

Project Number. GFP1405

DESIGN PATTERN GENERATOR FOR PYTHON

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

Robert Mullins

Alfred Scott

Date: April 25, 2015

Approved:

Professor Gary F. Pollice, Major Advisor

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of

completion of a degree requirement. WPI routinely publishes these reports on its website without editorial

or peer review. For more information about the projects program at WPI, please see

http://www.wpi.edu/academics/ugradstudies/project-learning.html

i

Abstract

 Design patterns are important techniques that programmers can use to solve

common problems and make their code more robust. The goal of this project is to provide

a tool that supports inserting design patterns into existing code. We manipulate abstract

syntax trees to achieve this goal. We created a graphical user interface that lets users

generate different design patterns. We provide instructions on how to extend our program

by adding more design patterns.

ii

Acknowledgements

 We would like to thank Gary Pollice, our project advisor. He provided us with the

idea for our project as well as invaluable insight on to how to approach the many

problems we faced.

iii

Table of Contents

Abstract .. i

Acknowledgements ... ii

Table of Contents ... iii

List of Illustrations ... vi

1. Introduction ... 1

2. Background ... 3

2.1 Design Patterns ... 3

2.2 Syntax Trees.. 4

2.2.1 Concrete Syntax Trees ... 5

2.2.2 Abstract Syntax Trees .. 6

2.2.2 Syntax Trees and Python ... 6

3. Methodology ... 8

3.1 Choosing a Language .. 8

3.1.1 Target Audience and Ease of Use .. 8

3.1.2 Available AST Packages.. 10

3.1.3 Printing ASTs... 11

3.1.4 Editing the ASTS and Generating Code .. 12

3.2 Choosing Design Patterns ... 14

3.2.1 Patterns for Python ... 14

iv

3.2.2 Patterns for Beginners .. 15

3.2.3 Pattern Structure... 16

3.3 Class Adapter Pattern Implementation ... 18

3.3.1 Importance of the Class Adapter Pattern ... 19

3.3.2 Class Adapter Pattern Structure ... 20

3.3.3 Class Adapter Pattern Generation .. 21

3.4 Observer Pattern Implementation ... 23

3.4.1 Importance of the Observer Pattern ... 24

3.4.2 Observer Pattern Structure ... 25

3.4.3 Observer Pattern Generation .. 26

3.5 Factory Pattern Implementation .. 32

3.5.1 Importance of the Factory Pattern .. 33

3.5.2 Factory Pattern Structure ... 33

3.5.3 Factory generation ... 34

3.6 Class Decorator Pattern Implementation .. 36

3.6.1 Importance of the Class Decorator Pattern .. 37

3.6.2 Class Decorator Structure .. 38

3.6.3 Class Decorator Generation ... 40

3.7 Comment Preservation .. 45

3.8 Graphical User Interface ... 46

v

4. Results and Analysis ... 47

5. Future Work and Conclusion .. 48

5.1 Conclusion .. 49

Appendices .. 50

Appendix A – User Guide: Generating a Pattern .. 50

Appendix B – User Guide: Expanding Our Program ... 51

References ... 54

vi

List of Illustrations

Figure 1- Concrete Syntax Tree Example ... 5

Figure 2 - Abstract Syntax Tree Example... 6

Figure 3 - C and Python Code Comparison .. 9

Figure 4 - Example Python Class.. 10

Figure 5 - Example AST Printed With Meta .. 11

Figure 6 - Printing an AST.. 12

Figure 7 - AST Transformer Function .. 13

Figure 8 - Modified AST Example ... 14

Figure 9 - Example Classes with Unknown Context .. 16

Figure 10 - Modified Classes .. 16

Figure 11- Façade Pattern Structure ... 17

Figure 12 - Class Adapter Structure.. 20

Figure 13 - Example Target and Adaptee Classes .. 21

Figure 14 - Example Class Adapter .. 22

Figure 15 - Example Class Adapter with Method Call ... 23

Figure 16 - Observer Pattern Structure ... 25

Figure 17- Example Subject and Observer Classes .. 27

Figure 18 - Generated Observer File: generatedObserver.py ... 28

Figure 19 - Modified File for Observer Pattern .. 31

Figure 20 - Using the Observer Pattern .. 32

Figure 21 - Factory Pattern Structure.. 33

vii

Figure 22 - Example Interface .. 34

Figure 23 - Modified Class with Abstract Factory ... 36

Figure 24 - Decorator Structure .. 38

Figure 25 - Function Decorator Example ... 39

Figure 26 - Function Declaration Printout .. 39

Figure 27 - Example Class .. 40

Figure 28 - Partially Constructed Class Decorator ... 41

Figure 29 - Generated __getattribute__ Method ... 42

Figure 30 - Decorator Pathway Part A .. 43

Figure 31 - Decorator Pathway Part B .. 43

Figure 32 - Complete Class Decorator.. 44

 1

1. Introduction

A design pattern is a proven solution for a general problem. By utilizing design

patterns, one’s code often becomes more organized, readable, and expandable [19]. For

these reasons, it is import for programmers to structure their code with design patterns in

mind. Our goal is to design a tool that allows for the insertion of design patterns into

existing code for the purpose of teaching good coding practices. Due to the fact that

design patterns can only be applied under certain conditions, our tool also has the side

effect of educating the programmer as to when patterns can be used.

Our project required us to select a suitable implementation language and an

appropriate set of patterns to implement. Python is a popular programming language for

beginners due to its readable syntax and ease of use [22]. The patterns we selected were

ones that work well with Python, are useful for beginners to know, and have a standard

structure regardless of code context. We decided to implement the class adapter,

observer, abstract factory, and class decorator design patterns.

Our method of generating patterns utilized abstract syntax trees generated by

Python. An abstract syntax tree (AST) is a tree representation of the abstract syntactic

structure of source code. Each node of this tree can be anything from a main function to a

single string. With the help of standard and third party libraries, we were able

successfully apply design patterns to existing code. We designed a graphical user

interface that allows the user to select a file, a design pattern, and the classes or methods

to apply the pattern to. We also created a guide for how a user could add their own design

pattern to our program. Future work includes more comprehensive error checking for

design pattern generation and working to preserve all comments and whitespace.

 2

This paper is organized in the following way. Section 2 discusses design patterns

and syntax trees for the purpose of understanding the motivation of our project. Section 3

discusses our process for picking a language and set of design patterns to work with, and

how we manipulated syntax trees to incorporate patterns into existing code. Section 4

discusses the general results of our project. Section 5 identifies areas of future work.

 3

2. Background

 Our program deals with the modification of existing code to implement design

patterns. To fully understand the motivation for our project, it is important to recognize

why design patterns are regarded as important tools for programmers. Additionally, our

means of modifying existing code was to modify generated abstract syntax trees. An

explanation as to how these structures work and can be modified is given.

2.1 Design Patterns

Design patterns are proven solution for a general problem [19]. In computer

science, many problems occur frequently but in different forms or contexts. Once a

solution for a problem is found, it can be modified to apply to other similar problems.

Design patterns are the most effective and widely used of these solutions.

 Design patterns are abstract in nature. On the concept of abstract patterns applied

to building design, Christopher Alexander stated that "...each pattern describes a problem

which occurs over and over again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this solution a million times over,

without ever doing it the same way twice" [3]. This same logic applies to design patterns

in an object oriented coding context. One could use a single design pattern under many

different contexts, but its basic structure and approach to solving the problem will remain

the same.

