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I. Introduction 
Security vulnerabilities are rampant throughout our information infrastructures. The 
majority of commodity computing and communication platforms have been designed to 
meet performance and functionality requirements with little attention to trustworthiness. 
The transformation of traditional stand-alone computers into highly networked, 
pervasive, and mobile computing systems profoundly increases the vulnerabilities of 
current systems, and exacerbates the need for more trustworthy computing and 
communications platforms.    

While there is a significant history of secure systems design and development focusing 
on one or more of the triad of hardware, networking and operating systems, there are few 
worked examples [20].  To date, only special purpose systems begin to meet the 
requirements to counter either the modern or historical threats. In spite of over thirty 
years of research and development, a trustworthy product built at the commodity level 
remains elusive. 
The SecureCore project is designing a secure integrated core for trustworthy operation of 
mobile computing devices consisting of: a security-aware processor, a small security 
kernel and a small set of essential secure communications protocols. The project is 
employing a clean slate approach to determine a minimal set of architectural features 
required for use in platforms exemplified by secure embedded systems and mobile 
computing devices.   
In addition to security, other factors including performance, size, cost and energy 
consumption must all be reasonably accounted for when building a secure system.  These 
factors are especially important for viability in the commodity market, where client 
computing devices have constrained resources but high performance requirements. Our 
goal is not security at any price, but appropriate levels of security that permit desirable 
levels of performance, cost, size and battery consumption.   
As a prelude to our clean-slate design, we have reviewed the fundamental security 
principles from more than four decades of research and development in information 
security technology. As a result of advancing technology, we found that some of the early 
“principles” require re-examination. For example, previous worked examples of 
combinations of hardware, and software may have encountered problems of performance 
and extensibility, which may no longer exist in today’s environment. Moore’s law in 
combination with other advances has yielded better performance processors, memory and 
context switching mechanisms.  Secure systems design approaches to networking and 
communication are beginning to emerge and new technologies in hardware-assisted 
trusted platform development and processor virtualization open hither to previously 
unavailable possibilities. 

Our analysis of key principles for secure computing started with the landmark work of 
Saltzer and Schroeder [25] and surveyed the refinement of these principles as systems 
have evolved to the present.  This report provides a distillation, synthesis and 
organization of key security systems design principles, describes each principle, and 
provides examples where needed for clarity. Although others have described various 
principles and techniques for the development of  secure systems, e.g. [3], [9], [22], [24], 
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[25], [29], it was felt that a concise articulation of the principles as they are applied to the  
development of the most elemental components of a basic security system would be 
useful. In developing this report we have focused on the principles as they may be most 
applicable to SecureCore.  A later report, “SecureCore Architecture and Requirements” 
[12], that uses these principles to define a high level architecture for SecureCore and a set 
of requirements, which will then be refined into a design specification.  As a separate 
component of this work, a series of analysis reports will compare and contrast 
SecureCore to alternative modern information technology projects such as the TCG TPM 
[30] and various virtual machine based systems.   
A common limitation of previous and ongoing efforts to articulate secure software 
development principles is the premise that “security vulnerabilities result from defects 
that are unintentionally introduced into the software during design and development” [6]. 
In contrast to those efforts and the software engineering “safety” paradigm upon which 
they rely, the articulation of design principles for SecureCore differs in two ways.  First, 
our perspective not only acknowledges the risk of unintentional flaws, it explicitly 
assumes that unspecified functionality may be intentional.  An adversary within the 
development process is assumed.  Second, our analysis considers both the design of 
components as well as the composition of components to form a coherent security 
architecture that takes into account hardware, software and networking design elements. 
The remainder of this section provides the definitions for commonly used terms, and an 
illustration of our overall taxonomy of security principles.  Following this we present, in 
separate sections, the principles for: structure, logic and function, and system lifecycle.  
Finally, we end with some “lessons from the past,” and identify some potential conflicts 
in the application of the described principles. 

A. Definitions 

Component: any part of a system that, by itself, provides all or a portion of the total 
functionality required of a system. A component is recursively defined to be an individual 
unit, not useful to further subdivide, or a collection of components up to and including 
the entire system. A component may be software, hardware, etc.  For this report it is 
assumed that an atomic component – one not consisting of other components – may 
implement one or more different functions, but the degree of trustworthiness of the 
component is homogeneous across its functions. 

A system is made up of one or more components, which may be linked (interact through 
the same processor), tightly coupled (e.g., share a bus), distributed (interact over a wire 
protocol), etc.   
Failure: a condition in which, given a specifically documented input that conforms to 
specification, a component or system exhibits behavior that deviates from its specified 
behavior.  

Module: a unit of computation that encapsulates a database and provides an interface for 
the initialization, modification, and retrieval of information from the database.  The 
database may be either implicit, e.g. an algorithm, or explicit. 
Process: a program in execution. 
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Reference Monitor Concept: an access control concept that refers to an abstract machine 
that mediates all accesses to objects by active entities. By definition, the ideal mechanism 
is protected from unauthorized modification and can be analyzed for correctness [2]. 
Security Mechanisms: system artifacts that are used to enforce system security policies. 

Security Principles: guidelines or rules that when followed during system design will aid 
in making the system secure 

Security Policies: Organizational Security Policies are “the set of laws, rules, and 
practices that regulate how an organization manages, protects, and distributes sensitive 
information.” [28] System Security Policies are rules that the information system 
enforces relative to the resources under its control to reflect the organizational security 
policy. In this document, “security policy” will refer to the latter meaning, unless 
otherwise specified. 

Service: processing or protection provided by a component to users or other components.  
E.g., communication service (TCP/IP), security service (encryption, firewall). 

