i d e S g n

contents

Pipe Selection	3
Pipe Dimensions	4
Allowable Operating Pressure	5
Temperature Influences	7
Service Lifetimes	7
Pipe Design for Variable Operating Conditions	8
E Modulus	10
Selection of Wall Thickness for Special Applications	10
Hydraulic Design	11
Flow Chart Worked Examples	13
Part Full Flow	15
Resistance Coefficients	16
Flow Charts	17-26
Surge and Fatigue	27
Celerity	28
Slurry Flow	29
Pipe Wear	30
Maintenance and Operation	31
Fittings	31
Pneumatic Flow	32
System Design Guidelines for the Selection of Vinidexair Compressed Air Pipelines	33
Expansion And Contraction	35
External Pressure Resistance	36
Trench Design	37
Allowable Bending Radius	38
Deflection Questionnaire – FAX BACK	39
Deflection Questionnaire – Vinidex locations	40
Thrust Block Supports	41
Electrical Conductivity	ty Ltg3
Vibration	4 3
Heat Sources	43
Warehvpipe61	
Irrigatio www.ph 13 Vinio	dex

d e s i g n 🕨

Limitation of Liability

This manual has been compiled by Vinidex Pty Limited ("the Company") to promote better understanding of the technical aspects of the Company's products to assist users in obtaining from them the best possible performance.

The manual is supplied subject to acknowledgement of the following conditions:

- The manual is protected by Copyright and may not be copied or reproduced in any form or by any means in whole or in part without prior consent in writing by the Company.
- Product specifications, usage data and advisory information may change from time to time with advances in research and field experience. The Company reserves the right to make such changes at any time without notice.
- Correct usage of the Company's products involves engineering judgements which cannot be properly made without full knowledge of all the conditions pertaining to each specific installation. The Company expressly disclaims all and any liability to any person whether supplied with this publication or not in respect of anything and of the consequences of anything done or omitted to be done by any such person in reliance whether whole or partial upon the whole or any part of the contents of this publication.
- No offer to trade, nor any conditions of trading, are expressed or implied by the issue of content of this manual. Nothing herein shall override the Company's Conditions of Sale, which may be obtained from the Registered Office or any Sales Office of the Company.
- This manual is and shall remain the property of the Company, and shall be surrendered on demand to the Company.
- Information supplied in this manual does not override a job specification, where such conflict arises, consult the authority supervising the job.

© Copyright Vinidex Pty Limited ABN 42 000 664 942

Irrigation Warehouse

e sig

Pipe Selection

Vinidex PE pipes are available in a comprehensive range of sizes up to 1000mm diameter, and pressure classes in accordance with the requirements of AS/NZS 4130 - Polyethylene (PE) pipes for pressure applications.

Additional sizes and pressure classes to AS/NZS 4130 requirements are added from time to time and subject to minimum quantity requirements, pipes made to specific sizes, lengths or pressure classes are available.

The Standard AS/NZS 4130 includes a range of PE material designations based on the Minimum Required Stress (MRS), and classified as PE63, PE80, and PE100. When pipes are made to the same dimensions, but from different rated PE materials, then the pipes will have different pressure ratings.

The relationship between the dimensions of the pipes, the PE material classification and the working pressure rating are as shown in Table 4.1.

For simplicity, the dimensions of the pipe have been referred in terms of the Standard Dimension Ratio (SDR) where:

Outside Diameter

SDR =

Wall Thickness

SDR	41	33	26	21	17	13.6	11	9	7.4
PE80	PN3.2	PN4	-	PN6.3	PN8	PN10	PN12.5	PN16	PN20
PE100	PN4	-	PN6.3	PN8	PN10	PN12.5	PN16	PN20	PN25

Notes:

C

PE Long term rupture stress at 20°C (MPa x 10) to which a minimum design factor is applied to obtain the 20°C hydrostatic design hoop stress.

PN Pipe pressure rating at 20°C (MPa x10).

SDR Nominal ratio of outside diameter to wall thickness.