The concept of reusable and flexible code is something that beginner

programmers do not often grasp naturally. An experienced programmer can design code

from the ground up with future changes in mind. “A designer who is familiar with such

 4

patterns can apply them immediately to design problems without having to rediscover

them” [3]. Once a programmer has encountered a problem and solved it, he or she will

recall that solution the next time a similar problem occurs. Eventually, an experienced

programmer will have an idea as to what kinds of problems will lay ahead based on the

requirements of their project. His or her code will be structured so that it can easily

incorporate their pre-designed solution for the predicted obstacles. However, it is

impossible to predict all challenges one will face whilst working on a project. For this

reason, it is important to have your code remain flexible so that unforeseen future

problems can be addressed.

 Design patterns help the programmer communicate intent. Many patterns are

easily recognizable; their relatively standardized structure can help future developers

understand existing projects. “In the object oriented world, design patterns tell us how, in

the context of a certain problem, we should structure the classes and objects. They do not

translate directly into the solution; rather have to be adapted to suit the problem context.”

[2]. Design patterns provide abstract solutions to recurring problems, so if someone can

identify a pattern in a project, they can also discern the problem it is trying to solve,

which is a major step toward understanding the project as a whole.

2.2 Syntax Trees

A syntax tree is a tree representation of the structure of a program’s source code.

Syntax trees are generated by the parser during the compilation process before output

code can be produced [24, 25]. In a syntax tree, each node represents a hierarchal piece of

the code structure located in the source. For example, a function definition is a node

which contains a series of child nodes for each of its expressions. These expressions may

 5

be arithmetic operations, variable declarations, function calls, or other code bodies. There

are two types of syntax trees: parse trees, or concrete syntax trees (CSTs) and abstract

syntax trees (ASTs). The parsers of certain compilers create ASTs directly, while others

create a CST from which an AST is derived [1].

2.2.1 Concrete Syntax Trees

A CST represents every element of the syntax of the source code as its own node

[1]. Figure 1 is an example of a CST for the C statement return a + 2;.

Figure 1- Concrete Syntax Tree Example

 As shown by Figure 1, every element of the expression is allotted a node. There

are sequences of compound nodes that list all specific types of expressions the statement

 6

is. This formal representation describes every detail of the syntax that the parser detected.

However, such detail is often not needed, making CSTs more difficult to work with [1].

2.2.2 Abstract Syntax Trees

An AST “is a tree representation of the abstract syntactic structure of source

code” [2]. The nodes provide a semantic representation of the code, but with abstract

syntax. This means that certain syntactic nodes, such as terminating semicolons, are not

present as singular nodes but instead are encompassed by the expression nodes. Figure 2

shows an AST representation of the same statement used for the CST in Figure 1.

Figure 2 - Abstract Syntax Tree Example

 ASTs are a more compact version of CSTs in that they eliminate nodes with no

semantic meaning. For example, Figure 2 shows that sequence of expression nodes

present in the CST in Figure 1 are now simply represented as a single BinaryOp node

[1]. This leads to a smaller, more readable tree. However, the exact syntax derivation of

the statement is lost in this process, thus making the tree an abstract representation.

2.2.2 Syntax Trees and Python

 The Python interpreter creates an AST as part of its compilation process. The

source code is first tokenized by the lexer and then sent to the parser, which creates a

parse tree. An AST is then created from this parse tree, which is then sent to the bytecode

generator and eventually the bytecode interpreter [24, 26]. The tools for generating the

 7

ASTs, manipulating ASTs, and compiling ASTs into bytecode are included within the

free Python ast and compile modules [25]. In the methodology section of this paper we

discuss the process of modifying an AST and then converting it back into source code.

 8

3. Methodology

 This section of the paper discusses our process of picking a language in which to

write our program, picking design patterns to implement, and modifying ASTs for the

purpose of adding patterns to existing code.

3.1 Choosing a Language

The language we decided to write our program in was Python. This decision was

made based on many factors: our target audience, ease of use, and our available tools.

3.1.1 Target Audience and Ease of Use

The goal of our project is to design a resource for new programmers that provides

an easy way to implement design patterns into existing code. Therefore, it was important

that we write our program to operate on a language that is often used by beginners.

Python is one of the more popular introductory languages. It is listed as one of the top

languages that is being used by computer science departments in university starter

courses [33].

Python’s popularity is attributed to its ease of use due to its readable syntax [22].

Newer programmers can easily grasp the language’s grammar as it often uses English

words opposed to symbols to represent logic and expressions.

 9

Figure 3 - C and Python Code Comparison

Figure 3 compares the how the same program would be written in C, on the left,

and in Python, on the right. The Python version of the code has a few important

differences to note: the lack of braces, the lack of semicolons, and the lack of parameter

typing. Python’s scoping structure is defined predominantly by whitespace indentation.

The indentation level of a line of code indicates what code block the line belongs to. This

means that programmers do not need to keep track of parenthesis or brackets, but instead

monitor their indentation levels. A consequence of having whitespace tied to syntax is

that good indentation habits are enforced. Python also does not require any terminal

character at the end of statements, nor does it require a parameter’s type to be specified in

a function’s definition. Python functions are defined the same way regardless of their

return value, or lack thereof. In general, Python is a straightforward language,

syntactically speaking, with a short learning curve, making it ideal for beginners.

A key difference between Python and other programing languages lies in how

classes are defined. Figure 4 gives an example of a Python class.

 10

Figure 4 - Example Python Class

 Import details to note for those unfamiliar with python are the __init__ method

and the self parameter. The __init__ method is called by Python itself automatically

when an instance of a class is created. This method sets the fields within the class. The

self parameter is an instance object that is passed as the first parameter in Python

methods. The self object is the actual instance of this individual class; multiple car

classes will be distinguishable by their self variables. In this regard, the statement

self.make = make sets the make field for a single instance of a car class. The self

variable is how one accesses the data for a single instance of that class from within the

class itself.

3.1.2 Available AST Packages

Our choice of programming language depended on the amount of tools we had at

our disposal to reach our goal. An AST can be generated from every syntactically correct

Python program. However accessing an AST in order to print and manipulate it is not so

easy. Rather than writing our own modules that manipulate ASTs, we searched for

existing ones that we could adapt to our needs. Meta is a free package available for

Python that can print a program’s AST as well as generate Python source code from an

AST [33]. Python itself comes with the ast module, which contains functions for

editing, adding, and removing nodes from an AST [34. 35].

 11

3.1.3 Printing ASTs

The Meta package allows for the printing of ASTs. The output shows the tree

structure in the form of nodes. When working with an AST in Python, each node is set up

as if it were an object, having fields and values which denote the structure of the

statement or code block it represents. Meta prints out the tree of these objects exactly

how they would be used by the Python ast module, but properly indented so that it is

readable. Figure 5 shows an example of a simple python program and its AST printed out

via the Meta package.

Figure 5 - Example AST Printed With Meta

 Due to the simple nature of this program, the AST is fairly straightforward. Every

Python file has all of its classes and function definitions located within an all-

encompassing Module node. In this example, you can see the function definition within

the body of Module. The function definition has four key attributes; the arguments for

the function, the body, a list of decorators, and its name. The arguments are a list of

parameters that are passed into this function. The list is empty for this example because

there are no input arguments. The body contains a node for a print expression with the

value being a string that stores the message “hello world”. This function is not decorated

so the decorator list is empty. Finally, the name attribute holds the name of the function

 12

.

Figure 6 - Printing an AST

Figure 6 shows the process to print an AST with Meta. First, a file is opened and

saved as a code object. Then this code object is passed into a Python function called

ast.parse, which generates an AST object. Finally, the AST object is passed into the

Meta function meta.asttools.str_ast which generates a string representation of the

tree which can be printed.

3.1.4 Editing the ASTS and Generating Code

To be able to understand node manipulation one must first grasp the structure of

the tree. The initial node, Module, is the all-encompassing code body outside any

function or object. Any functions, statements, or object definitions are all children of this

foremost parent node, either directly or indirectly. The nodes of an AST can represent

anything from a class definition to a single statement. For example, a node that represents

a class will have several child nodes, each representing method definitions and fields.

