
ISI-TR-605

NPS-CS-05-010

| SecureCore Technical Report

Trustworthy Commodity Computation and
Communication

Design Principles for Security
Terry V. Benzel, Cynthia E. Irvine, Timothy E. Levin, Ganesha Bhaskara,
Thuy D. Nguyen, and Paul C. Clark

Design Principles for Security

 ii

This material is based upon work supported by the National Science Foundation under Grant No.
CNS-0430566 and CNS-0430598 with support from DARPA ATO. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation or of DARPA ATO.

Author Affiliations

Naval Postgraduate School:
Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen, and Paul C. Clark
Center for Information Systems Security Studies and Research
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

USC Information Sciences Institute:
Terry V. Benzel and Ganesha Bhaskara
Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, Ca 90292

 Design Principles for Security

 Trustworthy Commodity Computation and Communication iii

TABLE OF CONTENTS

I. INTRODUCTION 1

A. Definitions 2

B. Security Design Principles Overview 3

II. STRUCTURE 4

A. Economy and Elegance 4
Least Common Mechanism 4
Clear Abstractions 5
Partially Ordered Dependencies 5
Efficiently Mediated Access 6
Minimized Sharing 6
Reduced Complexity 7

B. Secure System Evolution 7

C. Trust 8
Trusted Components 8
Hierarchical Trust for Components 9
Inverse Modification Threshold 9
Hierarchical Protection 10
Minimized Security Elements 10
Least Privilege 10
Self-reliant Trustworthiness 11

D. Composition 11
Secure Distributed Composition 11
Trusted Communication Channels 12

III. LOGIC AND FUNCTION 12
Secure defaults 12
Secure Failure 13
Self Analysis 14
Accountability and Traceability 14
Continuous Protection of Information 15
Economic Security 15
Performance Security 16
Ergonomic Security 16
Acceptable Security 17

IV. SYSTEM LIFE CYCLE 17
Use Repeatable, Documented Procedures 17
Procedural Rigor 18
Secure System Modification 18
Sufficient User Documentation 18

V. COMMENTARY AND LESSONS LEARNED 19

Design Principles for Security

 iv

Include Security in Design from the Start 19
The Philosopher’s Stone 19
Other Approaches to Secure System Composition 20
The Reference Monitor 20
Conflicts in Design Principles 20

REFERENCES AND BIBLIOGRAPHY 21

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 1

I. Introduction
Security vulnerabilities are rampant throughout our information infrastructures. The
majority of commodity computing and communication platforms have been designed to
meet performance and functionality requirements with little attention to trustworthiness.
The transformation of traditional stand-alone computers into highly networked,
pervasive, and mobile computing systems profoundly increases the vulnerabilities of
current systems, and exacerbates the need for more trustworthy computing and
communications platforms.

While there is a significant history of secure systems design and development focusing
on one or more of the triad of hardware, networking and operating systems, there are few
worked examples [20]. To date, only special purpose systems begin to meet the
requirements to counter either the modern or historical threats. In spite of over thirty
years of research and development, a trustworthy product built at the commodity level
remains elusive.
The SecureCore project is designing a secure integrated core for trustworthy operation of
mobile computing devices consisting of: a security-aware processor, a small security
kernel and a small set of essential secure communications protocols. The project is
employing a clean slate approach to determine a minimal set of architectural features
required for use in platforms exemplified by secure embedded systems and mobile
computing devices.
In addition to security, other factors including performance, size, cost and energy
consumption must all be reasonably accounted for when building a secure system. These
factors are especially important for viability in the commodity market, where client
computing devices have constrained resources but high performance requirements. Our
goal is not security at any price, but appropriate levels of security that permit desirable
levels of performance, cost, size and battery consumption.
As a prelude to our clean-slate design, we have reviewed the fundamental security
principles from more than four decades of research and development in information
security technology. As a result of advancing technology, we found that some of the early
“principles” require re-examination. For example, previous worked examples of
combinations of hardware, and software may have encountered problems of performance
and extensibility, which may no longer exist in today’s environment. Moore’s law in
combination with other advances has yielded better performance processors, memory and
context switching mechanisms. Secure systems design approaches to networking and
communication are beginning to emerge and new technologies in hardware-assisted
trusted platform development and processor virtualization open hither to previously
unavailable possibilities.

Our analysis of key principles for secure computing started with the landmark work of
Saltzer and Schroeder [25] and surveyed the refinement of these principles as systems
have evolved to the present. This report provides a distillation, synthesis and
organization of key security systems design principles, describes each principle, and
provides examples where needed for clarity. Although others have described various
principles and techniques for the development of secure systems, e.g. [3], [9], [22], [24],

 2

[25], [29], it was felt that a concise articulation of the principles as they are applied to the
development of the most elemental components of a basic security system would be
useful. In developing this report we have focused on the principles as they may be most
applicable to SecureCore. A later report, “SecureCore Architecture and Requirements”
[12], that uses these principles to define a high level architecture for SecureCore and a set
of requirements, which will then be refined into a design specification. As a separate
component of this work, a series of analysis reports will compare and contrast
SecureCore to alternative modern information technology projects such as the TCG TPM
[30] and various virtual machine based systems.
A common limitation of previous and ongoing efforts to articulate secure software
development principles is the premise that “security vulnerabilities result from defects
that are unintentionally introduced into the software during design and development” [6].
In contrast to those efforts and the software engineering “safety” paradigm upon which
they rely, the articulation of design principles for SecureCore differs in two ways. First,
our perspective not only acknowledges the risk of unintentional flaws, it explicitly
assumes that unspecified functionality may be intentional. An adversary within the
development process is assumed. Second, our analysis considers both the design of
components as well as the composition of components to form a coherent security
architecture that takes into account hardware, software and networking design elements.
The remainder of this section provides the definitions for commonly used terms, and an
illustration of our overall taxonomy of security principles. Following this we present, in
separate sections, the principles for: structure, logic and function, and system lifecycle.
Finally, we end with some “lessons from the past,” and identify some potential conflicts
in the application of the described principles.

A. Definitions

Component: any part of a system that, by itself, provides all or a portion of the total
functionality required of a system. A component is recursively defined to be an individual
unit, not useful to further subdivide, or a collection of components up to and including
the entire system. A component may be software, hardware, etc. For this report it is
assumed that an atomic component – one not consisting of other components – may
implement one or more different functions, but the degree of trustworthiness of the
component is homogeneous across its functions.

