntax trees for the purpose of understanding the motivation of our project. Section 3 

discusses our process for picking a language and set of design patterns to work with, and 

how we manipulated syntax trees to incorporate patterns into existing code. Section 4 

discusses the general results of our project. Section 5 identifies areas of future work.  
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2. Background 

 Our program deals with the modification of existing code to implement design 

patterns. To fully understand the motivation for our project, it is important to recognize 

why design patterns are regarded as important tools for programmers. Additionally, our 

means of modifying existing code was to modify generated abstract syntax trees. An 

explanation as to how these structures work and can be modified is given.  

2.1 Design Patterns 

Design patterns are proven solution for a general problem [19]. In computer 

science, many problems occur frequently but in different forms or contexts. Once a 

solution for a problem is found, it can be modified to apply to other similar problems. 

Design patterns are the most effective and widely used of these solutions. 

 Design patterns are abstract in nature. On the concept of abstract patterns applied 

to building design, Christopher Alexander stated that "...each pattern describes a problem 

which occurs over and over again in our environment, and then describes the core of the 

solution to that problem, in such a way that you can use this solution a million times over, 

without ever doing it the same way twice" [3]. This same logic applies to design patterns 

in an object oriented coding context. One could use a single design pattern under many 

different contexts, but its basic structure and approach to solving the problem will remain 

the same. 

The concept of reusable and flexible code is something that beginner 

programmers do not often grasp naturally. An experienced programmer can design code 

from the ground up with future changes in mind. “A designer who is familiar with such 
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patterns can apply them immediately to design problems without having to rediscover 

them” [3]. Once a programmer has encountered a problem and solved it, he or she will 

recall that solution the next time a similar problem occurs. Eventually, an experienced 

programmer will have an idea as to what kinds of problems will lay ahead based on the 

requirements of their project. His or her code will be structured so that it can easily 

incorporate their pre-designed solution for the predicted obstacles. However, it is 

impossible to predict all challenges one will face whilst working on a project. For this 

reason, it is important to have your code remain flexible so that unforeseen future 

problems can be addressed. 

 Design patterns help the programmer communicate intent. Many patterns are 

easily recognizable; their relatively standardized structure can help future developers 

understand existing projects. “In the object oriented world, design patterns tell us how, in 

the context of a certain problem, we should structure the classes and objects. They do not 

translate directly into the solution; rather have to be adapted to suit the problem context.” 

[2]. Design patterns provide abstract solutions to recurring problems, so if someone can 

identify a pattern in a project, they can also discern the problem it is trying to solve, 

which is a major step toward understanding the project as a whole. 

2.2 Syntax Trees 

A syntax tree is a tree representation of the structure of a program’s source code. 

Syntax trees are generated by the parser during the compilation process before output 

code can be produced [24, 25]. In a syntax tree, each node represents a hierarchal piece of 

the code structure located in the source. For example, a function definition is a node 

which contains a series of child nodes for each of its expressions. These expressions may 
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be arithmetic operations, variable declarations, function calls, or other code bodies. There 

are two types of syntax trees: parse trees, or concrete syntax trees (CSTs) and abstract 

syntax trees (ASTs). The parsers of certain compilers create ASTs directly, while others 

create a CST from which an AST is derived [1]. 

2.2.1 Concrete Syntax Trees 

A CST represents every element of the syntax of the source code as its own node 

[1]. Figure 1 is an example of a CST for the C statement return a + 2;. 

 

Figure 1- Concrete Syntax Tree Example 

 As shown by Figure 1, every element of the expression is allotted a node. There 

are sequences of compound nodes that list all specific types of expressions the statement 
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is. This formal representation describes every detail of the syntax that the parser detected. 

However, such detail is often not needed, making CSTs more difficult to work with [1]. 

2.2.2 Abstract Syntax Trees 

An AST “is a tree representation of the abstract syntactic structure of source 

code” [2]. The nodes provide a semantic representation of the code, but with abstract 

syntax. This means that certain syntactic nodes, such as terminating semicolons, are not 

present as singular nodes but instead are encompassed by the expression nodes. Figure 2 

shows an AST representation of the same statement used for the CST in Figure 1. 

 

Figure 2 - Abstract Syntax Tree Example 

 ASTs are a more compact version of CSTs in that they eliminate nodes with no 

semantic meaning. For example, Figure 2 shows that sequence of expression nodes 

present in the CST in Figure 1 are now simply represented as a single BinaryOp node 

[1]. This leads to a smaller, more readable tree. However, the exact syntax derivation of 

the statement is lost in this process, thus making the tree an abstract representation. 

2.2.2 Syntax Trees and Python 

 The Python interpreter creates an AST as part of its compilation process. The 

source code is first tokenized by the lexer and then sent to the parser, which creates a 

parse tree. An AST is then created from this parse tree, which is then sent to the bytecode 

generator and eventually the bytecode interpreter [24, 26]. The tools for generating the 
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ASTs, manipulating ASTs, and compiling ASTs into bytecode are included within the 

free Python ast and compile modules [25]. In the methodology section of this paper we 

discuss the process of modifying an AST and then converting it back into source code. 
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3. Methodology 

 This section of the paper discusses our process of picking a language in which to 

write our program, picking design patterns to implement, and modifying ASTs for the 

purpose of adding patterns to existing code. 

3.1 Choosing a Language 

The language we decided to write our program in was Python. This decision was 

made based on many factors: our target audience, ease of use, and our available tools. 

3.1.1 Target Audience and Ease of Use 

The goal of our project is to design a resource for new programmers that provides 

an easy way to implement design patterns into existing code. Therefore, it was important 

that we write our program to operate on a language that is often used by beginners. 

Python is one of the more popular introductory languages. It is listed as one of the top 

languages that is being used by computer science departments in university starter 

courses [33]. 

Python’s popularity is attributed to its ease of use due to its readable syntax [22]. 

Newer programmers can easily grasp the language’s grammar as it often uses English 

words opposed to symbols to represent logic and expressions. 
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Figure 3 - C and Python Code Comparison 

Figure 3 compares the how the same program would be written in C, on the left, 

and in Python, on the right. The Python version of the code has a few important 

differences to note: the lack of braces, the lack of semicolons, and the lack of parameter 

typing. Python’s scoping structure is defined predominantly by whitespace indentation. 

The indentation level of a line of code indicates what code block the line belongs to. This 

means that programmers do not need to keep track of parenthesis or brackets, but instead 

monitor their indentation levels. A consequence of having whitespace tied to syntax is 

that good indentation habits are enforced. Python also does not require any terminal 

character at the end of statements, nor does it require a parameter’s type to be specified in 

a function’s definition. Python functions are defined the same way regardless of their 

return value, or lack thereof. In general, Python is a straightforward language, 

syntactically speaking, with a short learning curve, making it ideal for beginners. 

A key difference between Python and other programing languages lies in how 

classes are defined. Figure 4 gives an example of a Python class. 
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Figure 4 - Example Python Class 

 Import details to note for those unfamiliar with python are the __init__ method 

and the self parameter. The __init__ method is called by Python itself automatically 

when an instance of a class is created. This method sets the fields within the class. The 

self parameter is an instance object that is passed as the first parameter in Python 

methods. The self object is the actual instance of this individual class; multiple car 

classes will be distinguishable by their self variables. In this regard, the statement 

self.make = make sets the make field for a single instance of a car class. The self 

variable is how one accesses the data for a single instance of that class from within the 

class itself. 