Certain changes to an AST propagate and other ones do not. For instance, removing an

object node also removes all its constituent methods nodes, and so forth. However,

modifying a node so that, for example, a field is renamed, will result in mismatched field

names in function calls and syntactically incorrect code.

 13

Figure 7 - AST Transformer Function

AST modification is best illustrated with an example. This section will show how

one would modify an AST to change the names of variables. This requires the usage of

the ast.NodeTransformer class, which is a part of the Python ast module. The

ast.NodeTransformer class is an implementation of the visitor pattern the visits all

nodes of the tree by type. The steps required for modifying a program’s AST are as

follows.

1. Generate an AST from the source code using the ast library.

2. Create a custom transformer class and overwrite the relevant visitor methods

required for your task.

3. Traverse the tree, returning modified nodes.

4. Continue this process until all relevant nodes are visited and returned.

5. Generate source code from the modified AST using Meta.

 In this example, we will be looking for Name nodes to change our variable names.

Figure 7 represents step 2: a new transformer class is defined, containing a visitor method

used to overwrite the pre-defined the visit_Name method. Our new visit_Name

method will change all variables to upper case. Next, steps 3 and 4 are done at runtime

using our custom transformer’s visitor method. Figure 8 shows the results of step 5; an

example function definition and the resulting code generated by the modified AST. You

 14

will notice that the output of our program shows that the comments are not preserved.

This will be addressed in a later section.

Figure 8 - Modified AST Example

3.2 Choosing Design Patterns

 For a design pattern to be considered for our program, we had to take into

consideration some key factors:

 Does the pattern work well with python as a language?

 Is the pattern an important concept for beginners?

 Does the pattern have a certain structure that is standard per its usage?

3.2.1 Patterns for Python

Python is an object oriented language typically used for rapid prototyping and

application development [4]. To fill this role effectively, the language was designed to be

flexible and dynamic [36]. As a result, Python “provides a good basis for a number of

different and elegant solutions [to design problems]”. The popular software engineering

book Design Patterns: Elements of Reusable Object-Oriented Software describes 23 of

 15

the most widely used design patterns [3, 37, 38]. These patterns are called the Gang of

Four (GoF) design patterns, referring to the four authors of the book. The Gang of Four

patterns sometimes assume language traits that are absent from Python, however “it is not

impossible to build pattern implementations that work like their GoF counterparts” [36].

While the resulting Python pattern implementations might have some non-typical

features, they will still have the same functionality and recognizability.

Certain design patterns exist that lose their usefulness in Python. As a dynamic,

high level language, Python eases the load on the programmer by managing memory,

pointers, and determining types at runtime. A consequence of this is that Python

programs have less need for bookkeeping patterns meant to manage those programming

aspects [38]. Additionally, certain patterns such as the iterator and function decorator are

not required to be constructed manually as they are built into Python, [37].

3.2.2 Patterns for Beginners

 Beginner programmers need to understand the basics of good software design

[23]. Using design patterns gives one exposure to proven techniques that utilize important

software engineering concepts. Design patterns also give beginner and experienced

programmers a common language in which to communicate [4]. The most well

documented patterns are the most beneficial for a new programmer to learn. Doing so

allows one to immediately be able to participate in a multitude of design discussions

based around proposed patterns as solutions to a problem. The Gang of Four patterns are

the most widely known and documented patterns, so they are the most ideal for beginners

to learn about.

 16

3.2.3 Pattern Structure

A key issue that a program such as ours faces is the lack of context as to what the

input code is trying to accomplish. We have no way of knowing what the functionality of

certain classes are, as there is no way to explicitly derive the real world purpose of the

input bodies of code. Design patterns “do not translate directly into the solution; rather

have to be adapted to suit the problem context” [4].

For our program to be useful, we need to be able to implement a design pattern

without knowing what the bodies of our generated classes or functions will be. For this

reason, the only design patterns that we can implement are ones that have constant

structures not entirely dependent on their per-program application.

Figure 9 - Example Classes with Unknown Context

Figure 10 - Modified Classes

For example, a design pattern might always have a certain dependency between

classes “A” and “B”, shown in Figure 9. The pattern might also require a third class, “C”,

that has a relatively standard structure whenever that design pattern is implemented.

Therefore, even though our program does not have any context as to what classes “A”

and “B” have inside them or what purpose they serve, we can still implement the pattern

 17

by adding in the dependency between “A” and “B” as well as generating the structure of

“C”. These changes are shown in Figure 10.

In other cases, new functions might be added. These functions might require

access to fields that are supplied by a particular class. We can use the AST to get those

fields from the class and make those the parameters of the generated function, as well as

building the function definition and creating an empty code body. While any code bodies

we create may be blank, we still have supplied the user with the skeletal structure of the

requested design. They can now see how the pattern is structured, which can help them to

understand how it works.

A new programmer can learn from a skeletal structure of a design pattern.

Showing required functions, classes, and class dependencies helps one to visualize the

pattern and potentially be able to recreate it in the future. This way, our program does not

do all the work for the programmer; they still are tasked with adding the correct

functionality to the code bodies. Our tool is not a way to get around having to think about

patterns, but more of a shortcut to understanding them.

Figure 11- Façade Pattern Structure

 18

 Certain design patterns by their very nature are too program-dependent for our

program to generate a meaningful amount of their structure. Take for example the façade

pattern, whose purpose is to provide a version of an interface that is simplified for a

chosen functionality [4]. The structure of a façade is simply a class that has methods

defined for chosen purposes, which are often a series of method calls to existing and

more complicated interfaces. A situation that would warrant the use of the façade pattern

would be one where a user has many tests they would like to run at once. These tests

involve several different method calls and initialization phases. The statements could be

placed within one function definition that only needs to be called once; a façade. If our

program attempted to create the facade pattern in this scenario, all it can do is simply

generate an empty function definition, which is not clearly a façade at first glance. Our

program does not have the same level of understanding of the program as the user, thus is

cannot emulate the majority of the façade pattern’s structure. Design patterns such as this

have too much of their structure dependent on the program they are being applied to for

them to be adequately generated by our program.

3.3 Class Adapter Pattern Implementation

The first pattern we implemented was the class adapter pattern. This pattern

satisfies all of the requirements for it to work with our program; it works well with

Python as a language, is a useful pattern for newer programmers to learn, and has a

context-free structure that can be mostly recreated via AST manipulation. There are two

types of adapter patterns: the object adapter pattern and the class adapter pattern. The

object adapter pattern uses encapsulation to wrap a target interface, while a class adapter

 19

uses multiple inheritance to fuse the functionality of two classes into one. Our program

generates object class adapters as they are considered more useful for Python [6].

The class adapter pattern is designed let the interface of an existing class to be

used by another interface [5]. This is accomplished through the addition of an adapter

class that implements the existing class’s interface while correctly calling the

corresponding methods from the secondary interface. The class adapter pattern works for

Python in that the language is object oriented and can utilize interface-like classes. In

Python, interfaces can be represented in the form of “abstract” classes, which have

methods defined but without bodies [6]. The abstract nature of these classes is faked in

that they are concrete classes that are intended to never be instantiated and instead dictate

the structure of their subclasses. These “abstract” classes essentially function as interfaces

and therefore fulfill their role in the pattern. True abstract classes exist in Python via the

Abstract Base Class module but are not needed to implement the class adapter pattern

[31].

3.3.1 Importance of the Class Adapter Pattern

Having the ability to add to a project without modifying existing code is

necessary for a program’s extensibility. When code needs to be changed, all other places

in the program that rely on its previous structure also have to adapt to this change, often

leading to bugs, client frustration, and wasted time. The class adapter pattern works to

avoid these issues by encapsulating existing code for the purpose of adding additional

functionality. A class adapter replicates the methods defined in a target interface but

without modifying the interface itself. Beginner programmers armed with the knowledge

of adapters can now start reusing old code for new purposes without having to modify it.