Trustworthy (noun): the degree to which the security behavior of the component is 
demonstrably compliant with its stated functionality (e.g., trustworthy component). 
Trust: (verb) the degree to which the user or a component depends on the trustworthiness 
of another component.  For example, component A trusts component B, or component B 
is trusted by component A. Trust and trustworthiness are assumed to be measured on the 
same scale. 

  
 

B. Security Design Principles Overview 

Security design principles can be organized into logical groups, which are illustrated in 
Figure 1. The logical groupings for the principles are in shaded boxes whereas the 
principles appear in clear boxes. For example, Least Privilege is a principle and appears 
grouped under Structure/Trust. In the case of “Secure System Evolution,” the principle is 
in its own group. 
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Figure 1. Taxonomy of security design principles 

 

II. Structure 
Structural design principles affect the fundamental architecture of the system: how the 
components relate to each other and the nature of their interfaces. We start with the 
fundamental need for economy and elegance in a system. 

A. Economy and Elegance 

Least Common Mechanism 
The principle of least common mechanism states that if multiple components in the 
system require the same function or mechanism, then there should be a common 
mechanism that can be used by all of them.   Thus, the various components do not have 
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separate implementations of the same function; rather, the function is created once. 
Examples of the application of this principle include device drivers, libraries, and 
operating system resource managers. 
Using least common mechanism will help to minimize the complexity of the system by 
avoiding unnecessary duplicate mechanisms. Another benefit is maintainability, since 
modifications to the common function can be performed (only) once, and the impact of 
proposed modifications can be more easily understood in advance. Also, the use of 
common mechanisms will facilitate the construction and analysis of (1) non-by-passable 
system properties and (2) the encapsulation of data (see also “Minimized Sharing”). 
Consideration should be given to the problem of persistent state as it relates to a common 
mechanism.  The common mechanism may need to retain state related to the context of 
the  calling component.  Whenever possible, the system should be organized to avoid this 
since: (1) retention of state information can result in significant increases in complexity, 
and (2) can result in state that is shared by multiple components (see “Minimized 
Sharing”). Sometimes various forms of linking can permit a common mechanism to 
utilize state information specific to the calling component, and, with sufficient low-level 
support, the mechanism can even assume the privilege attributes of its calling component. 
[10] 

Clear Abstractions 
The principle of clear abstractions states that a system should have simple, well-defined 
interfaces that clearly represent the data and functions provided. The elegance (e.g., 
clarity, simplicity, necessity, sufficiency) of the system interfaces, combined with a 
precise definition of their behavior promotes thorough analysis, inspection and testing as 
well as correct and secure use of the system.  Clarity of abstractions is difficult to 
quantify and a description will not be attempted here.  Some of the techniques used to 
create simple interface are: the avoidance of redundant entry points, the avoidance of 
overloading the semantics of entry points and of the parameters used at entry points, and 
the elimination of unused entry points to components. 

Information hiding [23] is a design discipline for ensuring that the internal representation 
of information does not unnecessarily perturb the correct abstract representation of that 
data at an interface (see also Secure System Evolution). 

Partially Ordered Dependencies  
In applying the principle of least common mechanism, if the shared mechanism also 
makes calls to or otherwise depends on services of the calling mechanisms, creating a 
circular dependency, performance and liveness problems can result.  The principle of 
partially ordered dependencies says that the calling, synchronization and other 
dependencies in the system should be partially ordered.  
A fundamental tool in system design is that of layering [8], whereby the system is 
organized into functionally related modules or components, and where the layers are 
linearly ordered with respect to inter-layer dependencies.  While a partial ordering of all 
functions in a given system may not be possible, if circular dependencies are constrained 
to occur within layers, the inherent problems of circularity can be more easily managed 
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[26]. 
Partially ordered dependencies and system layering contribute significantly to the 
simplicity and coherency of the system design (see also  “Assurance through Reduced 
Complexity”).  

Efficiently Mediated Access 
The mediation of access to resources is often the predominant security function of 
security systems, which can result in performance bottlenecks if the system is not 
designed correctly. The principle of efficiently mediated access [1] states that the access 
control mechanism for each subset of the policy should be performed by the most 
efficient system mechanism available while respecting layering and still meeting system 
flexibility requirements. A good example of this is the use of hardware memory 
management mechanisms to implement various access control functions, e.g. [10], [27].  

Minimized Sharing 
The principle of minimized sharing states that no computer resource should be shared 
between components or subjects (e.g., processes, functions,  etc.) unless it is necessary to 
do so. Minimized sharing helps to simplify the design and implementation. It is evident 
that in order to protect user-domain information from active entities, no information 
should be shared unless that sharing has been explicitly requested and granted (see also 
“Secure Defaults”). For internal entities, sharing can be motivated by the principle of 
least common mechanism, as well as to support user-domain sharing. However, internal 
sharing must be carefully designed to avoid performance and covert channel problems 
[17]. There are various mechanisms to avoid sharing and mitigate the problems with 
internal sharing. 
To minimize the sharing induced by common mechanisms, they can be designed to be re-
entrant or virtualized, so that each component depending on that mechanism will have a 
virtual private data space. Virtualization logically partitions the resource into discrete, 
private subsets for each dependent component. The shared resource is not directly 
accessible by the dependent components. Instead an interface is created that provides 
access to the private resource subsets.  Practically any resource can be virtualized, 
including the processor, memory and devices.  Encapsulation is a design discipline or 
compiler feature for ensuring there are no extraneous execution paths for accessing the 
private subsets (see also “information hiding,” under Secure System Evolution). Some 
systems use global data to share information among components. A problem with this 
approach is that it may be difficult to determine how the information is being managed  
[31].  Even though the original designer may have intended that only one component 
perform updates on the information, the lack of encapsulation allows any component to 
do so. 
To avoid covert timing channels, in which the processor is one of the shared components, 
a scheduling algorithm can ensure that each depending component is allocated a fixed 
amount of time [11].  A development technique for controlled sharing is to require the 
execution durations of shared mechanisms (or the mechanisms and data structures that 
determine its duration), to be explicitly stated in the design specification, so that the 
effects of sharing can be verified.   
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Reduced Complexity 
Given the current state of the art, a conservative assumption must be that every complex 
system will contain vulnerabilities, and it will be impossible to eliminate all of them, 
even in the most highly trustworthy of systems. Application of the principle of reduced 
complexity contributes to the ability to understand the correctness and completeness of 
system security functions, and facilitates identification of potential vulnerabilities. The 
corollary of reduced complexity states that the simpler a system is, the fewer 
vulnerabilities it will have. An example of this is a bank auto teller, which, due to the 
simplicity of its interface (a very limited set of requests), has relatively few functional 
security vulnerabilities compared to many other widely used security mechanisms. 