3.1.2 Available AST Packages 

Our choice of programming language depended on the amount of tools we had at 

our disposal to reach our goal. An AST can be generated from every syntactically correct 

Python program. However accessing an AST in order to print and manipulate it is not so 

easy. Rather than writing our own modules that manipulate ASTs, we searched for 

existing ones that we could adapt to our needs. Meta is a free package available for 

Python that can print a program’s AST as well as generate Python source code from an 

AST [33]. Python itself comes with the ast module, which contains functions for 

editing, adding, and removing nodes from an AST [34. 35]. 
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3.1.3 Printing ASTs 

The Meta package allows for the printing of ASTs. The output shows the tree 

structure in the form of nodes. When working with an AST in Python, each node is set up 

as if it were an object, having fields and values which denote the structure of the 

statement or code block it represents. Meta prints out the tree of these objects exactly 

how they would be used by the Python ast module, but properly indented so that it is 

readable. Figure 5 shows an example of a simple python program and its AST printed out 

via the Meta package. 

 

 

Figure 5 - Example AST Printed With Meta 

 Due to the simple nature of this program, the AST is fairly straightforward. Every 

Python file has all of its classes and function definitions located within an all-

encompassing Module node. In this example, you can see the function definition within 

the body of Module. The function definition has four key attributes; the arguments for 

the function, the body, a list of decorators, and its name. The arguments are a list of 

parameters that are passed into this function. The list is empty for this example because 

there are no input arguments. The body contains a node for a print expression with the 

value being a string that stores the message “hello world”. This function is not decorated 

so the decorator list is empty. Finally, the name attribute holds the name of the function 
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.  

Figure 6 - Printing an AST 

Figure 6 shows the process to print an AST with Meta. First, a file is opened and 

saved as a code object. Then this code object is passed into a Python function called 

ast.parse, which generates an AST object. Finally, the AST object is passed into the 

Meta function meta.asttools.str_ast which generates a string representation of the 

tree which can be printed. 

3.1.4 Editing the ASTS and Generating Code 

To be able to understand node manipulation one must first grasp the structure of 

the tree. The initial node, Module, is the all-encompassing code body outside any 

function or object. Any functions, statements, or object definitions are all children of this 

foremost parent node, either directly or indirectly. The nodes of an AST can represent 

anything from a class definition to a single statement. For example, a node that represents 

a class will have several child nodes, each representing method definitions and fields. 

Certain changes to an AST propagate and other ones do not. For instance, removing an 

object node also removes all its constituent methods nodes, and so forth. However, 

modifying a node so that, for example, a field is renamed, will result in mismatched field 

names in function calls and syntactically incorrect code.  
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Figure 7 - AST Transformer Function 

AST modification is best illustrated with an example. This section will show how 

one would modify an AST to change the names of variables. This requires the usage of 

the ast.NodeTransformer class, which is a part of the Python ast module. The 

ast.NodeTransformer class is an implementation of the visitor pattern the visits all 

nodes of the tree by type. The steps required for modifying a program’s AST are as 

follows. 

1. Generate an AST from the source code using the ast library. 

2. Create a custom transformer class and overwrite the relevant visitor methods 

required for your task. 

3. Traverse the tree, returning modified nodes. 

4. Continue this process until all relevant nodes are visited and returned. 

5. Generate source code from the modified AST using Meta. 

 In this example, we will be looking for Name nodes to change our variable names. 

Figure 7 represents step 2: a new transformer class is defined, containing a visitor method 

used to overwrite the pre-defined the visit_Name method. Our new visit_Name 

method will change all variables to upper case. Next, steps 3 and 4 are done at runtime 

using our custom transformer’s visitor method. Figure 8 shows the results of step 5; an 

example function definition and the resulting code generated by the modified AST. You 
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will notice that the output of our program shows that the comments are not preserved. 

This will be addressed in a later section. 

 

Figure 8 - Modified AST Example 

3.2 Choosing Design Patterns 

 For a design pattern to be considered for our program, we had to take into 

consideration some key factors: 

 Does the pattern work well with python as a language? 

 Is the pattern an important concept for beginners? 

 Does the pattern have a certain structure that is standard per its usage? 

3.2.1 Patterns for Python 

Python is an object oriented language typically used for rapid prototyping and 

application development [4]. To fill this role effectively, the language was designed to be 

flexible and dynamic [36]. As a result, Python “provides a good basis for a number of 

different and elegant solutions [to design problems]”. The popular software engineering 

book Design Patterns: Elements of Reusable Object-Oriented Software describes 23 of 
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the most widely used design patterns [3, 37, 38]. These patterns are called the Gang of 

Four (GoF) design patterns, referring to the four authors of the book. The Gang of Four 

patterns sometimes assume language traits that are absent from Python, however “it is not 

impossible to build pattern implementations that work like their GoF counterparts” [36]. 

While the resulting Python pattern implementations might have some non-typical 

features, they will still have the same functionality and recognizability. 

Certain design patterns exist that lose their usefulness in Python. As a dynamic, 

high level language, Python eases the load on the programmer by managing memory, 

pointers, and determining types at runtime. A consequence of this is that Python 

programs have less need for bookkeeping patterns meant to manage those programming 

aspects [38].  Additionally, certain patterns such as the iterator and function decorator are 

not required to be constructed manually as they are built into Python, [37].  

3.2.2 Patterns for Beginners 

 Beginner programmers need to understand the basics of good software design 

[23]. Using design patterns gives one exposure to proven techniques that utilize important 

software engineering concepts. Design patterns also give beginner and experienced 

programmers a common language in which to communicate [4]. The most well 

documented patterns are the most beneficial for a new programmer to learn. Doing so 

allows one to immediately be able to participate in a multitude of design discussions 

based around proposed patterns as solutions to a problem. The Gang of Four patterns are 

the most widely known and documented patterns, so they are the most ideal for beginners 

to learn about. 
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3.2.3 Pattern Structure 

A key issue that a program such as ours faces is the lack of context as to what the 

input code is trying to accomplish. We have no way of knowing what the functionality of 

certain classes are, as there is no way to explicitly derive the real world purpose of the 

input bodies of code. Design patterns “do not translate directly into the solution; rather 

have to be adapted to suit the problem context” [4]. 

For our program to be useful, we need to be able to implement a design pattern 

without knowing what the bodies of our generated classes or functions will be. For this 

reason, the only design patterns that we can implement are ones that have constant 

structures not entirely dependent on their per-program application.  

 

Figure 9 - Example Classes with Unknown Context 

 

Figure 10 - Modified Classes 

For example, a design pattern might always have a certain dependency between 

classes “A” and “B”, shown in Figure 9. The pattern might also require a third class, “C”, 

that has a relatively standard structure whenever that design pattern is implemented. 

Therefore, even though our program does not have any context as to what classes “A” 

and “B” have inside them or what purpose they serve, we can still implement the pattern 
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by adding in the dependency between “A” and “B” as well as generating the structure of 

“C”. These changes are shown in Figure 10.  

