
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2002; 53:1979–2002 (DOI: 10.1002/nme.369)

Design space optimization using a numerical design
continuation method

Il Yong Kim1 and Byung Man Kwak2;∗;†

1System and Design Laboratory; Department of Mechanical Engineering; ME3051; KAIST; 373-1
Kusong-dong; Yusong-ku; Taejon 305-701; Korea

2Department of Mechanical Engineering; ME3011; KAIST; 373-1 Kusong-dong; Yusong-ku;
Taejon 305-701; Korea

SUMMARY

A generalized optimization problem in which design space is also a design to be found is de9ned
and a numerical implementation method is proposed. In conventional optimization, only a portion of
structural parameters is designated as design variables while the remaining set of other parameters
related to the design space are often taken for granted. A design space is speci9ed by the number
of design variables, and the layout or con9guration. To solve this type of design space problems, a
simple initial design space is selected and gradually improved while the usual design variables are
being optimized. To make the design space evolve into a better one, one may increase the number of
design variables, but, in this transition, there are discontinuities in the objective and constraint functions.
Accordingly, the sensitivity analysis methods based on continuity will not apply to this discontinuous
stage. To overcome the di=culties, a numerical continuation scheme is proposed based on a new concept
of a pivot phase design space. Two new categories of structural optimization problems are formulated
and concrete examples shown. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The aim of optimization is to determine the values of design variables in order to extremize
an objective function while satisfying given constraints. Structural optimization refers to
size, shape and topology. Size optimization is determining optimum section properties, such
as thickness or diameter. The aim of a shape optimization is to determine the shape of a
system, in which design variables represent the shape, whereas in a topology optimization,
the topology of the system is to be selected.
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Since Schmit [1] proposed a general approach to structural optimization using 9nite ele-
ment analysis and non-linear mathematical programming in 1960, sizing problems have been
routine [2; 3]. Francavilla et al. [4] formulated a 9llet shape optimization problem to mini-
mize stress concentration based on discretized forms. The theory of shape design sensitivity
analysis is now well established by Cea [5], Zolesio [6], Reousselet [7], and Haug et al. [8].
Other ad hoc methods based on more or less intuitive concepts are also developed [9; 10].
Extensive reviews on structural shape optimization and shape sensitivity analysis can be found
in Haftka [11] and Kwak [12].
Bendsoe and Kikuchi [13–15] suggested the homogenization method for topology optimiza-

tion of a general 2-D linear elasticity. They used the method to obtain equivalent material
properties of in9nitely many micro cells with voids. Square and rectangular shaped holes
were used to represent the microstructures. Cells can have diJerent void sizes and orienta-
tions. The compliance of this material was optimized through a redistribution of the porosity
using an optimality criterion procedure. Suzuki and Kikuchi [16] applied this method to the
problems of anisotropic material. Kikuchi and his group extended the idea to various other
problems [16–18]. Tenek and Hagiwara [19] used linear programming and compared the
results with those of the optimality criterion method for static problems and vibration prob-
lems. They investigated the material distribution for plate problems [20]. Bendsoe et al. [21]
suggested a method to restrict the checkerboard which often appears during their optimiza-
tion process. The homogenization method is well-summarized by Hassani and Hinton [22].
Bendsoe [23], Kirsch [24] and Rozvany et al. [25] gave extensive reviews on analytical
and approximation methods for topology optimization. Yang and Chuang [26] used arti9cial
material and employed linear programming instead of the optimality criterion method. Xie and
Steven [27] developed an evolutionary method for topology optimization in which elements at
low stress level are removed. This method like the previous one [10] is very simple in its idea
and use, but sometimes it occurs that an element once removed cannot be recovered when
necessary. They also proposed a shape optimization method where a new gird is added near
an element at high stress level [28], but this method cannot provide the quantitative eJect of
grid addition on the objective function or constraints.
In all the previous researches on topology optimization, the eJect of design domain change

has not been considered: that is, the shape of design domain is kept 9xed during optimization
process. In some cases when the shape of a design domain is not prede9ned, 9xing the
design domain can be a signi9cant restriction in obtaining the optimum topology that would
be obtained otherwise.
In the combined shape and topology optimization, up to now, it is achieved by itera-