A system is made up of one or more components, which may be linked (interact through
the same processor), tightly coupled (e.g., share a bus), distributed (interact over a wire
protocol), etc.
Failure: a condition in which, given a specifically documented input that conforms to
specification, a component or system exhibits behavior that deviates from its specified
behavior.

Module: a unit of computation that encapsulates a database and provides an interface for
the initialization, modification, and retrieval of information from the database. The
database may be either implicit, e.g. an algorithm, or explicit.
Process: a program in execution.

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 3

Reference Monitor Concept: an access control concept that refers to an abstract machine
that mediates all accesses to objects by active entities. By definition, the ideal mechanism
is protected from unauthorized modification and can be analyzed for correctness [2].
Security Mechanisms: system artifacts that are used to enforce system security policies.

Security Principles: guidelines or rules that when followed during system design will aid
in making the system secure

Security Policies: Organizational Security Policies are “the set of laws, rules, and
practices that regulate how an organization manages, protects, and distributes sensitive
information.” [28] System Security Policies are rules that the information system
enforces relative to the resources under its control to reflect the organizational security
policy. In this document, “security policy” will refer to the latter meaning, unless
otherwise specified.

Service: processing or protection provided by a component to users or other components.
E.g., communication service (TCP/IP), security service (encryption, firewall).

Trustworthy (noun): the degree to which the security behavior of the component is
demonstrably compliant with its stated functionality (e.g., trustworthy component).
Trust: (verb) the degree to which the user or a component depends on the trustworthiness
of another component. For example, component A trusts component B, or component B
is trusted by component A. Trust and trustworthiness are assumed to be measured on the
same scale.

B. Security Design Principles Overview

Security design principles can be organized into logical groups, which are illustrated in
Figure 1. The logical groupings for the principles are in shaded boxes whereas the
principles appear in clear boxes. For example, Least Privilege is a principle and appears
grouped under Structure/Trust. In the case of “Secure System Evolution,” the principle is
in its own group.

 4

Figure 1. Taxonomy of security design principles

II. Structure
Structural design principles affect the fundamental architecture of the system: how the
components relate to each other and the nature of their interfaces. We start with the
fundamental need for economy and elegance in a system.

A. Economy and Elegance

Least Common Mechanism
The principle of least common mechanism states that if multiple components in the
system require the same function or mechanism, then there should be a common
mechanism that can be used by all of them. Thus, the various components do not have

Least Common Mechanism

Clear Abstractions

Partially Ordered Dependencies

Efficiently Mediated Access

Minimized Sharing

Reduced Complexity

Economy and Elegance

Secure System Evolution

Trusted Components

Hierarchical Trust for Components .

Inverse Modification Threshold

Hierarchical Protection

Minimized Security Elements

Least Privilege

Self-Reliant Trustworthiness

Trust

Secure Distributed Composition

Trusted Communication Channels

Composition

Structure

Secure Defaults

Secure Failure

Self Analysis

Accountability and Traceability

Continuous Protection of Information

Economic Security

Performance Security

Ergonomic Security

Acceptable Security

Logic and Function

Repeatable, Documented Procedures

Procedural Rigor

Secure System Modification

Sufficient User Documentation

System Life Cycle

Security Design Principles

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 5

separate implementations of the same function; rather, the function is created once.
Examples of the application of this principle include device drivers, libraries, and
operating system resource managers.
Using least common mechanism will help to minimize the complexity of the system by
avoiding unnecessary duplicate mechanisms. Another benefit is maintainability, since
modifications to the common function can be performed (only) once, and the impact of
proposed modifications can be more easily understood in advance. Also, the use of
common mechanisms will facilitate the construction and analysis of (1) non-by-passable
system properties and (2) the encapsulation of data (see also “Minimized Sharing”).
Consideration should be given to the problem of persistent state as it relates to a common
mechanism. The common mechanism may need to retain state related to the context of
the calling component. Whenever possible, the system should be organized to avoid this
since: (1) retention of state information can result in significant increases in complexity,
and (2) can result in state that is shared by multiple components (see “Minimized
Sharing”). Sometimes various forms of linking can permit a common mechanism to
utilize state information specific to the calling component, and, with sufficient low-level
support, the mechanism can even assume the privilege attributes of its calling component.
[10]

Clear Abstractions
The principle of clear abstractions states that a system should have simple, well-defined
interfaces that clearly represent the data and functions provided. The elegance (e.g.,
clarity, simplicity, necessity, sufficiency) of the system interfaces, combined with a
precise definition of their behavior promotes thorough analysis, inspection and testing as
well as correct and secure use of the system. Clarity of abstractions is difficult to
quantify and a description will not be attempted here. Some of the techniques used to
create simple interface are: the avoidance of redundant entry points, the avoidance of
overloading the semantics of entry points and of the parameters used at entry points, and
the elimination of unused entry points to components.

Information hiding [23] is a design discipline for ensuring that the internal representation
of information does not unnecessarily perturb the correct abstract representation of that
data at an interface (see also Secure System Evolution).

Partially Ordered Dependencies
In applying the principle of least common mechanism, if the shared mechanism also
makes calls to or otherwise depends on services of the calling mechanisms, creating a
circular dependency, performance and liveness problems can result. The principle of
partially ordered dependencies says that the calling, synchronization and other
dependencies in the system should be partially ordered.
A fundamental tool in system design is that of layering [8], whereby the system is
organized into functionally related modules or components, and where the layers are
linearly ordered with respect to inter-layer dependencies. While a partial ordering of all
functions in a given system may not be possible, if circular dependencies are constrained
to occur within layers, the inherent problems of circularity can be more easily managed

 6

[26].
Partially ordered dependencies and system layering contribute significantly to the
simplicity and coherency of the system design (see also “Assurance through Reduced
Complexity”).

Efficiently Mediated Access
The mediation of access to resources is often the predominant security function of
security systems, which can result in performance bottlenecks if the system is not
designed correctly. The principle of efficiently mediated access [1] states that the access
control mechanism for each subset of the policy should be performed by the most
efficient system mechanism available while respecting layering and still meeting system
flexibility requirements. A good example of this is the use of hardware memory
management mechanisms to implement various access control functions, e.g. [10], [27].