In other cases, new functions might be added. These functions might require 

access to fields that are supplied by a particular class. We can use the AST to get those 

fields from the class and make those the parameters of the generated function, as well as 

building the function definition and creating an empty code body. While any code bodies 

we create may be blank, we still have supplied the user with the skeletal structure of the 

requested design. They can now see how the pattern is structured, which can help them to 

understand how it works. 

A new programmer can learn from a skeletal structure of a design pattern. 

Showing required functions, classes, and class dependencies helps one to visualize the 

pattern and potentially be able to recreate it in the future. This way, our program does not 

do all the work for the programmer; they still are tasked with adding the correct 

functionality to the code bodies. Our tool is not a way to get around having to think about 

patterns, but more of a shortcut to understanding them. 

 

Figure 11- Façade Pattern Structure 
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 Certain design patterns by their very nature are too program-dependent for our 

program to generate a meaningful amount of their structure. Take for example the façade 

pattern, whose purpose is to provide a version of an interface that is simplified for a 

chosen functionality [4]. The structure of a façade is simply a class that has methods 

defined for chosen purposes, which are often a series of method calls to existing and 

more complicated interfaces. A situation that would warrant the use of the façade pattern 

would be one where a user has many tests they would like to run at once. These tests 

involve several different method calls and initialization phases. The statements could be 

placed within one function definition that only needs to be called once; a façade. If our 

program attempted to create the facade pattern in this scenario, all it can do is simply 

generate an empty function definition, which is not clearly a façade at first glance. Our 

program does not have the same level of understanding of the program as the user, thus is 

cannot emulate the majority of the façade pattern’s structure. Design patterns such as this 

have too much of their structure dependent on the program they are being applied to for 

them to be adequately generated by our program. 

3.3 Class Adapter Pattern Implementation 

The first pattern we implemented was the class adapter pattern. This pattern 

satisfies all of the requirements for it to work with our program; it works well with 

Python as a language, is a useful pattern for newer programmers to learn, and has a 

context-free structure that can be mostly recreated via AST manipulation. There are two 

types of adapter patterns: the object adapter pattern and the class adapter pattern. The 

object adapter pattern uses encapsulation to wrap a target interface, while a class adapter 
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uses multiple inheritance to fuse the functionality of two classes into one. Our program 

generates object class adapters as they are considered more useful for Python [6]. 

The class adapter pattern is designed let the interface of an existing class to be 

used by another interface [5]. This is accomplished through the addition of an adapter 

class that implements the existing class’s interface while correctly calling the 

corresponding methods from the secondary interface. The class adapter pattern works for 

Python in that the language is object oriented and can utilize interface-like classes. In 

Python, interfaces can be represented in the form of “abstract” classes, which have 

methods defined but without bodies [6]. The abstract nature of these classes is faked in 

that they are concrete classes that are intended to never be instantiated and instead dictate 

the structure of their subclasses. These “abstract” classes essentially function as interfaces 

and therefore fulfill their role in the pattern. True abstract classes exist in Python via the 

Abstract Base Class module but are not needed to implement the class adapter pattern 

[31]. 

3.3.1 Importance of the Class Adapter Pattern 

Having the ability to add to a project without modifying existing code is 

necessary for a program’s extensibility. When code needs to be changed, all other places 

in the program that rely on its previous structure also have to adapt to this change, often 

leading to bugs, client frustration, and wasted time. The class adapter pattern works to 

avoid these issues by encapsulating existing code for the purpose of adding additional 

functionality. A class adapter replicates the methods defined in a target interface but 

without modifying the interface itself. Beginner programmers armed with the knowledge 

of adapters can now start reusing old code for new purposes without having to modify it. 
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This power, coupled with the class adapter’s relatively simple design and concept, makes 

it an excellent pattern for introductory programmers to know. 

3.3.2 Class Adapter Pattern Structure 

 

Figure 12 - Class Adapter Structure 

The structure of the class adapter pattern makes it ideal for our program. Three 

classes are required for a class adapter; the target class (the interface to be adapted to), 

the adaptee (the interface that wishes to adapt to the target), and the class adapter itself. A 

client makes requests to the class adapter instance, which inherits all the methods from 

the target interface and calls the adaptee functions appropriately. In Python, a class 

adapter has a few standard traits: inheriting the target class, saving an instance of the 

input adapter class, overriding the target class methods, and calling the correct 

corresponding adaptee methods as appropriate. Provided only with names of the target 

and adaptee classes, an AST manipulation function can produce a class that contains all 

of the class adapter traits, excluding the adaptee method calls. These method calls are not 

possible to automate because an AST traversal function cannot know by code structure 

alone which adaptee methods correspond to each target method. However, the overall 
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structure of the adapter can be generated, leaving TODO stubs where method calls are 

required.  

3.3.3 Class Adapter Pattern Generation 

For our program to generate a class adapter, three inputs are required: a Python 

file and the names of the target and adaptee classes defined within that file. Figure 13 

illustrates an example file for input, where the vehicle class is the target and the horse 

class is the adaptee.  

 

Figure 13 - Example Target and Adaptee Classes 

The input file is converted into a code object, which is then parsed for the purpose 

of generating an AST object that represents the structure of code in the file. A visitor 

method from the Python ast module is then utilized to traverse the tree. This visitor 

searches the tree until it locates the node corresponding to the target class’s name. Once 

this node is located, a copy is saved for future use.  

Once the target node has been isolated, the class adapter node is created from 

scratch. The body of the target node copy is then placed inside the body of the class 

adapter node. This places all of the existing method definitions of the target into the 

adapter. The bodies of each of these method nodes in the adapter are then wiped and 

replaced with TODO stubs. The adapter node is then modified so that it inherits the target 
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class. An __init__ method node is then added to the class adapter node. The body of 

this node contains an expression that saves an instance of an input class within the object. 

A __getattr__ method node is also added to the class adapter node. The 

__getattr__ method is a ‘magic’ method used by the Python interpreter when an 

object lookup on an unknown attribute is called [32]. This addition allows the adapter to 

pass any adaptee functions not defined within the adapter itself along to the adaptee. 

Finally, the name of the adapter node is set to “adapteeTargetAdapter”. In this example, 

the name will be “horseVehicleAdapter”.  

Once complete, the adapter node is added to the AST in the same code block as 

the target class’s node. Using the Meta library, the AST object is then converted back 

into a code object which is then saved to a new file as Python code. The resulting file is 

syntactically identical to the input file, with the only change being the addition of the 

class adapter. Figure 14 shows a class adapter for the horse and vehicle classes that 

would be generated by our program. The object parameter for the __init__ function 

is an instance of the adaptee, which in this example is the horse class. This instance is 

saved within the class adapter as self.object. 

 

Figure 14 - Example Class Adapter 

The final step of the class adapter process is done by the user. They have to 

decide which adaptee functions are to be called in the defined target methods within the 
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adapter. Figure 15  shows the case where the user decided to call the horse class’s ride 

method when the drive method is called. 

 

 

Figure 15 - Example Class Adapter with Method Call 

 The main function in Figure 15 shows how this class adapter would be used. A 

horse instance is created and used to make a horseVehicleAdapter instance. This 

horseVehicleAdapter now has the functionality of a horse while implementing the 

vehicle interface. 

3.4 Observer Pattern Implementation 

 The second pattern we implemented was the observer pattern. This pattern works 

well in Python, is useful for beginners, and has a mostly standard structure. Additionally, 

our program explores a new technique for adding this pattern to an existing program with 

minimal modification to the input files. This technique is discussed in detail later in this 

section. 