tively performing topology optimization and shape optimization one after another. Maute and
Ramm [29] have proposed an adaptive topology optimization using an integrated model. They
perform shape optimization and topology optimization separately and map the results to each
other using a ‘background mesh’. They change the design patch for topology optimization
using an adaptive mesh re9nement strategy of FEM. In this method, a re9ning indicator was
proposed to re9ne unclear domain boundaries. Although the clearness of the structural layout
can be improved by this more or less ad hoc methodology, it cannot be assured that the
re9nement is properly done in order to minimize the objective function, because the re9n-
ing indicator dose not provide any information of the re9nement eJect on the objective or
constraint functions.
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DeRose and Diaz [30–32] proposed a meshless, wavelet-based scheme for a layout
optimization. They adopted a 9ctitious domain and wavelet-Galerkin technique to overcome
the problems of mesh degradation in convergence for large-scale layout optimization prob-
lems. Kim and Yoon [33] proposed a multi-resolution topology optimization in which the
design optimization is performed progressively from low to high resolution. Although the
scheme [30–32] may be used eJectively for a large-scale problem and the design domain reso-
lution is increased automatically in Reference [33], the re9nement level is the same throughout
the domain at a given stage, because the re9nement is not done adaptively based on re9ne-
ment sensitivities of the objective function. In all of the above methods except the adaptive
topology optimization, the features of design variables are 9xed during optimization process,
and only values of design variables are optimized. In this sense, they are 9nding only a limited
version of optimum topology using conventional size optimization methods.
In this paper, a design space optimization problem is proposed, in which the feature of a

design in relation to topology as well as the usual design variables for shape and size is to
be optimized. In order to change the feature of a design, the number of design variables is
increased progressively from a small to a large number, and this corresponds to the evolution
of design space from a simple to a sophisticated state. The capability of enlarging a design
domain is a signi9cant improvement over the conventional topology design methods, where
it is not possible. The present method provides an e=cient tool for this capability based on
an analytical sensitivity analysis using the concept of a pivot phase design space.
The new formulation is applied to two categories of structural optimization problems: topol-

ogy optimization and plate thickness distribution problems. In the proposed topology optimiza-
tion, the design domain 9xed up to now is relaxed to obtain an improved domain. To change
the domain shape, sensitivity analyses of the objective and constraint functions with respect
to design pixels are performed using the proposed numerical scheme. For a prescribed amount
of design domain area, an optimum design domain shape as well as corresponding optimum
topology inside the design domain can be found. Also, it is shown that these optimum shapes
cannot always be obtained even when started with a large design domain.
As a second example, the optimum layout problem of design patches is taken to minimize

the objective function of plate problems. The advantages of the proposed approach shown in
this example are that (1) the eJect of a patch re9nement on the objective and constraint func-
tions is calculated quantitatively by the proposed sensitivity analysis, and (2) the re9nement is
performed adaptively based on the obtained sensitivities. The evolution of design patch layout
resembles a mesh adaptation of FEM. However, the objective and formulation are diJerent:
the layout adaptation is done to minimize the objective function by reconstructing design
patches, whereas the aim of mesh adaptation is to improve analysis accuracy by remeshing
9nite elements.

2. DESIGN SPACE OPTIMIZATION

In a structural optimal design dealt up to now in the literature, various design variables for
size and shape are 9rst selected, and a prescribed performance function of the structure is
optimized with respect to these variables, while satisfying given constraints. In this case, the
design space is 9xed either as a 9nite dimensional vector space or as an in9nite dimensional
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Figure 1. Design space including topology.