Minimized Sharing
The principle of minimized sharing states that no computer resource should be shared
between components or subjects (e.g., processes, functions, etc.) unless it is necessary to
do so. Minimized sharing helps to simplify the design and implementation. It is evident
that in order to protect user-domain information from active entities, no information
should be shared unless that sharing has been explicitly requested and granted (see also
“Secure Defaults”). For internal entities, sharing can be motivated by the principle of
least common mechanism, as well as to support user-domain sharing. However, internal
sharing must be carefully designed to avoid performance and covert channel problems
[17]. There are various mechanisms to avoid sharing and mitigate the problems with
internal sharing.
To minimize the sharing induced by common mechanisms, they can be designed to be re-
entrant or virtualized, so that each component depending on that mechanism will have a
virtual private data space. Virtualization logically partitions the resource into discrete,
private subsets for each dependent component. The shared resource is not directly
accessible by the dependent components. Instead an interface is created that provides
access to the private resource subsets. Practically any resource can be virtualized,
including the processor, memory and devices. Encapsulation is a design discipline or
compiler feature for ensuring there are no extraneous execution paths for accessing the
private subsets (see also “information hiding,” under Secure System Evolution). Some
systems use global data to share information among components. A problem with this
approach is that it may be difficult to determine how the information is being managed
[31]. Even though the original designer may have intended that only one component
perform updates on the information, the lack of encapsulation allows any component to
do so.
To avoid covert timing channels, in which the processor is one of the shared components,
a scheduling algorithm can ensure that each depending component is allocated a fixed
amount of time [11]. A development technique for controlled sharing is to require the
execution durations of shared mechanisms (or the mechanisms and data structures that
determine its duration), to be explicitly stated in the design specification, so that the
effects of sharing can be verified.

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 7

Reduced Complexity
Given the current state of the art, a conservative assumption must be that every complex
system will contain vulnerabilities, and it will be impossible to eliminate all of them,
even in the most highly trustworthy of systems. Application of the principle of reduced
complexity contributes to the ability to understand the correctness and completeness of
system security functions, and facilitates identification of potential vulnerabilities. The
corollary of reduced complexity states that the simpler a system is, the fewer
vulnerabilities it will have. An example of this is a bank auto teller, which, due to the
simplicity of its interface (a very limited set of requests), has relatively few functional
security vulnerabilities compared to many other widely used security mechanisms.

From the perspective of security, the benefit to this simplicity is that it is easier to
understand whether the intended security policy has been captured in the system design.
For example, at the security model level, it can be easier to determine whether the initial
system state is secure and whether subsequent state changes preserve the system security
properties.
B. Secure System Evolution
The principle of secure system evolution states that a system should be built to facilitate
the maintenance of its security properties in the face of changes to its interface,
functionality structure or configuration. These changes may include upgrades to the
system, maintenance activities, reconfiguration, etc. (see also, Secure System
Modification, and Secure Failures). The benefits of this principle include reduced
lifecycle costs for the vendor, reduced cost of ownership for the user, as well as improved
system security. Just as it is easier to build trustworthiness into a system from the outset
(and for highly trustworthy systems, impossible to achieve without doing so), it is easier
to plan for change than to be surprised by it.
Although it is not possible to plan for every possibility, most systems can anticipate
maintenance, upgrades, and changes to their configurations. For example, a component
may implement a computationally intensive algorithm. If a more efficient approach to
solving the problem emerges, then if the component is constructed using the precepts of
modularity and information hiding [14], [15], [23], it will be easier to replace the
algorithm without disrupting the rest of the system.
Rather than constructing the system with a fixed set of operating parameters, or requiring
a recompilation of the system to change its configuration, startup or runtime interfaces
can provide for reconfiguration. In the latter case, the system designer needs to take into
account the impact dynamic reconfiguration will have on secure state.
Interoperability can be supported by encapsulation at the macro level: internal details are
hidden and standard interfaces and protocols are used. For scalability, the system can be
designed so that it may easily accommodate more network connections, more or faster
processors, or additional devices. A measure of availability can be planned into the
system by replication of services and mechanisms to manage an increase in demand, or a
failure of components.
Constructing a system for evolution is not without limits. To expect that complex systems
will remain secure in contexts not envisioned during development, whether

 8

environmental or related to usage, is unrealistic. It is possible that a system may be secure
in some new contexts, but there is no guarantee that its “emergent” behavior will always
be secure.

C. Trust

Trusted Components
The principle of trusted components states that a component must be trustworthy to at
least a level commensurate with the security dependencies it supports (i.e., how much it
is trusted to perform its security functions by other components). This principle enables
the composition of components such that trustworthiness is not inadvertently diminished
and consequently, where trust is not misplaced.

Ultimately this principle demands some metric by which the trust in a component and the
trustworthiness of a component can be measured; we assume these measurements are on
the same, abstract, scale. This principle is particularly relevant when considering systems
and those in which there are complex “chains” of trust dependencies.

A compound component consists of several subcomponents, which may have varying
levels of trustworthiness. The conservative assumption is that the overall trustworthiness
of a compound component is that of its least trustworthy subcomponent. It may be
possible to provide a security engineering rationale that the trustworthiness of a particular
compound component is greater than the conservative assumption, but a general analysis
to support such a rationale is outside of the scope of this report.

This principle is stated more formally:

Basic types
component

t: integer /* level of trust or trustworthiness – this is cast as integer for
convenience - any linear ordering will do */

System constant functions and their axioms
subcomponent(a, b:component): boolean /* a is a subcomponent of b */

depend(a, b: component): boolean /* a depends on b */
sec_depend(a, b: component): boolean /* a has security dependency on b
*/

axiom 1.. ∀ a, b: component(

sec_depend(a, b)
⇒ depend(a, b)) /* but not visa versa */

trust(a, b: component): t /* the degree of sec_depend */
axiom 2.. ∀ a, b:component(

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 9

 sec_depend(a, b)
⇒ trust (a,b) > 0)

trustworthy(a: component): t /* a is trustworthy to the degree of t */

axiom 3.. ∀ a, b:component(/* sub-component trustworthiness */

 subcomponent(a,b) ⇒

 trustworthy(b) ≤ trustworthy(a))
Principle of trusted components.