      The Observer Pattern is used to automatically notify dependent objects of any 

state changes that occur to the object they are dependent on. The subject is a class that 

maintains a list of observers which are dependent on the state of the subject. When the 

subject has a state change, it notifies all known dependent objects it has stored in its 
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observers list via a notification function. Each dependent class has a notify function 

within itself that gets called whenever the subject notifies it of a state change [8]. Python 

projects are often object based, so the observer pattern’s ability to automatically inform 

multiple objects of a subject's change in state is relevant to the language. 

3.4.1 Importance of the Observer Pattern 

        Properly maintaining the states of objects is an important concept in object 

oriented programming. When an event occurs in a program and a state of a class instance 

changes, all objects dependent on that instance must be notified. The challenge in doing 

this involves maintaining these dependences without tightly coupling the related objects. 

In software engineering, coupling is how closely two classes rely on each other [10]. 

Decoupling two objects means to limit their interaction, and is often considered the most 

pragmatic way to approach object oriented design. Tight coupling between two objects 

inhibits change; if one object is modified, all those tightly coupled to it may need to be 

modified as well [11]. The observer pattern is useful to know because it maintains 

consistency between dependent objects while avoiding tight coupling [10].  The subject 

does not need to know any information about its observers; all it does is add them to its 

list observers and notify them of a state change via a uniform notification function. New 

programmers can gain useful insight as to how a program can update all dependent 

classes while keeping them loosely coupled through the use of the observer pattern. 
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3.4.2 Observer Pattern Structure 

 

Figure 16 - Observer Pattern Structure 

        The relatively simple structure of the observer pattern makes it a good candidate 

for our program. Two classes are required for this pattern; an observable class (the 

subject to be observed by others) and the observer class (dependent on the subject). The 

observable class maintains a collection of observers. Observers are added to this 

collection via a register method and removed from the collection via an unregister 

method. The observable also contains a notification method that calls the notify method 

for all observers in its collection. This notification method is how the observable class 

updates all of its dependent classes. A class that has many dependencies and wishes to act 

as a subject would inherit the observable class to gain its functionality. The observer class 

contains a notify method that acts accordingly in response to the information provided by 

the observable class. These notify methods can behave differently among observers but 

are called the same way by the observable class. A class that depends on the state 

changes of the subject would inherit the observer class. 

        The functionality of the observer pattern is captured in the definitions of the 

observable and observer classes. These classes often do not change when used in 

completely different programs. For this reason, we decided to have our program generate 
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these class definitions in a separate, standard file. When a user submits a file to have the 

observer pattern applied to, two files are generated: a completely new file that contains 

the observer pattern class definitions, and a slightly modified version of their input file 

that imports the newly generated file and uses it appropriately. With this method of 

approach, the input file is modified as little as possible while still employing the observer 

pattern. 

3.4.3 Observer Pattern Generation 

        For our program to generate an observer, three inputs are required: a python file 

and the names of the subject and observer classes defined within that file. Figure 17 

illustrates an example file for input, where the master class is the subject and the dog 

class is the observer. In this example, the master class initially inherits a person class. 

A super call is placed inside the master class’s __init__ method that initializes the 

information required by the inherited person class. 
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Figure 17- Example Subject and Observer Classes 

        The first step of the observer pattern generation process is to create a file that has 

the class definitions for the observable and observer classes. Our program has an AST 

representation of these class definitions saved within it. Source code is generated from 

this AST and written to a file called “generatedObserver.py”. If that file already exists, 

the previous version is overwritten. Figure 18 shows the contents of the generated file. 
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Figure 18 - Generated Observer File: generatedObserver.py 

        There are three classes defined within this file; the Observable class, the 

Observer class, and the metaClass class. The Observable class acts as the subject. It 

has methods defined that add, remove, and notify observers in its observer list. The 

Observer class has a notify function that by default prints out the input arguments 

received when the observable notifies its observers. This functionality can be changed or 

overwritten. The third and most mysterious class is the metaClass.  To grasp the logic 

and purpose of this class, one must first understand multiple inheritance initializations in 

Python. 

        Figure 17 shows, the master class inherits the person class. Our program 

intends to have master also inherit the Observable class. In Python, multiple 
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inheritance is acceptable, but at a price [14]. If any of the inherited classes required 

initialization (a call to their __init__ method), then Python’s super method is 

required. In our example, both of the classes master inherits would require their own 

initialization; person wishes to set the name field and Observable wishes to create an 

observers list. The expression super(master, self).__init__(name) inside the 

master class effectively is calling the __init__ method defined within the person 

class. Without this super call, master instances would not have their name property 

set, and calls to the sayName method would yield an error. Complications start to arise 

when multiple inherited classes require initialization. The expression super(master, 

self).__init__(name)  only initializes one of the inherited classes. To initialize both 

classes, a chain of super calls each initializing the next class is required. This process can 

get cumbersome and is best avoided [16]. 

        To avoid having to generate excessive and confusing code in the form of multiple 

super calls, we decided to utilize a method of pseudo-lazy initialization via a custom 

metaclass. This is all done in the name of initialing the Observable class with a field 

for a list of observers. In Python, all classes are instances of metaclasses, which define 

how classes are created. Most classes are created with the default type metaclass, 

however, custom metaclasses that allow for the dictation of how a class is instantiated are 

allowed [12, 13]. Our procedure for creating a custom metaclass that creates the 

Observable class with an observers list is as follows. 

1. Define a new class that inherits the class type 
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2. Place the __metaclass = metaClass expression within the class to be created 

via our custom metaclass. The metaClass component is the name of our custom 

metaclass.  

3. Add a List method is to metaClass which will enable an observers list to be 

added to the Observable class. List is a class method, which means it takes in 

a class structure as an argument in the form of cls, opposed to an instance of a 

class in the form of self [18]. List takes in the Observable class and calls the 

getattr method to determine if the input class has the _observers attribute. If 

it does not, the attribute is added to the input class as an empty list. 

4. Decorate List with a property descriptor. A descriptor is “an object attribute with 

‘binding behavior’, one whose attribute access has been overridden by methods in 

the descriptor protocol” [15]. Placing the @property tag above the List method 

definition essentially means that the List method is now an accessible property of 

the custom metaclass. 

5. Place the expression Observable.List within the class that will be inheriting 

Observable. This calls the List method added to the Observable class by our 

custom metaclass, creating an observers list. 

        Once the file containing the Observable, Observer, and metaClass classes 

has been generated, the next step it to edit the input code to accept this new file. This 

process is as follows. 

1. Parse the input source code into a code object, which is then used to generate an 

AST object. 
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2. Traverse the tree via a node visitor, searching for the nodes that define the input 

classes denoted as the subject and the observer. 

3. Modify the subject node so that it now inherits the Observable class and has the 

expression Observable.List within its __init__ method. Now when this 

initialization method is call, the Observable class has an observer list created 

without requiring a call to its __init__ method, thus avoiding the super chain 

issue. 

4.  Modify the observer node so that it now inherits the Observer class 

5. Add an expression that imports the Observable and Observer classes defined 

in the generated file 

 Figure 19 is an example of the modified input file shown earlier. 