i d e S g n

Pipe Dimensions Table 4.2 PE Pipe Dimensions AS/NZS 4130

Monor Wai Man Minu Minu Minu Minu Minu Minu Minu Min	Min Min <th></th> <th></th> <th></th> <th>~</th> <th></th> <th></th> <th>26</th> <th>SDR</th> <th>21</th> <th>SDR</th> <th>17</th> <th>SDR 1</th> <th>13.6</th> <th>SDR</th> <th>Ŧ</th> <th>SDR</th> <th>6</th> <th>SDR</th> <th>7.4</th>				~			26	SDR	21	SDR	17	SDR 1	13.6	SDR	Ŧ	SDR	6	SDR	7.4
16 18 16 13 16 16 16 16 16 16 16 16<	16 18 16 13 16 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 16 16<				(all ess	_	Min. Wall Thickness (mm)	Mean I.D. (mm)	Min. Wall Thickness (mm)											
16 17 16 17<	16 17 16 16 17 16 17 16 16 17 16 16<		1.6	13	1.6	13	1.6	13	1.6	13	1.6	13	1.6	13	1.6	13	1.8	12	2.2	
16 21 16 22 16 23 16 23 16 23 16 23 16 23 16 23 16 23 16 23 16 23 15 23<	16 22 16 22 16 22 16 23 16 23 16 23 16 23 16 23 16 23 16 23 15 23 24 23 24 23 24 25 24 25 25 25 25 25 25 25 25 23 24 23 24 25 23 24 25<	20	1.6	17	1.6	17	1.6	17	1.6	17	1.6	17	1.6	17	1.9	16	2.3	15	2.8	
16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 24 26 24 26 24 26 24 26<	16 29 16 29 16 29 16 29 16 29 16 37 29 26 36 24 35 24 35 24 35 24 35 24 35 34<	25	1.6	22	1.6	22	1.6	22	1.6	22	1.6	22	1.9	21	2.3	20	2.8	19	3.5	
16 17 16 37 16 37 16 37 16 37 16 37 16 37 46 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37<	16 17 16 37 16 37 15 37 32 35 31 37 32 35 31 31 31 31 31 31 31 31 31 31 31 31 32 33 31<	32	1.6	29	1.6	29	1.6	29	1.6	29	1.9	28	2.4	27	2.9	26	3.6	24	4.4	
16 17 16 47 16 47 20 46 53 30 41 55 56<	16 47 16 47 20 46 30 44 37 42 46 56 38 16 60 20 59 24 58 51 58 51 71 48 19 71 23 70 29 58 43 56 55 56 68 57 68 71 48 27 106 34 101 53 74 106 51 73 101 69 71 48 27 106 34 101 53 101 56 71 106 114 157 106 23 101 55 103 103 133 133 164 167 103	40	1.6	37	1.6	37	1.6	37	1.9	36	2.4	35	3.0	34	3.7	32	4.5	31	5.5	~
16 60 20 59 24 56 51 55 55 56 51 71 46 66 19 71 23 70 29 60 35 65 55 65 65 65 65 65 73 101 69 103 27 105 34 103 53 91 65 74 105 82 73 101 69 173 84 151 37 101 39 111 44 115 44 116 95 114 116 114 116 113 114 116 114 116 113 114 114 116 116 111 114 116 114 116 114 116 114 116 114 116 114 116 114 116 114 116 114 116 114 116 114 116 114 116	16 60 20 59 24 56 50 47 58 58 51 71 48 19 71 23 70 29 60 35 55 65 65 65 55 69 101 69 27 105 34 103 43 101 53 99 66 96 81 73 101 69 35 133 143 131 64 17 44 114 101 140 96 44 171 55 169 64 160 133 143 144 147 101 140 96 44 171 55 169 64 160 133 143 133 164 146 101 140 163 44 171 155 103 133 153 154 145 141 140 157 143 45	50	1.6	47	1.6	47	2.0	46	2.4	45	3.0	44	3.7	42	4.6	40	5.6	38	6.9	(*)
19 71 23 70 29 60 6 55 65 65 65 65 65 65 65 65 65 65 65 65 73 101 60 103 61 27 106 34 103 43 101 63 43 101 64 103 101 66 103 101 66 103 103 101 66 103	19 71 23 70 29 60 5 65 75 101 60 113 101 60 113 101 60 102 80 101 60 31 119 39 117 149 101 64 140 101 140 101 60 35 131 54 130 65 140 140 101 140 101 44 171 55 169 65 163 143 140	63	1.6	60	2.0	59	2.4	58	3.0	57	3.8	55	4.7	53	5.8	51	7.1	48	8.6	45
22 66 76 65 75 73 101 63 73 101 63 103 63 133 61 133 61 63 61 73 61 63 61 63 61 63 64 63 <t< td=""><td>22 66 76 66 76 66 76 82 73 101 69 27 105 34 103 43 101 53 93 13 14 101 64 13 103 144 101 48 15 60 13 103 144 101 44 117 155 164 145 103 146 103 139 134 136 134 136 134 136 134 136 135 146 136 137 136 44 171 55 166 69 134 136 134 136 133 135 134 136 134 136 133 135 133 135 134 133 135 134 133 135 134 133 135 134 133 135 135 134 133 135 134 133 135 135 134</td><td>75</td><td>1.9</td><td>71</td><td>2.3</td><td>70</td><td>2.9</td><td>69</td><td>3.6</td><td>67</td><td>4.5</td><td>99</td><td>5.5</td><td>63</td><td>6.8</td><td>61</td><td>8.4</td><td>58</td><td>10.3</td><td>53</td></t<>	22 66 76 66 76 66 76 82 73 101 69 27 105 34 103 43 101 53 93 13 14 101 64 13 103 144 101 48 15 60 13 103 144 101 44 117 155 164 145 103 146 103 139 134 136 134 136 134 136 134 136 135 146 136 137 136 44 171 55 166 69 134 136 134 136 133 135 134 136 134 136 133 135 133 135 134 133 135 134 133 135 134 133 135 134 133 135 135 134 133 135 134 133 135 135 134	75	1.9	71	2.3	70	2.9	69	3.6	67	4.5	99	5.5	63	6.8	61	8.4	58	10.3	53
2.7106341034310153996696969691901090153.1110391114811560113741031031141011610961133.51331301541306214917144951431331531531531331331331331331331331331334.41115516969160190134193134133133133133133133133133134133134133134134133134134133134134134134134133134134133134134133134	2.7 10 34 103 43 101 53 94 66 13 74 106 81 100 80 123 84 3.1 11 39 117 48 156 60 133 74 103 146 101 140 90 3.5 133 153 154 156 60 133 153 153 156 146 103 146 103 139 4.4 171 55 166 69 160 134 135 164 146 137 138 4.4 171 55 168 69 134 136 133 153<	06	2.2	86	2.8	84	3.5	83	4.3	81	5.4	78	9.9	76	8.2	73	10.1	69	12.3	65
31 19 39 117 48 15 60 13 74 10 92 10 144 101 140 96 171 35 133 43 131 54 129 67 126 83 123 103 114 101 167 108 133 44 171 55 109 62 48 7.7 144 95 147 103 134 132 133 133 134	31 119 39 117 48 115 60 113 74 10 92 105 14 101 40 96 35 133 54 131 54 129 67 126 83 123 133 134 101 140 95 103 118 173 103 173 103 123 103 113 103 <	110	2.7	105	3.4	103	4.3	101	5.3	66	9.9	96	8.1	93	10.0	89	12.3	84	15.1	78
35 133 43 131 54 129 57 146 157 166 157 166 192 193 134 133 133 136 133 133 136 133 133 136 133 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133 136 133	35 133 133 143 141 157 146 157 146 157 146 157 103 153 153 153 154 157 103 173 103 173 103 173 103 173 103 173 103 173 103 173 103 173 103 173 103 173 103 1	125	3.1	119	3.9	117	4.8	115	0.0	113	7.4	110	9.2	106	11.4	101	14.0	96	17.1	89
4.0 152 4.9 150 6.2 4.8 7.7 4.4 1.1 55 169 6.2 4.8 7.7 4.4 1.7 55 169 6.9 166 8.6 163 10.7 158 164 145 201 138 246 4.4 1.71 5.5 1.89 7.7 184 9.6 180 119 175 158 171 138 246 5.5 2.15 6.9 2.01 8.6 180 119 225 143 173 308 6.5 2.53 10.7 2.80 134 2.83 144 173 227 203 313 308 6.5 2.53 10.7 2.83 16.9 2.75 149 2.75 203 215 245 245 6.5 2.53 136 2.53 143 273 28 245 233 245 245 245 245 245	4.0 152 4.9 150 6.2 4.8 7.7 144 9.5 140 153 164 146 130 173 133 4.4 171 5.5 169 6.9 166 8.6 163 10.7 158 164 145 201 138 4.4 171 5.5 169 6.9 166 8.6 10.7 158 164 146 201 138 5.5 215 6.9 166 19 10.8 203 134 205 148 201 138 251 133 6.5 238 10.7 256 148 219 215 201 38 215 315	140	3.5	133	4.3	131	5.4	129	6.7	126	8.3	123	10.3	118	12.7	114	15.7	108	19.2	66
4.4 11 55 169 69 160 86 165 165 163 164 145 164 145 171 85 163 164 145 126 133 133 163 134 136 236 236 236 236 236 236 134 136 137 136 137 136 137 136 237 236 236 236 134 236 136 237 236	4.4 171 55 169 69 166 16 17 156 164 146 201 138 4.9 190 62 188 7.7 149 176 147 170 182 129 138 5.5 215 6.9 211 8.6 207 108 203 134 198 166 191 205 183 251 173 6.5 238 7.7 236 107 236 184 212 205 183 215 173 216 217 173 6.9 201 136 233 134 235 146 216 217 218 216 217 218 216 213 215 216 213 216 213 215 216 216 213 216 216 213 215 216 216 216 216 216 216 216 216 216 <td< td=""><td>160</td><td>4.0</td><td>152</td><td>4.9</td><td>150</td><td>6.2</td><td>148</td><td>7.7</td><td>144</td><td>9.5</td><td>140</td><td>11.8</td><td>136</td><td>14.6</td><td>130</td><td>17.9</td><td>123</td><td>21.9</td><td>114</td></td<>	160	4.0	152	4.9	150	6.2	148	7.7	144	9.5	140	11.8	136	14.6	130	17.9	123	21.9	114
4.9 100 6.2 188 7.7 184 9.6 180 119 170 182 162 184 171 170 182 162 183 231 173 308 5.5 2.16 6.9 2.11 8.6 2.07 10.8 2.05 14.9 196 166 191 2.05 183 2.11 173 308 6.2 2.84 1.97 2.86 1.94 2.95 14.8 2.12 2.06 2.13 2.19 3.13 6.9 2.17 2.06 1.91 2.86 1.94 2.75 2.86 3.13 2.14 3.13 8.7 3.80 1.91 2.95 1.91 2.91 2.91 2.92 3.95	49 190 62 188 77 184 96 180 113 114 170 182 162 154 154 55 215 69 211 86 207 108 203 134 198 166 191 205 183 211 173 62 238 77 236 96 230 119 255 148 212 203 213 173 69 267 286 134 253 166 246 205 313 215 24 233 215 24 245 245 245 175 60 273 816 273 816 273 816 216 246 216 213 215 245	180	4.4	171	5.5	169	6.9	166	8.6	163	10.7	158	13.3	153	16.4	145	20.1	138	24.6	128
5.5 15 6.9 211 8.6 207 10.8 203 13.4 19.6 16.6 191 205 183 25.1 173 303 6.2 288 7.7 235 9.6 230 11.9 253 16.6 246 206 238 25.4 243 342 6.9 260 9.7 296 10.7 258 13.4 253 16.6 246 266 246 243 343 7.7 300 9.7 296 12.1 290 15.0 233 16.5 231 25.4 243 345 8.7 336 10.9 333 13.6 320 14.1 301 345 345 9.8 390 17.2 350 19.1 362 243 345 345 345 11.0 429 17.2 540 17.2 540 342 345 345 345 <td< td=""><td>5.5 215 69 211 86 207 108 203 114 196 191 205 183 213 173 62 288 7.7 235 96 230 119 225 148 219 225 239 213 213 213 6.9 267 86 263 107 256 134 253 166 246 206 232 269 313 213 215 7.7 300 97 233 136 231 136 232 246 313 213 314 315 314 315 314 315 315 313 315 314 315 314 315 314 315 314 315 314 315 314 315 314 315 315 314 316 315 316 315 316 315 316 315 316 315 316 315 316 315 316 315 316 315 316 315 316 316</td></td<> <td>200</td> <td>4.9</td> <td>190</td> <td>6.2</td> <td>188</td> <td>7.7</td> <td>184</td> <td>9.6</td> <td>180</td> <td>11.9</td> <td>175</td> <td>14.7</td> <td>170</td> <td>18.2</td> <td>162</td> <td>22.4</td> <td>154</td> <td>27.3</td> <td>143</td>	5.5 215 69 211 86 207 108 203 114 196 191 205 183 213 173 62 288 7.7 235 96 230 119 225 148 219 225 239 213 213 213 6.9 267 86 263 107 256 134 253 166 246 206 232 269 313 213 215 7.7 300 97 233 136 231 136 232 246 313 213 314 315 314 315 314 315 315 313 315 314 315 314 315 314 315 314 315 314 315 314 315 314 315 315 314 316 315 316 315 316 315 316 315 316 315 316 315 316 315 316 315 316 315 316 315 316 316	200	4.9	190	6.2	188	7.7	184	9.6	180	11.9	175	14.7	170	18.2	162	22.4	154	27.3	143
6.2 236 7.7 235 9.6 230 11.9 225 14.6 219 18.4 212 27.7 203 27.9 19.2 34.2 6.9 267 8.6 263 10.7 258 13.4 253 16.6 246 205 36.3 21.5 38.3 7.7 300 9.7 296 12.1 290 15.0 21.5 21.6 21.5 21.5 24.0 24.7 28.6 24.7 28.6 34.3 34.5 8.7 330 12.3 370 19.1 36.2 23.7 36.6 26.6 24.7 307 34.5 34.5 34.5 9.8 300 12.3 376 14.7 367 24.7 36.7 36.6 26.7 34.7 34.7 34.7 34.5 110 429 15.3 470 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7	6.2 238 7.7 235 9.6 230 119 225 148 219 184 217 203 27.9 129 133 215 6.9 267 8.6 263 10.7 286 134 253 16.6 246 256 31.3 215 245 7.7 300 9.7 296 12.1 290 150 285 16.9 352 245 355 245 8.7 338 10.9 333 136 251 241 311 261 285 286 286 286 352 247 9.8 380 12.3 370 191 362 281 363 364 461 366 562 365 362 367 <td>225</td> <td>5.5</td> <td>215</td> <td>6.9</td> <td>211</td> <td>8.6</td> <td>207</td> <td>10.8</td> <td>203</td> <td>13.4</td> <td>198</td> <td>16.6</td> <td>191</td> <td>20.5</td> <td>183</td> <td>25.1</td> <td>173</td> <td>30.8</td> <td>161</td>	225	5.5	215	6.9	211	8.6	207	10.8	203	13.4	198	16.6	191	20.5	183	25.1	173	30.8	161
69 267 86 263 107 258 134 253 166 246 206 238 213 215 233 77 300 97 296 121 290 150 285 187 286 286 286 285 242 430 87 330 193 333 136 320 150 327 281 286 286 352 242 485 98 380 103 337 136 320 191 362 231 485 485 485 110 429 138 422 172 415 215 406 266 363 396 247 307 416 515 417 307 416 515 417 307 416 515 416 515 416 515 512 512 512 512 512 515 516 515 516 516	69 267 86 203 107 258 134 253 166 246 256 256 313 215 215 77 300 97 296 121 290 150 285 187 278 286 286 256 352 242 87 330 19.9 333 13.6 320 16.9 320 281 366 352 242 87 380 10.9 333 13.6 320 281 401 366 366 352 242 110 429 153 410 352 249 412 407 556 572 347 1110 429 153 470 194 472 536 443 407 556 572 547 1137 534 172 522 249 412 445 454 467 556 572 512 54	250	6.2	238	7.7	235	9.6	230	11.9	225	14.8	219	18.4	212	22.7	203	27.9	192	34.2	179
7.7 300 9.7 296 121 290 150 285 187 286 286 256 352 242 430 8.7 338 109 333 136 328 169 320 21.1 311 261 301 32.2 289 396 273 485 9.8 380 123 376 153 370 191 362 23.7 311 261 301 32.2 289 396 273 485 110 429 138 422 172 415 406 267 395 331 364 407 568 347 616 12.3 470 191 462 239 452 296 440 368 424 407 558 384 -1 11.7 534 172 526 21.4 518 239 474 475 45.4 407 558 384 -1 11.7 534 172 526 21.4 516 33.2 440 558 572 512 572 512 <	7.7 300 9.7 296 121 290 150 285 187 286 286 286 352 242 8.7 338 10.9 333 136 320 150 321 311 211 311 211 311 211 311 312 322 289 335 336 347 307 110 429 13.8 422 17.2 415 21.5 406 267 395 331 382 340 365 356 357 347 110 429 153 470 191 462 286 332 346 447 307 13.7 534 17.2 566 214 566 332 449 475 568 347 568 572 512 512 51 56 57 56 57 56 57 56 57 56 57 56 57 56 57	280	6.9	267	8.6	263	10.7	258	13.4	253	16.6	246	20.6	238	25.4	228	31.3	215	38.3	200
8.7 338 10.9 333 13.6 328 16.9 320 21.1 311 26.1 301 32.2 289 39.6 273 48.5 9.8 380 12.3 376 15.3 370 19.1 362 23.7 351 29.4 30 36.3 36.6 47.7 307 546 11.0 429 13.8 420 17.2 410 452 29.6 34.7 516 44.7 307 546 13.7 534 17.2 526 21.4 518 26.7 506 33.2 49.4 47.4 407 55.8 384 -	8.7 338 10.9 333 13.6 228 13.6 238 13.6 238 13.6 238 13.6 238 13.6 238 13.6 237 376 13.7 376 13.7 376 13.7 376 13.1 352 336 347 307 307 306 305 306 306 203 306 306 203 306 306 203 306 306 203 307 307 307 11.0 429 13.8 420 19.1 462 23.9 453 331 382 40 363 366 502 347 11.1 420 17.2 516 21.4 518 26.7 506 331 364 46 47 307 364 47 40 558 572 512 512 50 512 51 51 51 51 51 51 51 51 51 51 <td>315</td> <td>7.7</td> <td>300</td> <td>9.7</td> <td>296</td> <td>12.1</td> <td>290</td> <td>15.0</td> <td>285</td> <td>18.7</td> <td>278</td> <td>23.2</td> <td>268</td> <td>28.6</td> <td>256</td> <td>35.2</td> <td>242</td> <td>43.0</td> <td>226</td>	315	7.7	300	9.7	296	12.1	290	15.0	285	18.7	278	23.2	268	28.6	256	35.2	242	43.0	226
98 380 123 376 153 370 191 365 237 351 294 340 363 226 447 307 546 11.0 429 13.8 422 17.2 415 215 406 26.7 395 33.1 382 40.9 366 50.2 347 615 12.3 476 15.3 470 19.1 462 23.9 455 29.6 440 36.8 40.9 366 37.2 347 615 13.7 534 17.2 556 21.4 518 26.7 506 33.1 412 45.7 55.8 344 5	98 380 123 376 153 370 191 362 231 361 363 326 447 307 11.0 429 138 422 172 415 215 406 26.7 395 331 382 40.9 366 502 347 12.3 476 153 470 191 462 215 406 36.8 424 407 55.8 344 13.7 534 17.2 526 214 518 26.7 506 33.2 494 41.2 475 56.8 344 13.7 534 17.2 526 21.4 518 26.7 506 33.2 549 41.2 475 56.8 344 17.4 670 19.3 592 241 42.1 42.4 407 56.8 57.2 512 57 57 57 57 57 57 57 57 57 57	355	8.7	338		333	13.6	328	16.9	320	21.1	311	26.1	301	32.2	289	39.6	273	48.5	255
11.042913842217.241521.5406 26.7 395 33.1 382 409 56.2 347 61.5 12.347615.347019.146223.945229.6440 36.8 424 407 55.8 384 $-$ 13.753417.252621.4518 26.7 506 33.2 494 41.2 475 50.8 455 $ -$ 15.460019.359224.1506 33.2 494 41.2 475 50.8 456 $ -$ 17.467621.866727.2656 33.9 641 42.1 624 52.2 603 $ -$ 10.676224.576230.638.1723 47.4 704 58.8 679 $ -$ 22.085827.584627.7814723 47.4 704 58.8 679 $ -$ 22.085827.684638.1723 47.4 704 58.8 679 $ -$ <td< td=""><td>11.0 429 138 422 17.2 415 21.5 406 26.7 395 33.1 382 40.9 366 50.2 347 12.3 476 15.3 470 19.1 462 23.9 452 29.6 440 36.8 45.4 407 55.8 384 13.7 534 17.2 526 21.4 518 26.7 506 33.2 494 41.2 475 55.8 455 57.2 512 57</td><td>400</td><td>9.8</td><td>380</td><td></td><td>376</td><td>15.3</td><td>370</td><td>19.1</td><td>362</td><td>23.7</td><td>351</td><td>29.4</td><td>340</td><td>36.3</td><td>326</td><td>44.7</td><td>307</td><td>54.6</td><td>287</td></td<>	11.0 429 138 422 17.2 415 21.5 406 26.7 395 33.1 382 40.9 366 50.2 347 12.3 476 15.3 470 19.1 462 23.9 452 29.6 440 36.8 45.4 407 55.8 384 13.7 534 17.2 526 21.4 518 26.7 506 33.2 494 41.2 475 55.8 455 57.2 512 57	400	9.8	380		376	15.3	370	19.1	362	23.7	351	29.4	340	36.3	326	44.7	307	54.6	287
12.3 476 15.3 470 19.1 462 23.9 452 29.6 440 36.8 424 45.4 407 55.8 384 13.7 534 17.2 526 21.4 518 26.7 506 33.2 494 412 475 50.8 455 5- 5 15.4 600 19.3 592 24.1 506 33.2 494 412 475 50.8 455 5- 5 <td< td=""><td>12.3 476 15.3 470 19.1 462 23.9 452 29.6 440 36.8 46.4 407 55.8 384 13.7 534 17.2 526 21.4 518 26.7 506 33.2 494 41.2 475 50.8 455 - - - 15.4 600 19.3 592 24.1 582 30.0 570 37.3 554 46.3 557 512 512 - <</td><td>450</td><td>11.0</td><td>429</td><td></td><td>422</td><td>17.2</td><td>415</td><td>21.5</td><td>406</td><td>26.7</td><td>395</td><td>33.1</td><td>382</td><td>40.9</td><td>366</td><td>50.2</td><td>347</td><td>61.5</td><td>322</td></td<>	12.3 476 15.3 470 19.1 462 23.9 452 29.6 440 36.8 46.4 407 55.8 384 13.7 534 17.2 526 21.4 518 26.7 506 33.2 494 41.2 475 50.8 455 - - - 15.4 600 19.3 592 24.1 582 30.0 570 37.3 554 46.3 557 512 512 - <	450	11.0	429		422	17.2	415	21.5	406	26.7	395	33.1	382	40.9	366	50.2	347	61.5	322
13.7 534 17.2 526 21.4 518 26.7 506 33.2 494 41.2 475 50.8 455 -	13.7 534 17.2 526 21.4 518 26.7 506 33.2 494 41.2 475 508 455 -	500	12.3	476		470	19.1	462	23.9	452	29.6	440	36.8	424	45.4	407	55.8	384	i.	Ċ
15.4 600 19.3 592 24.1 582 30.0 57.0 37.3 554 46.3 553 57.2 512 -	15.4 600 19.3 592 24.1 582 30.0 570 37.3 554 46.3 552 512 512 5	560	13.7	534	17.2	526	21.4	518	26.7	506	33.2	494	41.2	475	50.8	455	I	ī	ı	
17.4 676 21.8 667 27.2 656 33.9 641 42.1 624 52.2 603 - </td <td>17.4 676 21.8 667 27.2 656 33.9 641 42.1 624 52.2 603 -</td> <td>630</td> <td>15.4</td> <td>600</td> <td></td> <td>592</td> <td>24.1</td> <td>582</td> <td>30.0</td> <td>570</td> <td>37.3</td> <td>554</td> <td>46.3</td> <td>535</td> <td>57.2</td> <td>512</td> <td>ı</td> <td>ı.</td> <td>ı.</td> <td>·</td>	17.4 676 21.8 667 27.2 656 33.9 641 42.1 624 52.2 603 -	630	15.4	600		592	24.1	582	30.0	570	37.3	554	46.3	535	57.2	512	ı	ı.	ı.	·
19.6 762 24.5 752 30.6 739 38.1 723 47.4 704 58.8 679 - </td <td>19.6 762 24.5 752 30.6 733 38.1 723 47.4 704 58.8 679 - <t< td=""><td>710</td><td>17.4</td><td>676</td><td>21.8</td><td>667</td><td>27.2</td><td>656</td><td>33.9</td><td>641</td><td>42.1</td><td>624</td><td>52.2</td><td>603</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td></td></t<></td>	19.6 762 24.5 752 30.6 733 38.1 723 47.4 704 58.8 679 - <t< td=""><td>710</td><td>17.4</td><td>676</td><td>21.8</td><td>667</td><td>27.2</td><td>656</td><td>33.9</td><td>641</td><td>42.1</td><td>624</td><td>52.2</td><td>603</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td><td></td></t<>	710	17.4	676	21.8	667	27.2	656	33.9	641	42.1	624	52.2	603	ı	ı	ı	ı	ı	
22.0 858 27.6 846 34.4 831 42.9 814 53.5 791 -	22.0 858 27.6 846 34.4 831 42.9 814 53.5 791 -	800	19.6	762	24.5	752	30.6	739	38.1	723	47.4	704	58.8	679	1	i.	ı	i.	ı.	Ċ
24.5 953 30.6 940 38.2 924 47.7 904 59.3 880	24.5 953 30.6 940 38.2 924 47.7 904 59.3 880 - </td <td>006</td> <td>22.0</td> <td>858</td> <td>27.6</td> <td>846</td> <td>34.4</td> <td>831</td> <td>42.9</td> <td>814</td> <td>53.5</td> <td>791</td> <td>ı</td> <td>T</td> <td>I</td> <td>I.</td> <td>I</td> <td>I</td> <td>I</td> <td>·</td>	006	22.0	858	27.6	846	34.4	831	42.9	814	53.5	791	ı	T	I	I.	I	I	I	·
	Nominal ratio of outside diameter to wall thickness. ID	jê,	24.5	953	30.6	940	38.2	924	47.7	904	59.3	880		i.		i.	i.	i.	i.	Ċ.