From the perspective of security, the benefit to this simplicity is that it is easier to 
understand whether the intended security policy has been captured in the system design.  
For example, at the security model level, it can be easier to determine whether the initial 
system state is secure and whether subsequent state changes preserve the system security 
properties. 
B. Secure System Evolution 
The principle of secure system evolution states that a system should be built to facilitate 
the maintenance of its security properties in the face of changes to its interface, 
functionality structure or configuration.  These changes may include upgrades to the 
system, maintenance activities, reconfiguration, etc. (see also, Secure System 
Modification, and Secure Failures). The benefits of this principle include reduced 
lifecycle costs for the vendor, reduced cost of ownership for the user, as well as improved 
system security.  Just as it is easier to build trustworthiness into a system from the outset 
(and for highly trustworthy systems, impossible to achieve without doing so), it is easier 
to plan for change than to be surprised by it. 
Although it is not possible to plan for every possibility, most systems can anticipate 
maintenance, upgrades, and changes to their configurations.  For example, a component 
may implement a computationally intensive algorithm.  If a more efficient approach to 
solving the problem emerges, then if the component is constructed using the precepts of 
modularity and information hiding [14], [15], [23], it will be easier to replace the 
algorithm without disrupting the rest of the system.    
Rather than constructing the system with a fixed set of operating parameters, or requiring 
a recompilation of the system to change its configuration, startup or runtime interfaces 
can provide for reconfiguration. In the latter case, the system designer needs to take into 
account the impact dynamic reconfiguration will have on secure state.  
Interoperability can be supported by encapsulation at the macro level: internal details are 
hidden and standard interfaces and protocols are used. For scalability, the system can be 
designed so that it may easily accommodate more network connections, more or faster 
processors, or additional devices.  A measure of availability can be planned into the 
system by replication of services and mechanisms to manage an increase in demand, or a 
failure of components. 
Constructing a system for evolution is not without limits. To expect that complex systems 
will remain secure in contexts not envisioned during development, whether 
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environmental or related to usage, is unrealistic. It is possible that a system may be secure 
in some new contexts, but there is no guarantee that its “emergent” behavior will always 
be secure. 

C. Trust 

Trusted Components 
The principle of trusted components states that a component must be trustworthy to at 
least a level commensurate with the security dependencies it supports (i.e., how much it 
is trusted to perform its security functions by other components).  This principle enables 
the composition of components such that trustworthiness is not inadvertently diminished 
and consequently, where trust is not misplaced. 

Ultimately this principle demands some metric by which the trust in a component and the 
trustworthiness of a component can be measured; we assume these measurements are on 
the same, abstract, scale. This principle is particularly relevant when considering systems 
and those in which there are complex “chains” of trust dependencies. 

A compound component consists of several subcomponents, which may have varying 
levels of trustworthiness.  The conservative assumption is that the overall trustworthiness 
of a compound component is that of its least trustworthy subcomponent. It may be 
possible to provide a security engineering rationale that the trustworthiness of a particular 
compound component is greater than the conservative assumption, but a general analysis 
to support such a rationale is outside of the scope of this report. 

This principle is stated more formally: 
 

Basic types 
component   

t: integer  /* level of trust or trustworthiness – this is cast as integer for  
convenience - any linear ordering will do */ 

System constant functions and their axioms  
subcomponent(a, b:component): boolean  /* a is a subcomponent of b */ 

depend(a, b: component): boolean  /* a depends on b */ 
sec_depend(a, b: component): boolean  /* a has security dependency on b 
*/ 

axiom 1.. ∀ a, b: component( 

sec_depend(a, b)  
⇒ depend(a, b)) /* but not visa versa */ 

trust(a, b: component): t  /* the degree of sec_depend */ 
axiom  2.. ∀ a, b:component( 
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 sec_depend(a, b)  
⇒ trust (a,b) > 0)  

trustworthy(a: component): t  /* a is trustworthy to the degree of t */ 

axiom 3.. ∀ a, b:component(  /* sub-component trustworthiness */ 

  subcomponent(a,b) ⇒ 

   trustworthy(b) ≤  trustworthy(a)) 
Principle of trusted components.  