 

Figure 19 - Modified File for Observer Pattern 
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The top image of Figure 20 shows the observer pattern in action. Janet is an 

instance of a dog while Bob is an instance of a master. The expression 

Bob.register_observer(Janet.notify) registers Janet as an observer of Bob. 

When Bob calls his notify_observers method, Janet will now be notified. 

Additionally, the notify methods of the observers can be overwritten. The bottom image 

of Figure 20 shows the dog class overwriting notify to be a method call to doTrick. 

 

Figure 20 - Using the Observer Pattern 

3.5 Factory Pattern Implementation 

The third pattern we implemented was the factory pattern, which is a creational 

pattern that handles object creation without specifying the class of the created object [40]. 

Factories produce objects based on the given arguments which describe what kind of 

object is being requested. This allows for a level of abstraction in the object creation. 

Python, being an object oriented language, naturally can support the factory pattern. 
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3.5.1 Importance of the Factory Pattern 

Factories allow for the type of desired object instance to be decided at runtime 

[41]. This functionality is useful in the situation where a “system needs to be independent 

from the way the products it works with are created.” Independent creation methods 

allow for a program to group and compare the different options for creating objects more 

effectively. Depending on the input arguments, an object instantiation request can 

interpreted and passed to its appropriate creation method. This system is also receptive to 

new creation methods. Relying too heavily on built in creation methods that return a 

single version of an object every time can make your code less flexibly. Factories help 

newer programmers to understand how a level of abstraction can be beneficial for object 

creation in programs. 

3.5.2 Factory Pattern Structure 

 

Figure 21 - Factory Pattern Structure 

 The structure of the factory is one that works well with our program. Figure 21 

shows the components of this pattern: a creator class which contains factory, and a set of 

related products. A client makes requests to the creator by calling a factory with a given 

set of arguments that describe the desired product to be returned. The products are all 
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related, and may inherit a common interface. The client does not know or care which type 

of product is returned, they simply want a correct instance of an object that matches their 

input specifications. In Python, factories have a general structure that consists of a class 

that serves as the creator which contains internal factory methods design to return related 

objects. An AST manipulation function can detect all classes that inherit from a specified 

interface, generate simple factory methods for these classes, and then place those 

factories into a creator class. The logic that determines which factories are called under 

different conditions is up to the user to determine. 

3.5.3 Factory generation 

 In order to generate the factory pattern, our program requires two inputs: a python 

file and the name of the interface for which an creator class defining factory methods will 

be built. Figure 22 shows an example file for input, where the car class is the interface 

that will have a creator class generated. The bmw and mazda classes inherit the car class, 

and thus will require their own factory method within the creator class that will be 

generated. 

 

Figure 22 - Example Interface  

 The steps for generating the creator class are as follows: 
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1. The input file is converted into a code object, which is then converted into an 

AST object. 

2. A visitor method traverses the AST searching for all class nodes that inherit the 

given interface. 

3. Once a match is found, the arguments for that class node’s __init__ method are 

converted into an array and stored in a dictionary structure, with the key being the 

name of the class. This is done so that each of the classes and their required 

initialization arguments can be accessed later. 

4. A new class node is created and placed on the AST. 

5. Factory methods for each of the class nodes located in step 3 are then created as 

methods within the creator.  

6. The arguments for each of the factories are retrieved from the dictionary by using 

the name of their respective class node as the key.  

By default, the factory methods simply return an instance of the corresponding 

class. Each of these factory methods is labeled as a @classmethod, and list cls as their 

first argument. This means that an instance of creator class is will not be required for the 

individual factory methods to be called. The cls argument is different than the typical 

self argument in that cls passes the structure of the class to the method, not an instance 

of it.  

The creator node is now complete. The modified AST is converted back to source 

code which is then saved to a new file. Figure 23 shows the class from Figure 22, now 

modified to incorporate the factory pattern. 
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Figure 23 - Modified Class with Abstract Factory 

 When building a factory pattern, one has many options to pursue depending on 

the needs of the program. Several layers of logic can applied to decide which type of 

object will be returned. Our creator class is very general in that is simply creates a single 

factory method for each type of product. The users’ job is to decide how they want to 

expand our creator. This can be done by introducing more specific factory methods and 

introducing logic statements that decide which of these methods to be called depending 

on certain inputs. Our factory pattern provides a convenient starting point for a plethora 

of factory structures. 

3.6 Class Decorator Pattern Implementation 

 The final pattern we implemented in our program was the class decorator pattern. 

Class decorators can be implemented in Python, are useful for beginners, and have a 

standard structure. Decorators are structures that allow behavior to be added to an 

individual object without affected the behavior of other objects from the same class [42]. 

Decorators can change the decorated class’s functionality by wrapping and intercepting 
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actions the decorated class’s methods. This can be done statically or at runtime. 

Decorated instances of the same class are all independent. Function decorators are built 

into Python; their usage and purpose in the class decorator pattern is discussed later in 

this section. 

3.6.1 Importance of the Class Decorator Pattern 

 Maintaining the structure of a pre-existing project while still being able to expand 

its functionality is an important concept. In many cases, the classes being used in a 

project are imported from other inaccessible files or are tightly coupled with other design 

components. Knowing how to make seemingly rigid code flexible in order to incorporate 

new changes is very important. Decorators provide a means to add functionality to 

existing functions or classes without requiring their modification. By using a decorator, 

pre-existing structures can be wrapped and interpreted differently. Decorators also allow 

for runtime changes; based on how an object is instantiated or a method is called, 

different results can be returned. The ability to maintain prior code structure while 

implementing new changes is an important concept for programmers to grasp, making 

decorators a useful pattern for beginners. 
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3.6.2 Class Decorator Structure 

 

Figure 24 - Decorator Structure 

 The decorator pattern has a standard structure that works well for our program. 

There are four key classes in this pattern; a component, a decorator, and instances of 

both. The component is a class that will be decorated. The decorator wraps the 

component within itself and redirects all component methods calls to it. The concrete 

instance of the decorator overrides the component methods that require modification [42]. 

In Python, function decorators are built in and easy to implement. Figure 25 shows an 

example of Python function decorator [43]. 



 39 

 

Figure 25 - Function Decorator Example 

 The built in decorators in Python are declared by placing the name of the 

decorator preceded by the ‘@’ symbol above the component it is decorating. In the above 

example, the aFunction function is being decorated by the myDecorator class. When 

the aFunction() expression is run, the resulting print outs occur: 

 

Figure 26 - Function Declaration Printout 

 The decorator is first initialized. During its initialization, there is a call to the 

original aFunction component, which was stored internally. Now the decorator has 

been fully initialized, denoted by the “Finished decorating aFunction()” print statement. 

Finally, the call to aFunction is processed and intercepted by myDecorator, and 

“inside myDecorator.__call__()” is printed. In this example, myDecorator could also 

have been a function instead of a class. The syntax on how the decorated function are 

caught and returned would be slightly different, but the functionality remains the same.  
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The built in function decorators in Python can be used to build a similarly 

functioning and structured class decorator. A class rebuilder can be used to return a 

modified component class that has decorated methods. The code blocks that determine 

the logic that determines when decorators are called as well as the functionality of those 

decorators are isolated, meaning the class decorator structure can be generated by our 

program.  