 ∀ a:component(

 ∃ b:component (sec_depend(a,b) ⇒

 trust(a,b) ≤ trustworthy(b)))

Hierarchical Trust for Components
The corollary of hierarchical trust for components states that the security dependencies in
a system will form a partial ordering if they preserve the principle of trusted components.
To be able to analyze a system comprised of heterogeneously trustworthy components for
its overall trustworthiness, it is essential to eliminate circular dependencies with regard to
trustworthiness. Clearly, if a more trustworthy component located in a lower layer of the
system were to depend upon a less trustworthy component in a higher layer, this would,
in effect, put them in the same equivalence class: less trustworthy.
Trust chains have various manifestations. For example, the root certificate of a certificate
hierarchy is the most trusted node in the hierarchy, whereas the leaves may be the least
trustworthy nodes in the hierarchy. Another example occurs in a layered high assurance
secure system where the security kernel (including the hardware base), which is located
at the lowest layer of the system, is the most trustworthy component.

This principle does not prohibit the use of overly trustworthy components. For example,
in a low-trust system the designer may choose to use a highly trustworthy component,
rather than one that is less trustworthy because of availability or other criteria (e.g., an
open source based product might be preferred). In this case, the dependency of the highly
trustworthy component upon a less trustworthy component does not degrade the overall
trustworthiness of the resulting system.

Inverse Modification Threshold
The corollary of inverse modification threshold states that the degree of protection
provided to a component must be commensurate with its trustworthiness. In other words,
as the criticality of (i.e., trust in) a component increases, the protections against its
unauthorized modification should also increase. This protection can come in the form of
the component’s own self-protection and trustworthiness, or from protections afforded to
the component from other elements or attributes of the architecture. Unauthorized
modification could take place through penetration of the component (e.g., an attack that

 10

bypasses the intended interfaces), misuse of poorly designed interfaces, or from
surreptitiously placed trapdoors.

Techniques to show the absence of trapdoors and penetration vulnerabilities can be
applied to the construction of highly trustworthy components. Examples of the
application of this principle can be seen in the hardware, microcode, and low level
software of trustworthy systems: none of these elements is easy to modify.

Hierarchical Protection
The principle of hierarchical protection states that a component need not be protected
from more trustworthy components. In the degenerate case of the most trusted
component, it must protect itself from all other components. In another example, a
trusted computer system need not protect itself from an equally trustworthy user,
reflecting use of untrusted systems in “system high” environments where the users are
highly trustworthy.

Minimized Security Elements
The principle of minimized security elements states that the system should not have
extraneous trusted components. This principle has two aspects: cost and complexity of
security analysis. Trusted components, necessarily being trustworthy, are generally more
costly to construct, owing to increased rigor of development processes (see “Procedural
Rigor”). They also require greater security analysis, to qualify their trustworthiness.
Thus, to reduce cost, and decrease the complexity of the security analysis, a system
should contain as few trustworthy components as possible.
The analysis of the interaction of trusted components with other components of the
system is one of the most important aspects of the verification of system security. If
these interactions are unnecessarily complex, the security of the system will also be more
difficult to ascertain than one whose internal trust relations are simple and elegantly
constructed. Generally, fewer trusted components will result in fewer internal trust
relationships and a simpler system. For example, a novice multilevel secure system
designer may be tempted to solve every security problem with one or more “trusted
subjects,” creating a system that is unnecessarily complex.

Least Privilege
The principle of least privilege states that each component should be allocated sufficient
privileges to accomplish its specified functions, but no more. This limits the scope of the
component’s actions, which has two desirable effects: (1) security impact of a failure of
corruption of the component will be minimized, and (2) the security analysis of the
component will be simplified. The result is a safer and more understandable system.
Least privilege is such a pervasive principle that it is reflected in all aspects of the
system. For example, interfaces may be constructed that are available to only certain
subsets of the user population. In the case of an audit mechanism, there may be an
interface for the audit manager, who configures the audit settings; an interface for the
audit operator, who ensures that audit data is safely collected and stored; and, finally, yet
another interface for the audit reviewer.

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 11

In addition to its manifestations at the system interface, least privilege can be used as a
guiding principle for the internal structure of the system itself. This can take several
forms. Closely aligned with the notions of modularity and encapsulation [23], one aspect
of internal least privilege is to construct modules so that only the elements encapsulated
by the module are directly operated upon [31]. Elements external to a module that may be
affected by the module’s operation are indirectly accessed through interaction (e.g., via a
function call) with the module that contains those elements. Another aspect of internal
least privilege is that the scope of a given module or component should only include
those system elements that are necessary for its functionality, and that the modes by
which the elements are accessed should also be minimal.

Self-reliant Trustworthiness
The principle of self-reliant trustworthiness states that systems should minimize their
reliance on external components for system trustworthiness. If a system were required to
maintain a connection with another external entity in order to maintain its
trustworthiness, then that system would be vulnerable to drops in the connection.
Instead, a system should be trustworthy by default with the external connection used as a
supplement to its function.
The benefit to this principle is that the isolation of a system will make it less vulnerable
to attack. Clearly, if this were not the case, then attack scenarios would be devised to
isolate the system and thus bring down its defenses. In a highly networked environment,
this would be a problem for the targeted system, but also perhaps calamitous for other
systems on the network.

A corollary to this relates to the ability of the component to operate in isolation and then
resynchronize with other components when it is rejoined with them (see the principle of
secure failures).

D. Composition

Secure Distributed Composition
Many of the design principles for secure systems deal with how components can or
should interact (e.g., see Hierarchical Trust). The composition of distributed components
can magnify the relevancy of these principles. In particular, the translation of security
policy from a stand-alone to a distributed system can have unexpected “emergent” results
(see also, Secure System Evolution in II.B). The principle of secure distributed
composition states that the composition of distributed components that enforce the same
security policy should result in a system that enforces that policy at least as well as the
individual components do. For example, consider a set of components that support
similar subjects and objects [16] and enforce the same access control policy on those
objects. Under this principle, if the components are composed into a distributed system
that supports the same policy, and information contained in objects is transmitted
between components, then the transmitted information must be at least as well protected
in the receiving component as it was in the sending component. Communication
protocols and various distributed data consistency mechanisms can help to ensure
consistent policy enforcement across a distributed system.