 ∀ a:component( 

   ∃ b:component (sec_depend(a,b) ⇒ 

    trust(a,b) ≤ trustworthy(b))) 

 

Hierarchical Trust for Components  
The corollary of hierarchical trust for components states that the security dependencies in 
a system will form a partial ordering if they preserve the principle of trusted components. 
To be able to analyze a system comprised of heterogeneously trustworthy components for 
its overall trustworthiness, it is essential to eliminate circular dependencies with regard to 
trustworthiness.  Clearly, if a more trustworthy component located in a lower layer of the 
system were to depend upon a less trustworthy component in a higher layer, this would, 
in effect, put them in the same equivalence class: less trustworthy.   
Trust chains have various manifestations.  For example, the root certificate of a certificate 
hierarchy is the most trusted node in the hierarchy, whereas the leaves may be the least 
trustworthy nodes in the hierarchy.  Another example occurs in a layered high assurance 
secure system where the security kernel (including the hardware base), which is located 
at the lowest layer of the system, is the most trustworthy component. 

This principle does not prohibit the use of overly trustworthy components.  For example, 
in a low-trust system the designer may choose to use a highly trustworthy component, 
rather than one that is less trustworthy because of availability or other criteria (e.g., an 
open source based product might be preferred). In this case, the dependency of the highly 
trustworthy component upon a less trustworthy component does not degrade the overall 
trustworthiness of the resulting system.  

Inverse Modification Threshold 
The corollary of inverse modification threshold states that the degree of protection 
provided to a component must be commensurate with its trustworthiness. In other words, 
as the criticality of (i.e., trust in) a component increases, the protections against its 
unauthorized modification should also increase. This protection can come in the form of 
the component’s own self-protection and trustworthiness, or from protections afforded to 
the component from other elements or attributes of the architecture. Unauthorized 
modification could take place through penetration of the component (e.g., an attack that 
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bypasses the intended interfaces), misuse of poorly designed interfaces, or from 
surreptitiously placed trapdoors.   

Techniques to show the absence of trapdoors and penetration vulnerabilities can be 
applied to the construction of highly trustworthy components.  Examples of the 
application of this principle can be seen in the hardware, microcode, and low level 
software of trustworthy systems: none of these elements is easy to modify.   

Hierarchical Protection 
The principle of hierarchical protection states that a component need not be protected 
from more trustworthy components.  In the degenerate case of the most trusted 
component, it must protect itself from all other components.  In another example, a 
trusted computer system need not protect itself from an equally trustworthy user, 
reflecting use of untrusted systems in “system high” environments where the users are 
highly trustworthy. 

Minimized Security Elements 
The principle of minimized security elements states that the system should not have 
extraneous trusted components.  This principle has two aspects: cost and complexity of 
security analysis. Trusted components, necessarily being trustworthy, are generally more 
costly to construct, owing to increased rigor of development processes (see “Procedural 
Rigor”).  They also require greater security analysis, to qualify their trustworthiness. 
Thus, to reduce cost, and decrease the complexity of the security analysis, a system 
should contain as few trustworthy components as possible.  
The analysis of the interaction of trusted components with other components of the 
system is one of the most important aspects of the verification of system security.  If 
these interactions are unnecessarily complex, the security of the system will also be more 
difficult to ascertain than one whose internal trust relations are simple and elegantly 
constructed. Generally, fewer trusted components will result in fewer internal trust 
relationships and a simpler system.  For example, a novice multilevel secure system 
designer may be tempted to solve every security problem with one or more “trusted 
subjects,” creating a system that is unnecessarily complex. 

Least Privilege 
The principle of least privilege states that each component should be allocated sufficient 
privileges to accomplish its specified functions, but no more.  This limits the scope of the 
component’s actions, which has two desirable effects: (1) security impact of a failure of 
corruption of the component will be minimized, and (2) the security analysis of the 
component will be simplified.  The result is a safer and more understandable system. 
Least privilege is such a pervasive principle that it is reflected in all aspects of the 
system. For example, interfaces may be constructed that are available to only certain 
subsets of the user population.  In the case of an audit mechanism, there may be an 
interface for the audit manager, who configures the audit settings; an interface for the 
audit operator, who ensures that audit data is safely collected and stored; and, finally, yet 
another interface for the audit reviewer.  
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In addition to its manifestations at the system interface, least privilege can be used as a 
guiding principle for the internal structure of the system itself. This can take several 
forms.  Closely aligned with the notions of modularity and encapsulation [23], one aspect 
of internal least privilege is to construct modules so that only the elements encapsulated 
by the module are directly operated upon [31]. Elements external to a module that may be 
affected by the module’s operation are indirectly accessed through interaction (e.g., via a 
function call) with the module that contains those elements.  Another aspect of internal 
least privilege is that the scope of a given module or component should only include 
those system elements that are necessary for its functionality, and that the modes by 
which the elements are accessed should also be minimal. 

Self-reliant Trustworthiness 
The principle of self-reliant trustworthiness states that systems should minimize their 
reliance on external components for system trustworthiness.  If a system were required to 
maintain a connection with another external entity in order to maintain its 
trustworthiness, then that system would be vulnerable to drops in the connection.  
Instead, a system should be trustworthy by default with the external connection used as a 
supplement to its function. 
The benefit to this principle is that the isolation of a system will make it less vulnerable 
to attack. Clearly, if this were not the case, then attack scenarios would be devised to 
isolate the system and thus bring down its defenses.  In a highly networked environment, 
this would be a problem for the targeted system, but also perhaps calamitous for other 
systems on the network. 

A corollary to this relates to the ability of the component to operate in isolation and then 
resynchronize with other components when it is rejoined with them (see the principle of 
secure failures). 