3.6.3 Class Decorator Generation 

 

Figure 27 - Example Class 

The inputs required by our program to generate a class adapter are: a python file, 

the name of the class to decorate, and the names of all methods that are to be decorated. 

Figure 27 shows an example file to input, where the example class and all three of its 

methods will be decorated. 

The input file is converted into a code object, which is then converted into an 

AST object. A visitor method traverse the tree until it locates the class node that is to be 

decorated. The names of the methods defined within this class are saved.  

The next step is to generate a function, called class_decorator, which will 

serve as our class decorator. The class_decorator function is then added to the list of 
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decorators for the component class. The decorator is specified to have arguments that 

represent the methods to be decorated in the component class, which in this case is 

example. By default, all methods are decorated except __init__. The 

class_decorator function will be returning a new class rebuilder that will replace the 

default builder for the example class. This new rebuilder class, called 

decorated_componentName, creates a new class that inherits cls. The cls object 

holds the structure of the input component class. The class_rebuilder function will 

be called immediately after the component class is built, returning a rebuilt class that 

contains a decorator for each of the specified class methods. Figure 28 shows a code 

representation of the class_decorator function for example at this point in the 

process. 

 

Figure 28 - Partially Constructed Class Decorator 

The __getattribute__ Python magic method is also added to this returned 

class. __getattribute__ is automatically called by Python whenever a class’s 

methods or fields are accessed. Our class rebuilder modifies the default 

__getattribute__ functionality so that this method can be used to gain access to 
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attributes of the component class from within the class decorator. When calls to the 

component class’s methods are detected by __getattribute__, our decorated class 

returns our decorated methods in their place. It is important to note the different between 

the __getattribute__ method used here and the __getattr__ method used 

previously for other design pattern implementations. __getattribute__ is called by 

Python every single time a class has a call to its methods or fields. __getattr__ is only 

called when a class receives a method call for a method that it does not have defined. 

Figure 29 shows what the body of the __getattribute__ method will be for the 

example class. 

 

Figure 29 - Generated __getattribute__ Method 

When __getattribute__ is called, a super call to the __getattribute__ 

function of the component class occurs. This saves the requested class attribute into the 

obj variable. obj is checked to see if it has a __call__ attribute. If it does, then that 

attribute is a method. If the requested method stored in obj is in the list of method names 

that are requested to be decorated, the corresponding decorator is returned. Figure 30 and 

Figure 31 show the route a method call takes within the class decorator.  
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Figure 30 - Decorator Pathway Part A 

 

Figure 31 - Decorator Pathway Part B 

When a component method is called, __getattribute__ detects this and 

returns the correct corresponding decorated method from the class decorator. For 

example, when function3 in the example class is called, __getattribute__ detects 
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that a method lookup has occurred for a decorated method, and a call to 

function3_decorator is returned. 

 

Figure 32 - Complete Class Decorator 

 Figure 32 shows our generated class decorator in its entirety. By default, 

all class methods are decorated and called under all circumstances. These methods simply 

print that they are a decorator and then return the normal component method. The user 

can decide under what situations these decorators are called by modifying the logic in 

__getattribute__. Each of the method decorators can be given functionality within 

their respective code blocks. 
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3.7 Comment Preservation 

Comments are annotations added to code that are intended to be read by the 

programmer [44]. Descriptive comments serve the invaluable purpose of explaining the 

logic of a potentially confusing program for future contributors. Whitespace can also be 

used to separate larger code blocks into more readable sections.  

In Python, comments are preceded by the ‘#’ character and are considered to be 

whitespace by the compiler.  When the ast module is used to generate an abstract syntax 

tree of a Python file, all unneeded whitespace is unfortunately ignored. This means that if 

you convert a program into an AST and then back into Python code using this module, 

the generated code has no comments or non-syntactic whitespace. The result is as 

compact code that is syntactically possible. Thankfully, due to Python’s inherently clean 

syntax, this code is still well formatted. The problem is, as mentioned before, comments 

are very important. A program that modifies code but removes all of your comments is 

most likely going to be an avoided program. We want our program to encourage a good 

coding practice, but not at the expense of another. 

To combat this problem, we utilized the fact that Python allows for strings to sit 

anywhere within a program. These strings are detected by the AST and given their own 

node, thus persevered during the AST manipulation process. To preserve the comments, 

we simply convert them to strings. Before the code is to be converted to an AST, we first 

parse the file for any comments. This is done searching for the last “#” that appears on 

any line; all following characters are a comment. Once a comment is located, we copy all 

the characters following the “#” and place them within a string. This string is given a tag 

at the beginning so that our program will know in the future which strings are actually 
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comments. This tag varies depending on whether or not the comment was in-line. Once 

all comments are converted to strings, the AST manipulation can take place. When the 

new Python code has been generated, we parse the file as a string and search for any of 

our comment tags. Once a tag is found, the text including and following the “#” character 

is plucked from the string and placed back as a comment. If the tag denotes it as an in-

line comment, it is placed at the end of the following line. Once the parsing is complete, 

all comments are back in their rightful place. This process works but has some drawbacks 

which will be discussed in a later section. 

3.8 Graphical User Interface  

 We designed a simple graphical user interface (GUI) prototype for our program. 

This GUI first takes in a file that the user would like to add a design pattern to. The user 

then selects which pattern they want. An AST is then generated from their input file and 

is searched for any classes or methods that could be used as arguments for our pattern 

insertion function. These options are piped into a series of drop downs. The user selects 

which options they would like for their pattern. A file is then generated that has their 

modified code in the same directory as their input file. Screenshots of our GUI are 

located in Appendix A. 
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4. Results and Analysis 

 At the start of this project we set out to prove that generating design patterns 

through manipulation of ASTs was possible. Our intent was to generate three or more 

design patterns and place them into existing python code.  We accomplished this goal by 

designing a program that can generate four design patterns: the class adapter, observer, 

factory, and class decorator.  The patterns we generate are the proof that creating a tool 

for generating patterns with AST manipulation is possible. The file “generate.py” which 

contains all the logic for our code generation consisted of 1149 lines, including all 

documentation and whitespace. 783 of those lines are actual functional code. The file 

consists of 17 standalone function definitions, and 14 node visitors and transformers.  

 Our project has a few issues. First, the secondary file that our observer pattern 

generates gets placed in the same directory as “generate.py”, not the input file. If the 

input file is not located in the same directory as “generate.py”, our observer pattern will 

yield errors. Second, the Meta module and comment preservation techniques we used 

have some bugs; these are discussed in more detail in the future work section.   
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5. Future Work and Conclusion 

 Our project has many avenues in which it can be expanded. Our comment 

preservation method was mostly successful but imperfect. If a comment exists on the 

same line as a multiline string, our comment tokenizer gets tripped up and fails to 

preserve the comment correctly during AST manipulation. Additionally, our solution 

only attempts to preserve comments and does not address the problem of unneeded 

whitespace being ignored by the AST. Two solutions exist to fix these problems: 

 Write a more complete comment and whitespace tokenizer 

 Purchase proprietary software 

 Proprietary software exists that claims to successfully preserve all comments and 

whitespace. If a product version of our program were to be released, utilizing third party 

software for comment preservation would be worthwhile solution. 

