## Design principles for data presentation: Translating analysis into visualization

Andrew Eppig, UC Berkeley CAIR Annual Conference 8 November 2012

## Overview

- Design Principles
- Data Sample and Summary
- Why Charts Matter
- Visualization Process
- Chart Selection
- Layout
- Aesthetics
- Self-Sufficiency Check
- Institutional Examples and Applications


## Guiding Design Principles

- Good visualizations start with good data and detailed analysis
- Know your data
- Good visualizations directly answer specific, focused questions
- Know what question(s) you are asking
- Good visualizations get out of the way of the data
- Let the data tell its story without excess clutter or distraction

> "Too often we pay more attention to 'pretty' than to the most important element: information."
> -- Dona Wong, The Secrets of Graphics Presentation

## Data Sample, Summary, and Metrics

| Name | Weight (lb.) |  | Height (in.) |  |
| :--- | :---: | :---: | :---: | :---: |
| Batman | 210 | 74 | 27.0 |  |
| Michael Phelps | 165 | 75 | 20.6 |  |
| Wonder Woman | 130 | 72 | 17.6 |  |
| Hope Solo | 140 | 69 | 20.7 |  |

$$
\mathrm{BMI}=703 \times \frac{\text { weight }[\mathrm{lb}]}{\text { height }[\mathrm{in}]^{2}}
$$

| Gender | Group | N | BMI Mean | BMI Std. Dev. |
| :---: | :---: | :---: | :---: | :---: |
|  | Comics | 1,239 | 26.0 | 4.2 |
| Male | Athletes | 403 | 23.8 | 3.5 |
|  | Models | 493 | 21.6 | 2.3 |
| Female | Comics | 505 | 20.3 | 3.4 |
|  | Athletes | 254 | 22.0 | 3.4 |
|  | Models | 489 | 18.2 | 2.7 |

## Default Excel Charting

## Average BMI by Group and Gender



- Female
- Male


## Excessive Chart Junk

Average BMI by Group and Gender


## - Models <br> - Athletes <br> Comics

# Improved Excel Charting 

Average BMI by Group and Gender

|  | Comics | 26 |
| :---: | :---: | :---: |
|  | Male | 24 |
|  | Models | 22 |
| Female | Comics | 20 |
|  | Athletes | 22 |

## Visualization Checklist

- What stories does the data tell? Which story do you want to tell?
- What visualization will best aid the story?
- Who is the audience?

Junk Charts Trifecta Checkup

- What metric should you use?
- Which type of chart should you use?
- What is the layout of the visualization?
- How can details enhance the chart?

- Font, color, lines/shading, and text
"What are the content-reasoning tasks that this display is supposed to help with?" -- Edward Tufte, Beautiful Evidence


## Chart Selection

## MALE SUPERHEROES <br> ( $N=1,239$ )


"Meaningful quantitative information always involves relationships. When displayed in graphs, these relationships always boil down to one or more of eight specific relationships: time series, ranking, part-to-whole, deviation,
distribution, correlation, geospatial, nominal comparison."
-- Stephen Few, Designing Effective Tables and Graphs

## Visualization Layout

| BODY MASS INDEX DISTRIBUTIONS |  |
| :---: | :---: |
| MALE SUPERHEROES | FEMALE SUPERHEROES |
|  | FEMALE ATHLETES |
|  | FEMALE MODELS |

"Tufte's (1990) recommendation of 'small multiples' [...] uses the replication in the display to facilitate comparison to the implicit model of no change between the displays."
-- Andrew Gelman, Exploratory Data Analysis for Complex Models

## Aesthetic Considerations

- Font: How do you increase legibility and decrease distraction?
- Color: Which color palette is appropriate?
- Line/Shading: Which weight, color, and style will enhance the final product?
- Text: Can adding labels and narrative
 provide useful context?
"Hue contrast is easy to overuse to the point of visual clutter. A better approach is to use a few high chroma colors as color contrast in a presentation consisting primarily of grays and muted colors."
-- Maureen Stone, Choosing Colors for Data Visualization