 20

This power, coupled with the class adapter’s relatively simple design and concept, makes

it an excellent pattern for introductory programmers to know.

3.3.2 Class Adapter Pattern Structure

Figure 12 - Class Adapter Structure

The structure of the class adapter pattern makes it ideal for our program. Three

classes are required for a class adapter; the target class (the interface to be adapted to),

the adaptee (the interface that wishes to adapt to the target), and the class adapter itself. A

client makes requests to the class adapter instance, which inherits all the methods from

the target interface and calls the adaptee functions appropriately. In Python, a class

adapter has a few standard traits: inheriting the target class, saving an instance of the

input adapter class, overriding the target class methods, and calling the correct

corresponding adaptee methods as appropriate. Provided only with names of the target

and adaptee classes, an AST manipulation function can produce a class that contains all

of the class adapter traits, excluding the adaptee method calls. These method calls are not

possible to automate because an AST traversal function cannot know by code structure

alone which adaptee methods correspond to each target method. However, the overall

 21

structure of the adapter can be generated, leaving TODO stubs where method calls are

required.

3.3.3 Class Adapter Pattern Generation

For our program to generate a class adapter, three inputs are required: a Python

file and the names of the target and adaptee classes defined within that file. Figure 13

illustrates an example file for input, where the vehicle class is the target and the horse

class is the adaptee.

Figure 13 - Example Target and Adaptee Classes

The input file is converted into a code object, which is then parsed for the purpose

of generating an AST object that represents the structure of code in the file. A visitor

method from the Python ast module is then utilized to traverse the tree. This visitor

searches the tree until it locates the node corresponding to the target class’s name. Once

this node is located, a copy is saved for future use.

Once the target node has been isolated, the class adapter node is created from

scratch. The body of the target node copy is then placed inside the body of the class

adapter node. This places all of the existing method definitions of the target into the

adapter. The bodies of each of these method nodes in the adapter are then wiped and

replaced with TODO stubs. The adapter node is then modified so that it inherits the target

 22

class. An __init__ method node is then added to the class adapter node. The body of

this node contains an expression that saves an instance of an input class within the object.

A __getattr__ method node is also added to the class adapter node. The

__getattr__ method is a ‘magic’ method used by the Python interpreter when an

object lookup on an unknown attribute is called [32]. This addition allows the adapter to

pass any adaptee functions not defined within the adapter itself along to the adaptee.

Finally, the name of the adapter node is set to “adapteeTargetAdapter”. In this example,

the name will be “horseVehicleAdapter”.

Once complete, the adapter node is added to the AST in the same code block as

the target class’s node. Using the Meta library, the AST object is then converted back

into a code object which is then saved to a new file as Python code. The resulting file is

syntactically identical to the input file, with the only change being the addition of the

class adapter. Figure 14 shows a class adapter for the horse and vehicle classes that

would be generated by our program. The object parameter for the __init__ function

is an instance of the adaptee, which in this example is the horse class. This instance is

saved within the class adapter as self.object.

Figure 14 - Example Class Adapter

The final step of the class adapter process is done by the user. They have to

decide which adaptee functions are to be called in the defined target methods within the

 23

adapter. Figure 15 shows the case where the user decided to call the horse class’s ride

method when the drive method is called.

Figure 15 - Example Class Adapter with Method Call

 The main function in Figure 15 shows how this class adapter would be used. A

horse instance is created and used to make a horseVehicleAdapter instance. This

horseVehicleAdapter now has the functionality of a horse while implementing the

vehicle interface.

3.4 Observer Pattern Implementation

 The second pattern we implemented was the observer pattern. This pattern works

well in Python, is useful for beginners, and has a mostly standard structure. Additionally,

our program explores a new technique for adding this pattern to an existing program with

minimal modification to the input files. This technique is discussed in detail later in this

section.

 The Observer Pattern is used to automatically notify dependent objects of any

state changes that occur to the object they are dependent on. The subject is a class that

maintains a list of observers which are dependent on the state of the subject. When the

subject has a state change, it notifies all known dependent objects it has stored in its

 24

observers list via a notification function. Each dependent class has a notify function

within itself that gets called whenever the subject notifies it of a state change [8]. Python

projects are often object based, so the observer pattern’s ability to automatically inform

multiple objects of a subject's change in state is relevant to the language.

3.4.1 Importance of the Observer Pattern

 Properly maintaining the states of objects is an important concept in object

oriented programming. When an event occurs in a program and a state of a class instance

changes, all objects dependent on that instance must be notified. The challenge in doing

this involves maintaining these dependences without tightly coupling the related objects.

In software engineering, coupling is how closely two classes rely on each other [10].

Decoupling two objects means to limit their interaction, and is often considered the most

pragmatic way to approach object oriented design. Tight coupling between two objects

inhibits change; if one object is modified, all those tightly coupled to it may need to be

modified as well [11]. The observer pattern is useful to know because it maintains

consistency between dependent objects while avoiding tight coupling [10]. The subject

does not need to know any information about its observers; all it does is add them to its

list observers and notify them of a state change via a uniform notification function. New

programmers can gain useful insight as to how a program can update all dependent

classes while keeping them loosely coupled through the use of the observer pattern.

 25

3.4.2 Observer Pattern Structure

Figure 16 - Observer Pattern Structure

 The relatively simple structure of the observer pattern makes it a good candidate

for our program. Two classes are required for this pattern; an observable class (the

subject to be observed by others) and the observer class (dependent on the subject). The

observable class maintains a collection of observers. Observers are added to this

collection via a register method and removed from the collection via an unregister

method. The observable also contains a notification method that calls the notify method

for all observers in its collection. This notification method is how the observable class

updates all of its dependent classes. A class that has many dependencies and wishes to act

as a subject would inherit the observable class to gain its functionality. The observer class

contains a notify method that acts accordingly in response to the information provided by

the observable class. These notify methods can behave differently among observers but

are called the same way by the observable class. A class that depends on the state

changes of the subject would inherit the observer class.

 The functionality of the observer pattern is captured in the definitions of the

observable and observer classes. These classes often do not change when used in

completely different programs. For this reason, we decided to have our program generate

 26

these class definitions in a separate, standard file. When a user submits a file to have the

observer pattern applied to, two files are generated: a completely new file that contains

the observer pattern class definitions, and a slightly modified version of their input file

that imports the newly generated file and uses it appropriately. With this method of

approach, the input file is modified as little as possible while still employing the observer

pattern.

3.4.3 Observer Pattern Generation

 For our program to generate an observer, three inputs are required: a python file

and the names of the subject and observer classes defined within that file. Figure 17

illustrates an example file for input, where the master class is the subject and the dog

class is the observer. In this example, the master class initially inherits a person class.

A super call is placed inside the master class’s __init__ method that initializes the

information required by the inherited person class.

 27

Figure 17- Example Subject and Observer Classes

 The first step of the observer pattern generation process is to create a file that has

the class definitions for the observable and observer classes. Our program has an AST

representation of these class definitions saved within it. Source code is generated from

this AST and written to a file called “generatedObserver.py”. If that file already exists,

the previous version is overwritten. Figure 18 shows the contents of the generated file.

 28

Figure 18 - Generated Observer File: generatedObserver.py

 There are three classes defined within this file; the Observable class, the

Observer class, and the metaClass class. The Observable class acts as the subject. It

has methods defined that add, remove, and notify observers in its observer list. The

Observer class has a notify function that by default prints out the input arguments

received when the observable notifies its observers. This functionality can be changed or

overwritten. The third and most mysterious class is the metaClass. To grasp the logic

and purpose of this class, one must first understand multiple inheritance initializations in

Python.