An additional problem we encountered was that the Meta package we used for 

deconstruction of syntax trees to create syntactically correct code was not bug free.  For 

example, we found Meta could not generate correct code for the following kinds of 

expressions: print statements containing multiple comma separated arguments, multiline 

strings, and usage of the format function. Other invalid expressions that did we did not 

come upon may also be present. Three solutions exist to address these problems: 

 Modify the Meta package to handle the problem expressions 

 Write a new syntax tree code generator package 

 Purchase proprietary software 

 Another area where our project could be expanded is in the amount of options our 

design patterns have. For instance, it would be possible to ask the user which method 
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calls they would like placed in their adapters. Our observer could ask the user if they 

would like to override the default notify function. A larger variety of factory methods 

could be generated inside our factory pattern. Our class decorator could provide more 

logic options for when decorator methods get called. 

 The final issue to be address with our project is its graphical user interface. 

Currently, our GUI is very basic. This could be expanded to include more options for the 

user, such as specifying method calls to be placed inside of certain code blocks. Help 

sections could also be included to give a detailed explanation as to what each pattern is, 

what it requires, and problem it aims to solve. 

5.1 Conclusion 

 This project was a successful proof of concept in that generation of design 

patterns in existing code is possible through manipulation of its abstract syntax tree. 

Research was performed on the usefulness of design patterns and the structure of syntax 

trees. Python was decided to be the most appropriate programing language for design 

pattern generation for the purpose of reaching newer programmers. A set of criteria were 

constructed for selecting the most appropriate design patterns to generate. We were able 

to design a program that can generate the structure of the class adapter, observer, factory, 

and class decorator design patterns. A graphical user interface prototype was developed. 

A user guide on how to generate patterns as well as expand our program with more 

design patterns was developed. 
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Appendices 

Appendix A – User Guide: Generating a Pattern 
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Appendix B – User Guide: Expanding Our Program 

This section discusses the steps required to expand our program through the 

addition of more design patterns. The steps are as following: 

1. Select an appropriate pattern 

2. Produce code for an abstract version of your pattern structure 

3. Determine what is required for your pattern to be fully functional 

4. Write node transformer and visitor functions that modify an AST to incorporate 

your pattern 

5. Utilize our helper functions to correctly generate and modify a program’s AST by 

using your custom node transformer 

 Step one of the process involves selecting an appropriate pattern for our program. 

As outlined in our methodology, for a pattern to work in our program it should make 

sense for Python as a language, be useful for beginners, and have a standard structure 

where program specific expressions are isolated. 

 Step two is to produce an abstract version of the structure of your pattern. This is 

best done by replicating a UML diagram of your pattern in as simple of terms as possible. 

This will allow you to proceed to step three by helping you visualize what parts of your 

pattern can be generated based on information available from a program’s AST, and 

which parts cannot. 

 Step three is to analyze your patterns structure. Make note of the structural 

properties that are always present, as these will be the key parts of the pattern that can be 

recreated via AST manipulation. Attempt to rework the structure of your pattern so that it 

isolates code blocks where program specific expressions will be located. Do so in a 
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manner that still preserves the overall structure of the pattern so as not to impede its 

recognizability. Use the resulting structure to determine what input arguments would be 

required to fill in the blanks of your structure. These arguments can be anything from 

class to function names. 

 Step four is to write node transformer and visitor functions that will modify an 

AST to incorporate the refined pattern structure you created during the previous steps. 

Your node visitor will walk the AST, and any node it returns will be replaced by the node 

transformer. After the AST has been modified, it is important to call the function 

ast.fix_missing_locations(node), where “node” is the most recently added or 

modified node. This allows your node to sit correctly within the AST. For an in-depth 

explanation about the structure of ASTs in Python as well as a rundown on node 

transformers and visitors, visit http://greentreesnakes.readthedocs.org/en/latest/. 

 Step five is to set up the process for generating an AST, modifying it with your 

custom node transformer and visitor, and finally generating code. To add your new 

pattern, create a new function that receives a filename and any other necessary inputs for 

your pattern as arguments. Inside this new function, call the 

openAndParse(filename) method, which will create an AST of the code located at 

the filename that is ready to be modified and that has all comments replaced as strings. 

Next, call your note transformer and visitor functions accordingly. Once you are done 

modifying the AST, call the function writeToSource(AST, filename) which will 

write out the AST as source code to a file with the same name as the filename input 

argument. 

 Sample code is show below that shows an implementation of this process. 

http://greentreesnakes.readthedocs.org/en/latest/


 53 

 

 

 



 54 

References 

[1] Bendersky, Eli. “Abstract vs. Concrete Syntax Trees.” Eli Bendersky’s Website, 

 TheGreenPlace, 16 Feb. 2009. Web. 25 Apr. 2015. 

 <http://eli.thegreenplace.net/2009/02/16/abstract-vs-concrete-syntax-trees>. 

[2] Wikipedia contributors. "Abstract syntax tree." Wikipedia, The Free Encyclopedia. 

 Wikipedia, The Free Encyclopedia, 24 Apr. 2015. Web. 27 Apr. 2015. 

 <http://en.wikipedia.org/wiki/Abstract_syntax_tree>. 

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.  Design 

 Patterns: Elements of Reusable Object-Oriented  Software. Addison-Wesley 

 Longman Publishing Co., Inc., Boston, MA, USA. 1995. 

[4] Verma, Rahul and Chetan Giridhar. Design Patterns in Python: A learner’s approach 

 to understand design patterns via Python programming language. Testing 

 Persepctive, 2011.  

[5]  Wikipedia contributors. "Adapter pattern." Wikipedia, The Free Encyclopedia. 

 Wikipedia, The Free Encyclopedia, 4 Apr. 2015. Web. 27 Apr. 2015. 

 <http://en.wikipedia.org/wiki/Adapter_pattern>. 

[6] Ginstrom, Ryan. “The Adapter Pattern in Python.” The GITS Blog. n.p. 29 Mar. 

 2009. Web. 25 Apr. 2015. <http://ginstrom.com/scribbles/2009/03/27/the-

 adapter-pattern-in-python/>. 

[7] The Python Software Foundation. "Modules." Python Documentation. n.d. Web. 25 

 Apr. 2015. <https://docs.python.org/2/tutorial/modules.html>. 

[8] Wikipedia contributors. "Observer pattern." Wikipedia, The Free Encyclopedia. 

 Wikipedia, The Free Encyclopedia, 26 Apr. 2015. Web. 27 Apr. 2015. 

 <http://en.wikipedia.org/wiki/Observer_pattern>. 

[9]  "Observer Pattern." Object Oriented Design. Web. 26 Apr. 2015. 

 <http://www.oodesign.com/observer-pattern.html>. 

[10] While. “Decoupling, the Observer Pattern and a little Java’s Mystery.” My 

 Developed World. My Developed World. 25 Mar. 2013. Web. 25 Apr. 2015. 

 <https://mydevelopedworld.wordpress.com/2013/03/25/decoupling-the-observer-

 pattern-and-a-javas-mistery/>. 

[11] Colburn, Timothy and Gary Shute. “Decoupling as a Fundamental Value of 

 Computer Science.” Mind & Machines 259 (2011): 241. Web. 25 Apr. 2015. 

 <http://www.d.umn.edu/~tcolburn/papers/Decoupling.pdf>. 

[12]  “What is a metaclass in Python?” Stack Overflow. n.p. 19 Sep. 2008. 