vector space. In the proposed design space problem, the design space is also unknown that
is to be found in the optimization process. The design space to be considered is shown in
Figure 1 where, as indicated, topology is included, in addition to the usual design variables.
In topology optimization of pixel-like approach, a pixel is a design unit, and the number of

design units is selected before optimization process. A design unit has features, such as size,
density, thickness, and shape. Usually, one feature is used as a design variable. Examples are
the thickness of a plate patch for a plate thickness optimization and the density of a pixel for
a topology optimization.
A conventional standard structural optimization problem is stated as follows:

extremize f(b)
subject to g(b)60

h(b)=0
b∈ S
(S is 9xed)

where f(b) is an objective function, g(b) denotes inequality constraints, h(b) equality con-
straints, and b design variables. The topology is assumed prescribed. A topology in this paper
is loosely de9ned as the layout of structural members or elements, or in general, of design
units as de9ned earlier. The design space S is de9ned as

S ≡{N; TN ; {b1; b2; : : : ; bN}}

where TN denotes a set of topologies for the N design units. This design space is selected
before optimization, and only the design variables {b1; b2; : : : ; bN} are optimized while the
remaining parameters are 9xed during the optimization process.
The proposed generalized structural optimization problem, to be called here the design space

optimization problem, is de9ned as

extremize f(b; S)
subject to g(b; S)60
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Figure 2. Results of previous studies for 2-D
short cantilever topology optimization.

Figure 3. Candidates of design
domain for given volume.

h(b; S)=0
G(S)60
H (S)=0
b∈ S
(S is variable)

In this optimization, the design space as well as design variables is to be determined. The
dimensionality N of the design space is an important unknown to be found. In other words,
the number of design variables and their topologies change during the optimization process.
The symbols G(S) and H (S) are design space constraints: G(S)60 and H (S)=0 indicate
that the spatial layout of the design be within or equal to some speci9ed region, respectively.
In the following, this formulation is speci9ed for two categories of problems, and solution
methods proposed.

2.1. Category 1. Topology optimization

Figure 2 shows the usual topology optimization problem for 2-D short cantilever, minimizing
compliance under a prescribed amount of material. The shape of the design domain is rect-
angular and a vertical load is applied at the tip. The problem statement is

minimize f(�)
subject to g(�)60

(P is given)

where f(�) is compliance to be minimized, g(�) denote constraint functions, and density �
of each design pixel is a design variable in the domain P. The volume of the design domain,
that is the amount of material to be used, is given.
The 9gure shows some results of previous studies. Even though the kind of material used

and optimization methods are diJerent, the overall layouts of the optimums have some simi-
larity: the upper- and lower-edge on the left carry loads. In these results, it is seen that the
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Figure 4. Generalized topology optimization. Figure 5. Comparison of conventional optimi-
zation and proposed generalized optimization.

shape of the selected design domain aJects the optimum results, and it was noted by Bendsoe
and Kikuchi [13] that a diJerent choice of a design domain will generate a diJerent topology.
This means that by not allowing the change of design domain, one restricts the design to a
narrow scope and thus cannot obtain the optimum topology for more general setting. Figure 3
shows that there are many candidates of a design domain for a given volume of domain and
material to be used. Sometimes there may be cases when only a rectangular design domain
must be used due to geometric constraints. However, in many cases, this rectangular shape
is just an assumed one; and may not be the optimum for the given set of loads, boundary
conditions, and amount of material. We are making a method available to expand the design
space in some optimization sense.
In our problem, design variables are densities of cells, and the shape of the design

domain is a feature of the design space. A design space optimization problem or a
generalized optimization problem in this case can be de9ned as

minimize f(�; S(P))
subject to g(�; S(P))60

where both densities and the shape of the domain are to be determined during optimization
process. The set of domain shapes is denoted by S(P). In the present problem, a shape
is represented as an assemblage of cells. Figure 4 shows the de9nition of this generalized
topology optimization problem, and this is a combination of interior topology optimization
and domain boundary shape optimization, as shown in Figure 5. In this problem, cell densities
of the domain are design variables {b1; b2; : : : ; bN}, and the shape of the domain is unknown,
that is, the design space S is composed of varying number of cells denoted by N which is
dependent on the domain P, and can be expressed as S= {N; TN ; {b1; b2; : : : ; bN}}.
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Figure 6. Procedure of shape change or updating
design variable domain.

Figure 7. Comparison of conventional optimiza-
tion and generalized optimization.