 Figure 17 shows, the master class inherits the person class. Our program

intends to have master also inherit the Observable class. In Python, multiple

 29

inheritance is acceptable, but at a price [14]. If any of the inherited classes required

initialization (a call to their __init__ method), then Python’s super method is

required. In our example, both of the classes master inherits would require their own

initialization; person wishes to set the name field and Observable wishes to create an

observers list. The expression super(master, self).__init__(name) inside the

master class effectively is calling the __init__ method defined within the person

class. Without this super call, master instances would not have their name property

set, and calls to the sayName method would yield an error. Complications start to arise

when multiple inherited classes require initialization. The expression super(master,

self).__init__(name) only initializes one of the inherited classes. To initialize both

classes, a chain of super calls each initializing the next class is required. This process can

get cumbersome and is best avoided [16].

 To avoid having to generate excessive and confusing code in the form of multiple

super calls, we decided to utilize a method of pseudo-lazy initialization via a custom

metaclass. This is all done in the name of initialing the Observable class with a field

for a list of observers. In Python, all classes are instances of metaclasses, which define

how classes are created. Most classes are created with the default type metaclass,

however, custom metaclasses that allow for the dictation of how a class is instantiated are

allowed [12, 13]. Our procedure for creating a custom metaclass that creates the

Observable class with an observers list is as follows.

1. Define a new class that inherits the class type

 30

2. Place the __metaclass = metaClass expression within the class to be created

via our custom metaclass. The metaClass component is the name of our custom

metaclass.

3. Add a List method is to metaClass which will enable an observers list to be

added to the Observable class. List is a class method, which means it takes in

a class structure as an argument in the form of cls, opposed to an instance of a

class in the form of self [18]. List takes in the Observable class and calls the

getattr method to determine if the input class has the _observers attribute. If

it does not, the attribute is added to the input class as an empty list.

4. Decorate List with a property descriptor. A descriptor is “an object attribute with

‘binding behavior’, one whose attribute access has been overridden by methods in

the descriptor protocol” [15]. Placing the @property tag above the List method

definition essentially means that the List method is now an accessible property of

the custom metaclass.

5. Place the expression Observable.List within the class that will be inheriting

Observable. This calls the List method added to the Observable class by our

custom metaclass, creating an observers list.

 Once the file containing the Observable, Observer, and metaClass classes

has been generated, the next step it to edit the input code to accept this new file. This

process is as follows.

1. Parse the input source code into a code object, which is then used to generate an

AST object.

 31

2. Traverse the tree via a node visitor, searching for the nodes that define the input

classes denoted as the subject and the observer.

3. Modify the subject node so that it now inherits the Observable class and has the

expression Observable.List within its __init__ method. Now when this

initialization method is call, the Observable class has an observer list created

without requiring a call to its __init__ method, thus avoiding the super chain

issue.

4. Modify the observer node so that it now inherits the Observer class

5. Add an expression that imports the Observable and Observer classes defined

in the generated file

 Figure 19 is an example of the modified input file shown earlier.

Figure 19 - Modified File for Observer Pattern

 32

The top image of Figure 20 shows the observer pattern in action. Janet is an

instance of a dog while Bob is an instance of a master. The expression

Bob.register_observer(Janet.notify) registers Janet as an observer of Bob.

When Bob calls his notify_observers method, Janet will now be notified.

Additionally, the notify methods of the observers can be overwritten. The bottom image

of Figure 20 shows the dog class overwriting notify to be a method call to doTrick.

Figure 20 - Using the Observer Pattern

3.5 Factory Pattern Implementation

The third pattern we implemented was the factory pattern, which is a creational

pattern that handles object creation without specifying the class of the created object [40].

Factories produce objects based on the given arguments which describe what kind of

object is being requested. This allows for a level of abstraction in the object creation.

Python, being an object oriented language, naturally can support the factory pattern.

 33

3.5.1 Importance of the Factory Pattern

Factories allow for the type of desired object instance to be decided at runtime

[41]. This functionality is useful in the situation where a “system needs to be independent

from the way the products it works with are created.” Independent creation methods

allow for a program to group and compare the different options for creating objects more

effectively. Depending on the input arguments, an object instantiation request can

interpreted and passed to its appropriate creation method. This system is also receptive to

new creation methods. Relying too heavily on built in creation methods that return a

single version of an object every time can make your code less flexibly. Factories help

newer programmers to understand how a level of abstraction can be beneficial for object

creation in programs.

3.5.2 Factory Pattern Structure

Figure 21 - Factory Pattern Structure

 The structure of the factory is one that works well with our program. Figure 21

shows the components of this pattern: a creator class which contains factory, and a set of

related products. A client makes requests to the creator by calling a factory with a given

set of arguments that describe the desired product to be returned. The products are all

 34

related, and may inherit a common interface. The client does not know or care which type

of product is returned, they simply want a correct instance of an object that matches their

input specifications. In Python, factories have a general structure that consists of a class

that serves as the creator which contains internal factory methods design to return related

objects. An AST manipulation function can detect all classes that inherit from a specified

interface, generate simple factory methods for these classes, and then place those

factories into a creator class. The logic that determines which factories are called under

different conditions is up to the user to determine.

3.5.3 Factory generation

 In order to generate the factory pattern, our program requires two inputs: a python

file and the name of the interface for which an creator class defining factory methods will

be built. Figure 22 shows an example file for input, where the car class is the interface

that will have a creator class generated. The bmw and mazda classes inherit the car class,

and thus will require their own factory method within the creator class that will be

generated.

Figure 22 - Example Interface

 The steps for generating the creator class are as follows:

 35

1. The input file is converted into a code object, which is then converted into an

AST object.

2. A visitor method traverses the AST searching for all class nodes that inherit the

given interface.

3. Once a match is found, the arguments for that class node’s __init__ method are

converted into an array and stored in a dictionary structure, with the key being the

name of the class. This is done so that each of the classes and their required

initialization arguments can be accessed later.

4. A new class node is created and placed on the AST.

5. Factory methods for each of the class nodes located in step 3 are then created as

methods within the creator.

6. The arguments for each of the factories are retrieved from the dictionary by using

the name of their respective class node as the key.

By default, the factory methods simply return an instance of the corresponding

class. Each of these factory methods is labeled as a @classmethod, and list cls as their

first argument. This means that an instance of creator class is will not be required for the

individual factory methods to be called. The cls argument is different than the typical

self argument in that cls passes the structure of the class to the method, not an instance

of it.

The creator node is now complete. The modified AST is converted back to source

code which is then saved to a new file. Figure 23 shows the class from Figure 22, now

modified to incorporate the factory pattern.

 36

Figure 23 - Modified Class with Abstract Factory

 When building a factory pattern, one has many options to pursue depending on

the needs of the program. Several layers of logic can applied to decide which type of

object will be returned. Our creator class is very general in that is simply creates a single

factory method for each type of product. The users’ job is to decide how they want to

expand our creator. This can be done by introducing more specific factory methods and

introducing logic statements that decide which of these methods to be called depending

on certain inputs. Our factory pattern provides a convenient starting point for a plethora

of factory structures.

3.6 Class Decorator Pattern Implementation

 The final pattern we implemented in our program was the class decorator pattern.

Class decorators can be implemented in Python, are useful for beginners, and have a

standard structure. Decorators are structures that allow behavior to be added to an

individual object without affected the behavior of other objects from the same class [42].

Decorators can change the decorated class’s functionality by wrapping and intercepting

 37

actions the decorated class’s methods. This can be done statically or at runtime.

Decorated instances of the same class are all independent. Function decorators are built

into Python; their usage and purpose in the class decorator pattern is discussed later in

this section.