 12

In another example, consider a distributed system in which all subjects and objects are
associated with labels from a sensitivity hierarchy of Top Secret (TS), Secret (S),
Confidential (C), Unclassified (U), and the usual multilevel mandatory access control
policy is enforced. Also, since the system components are not very trustworthy, each
component may only present to users information with “adjacent” sensitivity (e.g.,
component A handles TS and S, and component B handles S and C), so that in the event
of leakage, the information does not leak too “far.” The networking (i.e., composition) of
components A and B can result in a “cascade” of sensitivities such that if A leaks TS
information to an S user, TS information can wind up on B, presenting users with a wider
range of sensitivities than the system policy allows [20].

Thus, to ensure correct system-wide level of confidence of correct policy enforcement,
enforcement, the security architecture of a distributed composite system must be
thoroughly analyzed.

Trusted Communication Channels
The principle of secure communication channels states that when composing a system
where there is a threat to the communication between components, each communications
channels must be trustworthy to a level commensurate with the security dependencies it
supports (i.e., how much it is trusted to perform its security functions by other
components). Several techniques can be used to mitigate threats, and enhance the
trustworthiness of communication channels. Three are discussed here.

First, use of the channel may be restricted by protecting access to it with a suitable access
control mechanism such as a reference monitor located beneath or within each
component. By controlling and limiting access to the channel, possible misuse of the
channel can be reduced. In addition, the components with authorized access to the
channel may be more trustworthy than other components.
Second, end-to-end communications technologies, such as encryption, may be used to
eliminate security threats in the channel's physical environment. In some cases, an
alternative to platform-based encryption is the use of in-line encryption devices. When
such devices are employed, they must be at least as trustworthy as the reference monitors
of the linked components.

Finally, intrinsic characteristics assumed for and provided by the channel must be
specified. With such documentation, it is possible for system designers to understand the
nature of the channel as initially constructed and to assess the impact of any subsequent
changes to the system.

III. Logic and function
The principles associated with logic and function are applicable at both the system and
component level.

Secure defaults
The principle of secure defaults applies to the initial configuration of a system as well as
to the negative nature of access control and other security functions. First, the “as

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 13

shipped” configuration of a system or component should not aid in violation of security
policy. There have been many examples in recent years of commercial systems that have
arrived in a configuration that was not adequately self-protective, resulting in security
breaches before the correct configuration could be established. Some examples of
mechanisms for which secure initial configuration may apply are audit, firewalls and
passwords.

The second part of this principle says that security mechanisms should deny requests
(e.g., to obtain access to a file) unless the request is found to be well formed and
consistent with the security policy. The alternative is to allow a request unless it is
shown to be inconsistent with the policy. In a large system, the conditions that must be
satisfied to grant a request that is by default denied are often far more compact and
complete than those that would need to be processed to deny a request that is by default
granted (for example, consider the filtering rules in a firewall).

Secure Failure
The principle of secure failure states that a failure in a system function or mechanism
should not lead to violation of security policy. Failure is a condition in which a
component’s behavior deviates from its specified behavior for an explicitly documented
input (unspecified behavior, which includes response to inputs that do not conform to
specification, is addressed in IV). Ideally, the system should be capable of detecting
failure at any stage of operation (initialization, normal operation, shutdown, maintenance,
error detection and recovery) and take appropriate steps to ensure security policies are not
violated.

Once a failed security function is detected, the system may reconfigure itself to
circumvent the failed component, while maintaining security, and still provide all or part
of the functionality of the original system, or completely shut itself down to prevent any
(further) violation in security policies. For this to occur, the reconfiguration functions of
the system should be designed to ensure continuous enforcement of security policy
during the various phases of reconfiguration. Another mechanism that can be used to
recover from failures is to rollback to a secure state (which may be the initial state) and
then either shutdown or replace the service or component that failed with orthogonal or
replicated mechanisms.
Failure of a component may or may not be detectable to the components using it. This
principle indicates that components should fail in a state that denies rather than grants
access. For example, a nominally “atomic” operation interrupted before completion
should not break security policy and hence must be designed to cope with interruption
events by employing higher level atomicity and rollback mechanisms such as
transactions, etc. If a service is being used, its atomicity properties must be well
documented and characterized so that the component availing itself of that service can
detect and handle interruption events appropriately. For example, a system should be
designed to gracefully respond to disconnection and support resynchronization and data
consistency after disconnection.
Replication of policy enforcement mechanisms, sometimes called “defense in depth,” can
allow the system to continue securely even when one mechanism has failed to protect the

 14

system. If the mechanisms are similar, however, the additional protection may be
illusory, as the intruder simply repeats the same or similarly difficult attacks on each
mechanism. Similarly, in a networked system, breaking the security on one system or
service may enable an attacker to do the same on other similar replicated systems and
services. By employing multiple protection mechanisms, whose features are significantly
different, the possibility of attack repetition can be reduced. However, it should be noted
redundancy techniques may increase resource usage and may adversely affect the system
performance.

Self Analysis
The principle of self-analysis states that the component must be able to assess its internal
functionality to a limited extent (within the limits of the “incompleteness theorem”) at
various stages of execution and that this self-analysis capability must be commensurate
with the level of trustworthiness invested in the system.
At the system level, self-analysis can be achieved via hierarchical trustworthiness
assessments established in a bottom up fashion. In this approach [4], the lower level
components check for data integrity and correct functionality (to a limited extent) of
higher level components. For example, trusted boot sequences involve a lower level
component attesting to the trustworthiness of the next higher-level components so that a
transitive trust chain can be established. At the root, a component attests to itself, which
usually involves an axiomatic or environmentally enforced assumption about its integrity.

These tests can be used to guard against externally induced errors or internal malfunction
or transient errors. By following this principle, some simple errors or malfunctions can be
detected without allowing the effects of the error or malfunction to propagate outside the
component. Further, the self test can also be used to attest to the configuration of the
component, detecting any potential conflicts in configuration with respect the expected
configuration.

Accountability and Traceability
The principle of accountability and traceability states that actions that are security-
relevant must be traceable to the entity on whose behalf the action is being taken.
This principle requires the designer to put into place a trustworthy infrastructure that can
record details about actions that affect system security (e.g., an audit subsystem). To do
this, the system must not only be able to uniquely identify the entity on whose behalf the
action is being carried out, but also record the relevant sequence of actions that are
carried out. Further, the accountability policy ought to require the audit trail itself be
protected from unauthorized access and modification. The principle of least privilege aids
in tracing the actions to particular entities, as it increases the granularity of
accountability. Associating actions with system entities, and ultimately with users, and
making the audit trail secure against unauthorized access and modifications provide non-
repudiation, as once some action is recorded, it is not possible to change the audit trail.
Another important function that traceability and accountability serves is in the analysis of
events leading to violation of security policy. If a security violation occurs, analysis of
the audit log may provide additional information that may be helpful in determining the

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 15

path or component that allowed the violation of security policy.