D. Composition 

Secure Distributed Composition 
Many of the design principles for secure systems deal with how components can or 
should interact (e.g., see Hierarchical Trust). The composition of distributed components 
can magnify the relevancy of these principles.  In particular, the translation of security 
policy from a stand-alone to a distributed system can have unexpected “emergent” results 
(see also, Secure System Evolution in II.B). The principle of secure distributed 
composition states that the composition of distributed components that enforce the same 
security policy should result in a system that enforces that policy at least as well as the 
individual components do.  For example, consider a set of components that support 
similar subjects and objects [16] and enforce the same access control policy on those 
objects.  Under this principle, if the components are composed into a distributed system 
that supports the same policy, and information contained in objects is transmitted 
between components, then the transmitted information must be at least as well protected 
in the receiving component as it was in the sending component.  Communication 
protocols and various distributed data consistency mechanisms can help to ensure 
consistent policy enforcement across a distributed system. 
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In another example, consider a distributed system in which all subjects and objects are 
associated with labels from a sensitivity hierarchy of Top Secret (TS), Secret (S), 
Confidential (C), Unclassified (U), and the usual multilevel mandatory access control 
policy  is enforced. Also, since the system components are not very trustworthy, each 
component may only present to users information with “adjacent” sensitivity (e.g., 
component A handles TS and S, and component B handles S and C), so that in the event 
of leakage, the information does not leak too “far.”  The networking (i.e., composition) of 
components A and B can result in a “cascade” of sensitivities such that if A leaks TS 
information to an S user, TS information can wind up on B, presenting users with a wider 
range of sensitivities than the system policy allows [20].  

Thus, to ensure correct system-wide level of confidence of correct policy enforcement, 
enforcement, the security architecture of a distributed composite system must be 
thoroughly analyzed.  

Trusted Communication Channels 
The principle of secure communication channels states that when composing a system 
where there is a threat to the communication between components, each communications 
channels must be trustworthy to a level commensurate with the security dependencies it 
supports (i.e., how much it is trusted to perform its security functions by other 
components). Several techniques can be used to mitigate threats, and enhance the 
trustworthiness of communication channels.  Three are discussed here. 

First, use of the channel may be restricted by protecting access to it with a suitable access 
control mechanism such as a reference monitor located beneath or within each 
component. By controlling and limiting access to the channel, possible misuse of the 
channel can be reduced. In addition, the components with authorized access to the 
channel may be more trustworthy than other components.  
Second, end-to-end communications technologies, such as encryption, may be used to 
eliminate security threats in the channel's physical environment. In some cases, an 
alternative to platform-based encryption is the use of in-line encryption devices.  When 
such devices are employed, they must be at least as trustworthy as the reference monitors 
of the linked components. 

Finally, intrinsic characteristics assumed for and provided by the channel must be 
specified.  With such documentation, it is possible for system designers to understand the 
nature of the channel as initially constructed and to assess the impact of any subsequent 
changes to the system. 

III. Logic and function 
The principles associated with logic and function are applicable at both the system and 
component level. 

Secure defaults 
The principle of secure defaults applies to the initial configuration of a system as well as 
to the negative nature of access control and other security functions. First, the “as 
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shipped” configuration of a system or component should not aid in violation of security 
policy.  There have been many examples in recent years of commercial systems that have 
arrived in a configuration that was not adequately self-protective, resulting in security 
breaches before the correct configuration could be established.  Some examples of 
mechanisms for which secure initial configuration may apply are audit, firewalls and 
passwords.  

The second part of this principle says that security mechanisms should deny requests 
(e.g., to obtain access to a file) unless the request is found to be well formed and 
consistent with the security policy.  The alternative is to allow a request unless it is 
shown to be inconsistent with the policy. In a large system, the conditions that must be 
satisfied to grant a request that is by default denied are often far more compact and 
complete than those that would need to be processed to deny a request that is by default 
granted (for example, consider the filtering rules in a firewall). 

Secure Failure 
The principle of secure failure states that a failure in a system function or mechanism 
should not lead to violation of security policy. Failure is a condition in which a 
component’s behavior deviates from its specified behavior for an explicitly documented 
input (unspecified behavior, which includes response to inputs that do not conform to 
specification, is addressed in IV). Ideally, the system should be capable of detecting 
failure at any stage of operation (initialization, normal operation, shutdown, maintenance, 
error detection and recovery) and take appropriate steps to ensure security policies are not 
violated. 

Once a failed security function is detected, the system may reconfigure itself to 
circumvent the failed component, while maintaining security, and still provide all or part 
of the functionality of the original system, or completely shut itself down to prevent any 
(further) violation in security policies. For this to occur, the reconfiguration functions of 
the system should be designed to ensure continuous enforcement of security policy 
during the various phases of reconfiguration. Another mechanism that can be used to 
recover from failures is to rollback to a secure state (which may be the initial state) and 
then either shutdown or replace the service or component that failed with orthogonal or 
replicated mechanisms.  
Failure of a component may or may not be detectable to the components using it. This 
principle indicates that components should fail in a state that denies rather than grants 
access.  For example, a nominally “atomic” operation interrupted before completion 
should not break security policy and hence must be designed to cope with interruption 
events by employing higher level atomicity and rollback mechanisms such as 
transactions, etc. If a service is being used, its atomicity properties must be well 
documented and characterized so that the component availing itself of that service can 
detect and handle interruption events appropriately. For example, a system should be 
designed to gracefully respond to disconnection and support resynchronization and data 
consistency after disconnection. 
Replication of policy enforcement mechanisms, sometimes called “defense in depth,” can 
allow the system to continue securely even when one mechanism has failed to protect the 
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system. If the mechanisms are similar, however, the additional protection may be 
illusory, as the intruder simply repeats the same or similarly difficult attacks on each 
mechanism.  Similarly, in a networked system, breaking the security on one system or 
service may enable an attacker to do the same on other similar replicated systems and 
services. By employing multiple protection mechanisms, whose features are significantly 
different, the possibility of attack repetition can be reduced. However, it should be noted 
redundancy techniques may increase resource usage and may adversely affect the system 
performance. 