Allowable Operating Pressure

Hydrostatic Design Basis

Vinidex pipes manufactured to AS/NZS 4130, Series 1 have wall thickness and pressure ratings determined by the Barlow formula as follows:

$$T = \frac{PD}{2S + P}$$

T = minimum wall thickness	(mm)
P = normal working pressure	
of pipe	(MPa)
D = minimum mean OD	(mm)
S = hydrostatic design stress	
at 20°C	(MPa)
See Table 4.2.	

Hydrostatic Design Stress

The design of AS/NZS 4130 pipes has been based on the static working pressure operating continuously at the maximum value for the entire lifetime of the pipeline.

The value of maximum hoop stress used in the selection of the pipe wall thickness is known as the Hydrostatic Design Stress (S). This value is dependent upon the type of PE material being used and the pipe material service temperature. In AS/NZS 4131, materials are classified for long term strength by the designation Minimum Required Strength (MRS).

The MRS is the value resulting from extrapolation of short and long term tests to a 50 year point at 20°C.

Note: See Figure 2.1 for typical stress regression curves.

Table 4.3 Hydrostatic Design Stress andMinimum Required Strength – Values

S

ρ

Material Designation	Minimum Required Strength (MRS) MPa	Hydrostatic Design Stress (S) MPa
PE63	5.0	6.3
PE80	6.3	8.0
PE100	8.0	10.0

٦

q

The Hydrostatic Design Stress (S) is obtained by application of a Design or Safety Factor (F) to the MRS.

d

See Table 4.3.

$$S = \frac{MRS}{F}$$

The specific value selected for the Design Factor depends on a number of variables, including the nature of the transmitted fluid, the location of the pipeline, and the risk of third party damage.

The wall thickness values for Series 1 pipes to AS/NZS 4130 were derived using a value of 1.25 for F, this being the minimum value applicable.

AS/NZS 4131 specifics MRS values of 6.3 MPa, 8.0 MPa and 10.0 MPa for the grades designated as PE63, PE80 and PE100 respectively.

The relationship between the S and MRS standard values in AS/NZS 4131 is as shown in Table 4.3.

These standard values are polymer dependent and long term properties for each pipe grade material are established by long term testing to the requirements of ISO/DIS 9080 by the polymer producers. Individual PE grades may exhibit different characteristics and PE materials can be provided with enhanced specific properties. In these cases the advice of Vinidex engineers should be obtained.

Maximum Allowable Operating Pressure

$$\mathsf{MAOP} = \frac{\mathsf{PN} \times 0.125}{\mathsf{F}}$$

where

MAOP is the maximum allowable operating pressure in MPa.

PN is the pipe classification in accordance with AS/NZS 4130. F is the Design Factor.

For example, if the minimum value of F is chosen (F = 1.25), a PN10 pipe will have a MAOP of 1.0 MPa at 20° C.

d e s i g n ►

Where installation applications are used to carry fluids other than water, then another value of the Design Factor may need to be selected. The value selected will depend on both the nature of the fluid being carried and the location of the pipeline installation. For specific installations, the advice of Vinidex engineers should be obtained.

In the case of gas pipes in AS/NZS 4130, both Series 2 and Series 3, a Design Factor ranging between F = 2.0 and F = 4.0 applies depending on the specific installation conditions; see Table 4.6.