For the domain interior topology optimization, there are several schemes, such as homo-
genization method, arti9cial material method, and evolutionary method as already noted in
the literature survey. To integrate the topology and shape optimization, a new scheme for
the domain boundary shape optimization is necessary. Not like the usual shape optimization
where the topology of 9nite element mesh remains the same, in our formulation, new design
pixels or elements are added to represent the change of the boundary of the design domain.
Figure 6 shows such a change. For this stage, it has been impossible to obtain sensitivities
because the addition of a design variable is a discrete process. In the following, a design
continuation concept is proposed and utilized.

2.2. Category 2. Plate thickness optimization

The aim of the plate thickness optimization in this paper is to optimize thickness of a plate
for a given set of loading and boundary conditions to minimize compliance. Before doing
optimization, the plate is discretized into design patches and each design patch is then a
design unit. A design variable is thickness of a design patch. The problem statement is

minimize f(t)
subject to g(t)60

where t denotes thickness of design patches.
Like the previous example, the proper layout of design patches is unknown. If one changes

the layout of design patches adaptively while performing a design patch thickness optimiza-
tion, one can obtain better results. Figure 7 explains this idea: the resulting layout of design
patches may be diJerent from the 9xed one of a conventional optimization. The proposed de-
sign adaptation is an integration of plate patch thickness optimization and plate patch layout
optimization.
Mesh adaptation in FEM is performed to obtain more accurate results. On the other hand,

the aim of the design adaptation is to minimize an objective function or to improve the
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Figure 8. Procedure of design space optimization.

performance of a structure. An improved layout of design patches is obtained in the design
adaptation. The design adaptation problem for plate thickness optimization is stated as follows

minimize f(t; S)
subject to g(t; S)60

where S is the design space composed of the set of all layouts of design patches. In order
to change the layout of design patches during optimization process, a new scheme is needed,
and this is the main topic of the next section.

3. NUMERICAL DESIGN CONTINUATION METHOD

When a design space is improved, it evolves into more complex one starting from an initially
simple one. The procedure is equal to constructing a new set of design variables. Figure 8
shows a scheme of design space optimization procedure. Conventional design variable value
optimization is drawn in the white boxes: an initial design space and design variable values
are selected before iteration. According to the information obtained from a sensitivity analysis,
a convergence check is made and if not converged, the design is improved. To do the design
space optimization, an outer loop is added, which is drawn in the gray boxes. When the
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design variable value optimization is converged in the current design space, design space
convergence is checked. If it is not converged, the design space is improved and, in this
stage, the number of design variables is increased.
The sensitivity of a functional Q(b; z) with respect to a usual design variable is expressed as

dQ
db

=
@Q
@b

+
@Q
@z

dz
db

where b is a design variable, and z is a state variable. When the number of design variables
is increased, the sensitivity can be expressed conceptually as

dQ
dn

=
@Q
@n

+
@Q
@z

dz
dn

; or more properly;
SQ
Sn

=
SQ
Sn

∣∣∣∣
z
+

@Q
@z

Sz
Sn

where n represents the number of design variables. However, the real phenomena of the
objective function change are not simple: the sensitivities depend not only on the number of
added design variables but also on their initial features, such as layout, size, and shape. Since
n is a discrete variable, the functional is not continuous, and this means it is impossible to
obtain derivatives when new design variables are created, in usual sense.
For example, when a pixel is added in a topology optimization, the objective function—

compliance in this paper—changes discontinuously. And adding a design variable is equivalent
to increasing the dimension of design variable space by one. This is because we assume that
the value of the added design unit is the same as an already existing one. If one introduce a
pivot phase as de9ned in the following, however, it is possible to have the changed design
space with added pixels connected continuously to the current design space. In this 9gure, the
pivot phase is (N +1) dimensional even though it has the same design as that of the present
n-dimensional design space.
The process proposed is a numerical design continuation which is made possible by the