Self Analysis 
The principle of self-analysis states that the component must be able to assess its internal 
functionality to a limited extent (within the limits of the “incompleteness theorem”) at 
various stages of execution and that this self-analysis capability must be commensurate 
with the level of trustworthiness invested in the system.  
At the system level, self-analysis can be achieved via hierarchical trustworthiness 
assessments established in a bottom up fashion. In this approach [4], the lower level 
components check for data integrity and correct functionality (to a limited extent) of 
higher level components. For example, trusted boot sequences involve a lower level 
component attesting to the trustworthiness of the next higher-level components so that a 
transitive trust chain can be established. At the root, a component attests to itself, which 
usually involves an axiomatic or environmentally enforced assumption about its integrity. 

These tests can be used to guard against externally induced errors or internal malfunction 
or transient errors. By following this principle, some simple errors or malfunctions can be 
detected without allowing the effects of the error or malfunction to propagate outside the 
component. Further, the self test can also be used to attest to the configuration of the 
component, detecting any potential conflicts in configuration with respect the expected 
configuration. 

Accountability and Traceability 
The principle of accountability and traceability states that actions that are security-
relevant must be traceable to the entity on whose behalf the action is being taken. 
This principle requires the designer to put into place a trustworthy infrastructure that can 
record details about actions that affect system security (e.g., an audit subsystem). To do 
this, the system must not only be able to uniquely identify the entity on whose behalf the 
action is being carried out, but also record the relevant sequence of actions that are 
carried out. Further, the accountability policy ought to require the audit trail itself be 
protected from unauthorized access and modification. The principle of least privilege aids 
in tracing the actions to particular entities, as it increases the granularity of 
accountability. Associating actions with system entities, and ultimately with users, and 
making the audit trail secure against unauthorized access and modifications provide non-
repudiation, as once some action is recorded, it is not possible to change the audit trail. 
Another important function that traceability and accountability serves is in the analysis of 
events leading to violation of security policy. If a security violation occurs, analysis of 
the audit log may provide additional information that may be helpful in determining the 



  Design Principles for Security 

     Trustworthy Commodity Computation and Communication 15 

path or component that allowed the violation of security policy. 

Continuous Protection of Information 
Principle of continuous protection of information states that information protection 
required by the security policy (e.g., access control to user-domain objects) or for system 
self-protection  (e.g., maintaining integrity of kernel code and data) must be protected to 
a level of continuity consistent with the security policy and the security architecture 
assumptions. No guarantees about information integrity, confidentiality or privacy can be 
made if it is left unprotected while under control of the system (i.e., during the creation, 
storage, processing or communication of the information and during system initialization, 
execution, failure, interruption, and shutdown). Following the precepts of the reference 
monitor [2], to provide continuous enforcement of the security policy, every request must 
be validated, and the reference monitor must protect itself. Invalid requests should not 
result in a system state such that the system cannot properly enforce the security policy.  
The principle of secure failure also applies here in that it involves a roll back mechanism 
that can return the system to a secure state. 
To ensure protection, parameters at interfaces must be chosen so that security critical 
values are provided by more trustworthy components.  In addition, at the interface to a 
security mechanism, the security-relevant operation should appear atomic.  This will 
eliminate time-of-check-to-time-of-use vulnerabilities.  
Cryptography is one of the primary mechanisms used to protect information in transit and 
in storage.   
To protect information during computation various low-level hardware mechanisms can 
be used such as instructions that enable switching contexts atomically and mechanisms 
that enable memory protection.  

In some environments, it is desirable to allow the system security policies to be 
“modifiable” at runtime, for example to adjust to catastrophic external events. Changes to 
policies must not only be traceable but also verifiable, i.e., must be possible to verify that 
the changes do not violate security policies. The system architect should understand the 
consequences of allowing modifiable policies in a system i.e., depending on the type of 
access control and the actions that are allowed and controlled by the policies, certain 
configuration changes may lead to inconsistent states or discontinuous protection due to 
the complex or undecidable nature of the problem. One approach to this problem is the 
use of pre-verified configuration definitions where the transition from old to new policies 
is effectively atomic and any residual effects from the old policy are guaranteed to not 
conflict with the new policy. 

Economic Security 
The principle of economic security states that security mechanisms whose strength is 
commensurate with the level of trustworthiness should be used in components that 
enforce security policies.  
Mechanisms involved in the enforcement of security policies incur computation and 
resource overhead. The strength of the mechanisms must be sufficient to satisfy the 
system requirements. Using security mechanisms of greater strength than necessary may 
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unnecessarily incurs extra overhead. For example, if a 2048 bit key may be sufficient to 
satisfy the requirements for policy enforcement, a 4096 bit key, though relatively more 
secure, only incurs more computation overhead unnecessarily.  
Another prudent design guideline is that the security mechanisms used to protect an 
entity should be no more expensive than the entity itself, i.e., the security mechanism 
should not be more costly than the expected damage of a security breach. However, 
designers should remember that when trust chains are involved, the overall 
trustworthiness requirement determines the strength of mechanism needed, as the system 
is no more trustworthy than the least trustworthy mechanism in the chain. 
Mechanisms that aid in enforcement of security may utilize many basic building blocks. 
Cryptography is often one of many mechanistic choices.  Because it is computationally 
intensive, it has to be used sparingly and only when other, simpler mechanisms are 
insufficient. Even when encryption is used, the strength of encryption must be selected 
appropriately after considering key storage, key exchange, exposed attack space etc.  