Continuous Protection of Information
Principle of continuous protection of information states that information protection
required by the security policy (e.g., access control to user-domain objects) or for system
self-protection (e.g., maintaining integrity of kernel code and data) must be protected to
a level of continuity consistent with the security policy and the security architecture
assumptions. No guarantees about information integrity, confidentiality or privacy can be
made if it is left unprotected while under control of the system (i.e., during the creation,
storage, processing or communication of the information and during system initialization,
execution, failure, interruption, and shutdown). Following the precepts of the reference
monitor [2], to provide continuous enforcement of the security policy, every request must
be validated, and the reference monitor must protect itself. Invalid requests should not
result in a system state such that the system cannot properly enforce the security policy.
The principle of secure failure also applies here in that it involves a roll back mechanism
that can return the system to a secure state.
To ensure protection, parameters at interfaces must be chosen so that security critical
values are provided by more trustworthy components. In addition, at the interface to a
security mechanism, the security-relevant operation should appear atomic. This will
eliminate time-of-check-to-time-of-use vulnerabilities.
Cryptography is one of the primary mechanisms used to protect information in transit and
in storage.
To protect information during computation various low-level hardware mechanisms can
be used such as instructions that enable switching contexts atomically and mechanisms
that enable memory protection.

In some environments, it is desirable to allow the system security policies to be
“modifiable” at runtime, for example to adjust to catastrophic external events. Changes to
policies must not only be traceable but also verifiable, i.e., must be possible to verify that
the changes do not violate security policies. The system architect should understand the
consequences of allowing modifiable policies in a system i.e., depending on the type of
access control and the actions that are allowed and controlled by the policies, certain
configuration changes may lead to inconsistent states or discontinuous protection due to
the complex or undecidable nature of the problem. One approach to this problem is the
use of pre-verified configuration definitions where the transition from old to new policies
is effectively atomic and any residual effects from the old policy are guaranteed to not
conflict with the new policy.

Economic Security
The principle of economic security states that security mechanisms whose strength is
commensurate with the level of trustworthiness should be used in components that
enforce security policies.
Mechanisms involved in the enforcement of security policies incur computation and
resource overhead. The strength of the mechanisms must be sufficient to satisfy the
system requirements. Using security mechanisms of greater strength than necessary may

 16

unnecessarily incurs extra overhead. For example, if a 2048 bit key may be sufficient to
satisfy the requirements for policy enforcement, a 4096 bit key, though relatively more
secure, only incurs more computation overhead unnecessarily.
Another prudent design guideline is that the security mechanisms used to protect an
entity should be no more expensive than the entity itself, i.e., the security mechanism
should not be more costly than the expected damage of a security breach. However,
designers should remember that when trust chains are involved, the overall
trustworthiness requirement determines the strength of mechanism needed, as the system
is no more trustworthy than the least trustworthy mechanism in the chain.
Mechanisms that aid in enforcement of security may utilize many basic building blocks.
Cryptography is often one of many mechanistic choices. Because it is computationally
intensive, it has to be used sparingly and only when other, simpler mechanisms are
insufficient. Even when encryption is used, the strength of encryption must be selected
appropriately after considering key storage, key exchange, exposed attack space etc.

Application of this principle reinforces the requirement to design the system from the
ground up, i.e., to incorporate simple mechanisms at the lower layers that can be used as
building blocks for higher level mechanisms.

Performance Security
The principle of performance security states that security mechanisms should be
constructed so that they do not degrade system performance unnecessarily. A corollary to
this principle is that the demand for performance and functionality should not blind the
system designer to system security requirements. For example, in a banking system, an
animated user interface may not be as critical as protecting user’s financial assets.
There is often a tradeoff between functionality and performance. The more functionality
a system has, the more generic its components must be, and hence the system will be less
optimized to perform specific functions. Similarly, there may be a tradeoff between
performance and enforcement of security policy. On one extreme, complete elimination
of all security checks may provide slight performance improvements. However, if
enforcement of security policy is one of the intended goals for the system, the system
should be designed such that enforcement of security policy does not significantly
degrade system performance. This forces the designer to incorporate mechanisms that aid
in enforcement of security policy, but incur minimum overhead, such as low-level atomic
mechanisms on which higher level mechanisms can be built. Such low level mechanisms
are usually very specific, have very limited functionality, and are heavily optimized for
performance. For example, once access rights to a portion of memory is granted,
hardware mechanisms may be used to ensure that all further accesses involve the correct
memory address and access mode [10].

Ergonomic Security
The principle of ergonomic security states that the user interface for security functions
and supporting services should be intuitive and user friendly, and provide appropriate
feedback for user actions that affect policy and its enforcement. The mechanisms that
enforce security policy should not be intrusive to the user and should be designed not to

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 17

degrade user efficiency.
There is often a tradeoff between usability and the strictness of policy enforcement. For
example, if every action that requires authorization required the user to prove their
identity explicitly, it would be intrusive, annoying, and could potentially make the system
unusable. To overcome this deficiency, the designer may decide to cache credentials for
an appropriate duration and use them to enforce policy. However, caching credentials
adds complexity to the system and their use creates new vulnerabilities.
The system should provide the user with feedback and warnings when insecure choices
are being made. For example, web interfaces often warn users that information may not
be protected during transmission. In such cases, a user may reconsider entry of personal
information. The designer must seek a solution that both satisfies the security policy
requirements and makes the system easy and efficient to use.

Care must also be given to interfaces through which system administrators configure and
setup the security policies. Ideally, system administrators must be able to understand the
impact of their choices. They must be able to configure systems before startup and
administer them during runtime, in both cases with confidence that their intent is
correctly mapped to the system’s mechanisms.