## Final Infographic

ANALYSIS, WRITING, ART, AND LETTERING BY: ANDREW EPPIG

SUPER HUMAANS $\square$ SUPER MODELS? $\wedge$

ANALYSIS QLESTION: ARE COMIC BOOK SLPERHEROES' BODIES MORE LIKE TOP ATHLETES' OR TOP MODELS BODIES? ARE COMPARISONS THE SAME FOR BOTH MEN AND WOMEN? TO ACCOUNT FOR DIFFERENCES IN HEIGHT AND WEIGHT, BODY MASS INDEX (BMI) IS USED: BMI $=703 \times$ WEIGHT / HEIGHT . COMPARING THE BMI DISTRIBUTIONS WILL REVEAL SIMILARITIES OR DIFFERENCES. BLLE SHADEE AREA SHOWS MDDLE $50 \%$ OF SURERHERO BMI DSTRRBUTIONS

BODY MASS INDEX DISTRIBUTIONS
MALE SUPERHEROES

SUMMARY: MALE SUPERHEROES TEND TO HAVE A HIGHER BMI THAN TOP MALE ATHLETES AND A MUCH HIGHER BMI THAN TOP MALE MODELS. SO MALE SLPERHEROES ARE BEYOND SUPER HUMAN - BLIT MORE LIIE TOP MALE ATHLETES THAN LIKE TOP MALE MODELS.
FEMALE SUPERHEROES TEND TO HAVE A LOWER BMI THAN TOP FEMALE ATHLETES AND A HIGHER BMI THAN TOP FEMALE MODELS. SO FEMALE SUPERHEROES ARE NEITHER SUPER HUMANS NOR SUPER MODELS BUT BETWEEN TOP FEMALE ATHLETES AND TOP FEMALE MODELS. FEMALE SUPERHEROES ALSO HAVE LESS VARIATION IN THEIR BMI THAN MALE SUPERHEROES OR TOP ATHLETES OF EITHER GENDER.
SOLRCES: DC COMICS (DC.WIKIA.COM); MARVEL COMCS (MARVEL.COM/UNVERSE); 2008 US OLYMPIC TEAM (WWW.2008.NBCOLYMPICS.COM); MODELS.COM (MODELS.COM)

## Self-Sufficiency Test


"Can the graphical elements stand on their own feet? If one removes the numbers from the graphic, can one still understand the key messages?" -- Kaiser Fung, Junk Charts

## Chart Function and Selection

## Analytical Relationship

Time Series
Ranking
Part-to-Whole
Deviation
Distribution
Correlation
Geospatial
Nominal Comparison

## Highlighted Feature

Changes over time
Relative position
Fraction of whole
Differences between sets
Range and frequency
Relationship between sets
Location
Group values

## Line Charts - Time Series


$X^{\mathrm{X} \text {-axis has too many labels }}$ and labels are slanted

$X$ y-axis scale is too large
 $X \begin{aligned} & \boldsymbol{y} \text {-axis gridlines are too } \\ & \text { heavy }\end{aligned}$

$\checkmark$ x-axis labels are horizontal and legibly spaced
$\checkmark$ data range is roughly $2 / 3$ of the $y$-axis scale
$\checkmark$-axis gridlines are light in color and weight

## Line Charts - Distribution


$x^{y}$-axis labels have extraneous decimal points

$X^{x}$-axis labels use an unintuitive interval

$X$ axis labels are too heavy

Undergraduate Years to Degree, UC Berkeley Fall 2004 Cohort

$\checkmark$ y-axis labels are rounded to the nearest major increment
$\checkmark$ axis labels use natural intervals

I, 2, 3...
2, 4, 6...
10, 20, 30...
$x$-axis labels are light in size and weight

## Bar Charts - Ranking


$\mathbf{X} \times$-axis labels are slanted and small

$X$ units are ranked alphabetically

$\checkmark$ labels are horizontal and easy to read units are usefully ranked by descending value

## Bar Charts - Part-to-Whole



X values are hard to determine


X gaps between bars are too large


## Bar Charts - Histogram





$\checkmark$-axis gridlines are only on the major increments
$\checkmark$ shape of the distribution is easily seen without distraction