 <http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python>. 



 55 

[13]  “Python Programming/MetaClasses.” Wikibooks. 15 May. 2014. 

 <http://en.wikibooks.org/wiki/Python_Programming/Metaclasses>.  

[14]  “Calling parent class __init__ with multiple inheritance, what’s the right way?” 

 Stack Overflow. n.p. 5 Mar. 2012. 

 <http://stackoverflow.com/questions/9575409/calling-parent-class-init-with-

 multiple-inheritance-whats-the-right-way>. 

[15]  The Python Software Foundation. "Descriptor HowTo Guide." Python 

 Documentation. n.d. Web. 25 Apr. 2015. 

 <https://docs.python.org/2/howto/descriptor.html>. 

[16] Knight, Jame. “Python’s Super is nifty, but you can’t use it.” Fuhm. n.p. n.d. Web. 

 26 Apr. 2015. <https://fuhm.net/super-harmful/> 

[17] “What is the ‘cls’ variable used in Python classes?” Stack Overflow. n.p. 6 Jan. 

 2011. <http://stackoverflow.com/questions/4613000/what-is-the-cls-variable-

 used-in-python-classes>. 

[18]  The Python Software Foundation. "Built-in Functions." Python Documentation. n.d. 

 Web. 25 Apr. 2015. 

 <https://docs.python.org/2/library/functions.html#classmethod>. 

[19]  Bishop, Judith. C# 3.0 Design Patterns. O’Reilly Media. 2007. Print. 

 <https://msdn.microsoft.com/en-us/library/orm-9780596527730-01-04.aspx.> 

[20] Wikipedia contributors. "Software design pattern." Wikipedia, The Free 

 Encyclopedia. Wikipedia, The Free Encyclopedia, 19 Apr. 2015. Web. 27 Apr. 

 2015. <http://en.wikipedia.org/wiki/Software_design_pattern#cite_note-5>. 

[21]  “How important are Design Patterns really?” Stack Overflow. n.p. 10 Jun. 2009. 

 <http://stackoverflow.com/questions/978489/how-important-are-design-patterns-

 really>. 

[22]  Zelle, John. “Python as a First Language.” n.p. n.d. Web. 25 Apr. 2015. 

 <http://mcsp.wartburg.edu/zelle/python/python-first.html>. 

[23]  Joshi, Bipin. “Overview of Design Patterns for Beginners.” Developer. n.p. 23 Apr. 

 2014. Web. 23 Apr. 2015. <http://www.developer.com/design/overview-of-

 design-patterns-for-beginners.html>. 

[24] Schreiner, Axel. “PyPy: A Python Implementation written in Python” n.p. n.d. Web. 

 25 Apr. 2015. Lecture. <http://www.cs.rit.edu/~ats/lp-2005-2/p/PyPy.pdf>. 

[25] The Python Software Foundation. "Access Python parse trees." Python 

 Documentation. n.d. Web. 25 Apr. 2015. 

 <https://docs.python.org/2/library/parser.html>. 



 56 

[26] Ferg, Stephen. “Notes on How Parsers and Compilers Work.” Parsingintro. n.p. 15 

 Oct. 2007. Web. 26 Apr. 2015. 

 <http://parsingintro.sourceforge.net/#contents_item_8.1>.  

[27] Crosta, Dan. "Exploring Python Code Objects." Late.am. 26 March 2012 . Web. 25 

 Apr. 2015. <http://late.am/post/2012/03/26/exploring-python-code-objects.html>. 

[28] “What is a Python code object?” Stack Overflow. n.p. 12 Apr. 2011. 

 <http://stackoverflow.com/questions/4613000/what-is-the-cls-variable-used-in-

 python-classes> 

[29] Lee, Thomas. Python Compiler Internals, n.d. n.p. Web. 25 Apr. 

 <http://tomlee.co/wp-content/uploads/2012/11/108_python-language-

 internals.pdf> 

[30] Guo, Philip. "Python Is Now the Most Popular Introductory Teaching Language at 

 Top U.S. Universities." Communications of the ACM. 7 July 2014. Web. 25 Apr. 

 2015. <http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-

 popular-introductory-teaching-language-at-top-us-universities/fulltext>. 

[31] The Python Software Foundation. "Abstract Base Classes." Python Documantatoin. 

 n.d. Web. 25 Apr. 2015. <https://docs.python.org/2/library/abc.html>. 

[32] Kettlerx, Rafe. "A Guide to Python's Magic Methods." Rafekettler.com. 2012. Web. 

 25 Apr. 2015. <http://www.rafekettler.com/magicmethods.html>. 

[33] Ross-Ross, Sean. "Meta API." Meta 0.4.1 Documentation. n.d. Web. 25 Apr. 2015. 

 <http://meta.readthedocs.org/en/latest/api/index.html>. 

[34] The Python Software Foundation. "Abstract Syntax Trees." Python Documentation. 

 n.d. Web. 25 Apr. 2015. <https://docs.python.org/2/library/ast.html>. 

[35] Kluyver, Thomas. "Green Tree Snakes - the Missing Python AST Docs." Read the 

 Docs. 2012. Web. 25 Apr. 2015. 

 <https://greentreesnakes.readthedocs.org/en/latest/>. 

[36] Savikko, Vespe. "Design Patterns in Python." Python. Software Systems Laboratory 

 Tampere University of Technology. Web. 25 Apr. 2015. 

 <http://legacy.python.org/workshops/1997-10/proceedings/savikko.html>. 

[37] Ginstrom, Ryan. “Six GoF design patterns, Python style” The GITS Blog. n.p. 

 October 8th, 2007. Web. 25 Apr. 2015 

 <http://ginstrom.com/scribbles/2007/10/08/design-patterns-python-style/> 

[38] Carr, Richard. "Gang of Four Design Patterns." Black Wasp. 22 Aug. 2009. Web. 25 

 Apr. 2015. <http://www.blackwasp.co.uk/GofPatterns.aspx>. 

[39] Norvig , Peter. "Design Patterns in Dynamic Programming". Slides from 

 presentation at Object World ‘96 , 5 May 1996. 



 57 

[40] Sukesh, Marla. "Factory Method Pattern vs. Abstract Factory Pattern." CodeProject. 

 28 June 2014. Web. 25 Apr. 2015. 

 <http://www.codeproject.com/Articles/716413/Factory-Method-Pattern-vs-

 Abstract-Factory-Pattern>. 

[41] "Factory Method Pattern." Object Oriented Design. n.d. Web. 26 Apr. 2015.   

 < http://www.oodesign.com/factory-method-pattern.html >. 

[42] Wikipedia contributors. "Decorator pattern." Wikipedia, The Free Encyclopedia. 

 Wikipedia, The Free Encyclopedia, 19 Apr. 2015. Web. 27 Apr. 2015. 

 <http://en.wikipedia.org/wiki/Decorator_pattern>. 

[43] Eckel, Bruce. "Decorators vs. the Decorator Pattern." Decorators I: Introduction to 

 Python Decorators. 8 Oct. 2008. Web. 25 Apr. 2015. 

 <https://www.artima.com/weblogs/viewpost.jsp?thread=240808>. 

[44] Chae, Sam. Students Guide to Computer Science C. IUniverse, 2001. Print. 