Application of this principle reinforces the requirement  to design the system from the 
ground up, i.e., to incorporate simple mechanisms at the lower layers that can be used as 
building blocks for higher level mechanisms. 

Performance Security  
The principle of performance security states that security mechanisms should be 
constructed so that they do not degrade system performance unnecessarily. A corollary to 
this principle is that the demand for performance and functionality should not blind the 
system designer to system security requirements. For example, in a banking system, an 
animated user interface may not be as critical as protecting user’s financial assets. 
There is often a tradeoff between functionality and performance. The more functionality 
a system has, the more generic its components must be, and hence the system will be less 
optimized to perform specific functions. Similarly, there may be a tradeoff between 
performance and enforcement of security policy. On one extreme, complete elimination 
of all security checks may provide slight performance improvements. However, if 
enforcement of security policy is one of the intended goals for the system, the system 
should be designed such that enforcement of security policy does not significantly 
degrade system performance. This forces the designer to incorporate mechanisms that aid 
in enforcement of security policy, but incur minimum overhead, such as low-level atomic 
mechanisms on which higher level mechanisms can be built. Such low level mechanisms 
are usually very specific, have very limited functionality, and are heavily optimized for 
performance.  For example, once access rights to a portion of memory is granted, 
hardware mechanisms may be used to ensure that all further accesses involve the correct 
memory address and access mode [10]. 

Ergonomic Security 
The principle of ergonomic security states that the user interface for security functions 
and supporting services should be intuitive and user friendly, and provide appropriate 
feedback for user actions that affect policy and its enforcement. The mechanisms that 
enforce security policy should not be intrusive to the user and should be designed not to 
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degrade user efficiency.  
There is often a tradeoff between usability and the strictness of policy enforcement. For 
example, if every action that requires authorization required the user to prove their 
identity explicitly, it would be intrusive, annoying, and could potentially make the system 
unusable. To overcome this deficiency, the designer may decide to cache credentials for 
an appropriate duration and use them to enforce policy. However, caching credentials 
adds complexity to the system and their use  creates new vulnerabilities.   
The system should provide the user with feedback and warnings when insecure choices 
are being made.  For example, web interfaces often warn users that information may not 
be protected during transmission. In such cases, a user may reconsider entry of personal 
information. The designer must seek a solution that both satisfies the security policy 
requirements and makes the system easy and efficient to use.  

Care must also be given to interfaces through which system administrators configure and 
setup the security policies.  Ideally, system administrators must be able to understand the 
impact of their choices. They must be able to configure systems before startup and 
administer them during runtime, in both cases with  confidence that their intent is 
correctly mapped to the system’s mechanisms. 

Acceptable Security 
The principle of acceptable security requires that the level of privacy and performance 
the system provides should be consistent with the users’ expectations. The perception of 
personal privacy may affect user behavior, morale and effectiveness. Based on the 
organizational privacy policy and the system design, users should able to restrict their 
actions to protect their privacy. When systems fail to provide intuitive interfaces or meet 
privacy and performance expectations, users may either choose to completely avoid the 
system or use it in ways that may be inefficient or even insecure.  
Thus ergonomic and acceptable security, coupled with user education, are essential. 

IV. System life cycle 
Several principles guide the system life cycle to contribute to the initial and ongoing 
security of the system.  

Use Repeatable, Documented Procedures 
The principle of repeatable and documented procedures means that the techniques used to 
construct a component should permit the same component to be completely and correctly 
reconstructed at a later time. Repeatable and documented procedures support the creation 
of  a component that are identical to the component created earlier that may be in 
widespread use. In the case of other system artifacts (such as documentation and testing 
results), repeatability supports consistency and inspectability.    
A procedure can range from a script to compilable code, to steps taken for the reporting 
and remediation of system deficiencies.  Procedures may be formalized and can be based 
upon standards. For example, the Common Criteria [13] provide a framework for the 
derivtion of system requirements that is comprised of the following steps: definition of 
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system goals and its concept of operation; identification of threats to the defined system; 
identification of assumptions regarding the system and its environment; identification of 
organizational policies external to the system; identification of security objectives for the 
system and its environment based on previous steps; and specification of requirements 
that will meet the objectives. 

Procedural Rigor 
The principle of procedural rigor  states that the rigor of the system life cycle process 
should be commensurate with its intended trustworthiness.  Procedural rigor defines the 
depth and detail of the system lifecycle procedures.  These procedures contribute to the 
assurance that the system is correct and free of unintended functionality in two ways.  
First, they impose a set of checks and balances on the life cycle process such that the 
introduction of unspecified functionality is thwarted. Second, rigorous procedures applied 
to specifications and other design documents contribute to the ability to understand the 
system as it has been built, rather than being misled by an inaccurate system 
representation, thus helping to ensure that its security and functional objectives have been 
met.  

Highly rigorous development procedures supporting high trustworthiness are costly to 
follow.  However, the lowered cost of ownership resulting from fewer flaws and security 
breaches during the product maintenance phase can help to mitigate the higher initial 
development costs associated with a rigorous life cycle process. 

Secure System Modification 
The principle of secure system modification states that system modification procedures 
must maintain system security with respect to the goals, objectives, and requirements of 
its owners. Upgrades and modifications to systems can transform a secure system into an 
insecure one.  The procedures for system modification must ensure that, if the system is 
to maintain its trustworthiness, the same rigor that was applied to its initial development 
must be applied to any changes.  Because modifications can affect a system’s ability to 
maintain secure state, careful security analysis of the modification is needed prior to its 
implementation and deployment. This principle parallels the principle of secure system 
evolution in Section II. 