3.6.1 Importance of the Class Decorator Pattern

 Maintaining the structure of a pre-existing project while still being able to expand

its functionality is an important concept. In many cases, the classes being used in a

project are imported from other inaccessible files or are tightly coupled with other design

components. Knowing how to make seemingly rigid code flexible in order to incorporate

new changes is very important. Decorators provide a means to add functionality to

existing functions or classes without requiring their modification. By using a decorator,

pre-existing structures can be wrapped and interpreted differently. Decorators also allow

for runtime changes; based on how an object is instantiated or a method is called,

different results can be returned. The ability to maintain prior code structure while

implementing new changes is an important concept for programmers to grasp, making

decorators a useful pattern for beginners.

 38

3.6.2 Class Decorator Structure

Figure 24 - Decorator Structure

 The decorator pattern has a standard structure that works well for our program.

There are four key classes in this pattern; a component, a decorator, and instances of

both. The component is a class that will be decorated. The decorator wraps the

component within itself and redirects all component methods calls to it. The concrete

instance of the decorator overrides the component methods that require modification [42].

In Python, function decorators are built in and easy to implement. Figure 25 shows an

example of Python function decorator [43].

 39

Figure 25 - Function Decorator Example

 The built in decorators in Python are declared by placing the name of the

decorator preceded by the ‘@’ symbol above the component it is decorating. In the above

example, the aFunction function is being decorated by the myDecorator class. When

the aFunction() expression is run, the resulting print outs occur:

Figure 26 - Function Declaration Printout

 The decorator is first initialized. During its initialization, there is a call to the

original aFunction component, which was stored internally. Now the decorator has

been fully initialized, denoted by the “Finished decorating aFunction()” print statement.

Finally, the call to aFunction is processed and intercepted by myDecorator, and

“inside myDecorator.__call__()” is printed. In this example, myDecorator could also

have been a function instead of a class. The syntax on how the decorated function are

caught and returned would be slightly different, but the functionality remains the same.

 40

The built in function decorators in Python can be used to build a similarly

functioning and structured class decorator. A class rebuilder can be used to return a

modified component class that has decorated methods. The code blocks that determine

the logic that determines when decorators are called as well as the functionality of those

decorators are isolated, meaning the class decorator structure can be generated by our

program.

3.6.3 Class Decorator Generation

Figure 27 - Example Class

The inputs required by our program to generate a class adapter are: a python file,

the name of the class to decorate, and the names of all methods that are to be decorated.

Figure 27 shows an example file to input, where the example class and all three of its

methods will be decorated.

The input file is converted into a code object, which is then converted into an

AST object. A visitor method traverse the tree until it locates the class node that is to be

decorated. The names of the methods defined within this class are saved.

The next step is to generate a function, called class_decorator, which will

serve as our class decorator. The class_decorator function is then added to the list of

 41

decorators for the component class. The decorator is specified to have arguments that

represent the methods to be decorated in the component class, which in this case is

example. By default, all methods are decorated except __init__. The

class_decorator function will be returning a new class rebuilder that will replace the

default builder for the example class. This new rebuilder class, called

decorated_componentName, creates a new class that inherits cls. The cls object

holds the structure of the input component class. The class_rebuilder function will

be called immediately after the component class is built, returning a rebuilt class that

contains a decorator for each of the specified class methods. Figure 28 shows a code

representation of the class_decorator function for example at this point in the

process.

Figure 28 - Partially Constructed Class Decorator

The __getattribute__ Python magic method is also added to this returned

class. __getattribute__ is automatically called by Python whenever a class’s

methods or fields are accessed. Our class rebuilder modifies the default

__getattribute__ functionality so that this method can be used to gain access to

 42

attributes of the component class from within the class decorator. When calls to the

component class’s methods are detected by __getattribute__, our decorated class

returns our decorated methods in their place. It is important to note the different between

the __getattribute__ method used here and the __getattr__ method used

previously for other design pattern implementations. __getattribute__ is called by

Python every single time a class has a call to its methods or fields. __getattr__ is only

called when a class receives a method call for a method that it does not have defined.

Figure 29 shows what the body of the __getattribute__ method will be for the

example class.

Figure 29 - Generated __getattribute__ Method

When __getattribute__ is called, a super call to the __getattribute__

function of the component class occurs. This saves the requested class attribute into the

obj variable. obj is checked to see if it has a __call__ attribute. If it does, then that

attribute is a method. If the requested method stored in obj is in the list of method names

that are requested to be decorated, the corresponding decorator is returned. Figure 30 and

Figure 31 show the route a method call takes within the class decorator.

 43

Figure 30 - Decorator Pathway Part A

Figure 31 - Decorator Pathway Part B

When a component method is called, __getattribute__ detects this and

returns the correct corresponding decorated method from the class decorator. For

example, when function3 in the example class is called, __getattribute__ detects

 44

that a method lookup has occurred for a decorated method, and a call to

function3_decorator is returned.

Figure 32 - Complete Class Decorator

 Figure 32 shows our generated class decorator in its entirety. By default,

all class methods are decorated and called under all circumstances. These methods simply

print that they are a decorator and then return the normal component method. The user

can decide under what situations these decorators are called by modifying the logic in

__getattribute__. Each of the method decorators can be given functionality within

their respective code blocks.

 45

3.7 Comment Preservation

Comments are annotations added to code that are intended to be read by the

programmer [44]. Descriptive comments serve the invaluable purpose of explaining the

logic of a potentially confusing program for future contributors. Whitespace can also be

used to separate larger code blocks into more readable sections.

In Python, comments are preceded by the ‘#’ character and are considered to be

whitespace by the compiler. When the ast module is used to generate an abstract syntax

tree of a Python file, all unneeded whitespace is unfortunately ignored. This means that if

you convert a program into an AST and then back into Python code using this module,

the generated code has no comments or non-syntactic whitespace. The result is as

compact code that is syntactically possible. Thankfully, due to Python’s inherently clean

syntax, this code is still well formatted. The problem is, as mentioned before, comments

are very important. A program that modifies code but removes all of your comments is

most likely going to be an avoided program. We want our program to encourage a good

coding practice, but not at the expense of another.

To combat this problem, we utilized the fact that Python allows for strings to sit

anywhere within a program. These strings are detected by the AST and given their own

node, thus persevered during the AST manipulation process. To preserve the comments,

we simply convert them to strings. Before the code is to be converted to an AST, we first

parse the file for any comments. This is done searching for the last “#” that appears on

any line; all following characters are a comment. Once a comment is located, we copy all

the characters following the “#” and place them within a string. This string is given a tag

at the beginning so that our program will know in the future which strings are actually

 46

comments. This tag varies depending on whether or not the comment was in-line. Once

all comments are converted to strings, the AST manipulation can take place. When the

new Python code has been generated, we parse the file as a string and search for any of

our comment tags. Once a tag is found, the text including and following the “#” character

is plucked from the string and placed back as a comment. If the tag denotes it as an in-

line comment, it is placed at the end of the following line. Once the parsing is complete,

all comments are back in their rightful place. This process works but has some drawbacks

which will be discussed in a later section.

3.8 Graphical User Interface

 We designed a simple graphical user interface (GUI) prototype for our program.

This GUI first takes in a file that the user would like to add a design pattern to. The user

then selects which pattern they want. An AST is then generated from their input file and

is searched for any classes or methods that could be used as arguments for our pattern

insertion function. These options are piped into a series of drop downs. The user selects

which options they would like for their pattern. A file is then generated that has their

modified code in the same directory as their input file. Screenshots of our GUI are

located in Appendix A.