Acceptable Security
The principle of acceptable security requires that the level of privacy and performance
the system provides should be consistent with the users’ expectations. The perception of
personal privacy may affect user behavior, morale and effectiveness. Based on the
organizational privacy policy and the system design, users should able to restrict their
actions to protect their privacy. When systems fail to provide intuitive interfaces or meet
privacy and performance expectations, users may either choose to completely avoid the
system or use it in ways that may be inefficient or even insecure.
Thus ergonomic and acceptable security, coupled with user education, are essential.

IV. System life cycle
Several principles guide the system life cycle to contribute to the initial and ongoing
security of the system.

Use Repeatable, Documented Procedures
The principle of repeatable and documented procedures means that the techniques used to
construct a component should permit the same component to be completely and correctly
reconstructed at a later time. Repeatable and documented procedures support the creation
of a component that are identical to the component created earlier that may be in
widespread use. In the case of other system artifacts (such as documentation and testing
results), repeatability supports consistency and inspectability.
A procedure can range from a script to compilable code, to steps taken for the reporting
and remediation of system deficiencies. Procedures may be formalized and can be based
upon standards. For example, the Common Criteria [13] provide a framework for the
derivtion of system requirements that is comprised of the following steps: definition of

 18

system goals and its concept of operation; identification of threats to the defined system;
identification of assumptions regarding the system and its environment; identification of
organizational policies external to the system; identification of security objectives for the
system and its environment based on previous steps; and specification of requirements
that will meet the objectives.

Procedural Rigor
The principle of procedural rigor states that the rigor of the system life cycle process
should be commensurate with its intended trustworthiness. Procedural rigor defines the
depth and detail of the system lifecycle procedures. These procedures contribute to the
assurance that the system is correct and free of unintended functionality in two ways.
First, they impose a set of checks and balances on the life cycle process such that the
introduction of unspecified functionality is thwarted. Second, rigorous procedures applied
to specifications and other design documents contribute to the ability to understand the
system as it has been built, rather than being misled by an inaccurate system
representation, thus helping to ensure that its security and functional objectives have been
met.

Highly rigorous development procedures supporting high trustworthiness are costly to
follow. However, the lowered cost of ownership resulting from fewer flaws and security
breaches during the product maintenance phase can help to mitigate the higher initial
development costs associated with a rigorous life cycle process.

Secure System Modification
The principle of secure system modification states that system modification procedures
must maintain system security with respect to the goals, objectives, and requirements of
its owners. Upgrades and modifications to systems can transform a secure system into an
insecure one. The procedures for system modification must ensure that, if the system is
to maintain its trustworthiness, the same rigor that was applied to its initial development
must be applied to any changes. Because modifications can affect a system’s ability to
maintain secure state, careful security analysis of the modification is needed prior to its
implementation and deployment. This principle parallels the principle of secure system
evolution in Section II.

Sufficient User Documentation
The principle of sufficient user documentation states that users should be provided with
adequate documentation and other information such that they contribute to rather than
detract from system security. Even though the system may be designed for ergonomic
security, its use may not be intuitively obvious. The availability of documentation and
training can help to ensure a knowledgeable cadre of users and administrators. Where
complexity must be minimized and where on-line documentation is inadequate, clearly
written documentation and appropriate training is needed. If users do not know how to
use a component properly, do not know standard security procedures, or do not know
proper behavior to prevent social engineering attacks, they can easily introduce new
system vulnerabilities.

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 19

V. Commentary and Lessons Learned
Include Security in Design from the Start
The problem with system security is that it is easy to find flaws, but it is difficult to find
all flaws. Thus, if post-development flaw discovery and remediation is chosen as the
path to achieving a secure system, then it is difficult to make a statement regarding the
completeness of the security mechanism. Similarly, security functions that are added to a
pre-existing system require analysis to ensure that they will perform with the level of
trustworthiness intended. This analysis will extend to all elements depending on or upon
which the security addition depends, as well as all resources shared by the addition, e.g.
global data. Furthermore, unless the system has already been rigorously developed, the
security analysis is likely to become so complex that starting anew would be more
effective.
Generally, security redesign results in significant restructuring of existing systems so that
they are aligned with the principles stated in Section I, e.g., [26]. Again, at a certain
point it is prudent to apply the principles a priori rather than to attempt a retrofit.

The Philosopher’s Stone
Experience has shown that when the principles described herein are applied to the
construction of a system, development time and effort may rise in comparison to typical
“time to market” driven commercial development practices. This conflict has resulted in
various proposals for using untrustworthy components to achieve trustworthy systems,
with mixed results.

Replication and other forms of fault tolerance have been described as candidates for
developing trustworthy systems from untrustworthy components [21]. Although there are
a number of constructs and techniques shared between security and fault tolerance [5],
the presence of fault tolerance does not necessarily achieve security, and, conversely,
security does not necessarily result in fault tolerance.
Similarly, the notion of “defense in depth” [7] describes security derived from the
application of multiple mechanisms, e.g., to create a series of barriers against attack by an
adversary. However, there is no theoretical basis to assume that defense in depth, in and
of itself, could imply a level of trustworthiness greater than that of the individual security
components. Without a sound security architecture and supporting theory, the non-
constructive nature of these approaches renders them equivalent to temporary patches.
“Balanced assurance” [18] defines a hierarchy of security policies, where different
policies may be allocated to different components of a system. In this approach, the
trustworthiness of a given component must be consistent with the importance of that
component’s policy (i.e., greater importance requires greater trustworthiness). It is said
that when the components are composed according to a precisely described set of rules,
the trustworthiness of the resulting system will be equal to that of the most trustworthy
component. While this approach shows promise with respect to specific examples, a
coherent generalization has not been defined.

 20

Other Approaches to Secure System Composition
A significant part of the cost of building a secure system is that of demonstrating its
trustworthiness through its “evaluation” by a third party [13]. An approach to lowering
these costs is to use components that have already been evaluated as to their
trustworthiness, and thereby bypassing or minimizing the need to evaluate the system
itself.

A variety of formal analyses has been performed to support the composition of security
components by modeling the security properties that would result, e.g., [19]. Also, there
has been support for “evaluation by pieces,” which would acknowledge previously
evaluated components, and not require their examination in the evaluation of the
composite system. However, this approach has only been made available to “low
assurance” systems, as it lacks a well-formed theory of correctness.