introduction of the pivot phase. This has a design space diJerent from the original one, but it
has the same design as the original one by appropriately setting the values of the new design
variables. The mechanical states are the same and corresponding functionals have the same
values as those at the original design. Figure 9 illustrates relations among the three phases
for creating new design variables in topology optimization and plate optimization. The phases
on the left hand are the original ones before the design space is improved, and those on the
right represents a design with an improved design space. Both the state and the design space
are diJerent from each other. The intermediate pivot phase introduced has the same design
space as the improved one, but the values of the new design variables added are set at a level
so that this pivot phase gives the same state and design as the original design. In this way
the continuity of a functional of mechanical state is established between designs of diJerent
dimensionality.
For the topology optimization, the pivot phase is obtained by setting the densities of newly

added design variables at zero. The thickness of new re9ned or partitioned plate patches is
set at the same level as that of the original plate patch for the plate optimization problem.
The sensitivities for the new design variables can then be obtained at these pivot phases.
The total sensitivities (Q′) are de9ned as the sum of contributions of old design variable

sensitivities (Q′
O) and new design variable sensitivities (Q′

N).

Q′=Q′
O + Q′

N
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Figure 9. Establishing continuity of functionals through pivot phase.

Sensitivities from the new design variable candidates are obtained as Q′
N =Q′

+�u; u→u∗ at the
pivot phase. The subscript + denotes directional derivatives; for the topology optimiza-
tion example, we have to use directional derivatives, even though we may not need to
use directional derivatives for the plate optimization example. Subscript u∗ represents the
value of design variables set for the pivot phase. That is, u∗ is zero for the topology op-
timization example, and the thickness of the original plate patch for the plate optimization
example.
The directional derivatives at the pivot phase of a bilinear functional au(z; Uz), load linear

form lu(Uz) and a state variable z are de9ned

a′+�u; u→u∗(z; Uz)≡ lim
�→0
�¿0

1
�
[au+��u(z; Uz)− au(z; Uz)]|u→u∗

l′+�u; u→u∗(Uz)≡ lim
�→0
�¿0

1
�
[lu+��u(Uz)− lu(Uz)]|u→u∗

z′+; u→u∗ = z′+; u→u∗(x; u)≡ lim
�→0
�¿0

1
�
[z(x; u+ ��u)− z(x; u)]|u→u∗

where + or +�u denotes that directional derivatives are taken, z displacement function, and
Uz a variational displacement.

The variational form of the state equation is

au(z; Uz)= lu(Uz) ∀Uz∈Zadm
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where the design space is the new one at this pivot phase. By taking the variations of both
sides

au(z+; u→u∗ ; Uz)= l′+�u; u→u∗(Uz)− a′+�u; u→u∗(z; Uz) ∀Uz∈Zadm

The measure of structural performance may be written as

 =
∫
P
g(z;∇z; u) dP

where P is the state variable domain of the pivot phase, which can be diJerent from that of
the original phase. For the sensitivity analysis, take variation of this functional

 ′
+; u→u∗ =

∫
P
(gzz′+; u→u∗ + g∇z∇z′+; u→u∗ + gu|+; u→u∗ �u) dP

and introduce an adjoint equation

au(�; U�)=
∫
P
(gz

U�+ g∇z∇ U�) dP ∀ U�∈Zadm

Following the same procedure as in Reference [8] and using the symmetry of the bilinear
form, and from the variations of the state equation, performance functional, and the adjoint
equation, one can obtain the sensitivities with respect to new design variables as

 ′
+; u→u∗ =

∫
P
gu|+; u→u∗ �u dP + l′+�u; u→u∗(�)− a′+�u; u→u∗(z; �)

The method is illustrated by deriving the formulas for the two categories introduced earlier.
At this point, it is noted that the above approach and formulas are useful only when design
variables are newly added. No similar formulas are possible, however, for the case when a
design variable is removed.