Table 4.4 Typical Design Factors

Pipeline Application	Design Factor
20°C	F
Water Supply	1.25
Natural Gas	2.0
Compressed Air	2.0
LPG	2.2

Where the Design Factor is varied, then the MAOP for the particular Series 1 pipe PN rating can be calculated as follows:

$$\mathsf{MAOP} = \frac{\mathsf{PN} \times 0.125}{\mathsf{F}}$$

In the particular case of gas distribution, then the type of gas, and the pipeline installation conditions need to be considered. In this case the Design Factor is a combination of a number of sub factors (f_x) which must be factored together to give the final value for F such that:

$$\mathsf{F} = \mathsf{f}_0 \times \mathsf{f}_1 \times \mathsf{f}_2 \times \mathsf{f}_3 \times \mathsf{f}_4 \times \mathsf{f}_5$$

Table 4.5 PE Pipe Pressure Ratings

PN Rating Number	Nominal W	orking Pressure
	МРа	Head Metres
PN 3.2	0.32	32
PN 4	0.40	40
PN 6.3	0.63	63
PN 8	0.80	80
PN 10	1.00	100
PN 12.5	1.25	125
PN 16	1.60	160
PN 20	2.00	200
PN 25	2.50	250

Table 4.6 Design Factors – Gas Pipes

Installation	Conditions E)esign Facto	or Value
Fluid type	Natural Gas	fO	2.0
	LPG		2.2
Pipe Form	Straight length	f1	1.0
	Coils		1.2
Soil Temperature (Av. °C)	-10 < t < 0	f2	1.2
	0 < t < 20		1.0
	20 < t < 30		1.1
	30 < t < 35		1.3
Designation	Distribution	f3	1.0
	Transport		0.9
Rapid Crack Resistance		f4	1.0
Population density & area l	oading		
	Open field	f5	0.9
	Less trafficed roads in inbuilt are	as	1.05
	Heavy trafficed roads in inbuilt a	reas	1.15
	Roads in populated area		1.20
	Roads in industrial area		1.25
	Private area habitation		1.05
	Private area industry		1.20

Note: Where factor values are not listed, consult with Vinidex engineers for recommendations.

Irrigation Wa

Temperature Influences

The physical properties of Vinidex PE pipes are related to a standard reference temperature of 20°C. Where physical property values are quoted to ISO and DIN Standard test methods, these are for the 20°C condition, unless otherwise quoted. Wherever PE pipelines operate at elevated temperatures, the pressure ratings (PN) must be revised.

The temperature to be considered for the re rating is the pipe material service temperature, and the actual operating conditions for each specific installation must be evaluated.

For long length installations a temperature gradient will exist along the length of the pipe line. This gradient will be dependent upon site conditions, and the fluid being carried will approach the ambient temperature of the surrounds.

The rate of temperature loss will be determined by inlet temperature, fluid flow rate, soil conductivity, ambient temperature and depth of burial. As these factors are specific to each installation, the temperature gradient calculations are complex and in order to assist the designer, Vinidex have developed computer software to predict the temperature gradient along the pipeline.

This is available on request to Vinidex design engineers.

The grades of PE specified in AS/NZS 4131 are produced by different polymerisation methods, and as such have different responses to temperature variations.

ρ

S

d

Pipe Classification (PN) is based on continuous operation at 20°C and the pressure rating will be reduced for higher temperatures. In addition, as PE is an oxidising material, the lifetime of some grades will be limited by elevated temperature operation. Table 4.7 gives temperature rerating data for Vinidex pipes made to AS/NZS 4130.

In these tables, allowable working pressures are derived from ISO 13761* and assume continuous operation at the temperatures listed.

Extrapolation limit is maximum allowable extrapolation time in years, based on data analysis in accordance with ISO/DIS 9080**, and at least two years of test at 80°C for PE80B and PE100. Actual product life may well be in excess of these values.

The performance of compounds used in the manufacture of Vinidex pipes to AS/NZS 4130 has been verified by appropriate data analysis.

In addition, Vinidex offers pipes made from specialised compounds for particular applications, such as elevated temperature use.

Contact Vinidex engineers for special requirements.

Note:

- Plastics pipes and fittings pressure reduction factors for polyethylene pipeline systems for use at temperatures above 20°C.
- ** Plastics piping and ducting systems determination of long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation.

Service Lifetimes

q

n

ĺ

The design basis used in AS/NZS 4130 for PN rating of PE pipes to determine the minimum wall thickness for each diameter and PN rating provides for the steady and continuous application of the maximum allowable working pressure over an arbitrary period of 50 years.

The selection of the long term hydrostatic design stress value (**HDS**) is dependent on the specific grade of PE and the pipe material service temperature. For the grades of PE materials contained in AS/NZS 4131 the specific values are contained in Table 4.3.

As these values are polymer dependent, individual grades may exhibit different characteristics and materials can be provided with enhanced properties for crack resistance or elevated temperature performance. In these cases the advice of Vinidex design engineers should be obtained.

Vinidex PE pipes are continually tested in combinations of elevated temperature (80°C water conditions) and pressure to ensure compliance with specification requirements.

The adoption of a 50 year design life in AS/NZS 4130 to establish a value of the **HDS** is arbitrary, and does not relate to the actual service lifetime of the pipeline.

Where pipelines are used for applications such as water supply, where economic evaluations such as present value calculations are performed, the lifetimes of PE lines designed and operated within the AS guidelines may be regarded as 70–100 years for the purpose of the calculations. Any lifetime values beyond these figures are meaningless, as the assumptions made in other parts of the economic evaluations outweigh the effect of pipelifetime.

d e s i g n 🕨

Pipe Design for Variable Operational Conditions

The following examples assist in the design and selection of polyethylene pipes for variable operating conditions

Given Operating Conditions

Pressure/Temperature/Time Relationship

Determine

Material Class of pipe Life

Steps

1. Assume a material

2. Determine Class from

Temperature Rating Table 4.7 Note: For brief periods at elevated

temperature it may be appropriate to decrease the safety factor to a value of x, i.e. multiply the working pressure by:

1.25 x

3. By the following process, assess whether life is 'used up'

For each combination of time and temperature, estimate the proportion of life 'used up' by using the time/ temperature relationships in the table.

If the proportion is less than unity, the material is satisfactory.

Example

Pumped system normally working at a maximum head, including surge of 60m. At startup, the mean pipe wall temperature is 55°C, dropping to 35°C after 1 hour. Pump operation is for 10 hours per day, with a system life of 15 years.

1. Assume PE 80B

2. Determine Pipe Class

The worst situation is operation at 55°C. From Table 4.7, PN10 pipe at 55°C has an allowable working head of 60m. PN10 pipe is therefore satisfactory.

3. Determine Life

Total time at 55°C

= 1 x 365 x 15 = 5475h = 0.625y.

From Table 4.7, L_{min} for 55°C is 24 years, therefore proportion of time used is:

 $\frac{0.625}{24} = 0.026 = 2.6\%$

Total time at 35°C

= 9 x 365 x 15 = 49275h = 5.625y.

From the table, L_{min} for 35°C is 100 years, therefore proportion of time used is:

 $\frac{5.625}{100} = 0.056 = 5.6\%$

Total proportion is 8.2% of life used in 15 years (6.25 years actual operation).

The data in the tables are obtained from the use of ISO 13761 and ISO/DIS 9080, Ltc and are appropriate for compounds typically used by Vinidex.e Groman typically used by Vinidex.e Growan typ

Table 4.7 Temperature Rating Tables

PE80B

Ex	trapolation		Pe	rmissible	System	Operatin	g Head (n	ו)	
Temp °C	Limit Years	PN 3.2	PN 4	PN 6.3	PN 8	PN 10	PN 12.5	PN 16	PN20
20	200	32	40	63	80	100	125	160	200
25	100	30	38	59	75	94	117	150	188
30	100	28	35	55	70	88	109	140	175
35	100	26	32	50	64	80	100	128	160
40	100	24	30	47	60	75	94	120	150
45	60	22	28	44	56	70	88	112	140
50	36	21	26	41	52	65	81	104	130
55	24	19	24	38	48	60	75	96	120
60	12	18	23	35	45	56	70	90	113
65	8	17	21	33	42	53	66	84	105
70	5	16	20	31	39	49	61	78	98
75	2	14	18	28	36	45	56	72	90
80	2	13	17	26	33	41	52	66	83

d

e

S

i

g

n

IP Pty Ltd

Systems & Solutions

PE80C

Ex	trapolation		Pe	rmissible	System	Operatin	g Head (n	ı)	
Temp	Limit	PN 3.2	PN 4	PN 6.3	PN 8	PN 10	PN 12.5	PN 16	PN20
°C	Years								
20	50	32	40	63	80	100	125	160	200
25	50	29	36	57	72	90	113	144	180
30	30	26	33	51	65	81	102	130	163
35	18	23	29	46	58	73	91	116	145
40	12	20	25	39	50	63	78	100	125
45	6	18	23	35	45	56	70	90	113

PE100

Ex	trapolation		Pe	rmissible	System	Operatin	g Head (n	n)		
Temp	Limit	PN 3.2	PN 4	PN 6.3	PN 8	PN 10	PN 12.5	PN 16	PN20	PN25
°C	Years									
20	200	32	40	63	80	100	125	160	200	250
25	100	30	38	59	75	94	117	150	188	233
30	100	28	35	55	70	88	109	140	175	218
35	100	26	32	50	64	80	100	128	160	200
40	100	24	30	47	60	75	94	120	150	185
45	60	22	28	44	56	70	88	112	140	175
50	36	21	26	41	52	65	81	104	130	163
55	24	19	24	38	48	60	75	96	120	150
60	12	18	23	35	45	56	70	90	113	140
65	8	17	21	33	42	53	66	84	105	130
70	5	16	20	31	39	49	61	78	98	120
75	2	14	18	28	36	45	56	72	90	113
80	2	13	17	26	33	41	52	66	83	105
80	2	13	17	26	33	41	52	66	83	105

Irrigation

9

S

n

E Modulus

d

The E modulus of polyethylene varies with temperature, duration of loading, stress, and the particular grade of material.

However, in order to facilitate engineering calculations, it is generally appropriate to group materials into categories and adopt 'typical' values of E.

Table 4.8 lists E values in MPa for PE80B (MDPE), PE80C (HDPE), and PE100 (HDPE).

Selection of Wall Thickness for Special Applications

For a required nominal diameter (DN) and working pressure, the necessary wall thickness for special applications may be calculated using the Barlow formula:

$$t = \frac{P.DN}{2.S + P}$$

where

t	= minimum wall thickness	(mm)
Ρ	= maximum working pressure	e (MPa)
D١	I = nominal outside diameter	(mm)
S	= design hoop stress	(MPa)

$$S = \frac{MRS}{F}$$

where

F = design factor, typically 1.25 for water

Table 4.8 E Values (MPa)

q

PE 80B

i

Temp °C	3 min	1h	5h	24h	1y	20y	50y
0	1050	830	740	650	410	320	300
20	700	550	490	430	270	215	200
40	530	410	370	320	200	160	150
60	400	300	280	250	160	-	-

PE 80C

Temp °C	3 min	1h	5h	24h	1y	20y	50y
0	1080	850	740	660	400	320	300
20	750	590	520	460	280	220	205
40	470	370	320	290	180	140	130
60	210	170	150	130	80	-	-

PE 100

Temp °C	3 min	1h	5h	24h	1y	20y	50y
0	1380	1080	950	830	520	410	380
20	950	750	660	580	360	280	260
40	700	550	490	430	270	210	190
60	530	420	370	320	200	-	-

Example

t

Р	=	900kPa	= 0.9MPa
DN	=	630	
MRS	=	10 (PE10	0)
F	=	1.25	
S	=	<u>10</u> 1.25	= 8.0MPa

$$= \frac{0.9 \times 630}{16 + 0.9} = 33.6 \text{mm}$$

design>

Hydraulic Design

Design Basis

Vinidex Polyethylene (PE) pipes offer advantages to the designer due to the smooth internal bores which are maintained over the working lifetime of the pipelines. The surface energy characteristics of PE inhibit the build up of deposits on the internal pipe surfaces thereby retaining the maximum bore dimensions and flow capacities.