## Bar Charts - Time Series


$X^{\text {time variable is shown }}$ from right to left


UC Berkeley International Undergraduate Fall Enrollment, 1990-2012

$\checkmark$ years increase from left to right
$\checkmark$ years are plotted on x -axis
$\checkmark$ bars are colored using shades of a single hue

## Dot Plots - Deviation



## Scatter Plots - Correlation




Impact of Critical Mass on Respect Rates by Race/
Ethnicity and by UC Campus, 2007-2008 AY


$\checkmark$groups are marked using muted hues
chart dimensions are close to the golden ratio (1:1.6I8)

* Respect Rate $=$ percentage of students of a given race/ethnicity who responded strongly agree, agree, or somewhat agree to the prompt "students of my race/ethnicity are respected at this campus" on UCUES.

Source: UC Accountability Report, 2011

## Pie Charts - Part-to-Whole


more than five groups are shown

$x^{\text {slices are blown }}$ out of the pie

$x$
smallest slices are given too prominent location

UC Berkeley College of Letters \& Sciences
Enrollment Shares, Fall 2012


## Visualization Layout: Attention Areas

## High Visual Focus

Good for primary content

Medium Visual Focus

Good for secondary content

Medium Visual Focus
Good for secondary content

## LowVisual Focus

Good for tertiary content

## Visualization Aesthetics: Color


$X$ avoid alternating high contrast hues

$x$ avoid using more than one high chroma hue


Bright (high chroma)


Muted
$\checkmark$ use a palette mostly of grays and muted hues
$\checkmark$ choose a few high chroma colors for contrast
$\checkmark$ use shades and tints to ensure that a black-and-white copy will still be coherent

## Visualization Aesthetics: Font

$\boldsymbol{X}$ bold and condensed fonts confuse the viewer
$\mathbf{X}$ multiplicity of fonts deters legibility

UC BERKELEY NEW FRESHMEN YIELD RATES BY RACE/ETHNICITY, FALL 2010 COHORT WOMEN MEN


YIELD RATE

UC Berkeley New Freshmen Yield Rates by Race/Ethnicity, Fall 2010 Cohort

Women Men


$\checkmark$ font choice, weight, and spacing aid clarity single font used for labels -- second font only used for the title

## Visualization Aesthetics: Lines/Shading <br>  <br> $x$ <br> more than four groups are identified in one chart <br>  <br> 

UC New Fall Undergraduate Enrollment by Campus, I995-201I

$\checkmark$ only two groups are identified
$\checkmark$ line weights are used for emphasis
lines are directly labeled

## Visualization Aesthetics: Labels/Text

## UC Berkeley Undergraduate New Enrollment Shares by Gender and Race/

Ethnicity, 1983-2012
Prop 209 banned affirmative action in 1997, precipitating a sharp decline in underrepresented minority (URM) students shares, which have yet to recover.
The overall gender gap with women outnumbering men is driven by Asian and URM students where the gender gaps are largest.



Source: UC Berkeley, Cal Answers

## Summary

- Know what question you are asking a visualization to answer
- Choose the best metric for your analysis and your audience
- Choose your chart to fit your question rather than your question to fit your chart
- Let the data tell its story without excess clutter or distraction
- Keep the focus of the visualization on the data
- Make sure all use of font, color, shading, and text enhance rather than distract
- Provide narrative to contextualize the highlights of the data


## Contact Information

Please feel free to contact me with questions or comments

Andrew Eppig
Research Analyst
Equity \& Inclusion
UC Berkeley

104 California Hall \#I500
Berkeley, CA 94720-I500
aeppig@berkeley.edu

## Web Resources

- Junk Charts -- Kaiser Fung
- http://junkcharts.typepad.com
- Flowing Data -- Nathan Yau
- http://flowingdata.com/
- Charts 'n’Things -- NY Times Graphics Department
- http://chartsnthings.tumblr.com/
- Perceptual Edge -- Stephen Few
- http://www.perceptualedge.com


## Print Resources

## Edward Tufte

- The Visual Display of Quantitative Information, I983, Cheshire, CT: Graphics Press
- Visual Explanations: Images and Quantities, Evidence and Narrative, 1997, Cheshire, CT: Graphics Press


## William Cleveland

- The Elements of Graphing Data, I994, revised ed., Murray Hill, NJ: AT\&T Bell Laboratories


## Dona Wong

- The Wall Street Journal Guide to Information Graphics:The Dos and Don'ts of Presenting Data, Facts, and Figures, 2010, New York: W.W. Norton and Co.