3.1. Topology optimization

As a concrete case, a compliance optimization problem is taken

Minimize
∫
V
Fizi dV

Subject to
∫
P
�(x) dP6M0

06�(x)61

where the objective function is compliance, and design variables are densities �(x). The de-
sign variable domain P is also to be found. Figure 10 shows an original phase and a pivot
phase. The pivot phase has a design space (S) with design variable domain (P) diJerent from
the original one. However, the mechanical state of the pivot phase is made the same as the
original one by taking the densities of newly added design variables to be zero. An arti9-
cial material approach [26] is used with the following relationship between Young’s moduli
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Figure 10. Pivot phase for topology optimization.

and the density:

Ei

E0
=�n

where Ei is intermediate Young’s modulus, E0 a reference one, and n an exponent. It is known
that the solution is much dependent on the choice of n. In subsequent numerical examples, n
is taken as 2.
The state equation is given by∫

P
�ij(z) ij(Uz) dP=

∫
V
Fi Uz i dV ∀Uz∈Zadm:

By using an adjoint equation, the sensitivity of the objective function for a new design variable
is obtained

 ′
+; �→0 =−

∫
P
 ij(z)Dijkl

′

+;�→0  
kl(z) dP

at the pivot phase. The design variable domain P is that of the new design space. Starting
from a simple initial design, the shape of design domain or the design space changes are
obtained while a usual topology optimization is performed in an inner loop. At each stage,
sensitivities with respect to the new design variable candidates are obtained to evaluate the
eJect of the new addition on the objective function. Among these candidates, the candidates
whose sensitivities belong to upper certain percentage are added as new design variables in
the next step. It is important to note that only one additional FEM evaluation is needed for
the sensitivity analysis of a stage. In contrast, the number of FEM analysis is as many as
that of boundary design variables when forward diJerencing is used, as explained with the
numerical examples.
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3.2. Plate optimization

The plate problem to be considered is

Minimize
∫
P
(F + #t)z dP

Subject to
∫
P
t(x) dP6V0

tlower6 t(x)6tupper

where the objective function is compliance, and design variables are thickness t(x). For this
example, although the design variable domain P is 9xed as a region, the design space S
de9ned on P is unknown and to be determined.
As the case of the topology optimization, the new design variable thickness at pivot phase is

set to make the state of the pivot phase becomes equivalent to the original one. This thickness
is written as t∗ as shown in Figure 9.

The variational form of the plate equation is

at(z; Uz)=lt(Uz) ∀Uz∈Zadm

where

at(z; Uz) =
∫
P
D̂(t)[z11 Uz11 + z22 Uz22 + %(z22 Uz11 + z11 Uz22) + 2(1− %)z12 Uz12] dP

lt(Uz) =
∫
P
[F + #t]Uz dP

and D̂(t)=Et3=[12(1− %2)].
The corresponding adjoint equation is de9ned as

at(�; U�)=
∫
P
(F + #t) U� dP ∀ U�∈Zadm

The sensitivity of a new design patch at the pivot phase is obtained as follows:

 ′
+; t→t∗ =

∫
P

{
2#z − Et2

z211 + z222 + 2%z11z22 + 2(1− %)z212
4(1− %2)

}
�t dP

∣∣∣∣
t→t∗

Starting with an initial design patch layout, it becomes more sophisticated as the design space
optimization or design patch layout optimization is progressed as an outer loop. At each
stage, after plate thickness optimization is completed in an inner loop, the sensitivity analysis
is performed to evaluate the patch re9nement eJect on the objective function. Based on the
obtained sensitivity information, the design patch is re9ned adaptively. Again, note that only
one additional FEM calculation is needed to get all the sensitivity information for re9ned
patches.
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Figure 11. Comparison of proposed sensitivity
analysis and FDM for sensitivity evaluations of

ith new design variable candidate.

Figure 12. Schematic of computer programs.