The flow charts presented in this section relate the combinations of pipe diameters, flow velocities and head loss with discharge of water in PE pipelines. These charts have been developed for the flow of water through the pipes. Where fluids other than water are being considered, the charts may not be applicable due to the flow properties of these different fluids. In these cases the advice of Vinidex engineers should be obtained.

There are a number of flow formulae in common use which have either a theoretical or empirical background. However, only the Hazen-Williams and Colebrook-White formulae are considered in this section.

Hazen - Williams

The original Hazen-Williams formula was published in 1920 in the form:

 $v = C_1 r^{0.63} s^{0.54} 0.001^{-0.04}$

where

- C₁ = Hazen-Williams roughness coefficient
- r = hydraulic radius (ft)
- s = hydraulic gradient

The variations inherent with diameter changes are accounted for by the introduction of the coefficient C_2 so that

 $C_2 = C_1 r^{0.02}$

Adoption of a Hazen-Williams roughness coefficient of 155 results in the following relationship for discharge in Vinidex PE pipes

$$Q = 4.03 \times 10^{-5} D^{2.65} H^{0.54}$$

where

- Q = discharge (litres/second)
- D = internal diameter (mm)
- H = head loss (metres/100 metres length of pipe)

Flow charts for pipe systems using the Hazen - Williams formula have been in operation in Australia for over 30 years. The charts calculate the volumes of water transmitted through pipelines of various materials, and have been proven in practical installations.

Colebrook - White

The development from first principles of the Darcy-Weisbach formula results in the expression

$$H = \frac{fLv^2}{D 2q}$$

where

$$f = \frac{64}{R}$$

and

- f = Darcy friction factor
- H = head loss due to friction (m)
- D = pipe internal diameter (m)
- L = pipe length (metres)
- v = flow velocity (m/s)
- g = gravitational acceleration (9.81 m/s²)
- R = Reynolds Number

This is valid for the laminar flow region (R 2000), however, as most pipe applications are likely to operate in the transition zone between smooth and full turbulence, the transition function developed by Colebrook-White is necessary to establish the relationship between f and R.

$$\frac{1}{f^{1/2}} = -2\log_{10}\left(\frac{k}{3.7D} + \frac{2.51}{Rf^{1/2}}\right)$$

where

k = Colebrook-White roughness coefficient (m)

The appropriate value for PE pipes is:

- $k = 0.007 \times 10^{-3} m$
 - = 0.007 mm

This value provides for the range of the pipe diameters, and water flower velocities encountered in mormal pipeline installations.

e

S

i

n 🕨

Flow Variations

d

The flow charts presented for PE pipes are based on a number of assumptions, and variations to these standard conditions may require evaluation as to the effect on discharge.

Water Temperature

The charts are based on a water temperature of 20°C. A water temperature increase above this value, results in a decrease in viscosity of the water, with a corresponding increase in discharge (or reduced head loss) through the pipeline.

An allowance of approximately 1% increase in the water discharge must be made for each 3°C increase in temperature above 20°C. Similarly, a decrease of approximately 1% in discharge occurs for each 3°C step below 20°C water temperature.

Pipe Dimensions

The flow charts presented in this section are based on mean pipe dimensions of Series 1 pipes made to AS/NZS 4130 PE pipes for Pressure applications.

Surface Roughness

The roughness coefficients adopted for Vinidex PE pipes result from experimental programs performed in Europe and the USA, and follow the recommendations laid down in Australian Standard AS2200 - Design Charts for Water Supply and Sewerage.

Head Loss in Fittings

q

Wherever a change to pipe cross section, or a change in the direction of flow occurs in a pipeline, energy is lost and this must be accounted for in the hydraulic design.

Under normal circumstances involving long pipelines these head losses are small in relation to the head losses due to pipe wall friction.

However, geometry and inlet/exit condition head losses may be significant in short pipe runs or in complex installations where a large number of fittings are included in the design.

The general relationship for head losses in fittings may be expressed as:

$$H = K \left(\frac{V^2}{2g} \right)$$

where

- H = head loss (m)
- V = velocity of flow (m/s)
- K = head loss coefficient
- g = gravitational acceleration (9.81 m/s²)

The value of the head loss coefficient K is dependent on the particular geometry of each fitting, and values for specific cases are listed in Table 4.9.

The total head loss in the pipeline network is then obtained by adding together the calculations performed for each fitting in the system, the head loss in the pipes, and any other design head losses.

Worked Example

What is the head loss occurring in a 250mm equal tee with the flow in the main pipeline at a flow velocity of 2 m/s?

$$H = K \left(\frac{V^2}{2g} \right)$$

where

K = 0.35 (Table 4.9) V = 2 m/s g = 9.81 m/s

$$\mathsf{H} = \frac{0.35 \times 2^2}{2 \times 9.81}$$

If the total system contains 15 tees under the same conditions, then the total head loss in the fittings is $15 \times 0.07 =$ 1.05 metres.

Flow Chart Worked Examples

Example 1 - Gravity Main (refer Figure 4.1)

A flow of water of 32 litres/second is required to flow from a storage tank located on a hill 50 metres above an outlet. The tank is located 4.5 km away from the outlet.

Hence the information available is :

Q = 32 l/s

Head available = 50 metres

Length of pipeline = 4500 metres

Minimum PN rating of pipe available to withstand the 50 m static head is PN6.3. Head loss per 100 m length of pipe is :

 $\frac{50}{4500} \times 100 = 1.11 \text{m} / 100 \text{m}$

Use Table 4.1 to select the SDR rating of PN6.3 class pipes in both PE80, and PE100 materials.

PE80 Material Option

d

ρ

S

PE80 PN6.3 pipe is SDR 21.

Use the SDR 21 flow chart, read intersection of discharge line at 32 l/s and head loss line at 1.11m/100m of pipe. Select the next largest pipe size. This results in a DN200 mm pipe diameter.

PE100 Material Option

PE100 PN6.3 pipe is SDR 26.

Use the SDR26 flow chart, read the intersection of discharge line at 32 l/s and head loss line at 1.11m/100m of pipe. Select the next largest pipe size.

This results in a DN180 mm pipe diameter.

Hence for this application, there are two options available, either :

1. DN 200 PE80 PN6.3 or

2. DN 180 PE100 PN6.3

Maximum difference in water level 50m Discharge Discharg

Figure 4.1 Gravity Flow Example

1

q

e

d

S

i

n

Example 2 - Pumped Main (refer Figure 4.2)

A line is required to provide 20 litres/ second of water from a dam to a high level storage tank located 5000 metres away. The tank has a maximum water elevation of 100 m and the minimum water elevation in the dam is 70 m.

The maximum flow velocity is required to be limited to 1.0 metres/second to minimise water hammer effects.

The maximum head required at the pump

= static head + pipe friction head

+ fittings form loss

1. Static head

= 100 - 70 = 30 m

2. Pipe friction head

Considering the data available, start with a PN6.3 class pipe.

PE80 Option

From Table 4.1, PE80 PN6.3 pipe is SDR21.

Use the SDR 21 flow chart, find the intersection of the discharge line at 20 l/s and the velocity line at 1 m/s. Select the corresponding or next largest size of pipe. Where the discharge line intersects the selected pipe size, trace across to find the head loss per 100m length of pipe.

This gives a value of 0.5m/100m.

Calculate the total friction head loss in the pipe:

$$\frac{0.5}{100} \times 5000 = 25m$$

Then from the flow chart, estimate the velocity of flow

This gives 1 m/s.

3. Fittings head losses

q

Velocity Head =
$$\frac{v^2}{2g}$$

= $\frac{1.0^2}{2 \times 9.81} = 0.05$

From Figure 4.2, identify the type and number of different fittings used in the pipeline. Select the appropriate form factor value K for each fitting type from Table 4.9. Then:

Fitting	Form	Head Loss m
	Factor	r K
Foot valve	15.0	15 x 0.05 = 0.75
Gate valve	0.2	$2 \times 0.2 \times 0.05 = 0.02$
Reflux valve	2.5	2.5 x 0.05 = 0.125
90° elbow	1.1	4 x 1.1 x 0.05 = 0.220
45° elbow	0.35	$2 \times 0.35 \times 0.05 = 0.035$
Square outlet	1.0	$1.0 \times 0.05 = 0.050$
Total fittings	head lo	uss = 1.2

4. Total pumping head

= 30 + 25 + 1.2 = 56.2 mallow 57 m.

Note: The example does not make any provision for surge allowance in pressure class selection.

Figure 4.2 Pumped Flow Example

Part Full Flow

Non pressure pipes are designed to run full under anticipated peak flow conditions. However, for a considerable period the pipes run at less than full flow conditions and in these circumstances they act as open channels with a free fluid to air surface.

In these instances consideration must be given to maintaining a minimum transport velocity to prevent deposition of solids and blockage of the pipeline.

For pipes flowing part full, the most usual self cleansing velocity adopted for sewers is 0.6 metres/second.

Example 3. Determine flow velocity and discharge under part full flow conditions

9

S

d

Given gravity conditions: Pipe DN 200 PE80 PN6.3 Mean Pipe ID 180 mm (Refer Table XX PE pipe dimensions, or AS/NZS 4130) Gradient 1 in 100 Depth of flow 80 mm Problem: Find flow and velocity Solution:

 $\label{eq:proportional} \mbox{Proportional Depth} = \frac{\mbox{Depth of flow}}{\mbox{Pipe ID}}$

$$=\frac{80}{180}=0.44$$

From Figure 4.3 Part Full Flow, for a proportional depth of 0.44, the proportional discharge is 0.4 and the proportional velocity if 0.95.

q

ĺ

Refer to the Vinidex PE pipe flow chart for the SDR 21 pipe.

For a gradient of 1 in 100 full flow is 39 l/s and the velocity is 1.6 m/s.

Then, for part full flow Discharge = 0.4×39 = 15.6 l/s

Velocity = 0.95×1.6 = 1.52 m/s

PE Pipe Systems PE Pipe Systems

Figure 4.3 Part Full Flow

Resistance Coefficients

Table 4.9 Valves, Fittings and Changes in Pipe Cross-Section

Design.16 PE Pipe Systems PE P

Flow Chart for Small Bore Polyethylene Pipe – DN16 to DN75 (PE80B, PE80C Materials)

9

i

g

n

S

d

PE Pipe Systems PE Pipe Systems

S

g

n

Design.18 PE Pipe Systems PE P

d

e

Flow Chart for Polyethylene Pipe – SDR 33 (PE80: PN4)

d

e

i

g

n

Systems & Solutions

S

PE Pipe Systems De Systems De

S

g

n

Systems & Solutions

d

e

Design.20 PE Pipe Systems PE P

g

n

Systems & Solutions

Flow Chart for Polyethylene Pipe – SDR 21

d

e

S

PE Pipe Systems PE Pipe Systems

g

n

S

Flow Chart for Polyethylene Pipe – SDR 17 (PE80: PN8 & PE100: PN10)

Systems & Solutions

d

e

Design.22 PE Pipe Systems PE P

Flow Chart for Polyethylene Pipe – SDR 13.6 (PE80: PN10 & PE100: PN12.5)

PE Pipe Systems DeSign.23

g

n

S

Flow Chart for Polyethylene Pipe – SDR 11 (PE80: PN12.5 & PE100: PN16)

Systems & Solutions

d

e

Design.24 PE Pipe Systems PE P

PE Pipe Systems PE Pipe Systems

S

g

n

Flow Chart for Polyethylene Pipe – SDR 7.4 (PE100: PN25)

Systems & Solutions

d

e

Design.26 PE Pipe Systems PE P

Surge & Fatigue

Surge, or 'water hammer', is a temporary change in pressure caused by a change in velocity of flow in the pipeline, whereas fatigue is the effect induced in the pipe or fitting by repeated surge events.