 47

4. Results and Analysis

 At the start of this project we set out to prove that generating design patterns

through manipulation of ASTs was possible. Our intent was to generate three or more

design patterns and place them into existing python code. We accomplished this goal by

designing a program that can generate four design patterns: the class adapter, observer,

factory, and class decorator. The patterns we generate are the proof that creating a tool

for generating patterns with AST manipulation is possible. The file “generate.py” which

contains all the logic for our code generation consisted of 1149 lines, including all

documentation and whitespace. 783 of those lines are actual functional code. The file

consists of 17 standalone function definitions, and 14 node visitors and transformers.

 Our project has a few issues. First, the secondary file that our observer pattern

generates gets placed in the same directory as “generate.py”, not the input file. If the

input file is not located in the same directory as “generate.py”, our observer pattern will

yield errors. Second, the Meta module and comment preservation techniques we used

have some bugs; these are discussed in more detail in the future work section.

 48

5. Future Work and Conclusion

 Our project has many avenues in which it can be expanded. Our comment

preservation method was mostly successful but imperfect. If a comment exists on the

same line as a multiline string, our comment tokenizer gets tripped up and fails to

preserve the comment correctly during AST manipulation. Additionally, our solution

only attempts to preserve comments and does not address the problem of unneeded

whitespace being ignored by the AST. Two solutions exist to fix these problems:

 Write a more complete comment and whitespace tokenizer

 Purchase proprietary software

 Proprietary software exists that claims to successfully preserve all comments and

whitespace. If a product version of our program were to be released, utilizing third party

software for comment preservation would be worthwhile solution.

An additional problem we encountered was that the Meta package we used for

deconstruction of syntax trees to create syntactically correct code was not bug free. For

example, we found Meta could not generate correct code for the following kinds of

expressions: print statements containing multiple comma separated arguments, multiline

strings, and usage of the format function. Other invalid expressions that did we did not

come upon may also be present. Three solutions exist to address these problems:

 Modify the Meta package to handle the problem expressions

 Write a new syntax tree code generator package

 Purchase proprietary software

 Another area where our project could be expanded is in the amount of options our

design patterns have. For instance, it would be possible to ask the user which method

 49

calls they would like placed in their adapters. Our observer could ask the user if they

would like to override the default notify function. A larger variety of factory methods

could be generated inside our factory pattern. Our class decorator could provide more

logic options for when decorator methods get called.

 The final issue to be address with our project is its graphical user interface.

Currently, our GUI is very basic. This could be expanded to include more options for the

user, such as specifying method calls to be placed inside of certain code blocks. Help

sections could also be included to give a detailed explanation as to what each pattern is,

what it requires, and problem it aims to solve.

5.1 Conclusion

 This project was a successful proof of concept in that generation of design

patterns in existing code is possible through manipulation of its abstract syntax tree.

Research was performed on the usefulness of design patterns and the structure of syntax

trees. Python was decided to be the most appropriate programing language for design

pattern generation for the purpose of reaching newer programmers. A set of criteria were

constructed for selecting the most appropriate design patterns to generate. We were able

to design a program that can generate the structure of the class adapter, observer, factory,

and class decorator design patterns. A graphical user interface prototype was developed.

A user guide on how to generate patterns as well as expand our program with more

design patterns was developed.

 50

Appendices

Appendix A – User Guide: Generating a Pattern

 51

Appendix B – User Guide: Expanding Our Program

This section discusses the steps required to expand our program through the

addition of more design patterns. The steps are as following:

1. Select an appropriate pattern

2. Produce code for an abstract version of your pattern structure

3. Determine what is required for your pattern to be fully functional

4. Write node transformer and visitor functions that modify an AST to incorporate

your pattern

5. Utilize our helper functions to correctly generate and modify a program’s AST by

using your custom node transformer

 Step one of the process involves selecting an appropriate pattern for our program.

As outlined in our methodology, for a pattern to work in our program it should make

sense for Python as a language, be useful for beginners, and have a standard structure

where program specific expressions are isolated.

 Step two is to produce an abstract version of the structure of your pattern. This is

best done by replicating a UML diagram of your pattern in as simple of terms as possible.

This will allow you to proceed to step three by helping you visualize what parts of your

pattern can be generated based on information available from a program’s AST, and

which parts cannot.

 Step three is to analyze your patterns structure. Make note of the structural

properties that are always present, as these will be the key parts of the pattern that can be

recreated via AST manipulation. Attempt to rework the structure of your pattern so that it

isolates code blocks where program specific expressions will be located. Do so in a

 52

manner that still preserves the overall structure of the pattern so as not to impede its

recognizability. Use the resulting structure to determine what input arguments would be

required to fill in the blanks of your structure. These arguments can be anything from

class to function names.

 Step four is to write node transformer and visitor functions that will modify an

AST to incorporate the refined pattern structure you created during the previous steps.

Your node visitor will walk the AST, and any node it returns will be replaced by the node

transformer. After the AST has been modified, it is important to call the function

ast.fix_missing_locations(node), where “node” is the most recently added or

modified node. This allows your node to sit correctly within the AST. For an in-depth

explanation about the structure of ASTs in Python as well as a rundown on node

transformers and visitors, visit http://greentreesnakes.readthedocs.org/en/latest/.

 Step five is to set up the process for generating an AST, modifying it with your

custom node transformer and visitor, and finally generating code. To add your new

pattern, create a new function that receives a filename and any other necessary inputs for

your pattern as arguments. Inside this new function, call the

openAndParse(filename) method, which will create an AST of the code located at

the filename that is ready to be modified and that has all comments replaced as strings.

Next, call your note transformer and visitor functions accordingly. Once you are done

modifying the AST, call the function writeToSource(AST, filename) which will

write out the AST as source code to a file with the same name as the filename input

argument.

 Sample code is show below that shows an implementation of this process.

http://greentreesnakes.readthedocs.org/en/latest/

 53

 54

References

[1] Bendersky, Eli. “Abstract vs. Concrete Syntax Trees.” Eli Bendersky’s Website,

 TheGreenPlace, 16 Feb. 2009. Web. 25 Apr. 2015.

 <http://eli.thegreenplace.net/2009/02/16/abstract-vs-concrete-syntax-trees>.

[2] Wikipedia contributors. "Abstract syntax tree." Wikipedia, The Free Encyclopedia.

 Wikipedia, The Free Encyclopedia, 24 Apr. 2015. Web. 27 Apr. 2015.

 <http://en.wikipedia.org/wiki/Abstract_syntax_tree>.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

 Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley

 Longman Publishing Co., Inc., Boston, MA, USA. 1995.

[4] Verma, Rahul and Chetan Giridhar. Design Patterns in Python: A learner’s approach

 to understand design patterns via Python programming language. Testing

 Persepctive, 2011.

[5] Wikipedia contributors. "Adapter pattern." Wikipedia, The Free Encyclopedia.

 Wikipedia, The Free Encyclopedia, 4 Apr. 2015. Web. 27 Apr. 2015.

 <http://en.wikipedia.org/wiki/Adapter_pattern>.

[6] Ginstrom, Ryan. “The Adapter Pattern in Python.” The GITS Blog. n.p. 29 Mar.

 2009. Web. 25 Apr. 2015. <http://ginstrom.com/scribbles/2009/03/27/the-

 adapter-pattern-in-python/>.

[7] The Python Software Foundation. "Modules." Python Documentation. n.d. Web. 25

 Apr. 2015. <https://docs.python.org/2/tutorial/modules.html>.

[8] Wikipedia contributors. "Observer pattern." Wikipedia, The Free Encyclopedia.

 Wikipedia, The Free Encyclopedia, 26 Apr. 2015. Web. 27 Apr. 2015.

 <http://en.wikipedia.org/wiki/Observer_pattern>.

[9] "Observer Pattern." Object Oriented Design. Web. 26 Apr. 2015.