4. NUMERICAL RESULTS AND DISCUSSIONS

4.1. Topology optimization

Figure 11 compares results of the proposed sensitivity analysis and FDM for sensitivity eval-
uations of the ith new design variable candidate. In the proposed sensitivity analysis, an outer
band whose density is nearly zero is added to the original domain, and the sensitivities are
obtained here. The band represents the candidates of new design variables. After calculating
sensitivities for all the candidates, new design variables are selected according to the sensi-
tivities or contributions to the objective function. In this example, upper 35 per cent of the
candidates are selected as new design variables to be added. Through many numerical exper-
iments, it has been found that 20–40 per cent of new design variable selection usually give
good results. While we need just one FEM evaluation for this sensitivity analysis, more than
40 evaluations are necessary if FDM is used to evaluate the sensitivities. Young’s modulus
is 210×109 N m−2, and Poisson’s ratio of 0.3 is used. Because bilinear elements sometimes
cause the problems of checkerboards, eight node isoparametric plane elements are used in this
study. The sensitivities obtained using the formula is compared with those by FDM with a
diJerence of Sb = 0:01 in Table I. Both results match each other very well.
The computer program has a hierarchical structure as shown in Figure 12. Conventional op-

timization program consists of a minimization routine, FEA tool, and an interfacing program.
In this study, DOT [34] and ANSYS have been used for minimization and FEA, respectively.
Sequential quadratic programming (SQP) method was selected in DOT, and the numerical
e=ciency of this method in DOT was satisfactory even for more than 1000 design vari-
ables. A design variable optimization routine (DVO) controls sub-iterations for design variable
optimization. In order to control the number of design variables, a design variable number

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1979–2002



DESIGN SPACE OPTIMIZATION 1993

Table I. Sensitivities of new design variables candidates.

New design variable FDM Analytic
candidate number SQi=�b Q′

i =�b (Q′
i =SQi × 100)%

1 −116:6826 −116:6470 99.97
2 −8:5387 −8:5367 99.98
3 −1:6238 −1:6235 99.98
4 −2:3714 −2:3706 99.97
5 −3:6479 −3:6474 99.99
6 −3:9573 −3:9564 99.98
7 −3:4781 −3:4776 99.99
8 −3:2490 −3:2481 99.97
9 −3:0011 −3:0005 99.98

10 −2:7633 −2:7626 99.97
11 −2:5634 −2:5628 99.98
12 −2:2540 −2:2534 99.97
13 −2:2088 −2:2081 99.97
14 −3:5688 −3:5680 99.98
15 −5:8834 −5:8819 99.97
16 −6:7057 −6:7040 99.97
17 −5:8702 −5:8683 99.97
18 −3:7185 −3:7169 99.96
19 −2:0841 −2:0830 99.95
20 −1:1828 −1:1819 99.92
21 −1:6386 −1:6361 99.85

control program is added as an outer routine. A design space optimization routine (DSO) con-
trols the number of design variables in this main iteration. The data are communicated among
the four routines through ASCII 9les, and the computational costs for these communications
are negligibly low compared to that of FEM evaluations and sensitivity analyses.
A case of conventional topology optimization is compared with that of the proposed op-

timization routine in Figure 13. For both problems, 480 design pixels and the same number
of 9nite elements are used. The design domain shape is 9xed as 30×16 in the conventional
optimization, but the shape can change in the proposed design space optimization. The ini-
tial design domain taken is 30×12. The domain shape changes with the main iterations, and
the optimum shape is diJerent from that of a conventional optimization. Figure 14 shows
the change of the number of design variables along the number of main iterations and the
corresponding optimum objective function changes. The dashed line represents the optimum
objective function of the 9xed domain problem. The objective function of the proposed scheme
is less than that of the conventional problem. As another example, a geometric restriction on
design variable domain is imposed as shown in Figure 15. The convergence of the procedure
is also well illustrated by this.
To study the eJect of domain size and aspect ratio, three types of design domains are

compared in Figures 16(a) and 16(b), respectively. When a su=ciently large domain is used
at the beginning, the optimum becomes a two-bar structure. When one restricts the domain
area as usual, however, optimum topology and corresponding domain shape depends on the
size or the aspect ratio of the domain started. As the aspect ratio de9ned as the height divided
by the width is higher, the topology resembles more a two-bar structure. Figure 16(a) shows
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Figure 13. Change of design domain for design space optimization: (a) design space is
9xed; (b) design space is varying.