For Vinidex PE pipes to AS/NZS 4130, operating under the following limitations, it is not necessary to make specific allowance for fatigue effects:

(a) The maximum pressure in the pipe from all sources must be less than the pressure equivalent to the Classification of the pipe (PN).

and

(b) The amplitude between minimum and maximum pressure from all sources must not exceed the pressure equivalent to the Classification of the pipe (PN).

Care must be taken to ensure that the minimum pressure does not reach a level that may result in vacuum collapse (see External Pressure Resistance, page Design.36).

Surge may take the form of positive and/ or negative pressure pulses resulting from change of flow velocity, such as arising from valve or pump operation. Such changes of flow velocity lead to induced pressure waves in the pipeline. The velocity of the pressure wave, referred to as celerity (C), depends on the pipe material, pipe dimensions, and the liquid properties in accordance with the following relationship:

ρ

d

$$C = \left[W\left(\frac{1}{K} + \frac{SDR}{E}\right)\right]^{-0.5} \times 10^3 \,\text{m/sec}$$

where

- W = liquid density (1000 kg/m³ for water)
- SDR = Standard Dimension Ratio of the pipe
- K = liquid bulk modulus (2150 MPa)
- E = pipe material short term modulus (MPa) refer Table 4.8

The time taken for the pressure wave to travel the length of the pipeline and return is

$$t = \frac{2L}{C}$$

where:

t = time in seconds

L = length of pipeline

If the valve closure time t_c is less than t, the pressure rise due to the valve closure is given by:

$$P_1 = C.V$$

where:

P1 = pressure rise in kPa

v = liquid velocity in m/sec

If the valve closure time t_c is greater than t, then the pressure rise is approximated by:

 $P_2 = \left[\frac{t}{t_c}\right] P_1$

This represents the case of a single pipeline with the flow being completely closed off. The pressure rises generated by flow changes in PE pipelines are the lowest generated in major pipeline materials due to the relatively low modulus values.

q

٦

S

Further, as medium density materials have lower modulus values than high density materials, the pressure rise in PE80B materials will be lower than that in PE80C and PE100 materials.

Water hammer (surge) analysis of pipeline networks is complex and beyond the scope of this Manual. Where required, detailed analysis should be undertaken by experts. e

S

i

n

Celerity

d

The surge celerity in a polyethylene pipeline filled with liquid can be determined by:

$$C = \left[W\left(\frac{1}{K} + \frac{SDR}{E}\right) \right]^{-0.5} x \ 10^3 \text{ m/sec}$$

where

- W = liquid density (1000 kg/m³ for water)
- SDR = Standard Dimension Ratio of the pipe
- Κ = liquid bulk modulus (2150MPa)
- Е = pipe material 'instantaneous' modulus (taken as 1000MPa for PE80B, 1200MPa for PE80C, 1500MPa for PE100)

Table 4.10 Surge Celerity

g

	Celeri	ty m/s	
SDR	MDPE (PE 80B)	HDPE (PE 80C)	HDPE (PE 100)
41	160	170	190
33	170	190	210
26	190	210	240
21	220	240	260
17	240	260	290
13.6	270	290	320
11	300	320	360
9	330	350	390
7.4	360	390	430

Slurry Flow

General Design Considerations

The abrasion resistance characteristics and flexibility of Vinidex PE pipes make slurry flow lines, such as mine tailings, ideal applications for the material and such installations are in widespread use throughout Australia.

The transportation of Non Newtonian fluids such as liquids or liquid/liquid, liquid/solid mixtures or slurries is a highly complex process and requires a detailed knowledge of the specific fluid before flow rate calculations can be performed.

As distinct from water, many fluids regarded as slurries have properties which are either time or shear rate dependent or a combination of both characteristics. Hence it is essential for the properties of the specific fluid to be established under the operating conditions being considered for each design installation.

In addition to water flow, slurry flow design needs to take into account the potential for abrasion of the pipe walls, especially at changes of direction or zones of turbulence.

The most usual applications of Vinidex PE pipes involve liquid/solid mixtures and these must first be categorised according to flow type:

- Homogeneous Suspensions
- Heterogeneous Suspensions

Homogeneous Suspensions

d

ρ

S

Homogeneous suspensions are those showing no appreciable density gradient across the cross section of the pipe. These slurries consist of material particles uniformly suspended in the transport fluid.

Generally, the particle size can be used to determine the flow type and suspensions with particle sizes up to 20 microns can be regarded as homogeneous across the range of flow velocities experienced.

Heterogeneous Suspensions

Heterogeneous suspensions are those showing appreciable density gradients across the cross section of the pipe, and are those containing large particles within the fluid.

Suspensions containing particle sizes of 40 microns and above may be regarded as heterogeneous.

In addition to the fluid characterisations for both types, the tendency for solids to settle out of the flow means that a minimum flow velocity must be maintained.

This velocity, the Minimum Transport Velocity, is defined as the velocity at which particles are just starting to appear on the bottom of the pipe.

The flow in short length pipelines differs in that these lines may be flushed out with water before shut down of operations. Long length pipelines cannot be flushed out in the same way and the selection of operating velocities and pipe diameter needs to address this aspect. The design of slurry pipelines is an iterative process requiring design assumptions to be made initially, and then repeatedly being checked and tested for suitability. The specific fluid under consideration requires full scale flow testing to be conducted to establish the accurate flow properties for the liquid/ particle combinations to be used in the installed pipeline.

Without this specific data, the assumptions made as to the fluid flow behaviour may result in the operational pipeline being at a variance to the assumed behaviour. The principles of slurry pipeline design as outlined in the methods of Durand, Wasp, and Govier and Aziz are recommended in the selection of Vinidex PE pipes for these applications.

Note:

٦

q

The published Vinidex PE pipe flow charts relate **ONLY** to water or other liquids which behave as Newtonian fluids.

They are not suitable for calculating the flow discharges of other fluids, including slurries.

For further information on slurry pipeline design, the designer is referred to such publications as Govier G.W. and Aziz K, *The Flow of Complex Mixtures in Pipes. Rheinhold, 1972.* and Wasp E.J. *Solid Liquid Flow - Slurry Pipeline Transportation. Trans Tech Publications. 1977.*

e

S

i

q

n 🕨

Pipe Wear

d

Polyethylene pipe has been a proven performer over many decades in resisting internal abrasion due to slurry. It is particularly resistant to abrasion from particles less than 500 microns in size depending on particle shape.

The abrasive wear of any slurry handling system is heavily dependent on the physical characteristics of the solids being transported. These characteristics include angularity, degree of particle attrition, angle of attack, velocity, and the concentration of solids in the transporting fluid.

With metal pipes, corrosive wear interacts synergistically with abrasive wear, producing rates of wear that can be many times greater than a simple combination of the two modes of wear. Corrosive attack on a piping material can lead to increasing roughness of the surface, loss of pressure and localised eddying, and hence increase the abrasive attack.

Factors Affecting Rates of Wear

The wall of polyethylene pipes are worn by contact with the solids particles. The principal causes of wear are as follows:

- Particle Size
- Particle Specific Gravity
- Velocity
- Angle of Attack

Particle Size

The size of the particle combined with the requisite velocity is one of the principal factors which contribute to wear. The rate of wear increases with particle size with very little wear occurring on polyethylene systems below 300 microns. Above this size the rate of wear will increase proportionally with particle size with the maximum practical D₅₀ size around 1mm. Many researchers have attempted to develop relationships between particle size and rates of wear, however, these have not proven to be accurate due to the wide variation of slurry characteristics. The wear mechanism involved is not thoroughly understood, however, it is believed the higher impact energy resulting from a combination of particle mass and the high velocity required to transport this larger particle are the principal contributing factors.

Particle Specific Gravity

Similarly, the specific gravity will increase the mass of the particle resulting in increased wear. This is a result of the increased impact energy from the mass of the particle combined with the faster carrier velocity.

Velocity

A minimum velocity is required to provide the necessary uplift forces to keep a solid particle in suspension. This velocity also increases the impact energy of the particle against the wall of the pipe.

Angle of Attack

There are essentially two modes of wear, impingement and cutting. Cutting wear is considered to be caused by the low angle impingement of particles. In practice, cutting wear comprises a cutting action, and the accommodation of some of the energy of impact within the matrix of the material being worn. Hence, cutting wear also incorporates a component of deformation wear. The requirement for wear is that some of the solid particles must have sufficient energy to penetrate and shear a material, perhaps gouging fragments loose. As a result, a low modulus material such as polyethylene has very good resistance to cutting wear due to the resulting deformation upon impact. In the case of angular particles the cutting action is increased resulting in increased pipe wear.

The simple theory of abrasive wear suggests that specific wear (wear per unit mass transported) is proportional to normal force at the pipe wall. Therefore the wear rate will increase as the angle of attack to the pipe wall increases. The increase in angle will also increase the amount of energy with which the particle strikes the pipe wall. It is for this reason that accelerated wear is caused by:

- i) **Fittings** which effect a change in the angle of flow such as tees and bends
- ii) Butt weld joints. Butt weld internal beads will cause eddying which will result in increases in angle of attack of the particle to the pipe wall. As a result accelerated wear generally occurs immediately downstream of the bead. This is usually prominent in D₅₀ particle sizes over 300 microns. For coarse particle slurries the internal bead should be removed.

- iii) Fittings joints. At connections of mechanical fittings some misalignment of the mating faces may occur resulting in increased angles of attack of the particles.
- iv) Change in velocity. Some
 compression fittings cause a
 reduction in the internal diameter of
 the pipe under the fitting resulting in
 turbulence. A mismatching valve
 bore will also cause turbulence. It is
 for this reason that the use of clear
 bore valves such as knife gate valves
 is preferred for slurry pipelines.
- v) Increased velocity. High velocities are required to create sufficient turbulence for the suspension of heavy particles. This turbulence increases the angle of attack to the pipe wall, resulting in increased wear for large particles.
- vi) Insufficient velocity. When a system is operated near its settling velocity, the heavier particles migrate towards the lower half of the pipe cross section. This will cause a general increase in pipe wear in this area. If saltation/moving bed occurs, then the heavy particles will impact against the pipe bottom, causing an accelerated wave profile wear. Should deposition occur on the floor of the pipe, then the particles above this deposition will cause the maximum amount of wear as they interact with the flow. This is characterised by the formation of wave marks on the 5 and 7 o'clock position of the pipe.

Maintenance and Operation

C

ρ

S

To reduce the cost of wear on a pipeline asset it is general practice to rotate the pipes at the appropriate intervals, this is particularly important when transporting sand slurries. In this respect mechanical joints are useful, although re-welding of pipes over 500mm has been preferred in some cases to reduce capital costs. These mechanical joints are usually installed at every 20m pipe length to assist the pipe rotation process and also permit clearance of blockages.