## Stephen Few

- Information Dashboard Design:The Effective Visual Communication of Data, 2006, Oakland, CA: Analytics Press
- Now You See It: Simple Visualization Techniques for Quantitative Analysis, 2009, Oakland, CA: Analytics Press
- Show Me the Numbers: Designing Tables and Graphs to Enlighten, 2012, second ed., Oakland, CA: Analytics Press


## Appendices

## Classic Charts



Charles Minard's 1869 chart showing the number of men in Napoleon's 1812 Russian campaign army, their movements, as well as the temperature they encountered on the return path. Lithograph, $62 \times 30 \mathrm{~cm}$

## Classic Charts



Detail from John Snow's spot map of the Golden Square outbreak [1854 London cholera outbreak] showing area enclosed within the Voronoi network diagram. Snow's original dotted line to denote equidistance between the Broad Street pump and the nearest alternative pump for procuring water has been replaced by a solid line for legibility. Fold lines and tear in original (adapted from CIC , between 106 and 07).

## Bad Chart Examples



The problem:

- The 1978 dollar should be roughly half as big as the 1958 dollar (\$0.44 vs \$1.00) instead of the roughly one quarter as big

How the problem occurred:

- The chart uses 2-D graphics (i.e., representations of dollar bills with length and width), and both the length and the height were scaled by $1 / 2$-- resulting in the area being scaled by $\mathrm{I} / 4(\mathrm{I} / 2 \times \mathrm{I} / 2)$

The fix:

- When dealing with 2-D area representations (never use 3-D), remember to scale the area rather than scaling each dimension separately


## Bad Chart Examples

The problem:

- The message (growth of medical spending in emerging markets) is obfuscated and exaggerated

How the problem occurred:

- The chart uses too many bold colors, which creates visual confusion
- The chart uses pie charts for each year, which makes it hard to see trends
- The chart scales the pie charts incorrectly by scaling only the radius opposed to the area which distorts the changes

The fix:

- When dealing with trend data, time series using line charts are the best choice

Source: "Expanding Circles of Error", Junk Charts

## Data Exploration via Visualization



Howard Wainer's visualization of John Arbuthnot's 1710 analysis of London Bills of Mortality not only depicts historical incidents, it also provides a check for data quality. The 1704 spike is not associated with any historical incident. A check of the data reveals a transcription error by Arbuthnot where the 1674 data point was mistakenly labeled as 1704.

Source: Wainer, 2009

## Infographic Creation Details

## Data Preparation Steps

- Source identification
- Data collection
- Data scrubbing
- Data analysis


## Infographic Source Identification

- Super heroes and villains: DC and Marvel
- http://dc.wikia.com/
- http://marvel.com/universe/Main_Page
- Top athletes: 2008 US Olympic Team
- http://www.2008.nbcolympics.com/athletes/index.html
- Top models: models.com listings
- http://models.com/


## Infographic Data Collection

- Create Python web scraper
- Crawl web sites
- Download web pages
- Extract height, weight, and gender data
- Save data to file


## Infographic Data Scrubbing

- Check data quality
- Did extraction get correct height and weight?
- Are there duplicate entries?
- Remove super hero and super villain outliers
- Define height window based on athlete and model data
- Define weight window based on athlete and model data


## Infographic Data Analysis

- Combine all data in R
- Super heroes and villains, athletes, and models
- Create dummy variables
- Gender: male, female
- Source: super hero/villain, athlete, model
- Calculate BMI for each record
- Check summary statistics
- Data ranges, mean, standard deviation
- Run t-tests between groups


## Height Distributions








## Weight Distributions








## With Revised Data