 <http://www.oodesign.com/observer-pattern.html>.

[10] While. “Decoupling, the Observer Pattern and a little Java’s Mystery.” My

 Developed World. My Developed World. 25 Mar. 2013. Web. 25 Apr. 2015.

 <https://mydevelopedworld.wordpress.com/2013/03/25/decoupling-the-observer-

 pattern-and-a-javas-mistery/>.

[11] Colburn, Timothy and Gary Shute. “Decoupling as a Fundamental Value of

 Computer Science.” Mind & Machines 259 (2011): 241. Web. 25 Apr. 2015.

 <http://www.d.umn.edu/~tcolburn/papers/Decoupling.pdf>.

[12] “What is a metaclass in Python?” Stack Overflow. n.p. 19 Sep. 2008.

 <http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python>.

 55

[13] “Python Programming/MetaClasses.” Wikibooks. 15 May. 2014.

 <http://en.wikibooks.org/wiki/Python_Programming/Metaclasses>.

[14] “Calling parent class __init__ with multiple inheritance, what’s the right way?”

 Stack Overflow. n.p. 5 Mar. 2012.

 <http://stackoverflow.com/questions/9575409/calling-parent-class-init-with-

 multiple-inheritance-whats-the-right-way>.

[15] The Python Software Foundation. "Descriptor HowTo Guide." Python

 Documentation. n.d. Web. 25 Apr. 2015.

 <https://docs.python.org/2/howto/descriptor.html>.

[16] Knight, Jame. “Python’s Super is nifty, but you can’t use it.” Fuhm. n.p. n.d. Web.

 26 Apr. 2015. <https://fuhm.net/super-harmful/>

[17] “What is the ‘cls’ variable used in Python classes?” Stack Overflow. n.p. 6 Jan.

 2011. <http://stackoverflow.com/questions/4613000/what-is-the-cls-variable-

 used-in-python-classes>.

[18] The Python Software Foundation. "Built-in Functions." Python Documentation. n.d.

 Web. 25 Apr. 2015.

 <https://docs.python.org/2/library/functions.html#classmethod>.

[19] Bishop, Judith. C# 3.0 Design Patterns. O’Reilly Media. 2007. Print.

 <https://msdn.microsoft.com/en-us/library/orm-9780596527730-01-04.aspx.>

[20] Wikipedia contributors. "Software design pattern." Wikipedia, The Free

 Encyclopedia. Wikipedia, The Free Encyclopedia, 19 Apr. 2015. Web. 27 Apr.

 2015. <http://en.wikipedia.org/wiki/Software_design_pattern#cite_note-5>.

[21] “How important are Design Patterns really?” Stack Overflow. n.p. 10 Jun. 2009.

 <http://stackoverflow.com/questions/978489/how-important-are-design-patterns-

 really>.

[22] Zelle, John. “Python as a First Language.” n.p. n.d. Web. 25 Apr. 2015.

 <http://mcsp.wartburg.edu/zelle/python/python-first.html>.

[23] Joshi, Bipin. “Overview of Design Patterns for Beginners.” Developer. n.p. 23 Apr.

 2014. Web. 23 Apr. 2015. <http://www.developer.com/design/overview-of-

 design-patterns-for-beginners.html>.

[24] Schreiner, Axel. “PyPy: A Python Implementation written in Python” n.p. n.d. Web.

 25 Apr. 2015. Lecture. <http://www.cs.rit.edu/~ats/lp-2005-2/p/PyPy.pdf>.

[25] The Python Software Foundation. "Access Python parse trees." Python

 Documentation. n.d. Web. 25 Apr. 2015.

 <https://docs.python.org/2/library/parser.html>.

 56

[26] Ferg, Stephen. “Notes on How Parsers and Compilers Work.” Parsingintro. n.p. 15

 Oct. 2007. Web. 26 Apr. 2015.

 <http://parsingintro.sourceforge.net/#contents_item_8.1>.

[27] Crosta, Dan. "Exploring Python Code Objects." Late.am. 26 March 2012 . Web. 25

 Apr. 2015. <http://late.am/post/2012/03/26/exploring-python-code-objects.html>.

[28] “What is a Python code object?” Stack Overflow. n.p. 12 Apr. 2011.

 <http://stackoverflow.com/questions/4613000/what-is-the-cls-variable-used-in-

 python-classes>

[29] Lee, Thomas. Python Compiler Internals, n.d. n.p. Web. 25 Apr.

 <http://tomlee.co/wp-content/uploads/2012/11/108_python-language-

 internals.pdf>

[30] Guo, Philip. "Python Is Now the Most Popular Introductory Teaching Language at

 Top U.S. Universities." Communications of the ACM. 7 July 2014. Web. 25 Apr.

 2015. <http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-

 popular-introductory-teaching-language-at-top-us-universities/fulltext>.

[31] The Python Software Foundation. "Abstract Base Classes." Python Documantatoin.

 n.d. Web. 25 Apr. 2015. <https://docs.python.org/2/library/abc.html>.

[32] Kettlerx, Rafe. "A Guide to Python's Magic Methods." Rafekettler.com. 2012. Web.

 25 Apr. 2015. <http://www.rafekettler.com/magicmethods.html>.

[33] Ross-Ross, Sean. "Meta API." Meta 0.4.1 Documentation. n.d. Web. 25 Apr. 2015.

 <http://meta.readthedocs.org/en/latest/api/index.html>.

[34] The Python Software Foundation. "Abstract Syntax Trees." Python Documentation.

 n.d. Web. 25 Apr. 2015. <https://docs.python.org/2/library/ast.html>.

[35] Kluyver, Thomas. "Green Tree Snakes - the Missing Python AST Docs." Read the

 Docs. 2012. Web. 25 Apr. 2015.

 <https://greentreesnakes.readthedocs.org/en/latest/>.

[36] Savikko, Vespe. "Design Patterns in Python." Python. Software Systems Laboratory

 Tampere University of Technology. Web. 25 Apr. 2015.

 <http://legacy.python.org/workshops/1997-10/proceedings/savikko.html>.

[37] Ginstrom, Ryan. “Six GoF design patterns, Python style” The GITS Blog. n.p.

 October 8th, 2007. Web. 25 Apr. 2015

 <http://ginstrom.com/scribbles/2007/10/08/design-patterns-python-style/>

[38] Carr, Richard. "Gang of Four Design Patterns." Black Wasp. 22 Aug. 2009. Web. 25

 Apr. 2015. <http://www.blackwasp.co.uk/GofPatterns.aspx>.

[39] Norvig , Peter. "Design Patterns in Dynamic Programming". Slides from

 presentation at Object World ‘96 , 5 May 1996.

 57

[40] Sukesh, Marla. "Factory Method Pattern vs. Abstract Factory Pattern." CodeProject.

 28 June 2014. Web. 25 Apr. 2015.

 <http://www.codeproject.com/Articles/716413/Factory-Method-Pattern-vs-

 Abstract-Factory-Pattern>.

[41] "Factory Method Pattern." Object Oriented Design. n.d. Web. 26 Apr. 2015.

 < http://www.oodesign.com/factory-method-pattern.html >.

[42] Wikipedia contributors. "Decorator pattern." Wikipedia, The Free Encyclopedia.

 Wikipedia, The Free Encyclopedia, 19 Apr. 2015. Web. 27 Apr. 2015.

 <http://en.wikipedia.org/wiki/Decorator_pattern>.

[43] Eckel, Bruce. "Decorators vs. the Decorator Pattern." Decorators I: Introduction to

 Python Decorators. 8 Oct. 2008. Web. 25 Apr. 2015.

 <https://www.artima.com/weblogs/viewpost.jsp?thread=240808>.

[44] Chae, Sam. Students Guide to Computer Science C. IUniverse, 2001. Print.