Sufficient User Documentation 
The principle of sufficient user documentation states that users should be provided with 
adequate documentation and other information such that they contribute to rather than 
detract from system security. Even though the system may be designed for ergonomic 
security, its use may not be intuitively obvious. The availability of documentation and 
training can help to ensure a knowledgeable cadre of users and administrators. Where 
complexity must be minimized and where on-line documentation is inadequate, clearly 
written documentation and appropriate training is needed. If users do not know how to 
use a component properly, do not know standard security procedures, or do not know 
proper behavior to prevent social engineering attacks, they can easily introduce new 
system vulnerabilities.  
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V. Commentary and Lessons Learned 
Include Security in Design from the Start 
The problem with system security is that it is easy to find flaws, but it is difficult to find 
all flaws.  Thus, if post-development flaw discovery and remediation is chosen as the 
path to achieving a secure system, then it is difficult to make a statement regarding the 
completeness of the security mechanism.  Similarly, security functions that are added to a 
pre-existing system require analysis to ensure that they will perform with the level of 
trustworthiness intended.  This analysis will extend to all elements depending on or upon 
which the security addition depends, as well as all resources shared by the addition, e.g. 
global data.  Furthermore, unless the system has already been rigorously developed, the 
security analysis is likely to become so complex that starting anew would be more 
effective. 
Generally, security redesign results in significant restructuring of existing systems so that 
they are aligned with the principles stated in Section I, e.g., [26].  Again, at a certain 
point it is prudent to apply the principles a priori rather than to attempt a retrofit. 

The Philosopher’s Stone  
Experience has shown that when the principles described herein are applied to the 
construction of  a system, development time and effort may rise in comparison to typical 
“time to market” driven commercial development practices. This conflict has resulted in 
various proposals for using untrustworthy components to achieve trustworthy systems, 
with mixed results. 

Replication and other forms of fault tolerance have been described as candidates for 
developing trustworthy systems from untrustworthy components [21]. Although there are 
a number of constructs and techniques shared between security and fault tolerance [5], 
the presence of fault tolerance does not necessarily achieve security, and, conversely, 
security does not necessarily result in fault tolerance. 
Similarly, the notion of “defense in depth” [7] describes security derived from the 
application of multiple mechanisms, e.g., to create a series of barriers against attack by an 
adversary.  However, there is no theoretical basis to assume that defense in depth, in and 
of itself, could imply a level of trustworthiness greater than that of the individual security 
components. Without a sound security architecture and supporting theory, the non-
constructive nature of these approaches renders them equivalent to temporary patches. 
“Balanced assurance” [18] defines a hierarchy of security policies, where different 
policies may be allocated to different components of a system.  In this approach, the 
trustworthiness of a given component must be consistent with the importance of that 
component’s policy (i.e., greater importance requires greater trustworthiness).  It is said 
that when the components are composed according to a precisely described set of rules, 
the trustworthiness of the resulting system will be equal to that of the most trustworthy 
component.  While this approach shows promise with respect to specific examples, a 
coherent generalization has not been defined. 
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Other Approaches to Secure System Composition 
A significant part of the cost of building a secure system is that of demonstrating its 
trustworthiness through its “evaluation” by a third party [13].  An approach to lowering 
these costs is to use components that have already been evaluated as to their 
trustworthiness, and thereby bypassing or minimizing the need to evaluate the system 
itself.   

A variety of formal analyses has been performed to support the composition of security 
components by modeling the security properties that would result, e.g., [19].   Also, there 
has been support for  “evaluation by pieces,” which would acknowledge previously 
evaluated components, and not require their examination in the evaluation of the 
composite system.  However, this approach has only been made available to “low 
assurance” systems, as it lacks a well-formed theory of correctness. 

The Reference Monitor  
The reference monitor concept [2] is an abstraction for the necessary and sufficient 
features of the component that enforces access control in a secure system. Its three 
characteristics are: the mechanism is protected from modification so that it always is 
capable of enforcing the intended access control policy; it cannot be bypassed, so that it is 
always consulted about requests to access to the information it is intended to protect; and 
it is understandable.  To date, no viable alternative to the reference monitor concept has 
been proposed. 

Because it is so abstract, the reference monitor concept provides no details regarding how 
an implementation might be constructed. Implementations will, to a greater or lesser 
extent, attempt to achieve the abstraction. The principles discussed in this document 
apply to the design and implementation of real systems. Some of those principles map 
directly to the reference monitor concept itself, while others provide the framework for 
constructing an implementation that is as close as currently possible to the idealized 
mechanism. For example, the principle of continuous protection of information clearly 
supports the reference monitor’s notion of non-bypassability. Principles found in the 
context of Structure/Trust contribute to the ability of the mechanism to protect itself from 
tampering. A large number of the principles apply to the understandability of the 
mechanism, but some go beyond the original abstraction to address issues such as large-
scale composition, maintainability, evolution, performance, and usability 

Conflicts in Design Principles 
Design principles need to be scoped and revisited during development, since there can be 
potential conflicts between their system specific interpretations. One principle can 
override or alter another principle. Though listing all potential conflicts is beyond the 
scope of this study, one example is the conflict between requirements of software 
engineering principle of “portability and reusability” and that of minimization; another is 
“minimized sharing” vs. “least common mechanism.” These conflicts might not be 
satisfied simultaneously, but  depending on the goals of the system, one principle may be 
emphasized to a greater extent than the other.   
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