Slurry pipelines are usually operated as close to the critical settling velocity as practical to reduce operating costs. Unfortunately, if an increase in particle size occurs, then saltation will commence increasing friction loss eventually resulting in a blockage. Other factors that cause blockages are increases in solids concentration, loss of pump pressure due to power failure, or pump impellor wear. Polyethylene pipelines may be cleared of blockages by clear water pumping provided they have been installed on flat even ground. Sudden vertical 'V' bends with angles over 10° may cause an accumulation of solids in the bore, preventing clearing by clear water pumping. If vertical bends are unavoidable then they should be installed with mechanical joints to permit their easy removal for clearing.

Fittings

1

A range of mechanical joints are available for polyethylene slurry pipelines. They include stub flanges and backing rings, Hugger couplings, shouldered end/Victaulic couplings, compression couplings and rubber ring joint fittings.

q

References

The Transportation of Flyash and Bottom Ash in Slurry Form, C G Verkerk Relative Wear Rate Determinations for Slurry Pipelines, C A Shook, D B Haas, W H W Husband and M Small Warman Slurry Pumping Handbook, Warman International Ltd.

ρ

i

q

Pneumatic Flow

d

Vinidex PE pipe systems are ideal for the transmission of gases both in the high and low pressure range.

The use of compressible liquids in PE pipes requires a number of specific design considerations as distinct from the techniques adopted in the calculation of discharge rates for fluids such as water.

In particular:

• Compressed air may be at a higher temperature than the surrounding ambient air temperature, especially close to compressor line inlets, and the pressure rating of the PE pipes require temperature re rating accordingly.

For air cooled compressors, the delivered compressed air temperature averages 15°C above the surrounding air temperature. For water cooled compressors, the delivered compressed air temperature averages 10°C above the cooling water temperature.

- For underground applications where the PE pipes are exposed to ambient conditions, the surrounding air temperature may reach 30°C, and the pipe physical properties require adjustment accordingly.
- · High pressure lines must be mechanically protected from damage especially in exposed installations.
- Valve closing speed must be reduced • to prevent a build up of pressure waves in the compressible gas flow.

- Where gaseous fuels such as propane, natural gas, or mixtures are carried, the gas must be dry and free from liquid contamination which may cause stress cracking of the PE pipe walls.
- Vinidex PE pipes should not be connected directly to compressor outlets or air receivers. A 21 metre length of metal pipe should be inserted between the air receiver and the start of the PE pipe to allow for cooling of the compressed air.
- Dry gases, and gas/solids mixtures may generate static electrical charges and these may need to be dissipated to prevent the possibility of explosion. PE pipes will not conduct electrical charges, and conducting inserts or plugs must be inserted into the pipe to complete an earthing circuit.
- Compressed air must be dry, and filters installed in the pipeline to prevent condensation of lubricants which can lead to stress cracking in the PE pipe material.

System Design Guidelines for the Selection of Vinidexair Compressed Air Pipelines

It is customary to find the Inside Diameter of the pipe by using formulas such as shown below. The formulas used are generally for approximation purposes only, surmising that the temperature of the compressed air corresponds roughly to the induction temperature. An acceptable approximation is obtained through the following equation:

$$d = \sqrt[5]{\frac{450.L_E.Q^{1.85}}{\Delta p.p}}$$

where

d = Pipe Internal Diameter in mm

 L_E = Pipe Length in m

Q = Volumetric Flowrate in L/s

Dp = Pressure Decrease in bar

p = Working Pressure in bar

The use of a nomogram is a quicker and easier method to source information (see Figure 4.4). In this nomogram the Pressure Decrease (Δp) is indicated in bar, the Working Pressure (p) in bar, the Volumetric Flowrate (Q) in L/s, the Pipe Length (L_E) in m, and the Pipe Nominal Diameter DN. The advantage of using the nomogram is that no further conversion factors are required for pipe sizing. Also, when four of the parameters are known the fifth can be determined by reading directly from the nomogram.

ρ

S

d

Example for the use of the air-line nomogram (Figure 4.4) to determine the required pipe size

Working Pressure	7 bar
Volumetric Flowrate	30 L/s
Nominal length	200 m
Pressure Decrease	0.05 bar

- Utilising the above operating figures, proceed to mark those positions around the perimeter of the nomogram.
- 2 Locate the separation line
 between (Δp) & (p). (See base of nomogram.)
- 3 Commencing at the lower right hand side of the nomogram draw a line up from the Working Pressure (p) to the line indicating the Volumetric Flowrate (Q).

4 Using point (3) draw a diagonal line to the separation line.

q

1

- 5 Go to top of nomogram and use the point indicating the Length of Pipe and draw a line down to meet horizontal line from point (4).
- 6 Move to the Pressure Decrease in the Pipe (Δp) at the bottom of nomogram and draw a vertical line up to meet the diagonal drawn from point (5).
- 7 The Nominal Diameter of Pipe can now be found by reading from point (6) across to the left hand side of the nomogram. From this example DN63 pipe should be selected. If the completed nomogram falls between two sizes of pipe, always use the larger size.

Correction factors for fittings

Table 4.11 indicates the approximate pressure loss for fittings in terms of an equivalent length of straight pipe in metres. For each pipeline fitting, add the equivalent length of pipe to the original length of pipeline. This length is used for the calculation of the equation above or for the nomogram, Figure 4.4.

Table 4.11 Pressure Loss for Fittings

	ea	quivalent p	ipe length	in m		
DN 20	DN 25	DN 32	DN 40	DN 50	DN 63	DN 90
0.2	0.2	0.3	0.4	0.5	0.6	1.1
0.2	0.3	0.4	0.6	0.9	1.2	ot 2.3to
0.4	0.7	1.0	1.3	1.8	CROUP	4.5
0.8	1.4	1.9	2.4	2.805	38	7.5
0.3	0.4	0.5	0.6	are 0.7pin	660.9	2.1
	0.2 0.2 0.4 0.8	DN 20DN 250.20.20.20.30.40.70.81.4	DN 20 DN 25 DN 32 0.2 0.2 0.3 0.2 0.3 0.4 0.4 0.7 1.0 0.8 1.4 1.9	DN 20 DN 25 DN 32 DN 40 0.2 0.2 0.3 0.4 0.2 0.3 0.4 0.6 0.4 0.7 1.0 1.3 0.8 1.4 1.9 2.4	0.2 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.6 0.9 0.4 0.7 1.0 1.3 1.8 0.8 1.4 1.9 2.4 2.8	DN 20 DN 25 DN 32 DN 40 DN 50 DN 63 0.2 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.6 0.9 1.2 0.4 0.7 1.0 1.3 1.8 23 ¹ 0.8 1.4 1.9 2.4 2.8 5 ⁶ 3.8

PE Pipe Systems PE Pipe Systems

d e s i g n

Figure 4.4 Compressed Air Flow Nomogram

Sources:

Feldmann, K.H.: Druckluftverteilung in der Praxis (Munchen 1985)

Atlas Copco :

information sheets

Design.34 PE Pipe Systems PE P

Expansion and Contraction

Expansion and contraction of PE pipes occurs with changes in the pipe material service temperature.

This is in common with all pipe materials and in order to determine the actual amount of expansion or contraction, the actual temperature change, and the degree of restraint of the installed pipeline need to be known.

For design purposes, an average value of 2.0×10^{-4} /°C for Vinidex PE pipes may be used.

The relationship between temperature change and length change for different PE grades is as shown in Figure 4.5.

Worked Example

A 100 metre long PE80C pipeline operates during the day at a steady temperature of 48°C and when closed down at night cools to an ambient temperature of 18°C. What allowance for expansion/contraction must be made?

- 1. The temperature change experienced = $48 - 18 = 30^{\circ}C$.
- The thermal movement rate (Figure 4.5) in mm/m for 30°C = 6.0 mm/m.
- The total thermal movement is then
 0 x 100 = 600 mm.

Where pipes are buried, the changes in temperature are small and slow acting, and the amount of expansion/contraction of the PE pipe is relatively small. In addition, the frictional support of the backfill against the outside of the pipe restrains the movement and any thermal effects are translated into stress in the wall of the pipe.

Figure 4.5 Thermal Expansion and Contraction for PE

S

1

q

Accordingly, in buried pipelines the main consideration of thermal movement is during installation in high ambient temperatures.

d

ρ

Under these conditions the PE pipe will be at it's maximum surface temperature when placed into a shaded trench, and when backfilled will undergo the maximum temperature change, and hence thermal movement.

In these cases the effects of temperature change can be minimised by snaking the pipe in the trench for small sizes (up to DN110) and allowing the temperature to stabilise prior to backfilling.

For large sizes, the final connection should be left until the pipe temperature has stabilised.

Above ground pipes require no expansion/contraction considerations for free ended pipe or where lateral movement is of no concern on site. Alternatively, pipes may be anchored at intervals to allow lateral movement to be spread evenly along the length of the pipeline. Where above ground pipes are installed in confined conditions such as industrial or chemical process plants the expansion/contraction movement can be taken up with sliding expansion joints. Where these cannot be used due to the fluid type being carried (such as slurries containing solid particles) the advice of Vinidex design engineers should be sought for each particular installation.

PE Pipe Systems PE Pipe Systems

ρ

S

i

q

External Pressure Resistance

d

The possibility of external pressure (buckling) being the controlling design condition must be evaluated in the design of PE pipelines.

All flexible pipe materials can be subject to buckling due to external pressure and PE pipes behave in a similar fashion to PVC and steel pipes.

For pipe of uniform cross-section, the critical buckling pressure (P_c) can be calculated as follows:

$$\mathsf{P}_{\mathsf{c}} = \frac{2380 \cdot \mathsf{E}}{\left(\mathsf{SDR} - 1\right)^3}$$

where

 P_{c} = critical buckling pressure, kPa

Е = modulus, MPa from Table 4.8

SDR = pipe SDR from Table 4.1

As the modulus is temperature and time dependent, the advice of Vinidex engineers should be sought for appropriate values.

Where ovality exists in the PE pipes, the effective value of the critical buckling pressure will be reduced.

The reduction in P_c for various levels of initial ovality are as follows:

Ovality %	0	1	2	5	10
Reduction	1.0	0.99	0.97	0.93	0.86

Where pipes are buried and supported by backfill soil, the additional support (P_b) may be calculated from:

 $P_{\rm b} = 1.15 (P_{\rm c} E')^{-0.5}$

Where E' = soil modulus from AS/NZS2566 - Buried Flexible Pipelines.

Tabulations of the value of E' for various combinations of soil types and compactions are contained in AS/NZS2566.

The value of P_c calculated requires a factor of safety to be applied and a factor of 1.5 may be applied for those conditions where the negative pressure conditions can be accurately assessed. Where soil support is taken into account

then a factor of 3 is more appropriate due to the uneven nature of soil support.

In general terms, PN10 PE pipe should be used as a minimum for pump suction line installations.

Where installation conditions potentially lead to negative pressures, consideration may need to be given to modification of construction technique. For example, ducting pipes may need to be sealed and filled with water during concrete encasement.

In operation, fluid may be removed from the pipeline faster than it is supplied from the source. This can arise from valve operation, draining of the line or rupture of the line in service. Air valves must be provided at high points in the line and downstream from control valves to allow the entry of air into the line and prevent the creation of vacuum conditions. On long rising grades or flat runs where there are no significant high points or grade changes, air valves should be placed at least every 500-1000 metres at the engineer's discretion.