The Reference Monitor
The reference monitor concept [2] is an abstraction for the necessary and sufficient
features of the component that enforces access control in a secure system. Its three
characteristics are: the mechanism is protected from modification so that it always is
capable of enforcing the intended access control policy; it cannot be bypassed, so that it is
always consulted about requests to access to the information it is intended to protect; and
it is understandable. To date, no viable alternative to the reference monitor concept has
been proposed.

Because it is so abstract, the reference monitor concept provides no details regarding how
an implementation might be constructed. Implementations will, to a greater or lesser
extent, attempt to achieve the abstraction. The principles discussed in this document
apply to the design and implementation of real systems. Some of those principles map
directly to the reference monitor concept itself, while others provide the framework for
constructing an implementation that is as close as currently possible to the idealized
mechanism. For example, the principle of continuous protection of information clearly
supports the reference monitor’s notion of non-bypassability. Principles found in the
context of Structure/Trust contribute to the ability of the mechanism to protect itself from
tampering. A large number of the principles apply to the understandability of the
mechanism, but some go beyond the original abstraction to address issues such as large-
scale composition, maintainability, evolution, performance, and usability

Conflicts in Design Principles
Design principles need to be scoped and revisited during development, since there can be
potential conflicts between their system specific interpretations. One principle can
override or alter another principle. Though listing all potential conflicts is beyond the
scope of this study, one example is the conflict between requirements of software
engineering principle of “portability and reusability” and that of minimization; another is
“minimized sharing” vs. “least common mechanism.” These conflicts might not be
satisfied simultaneously, but depending on the goals of the system, one principle may be
emphasized to a greater extent than the other.

 Design Principles for Security

 Trustworthy Commodity Computation and Communication 21

References and Bibliography
[1] Francis Afinidad. An Interval Algebra-Based Temporal Access Control Protection

Architecture. PhD dissertation, Naval Postgraduate School, Monterey, California, June
2005.

[2] James P. Anderson. Computer security technology planning study. Technical Report
ESDTR-73-51, Air Force Electronic Systems Division, Hanscom AFB, Bedford, MA, 1972.
(Also available as Vol. I,DITCAD-758206. Vol. II, DITCAD-772806).

[3] Ross Anderson. Security Engineering. Wiley and Sons, Inc., 2000.

[4] William A. Arbaugh, D. Faber, and J. Smith. A secure and reliable bootstrap architecture. In
Proceedings 1997 IEEE Symposium on Security and Privacy, Oakland, CA, May 1997, pp.
65-71.

[5] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, Basic
concepts and taxonomy of dependable and secure computing, IEEE Transactions on
Dependable and Secure Computing, 1(1):11-33, 2004.

[6] N. Davis. Developing secure software. The DoD Software Tech, 8(2):3–7, 2005.

[7] Department of Defense, Directive 8500.1, Information Assurance (IA), 24 October 2002.

[8] Edsger W. Dijkstra. The Structure of the “THE”-Multiprograming System. Communications
of the A.C.M., 11(5):341–346, 1968.

[9] Morrie Gasser. Building a Secure Computer System. Van Nostrand Reinhold, New York,
NY, 1988.

[10] Intel. Intel Architecture Software Devloper’s Manual, Volume 3: System Programming
Guide. Intel Corporation, Santa Clara, CA, 1999.

[11] Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen, and George W. Dinolt, The Trusted
Computing Exemplar Project, Proceedings of the 2004 IEEE Systems Man and Cybernetics
Information Assurance Workshop, West Point, NY, June 2004, pp. 109-115.

[12] Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen, and Terry V. Benzel, “SecureCore
Architecture and Requirements,” in preparation.

[13] ISO/IEC. ISO/IEC 15408 - Common criteria for information technology security evaluation,
July 2005.

[14] Philippe A. Janson. Using type-extension to organize virtual-memory mechanisms. SIGOPS
Oper. Syst. Rev., 15(4):6–38, 1981.

[15] Philippe Janson. Using type extension to organize virtual memory mechanisms. PhD thesis,
MIT (also MIT/LCS/TR-167), Cambridge, Massachusetts, September 1976.

[16] Butler Lampson. Protection. In Proc. 5th Princeton Conf. on Information Sciences and
Systems, pages 437–443, Princeton, NJ, 1971.

[17] B.W. Lampson. A note on the confinement problem. Communications of the A.C.M.,
16(10):613–615, 1973.

[18] Teresa F. Lunt, Dorothy E. Denning, Roger R. Schell, Mark Heckman and W. R. Shockley,
Element-level classification with A1 assurance, Computer and Security, 7:73-82, 1988.

 22

[19] Daryl McCullough, A hookup theorem for multilevel security, IEEE Transactions of
Software Engineering, 16(6):563-568, 1990.

[20] Jonathan Millen. The cascading problem for interconnected networks. In Fourth Aerospace
Computer Security Applications Conference, Orlando, FL, December 1988, pp. 269–273.

[21] National Research Council, Trust in Cyberspace, ed. Fred Schneider, National Academy
Press, Washington, D.C., 1999.

[22] Peter G. Neumann. Principled assuredly trustworthy composable architectures. Technical
Report CDRL A001 Final Report December 28, 2004, SRI, Menlo Park, CA, 2004.

[23] David L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the A.C.M., 15(12):1053–1058, 1972.

[24] Charles P. Pfleeger and Shari Lawrence Pfleeger. Security in Computing. Prentice Hall, Inc,
Third edition, 2003.

[25] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[26] Michael D. Schroeder, David D. Clark, and Jerome H. Saltzer. The Multics kernel design
project. Proceedings of Sixth A.C.M. Symposium on Operating System Principles, pages
43– 56, November 1977.

[27] Michael D. Schroeder and Jerome H. Saltzer. A hardware architecture for implementing
protection rings. Comm. A.C.M., 15(3):157–170, 1972.

[28] Daniel Sterne, On the buzz word ‘Security Policy’, Proceedings of the IEEE Symposium on
Research on Security and Privacy, Oakland, California, May 1991, pp. 219-230.

[29] Rita Summers. Secure Computing. McGraw Hill, New York, NY, 1997.

[30] Trusted Computing Group, TPM Main, Part 1, Design Principles, Specification Version 1.2,
Revision 85, 13 February 2005,
https://www.trustedcomputinggroup.org/downloads/specifications/tpm/tpm.

[31] W. Wulf and Mary Shaw. Global variable considered harmful. SIGPLAN Not., 8(2):28–34,
1973.