Soil Description E' MPa Gravel – graded 20 14 Gravel – single size Sand and coarse-grained soil with less than 12% fines 14 Coarse-grained soil with more than 12% fines 10 Fine-grained soil (LL<50%) with medium to no plasticity and containing more than 25% coarse-grained particles 10 Fine-grained soil (LL<50%) with medium to no plasticity and containing less than 25% coarse-grained particles 10 Fine-grained soil (LL<50%) with medium to high plasticity NR

Irrigation Warehouse Group Pty Ltd

Trench Design

Minimum Cover

The recommended minimum cover depths for Vinidex PE pipes are listed in Table 4.12.

These cover depths are indicative only, and specific installations should be evaluated in accordance with AS/NZS 2566 - Buried Flexible Pipelines.

The minimum cover depths listed may be reduced where load reduction techniques are used, such as load bearing beams, concrete slabs, conduit sleeves, or increased backfill compaction.

Trench Widths

In general practice, the trench width should be kept to the minimum that enables construction to readily proceed. Refer to Figures 4.6 and 4.7.

The trench width used with PE pipe may be reduced from those used with other pipe types by buttwelding, or electrofusion jointing above ground, and then feeding the jointed pipe into the trench. Similarly, small diameter pipe in coil form can be welded or mechanically jointed above ground and then fed into the trench.

The minimum trench width should allow for adequate tamping of side support material and should be not less than 200mm greater than the diameter of the pipe. In very small diameter pipes this may be reduced to a trench width of twice the pipe diameter.

Table 4.12 Minimum Cover

ρ

C

dition	Cover over Pipe Crown (mm)		
	300		
No pavement	450		
Sealed pavement	600		
Unsealed pavement	750		
Construction equipment	750		
Embankment	750		
	No pavement Sealed pavement Unsealed pavement Construction equipment		

٦

q

S

The maximum trench width should be restricted as much as possible, depending on the soil conditions. This is necessary to reduce the cost of excavation, and to develop adequate side support.

Where wide trenches or embankments are encountered, then the pipe should be installed on a 75 mm layer of tamped or compacted bedding material as shown on the cross section diagrams. Where possible a sub trench should be constructed at the base of the main trench to reduce the soil loads developed. AS/NZS 2566 provides full details for evaluating the loads developed under wide trench conditions.

Bedding

PE Pipes should be bedded on a continuous layer, 75 mm thick, of materials complying with the following requirements:

- Sand, free from rocks or other hard or sharp objects retained on a 13.2mm sieve.
- Gravel or crushed rock of suitable grading up to a max. size of 15mm.
- •. The excavated material, free from rocks and broken up such that it contains no clay lumps greater than 75mm which would prevent adequate compaction.

Side Support

Material used for side support should comply with the requirements of the bedding materials.

The side support material should be evenly tamped in layers of 75 mm for pipes up to 250mm diameter, and 150 mm for pipes of diameters 315mm and above.

Compaction should be brought evenly to the design value required by AS/NZS 2566 for the specific installation.

Backfill

Once the sidefill has been placed and compacted as required over the top of the pipe, backfill material may be placed using excavated material.

Trench backfills should not be used as a dump for large rocks, builders debris, or other unwanted site materials.

d e s i g n 🕨

Figure 4.6 Wide Trench Condition

Figure 4.7 Narrow Trench Condition

Allowable Bending Radius

Vinidex PE pipes are flexible in behaviour, and can be readily bent in the field.

In general terms, a minimum bending radius of 33 x outside diameter of the pipe (33D) can be adopted for PE80C, and PE100 material pipes, whilst a radius of 20 x outside diameter of the pipe (20D) can be adopted for PE63, and PE80B material pipes during installation.

This flexibility enables PE pipes to accommodate uneven site conditions, and, by reducing the number of bends required, cuts down total job costs.

For certain situations, the designer may wish to evaluate the resistance to kinking or the minimum bending radius arising from strain limitation. The long term strain from all sources should not exceed 0.04 (4%). When bending pipes there are two control conditions:

- 1. Kinking in pipes with high SDR ratios.
- 2. High outer fibre strain in high pressure class pipes with low SDR ratios.

For condition 1

The minimum radius to prevent kinking (R_k) may be calculated by:

$$\mathsf{R}_{\mathsf{k}} = \frac{\mathsf{SDR}\;(\mathsf{SDR-1})}{1.12}$$

For condition 2

The minimum radius to prevent excess strain (R_e) may be calculated by:

$$R_e = \frac{D}{2} \epsilon$$

where

D = mean Di (mm)

Deflection Questionnaire

for buried flexible pipe.

AS/NZS 2566 Deflection
Calculation for Buried
Flexible Pipes

The following questionnaire is to assist

designers in the calculation of deflection

Please photocopy before completing this form. Retain this master for future use. Complete all information and forward to your nearest Vinidex office – refer over leaf.

S

i

g

n

Company		
	oty Ltd	
PIPE DETAILS		
Pipe Size and SDR or Cl	ass	
Pipe Material (ie. PE80/I	PE100)	
	above pipe)	
LOADS		
Live Load		
Dead Load		
SOIL TYPE		
Native Soil		
Embedment Material		
Degree of Compaction _		rehouse com.
		astion Wabolyt 60-
		Irrige W Pri Vinidex Systems & Solutions

d

e

PE Pipe Systems Design.39

d e s i g n 🕨

Vinidex Locations

Sydney

254 Woodpark Rd, Smithfield NSW 2164 Tel (02) 9604 2422, Fax (02) 9604 4435

Melbourne

86 Whiteside Road, Clayton VIC 3168 Tel (03) 9543 2311, Fax (03) 9543 7420

Mildura

5 Corbould Court, Mildura VIC 3500 Tel (03) 5022 2616, Fax (03) 5022 1938

Brisbane & Export

224 Musgrave Rd, Coopers Plains QLD 4108 Tel (07) 3277 2822, Fax (07) 3277 3696

Townsville

49 Enterprise Avenue, Bohle QLD 4816 Tel (07) 4774 5044, Fax (07) 4774 5728

Adelaide

550 Churchill Road, Kilburn SA 5084 Tel (08) 8260 2077, Fax (08) 8349 6931

Perth

Sainsbury Road, O'Connor WA 6163 Tel (08) 9337 4344, Fax (08) 9331 3383

Darwin

3846 Marjorie Street, Berrimah NT 0828 Tel (08) 8932 8200, Fax (08) 8932 8211

Launceston

15 Thistle St, Sth Launceston TAS 7249 Tel (03) 6344 2521, Fax (03) 6343 1100

Design. 40 PE Pipe Systems PE

Thrust Block Supports

PE pipes and fittings joined by butt welding, electrofusion, or other end load bearing joint system do not normally require anchorage to withstand loads arising from internal pressure and flow.

For joint types which do not resist end loads, plus fabricated fittings which incorporate welded PE pipe segments, anchorage support must be provided in order to prevent joint or fitting failure. In addition, appurtenances such as valves, should be independently supported in order to prevent excessive shear loads being transferred to the PE pipe.

Static Pressure Thrust

 $\mathsf{R} = \frac{2\mathsf{P}\mathsf{A} \cdot \sin \phi \cdot 10^{-3}}{2}$

where

- R = resultant thrust (kN)
- P = pressure (MPa)
- A = area of pipe cross section (mm^2)
- ϕ = angle of fitting (degrees)

For blank ends, tees and valves

For reducers

$$R = P(A_1 - A_2) 10^{-3}$$

Velocity (Kinetic) Thrust

C

The velocity or kinetic thrust applies only at changes of direction.

ρ

$$R = \frac{2 \text{ w a } V^2. \sin \phi. 10^{-9}}{2}$$

where

- $w = fluid density (kg/m^3)$
- a = inside pipe cross section area (mm²)
- V = flow velocity (m/s)

The velocity thrust is generally small in comparison to the pressure thrust.

The pressure used in the calculations should be the maximum working, or test pressure, applied to the line.

Bearing Loads of Soils

The thrust developed must be resisted by the surrounding soil. The indicative bearing capacities of various soil types are tabulated below: The figures in the table below are for horizontal thrusts, and may be doubled for downward acting vertical thrusts. For upward acting vertical thrusts, the weight of the thrust block must counteract the developed loads.

q

1

S

In shallow (<600mm) cover installations or in unstable conditions of fill, the soil support may be considerably reduced from the values tabulated, and a complete soil analysis may be needed.

Soil Type	Safe Bearing Capacity
	(N/m²)
Rock and sandstone (hard thick layers)	100 x 10⁵
Rock- solid shale and hard medium layers	90 x 10 ⁴
Rock- poor shale, limestone	24 x 10 ⁴
Gravel and coarse sand	20 x 10 ⁴
Sand- compacted, firm, dry	15 x 104
Clay- hard, dry	15 x 10⁴
Clay- readily indented	12 x 10 ⁴
Clay/Sandy loam	9 x 10 ⁴
Peat, wet alluvial soils, silt	Nil

Warehou

e s

i

Thrust Block Size Calculations

d

- 1. Establish the maximum pressure to be applied to the line
- 2. Calculate the thrust developed at the fitting being considered
- Divide (2) by the safe bearing capacity of the soil type against which the thrust block must bear.

Worked Example

What bearing area of thrust block is required for a 160 mm PN12.5 90° bend in hard, dry clay?

 Maximum working pressure of PN12.5 pipe is 1.25 MPa.
 Test pressure is 1.25 x WP
 = 1.56 MPa.

2. R =
$$\frac{2 \text{ PA} . \sin \phi . 10^{-3}}{2}$$

= 3.8 x 10⁻⁴ N

 Bearing capacity of hard, dry clay is 15x10⁴ N/m²

Bearing area of thrust block = $\frac{3.8 \times 10^4}{15 \times 10^4}$

 $= 0.25 m^2$

Thrust blocks may be concrete or timber. Where cast insitu concrete is used, an adequate curing period must be provided to allow strength development in the concrete before pressure is introduced to the pipeline. Where timber blocks are used, test pressures may be introduced immediately, but care needs to be taken to ensure that the blocks will not rot and will not be attacked by termites or ants.

Figure 4.8 Thrust Blocks

q

Bend in horizontal plane anchorage

Bend in vertical plane anchorage

Closed end and hydrant anchorage

Electrical Conductivity

Vinidex PE pipes are non conductive and cannot be used for electrical earthing purposes or dissipating static electricity charges.

Where PE pipes are used to replace existing metal water pipes, the designer must consider any existing systems used for earthing or corrosion control purposes. In these cases the appropriate electrical supply authority must be consulted to determine their requirements.

In dry, dusty, or explosive atmospheres, potential generation of electricity must be evaluated and static dissipation measures adopted to prevent any possibility of explosion.

Vibration

d

ρ

Direct connection to sources of high frequency such as pump outlet flanges should be avoided. All fabricated fittings manufactured by cutting and welding techniques must be isolated from vibration.

Where high frequency vibration sources exist in the pipeline, the PE sections should be connected using a flexible joint such as a repair coupling, expansion joint, or wire reinforced rubber bellows joint. When used above ground such joints may need to be restrained to prevent pipe end pullout.

Heat Sources

q

n

i

S

PE pipes and fittings should be protected from external heat sources which would bring the continuous pipe material service temperature above 80°C. Where the PE pipes are installed above ground, the protection system used must be resistant to ultra violet radiation and the effects of weathering, PE pipes running across roofing should be supported above the roof sheeting in order to prevent temperature build up.

See Table 4.7 Temperature Rating Table.