Figure 14. Number of design variables and history of optimum objective function: (a) number of design
variables; (b) objective function history.
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Figure 15. Design space constrained problem.

that the optimum of the variable domain problem is not the same as that of the 9xed domain
problem even when the same amount of domain and material is used. Also, for the same
aspect ratio, the optimum of the 9xed domain is diJerent from that of the variable domain, as
shown in the Figure 16(b). This 9gure illustrates that the proposed method enables us to 9nd
new, substantially better optimums, which are not found using the conventional 9xed domain
method. It is also interesting to observe that the present solutions are much clearer than those
on the left side in the 9gure. In addition, the proposed method may have a better chance to
obtain the global optimum because it starts from a simple design space and evolves gradually
to more sophisticated design domains. The number of design variables and comparison of the
optimum objective functions are shown in Figure 17. The speed of improvement is linear but
very steady.
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It is noted that a cell removal strategy as studied in the literature [27] can be utilized but
no such attempt is made here to focus on the idea of the newly developed method. One
may argue that the same optimum can be obtained more e=ciently by using the conventional
9xed domain method, if one starts with a large design domain. Usually, however, how large
is large enough as the proper design domain is not known, and so if one starts with too
large a domain, the topology optimization may cost much more time than by the systematic
approach proposed here. The selection of the initial design domain is up to the user, and the
computational time depends heavily on this choice. Another important point is that it is yet

Figure 16. (a) Comparison of conventional optimization and proposed optimization ac-
cording to design domain size; (b) comparison of conventional optimization and proposed

optimization according to design domain aspect ratio.
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Figure 16. Continued.

not proven whether there is only one optimum topology for a given design domain or aspect
ratio for the example. We have provided another method which can generate other optimum
topology as illustrated by the example in Figure 16.

4.2. Plate thickness optimization

Figure 18 shows the geometry of the problem and the loads to be treated. The loading
condition is a triangularly shaped pressure of 0:1 MPa. Young’s modulus is 210×109 N m−2

and Poisson’s ratio 0.3. Maximum thickness allowed is taken 0:012m and minimum 0:005m.
The design patch used is 10×10. The results for this 9xed design patch layout are shown
in Figure 19. Here, black patches denote the maximum thickness, and white patches the
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Figure 17. Number of design variables and history of optimum objective
function for 30× 24 design domain.

Figure 18. Loading condition of a plate (four edges are clamped).

Figure 19. Optimum plate thickness distribution for 9xed design patch layout.

minimum thickness. Figure 20 shows the change of design patch layout and corresponding
thickness distribution for this loading case. Starting from a simple design patch layout of
5×5, it becomes more elaborated. The 9nal result is similar to the case of the 9xed layout,
but more re9ned in the region of thick structure boundary. The 9xed domain consists of
100 design patches, but in this design adaptation, 79 design patches are used obtaining much
more re9ned result. Figure 21(a) shows the increase of design patch numbers during main
iterations: starting from 25 design patches, it reaches 79 design patches in 6 main iterations.
The history of the objective function is shown and compared with that of the 9xed patch
layout problem in Figure 21(b). Because the design space optimization problem starts from
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Figure 20. Results for design adaptation.

25 design patches, the objective function value is the same with that of the 9xed patch layout
problem with 25 patches. However, the 9nal objective function value is lower even though
the number of design patches used is less than 100.
Figure 22 shows optimum solutions for other loading conditions. For each case, optimum

layout is obtained and compared with that of the 9xed layout design with 100 design patches.
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Figure 21. Number of design variables and history of optimum objective function: (a) number of design
variables; (b) objective function history.

As expected, for every case, the value of the 9nal objective function is less than that of the
9xed layout problem.
In these examples, if su=ciently 9ne deign patches are used, the same results will be

obtained. But in this case, much larger number of design variables as well as 9nite elements
must be used, which increases computational costs in two ways: high computational cost due
to optimization and FEA. For example, if we re9ne the domain to a resolution the same as
that of the proposed adaptation, the required memory is too large to deal with in a desktop
computer due to the extremely large number of design variables. In addition, mesh adaptation
of FEM can be used in the proposed method, which enables e=cient use of 9nite element
meshes. But it requires fully re9ned meshes of FEM if 9xed 9ne design patches are to be
used. Also, as in the topology problems, it may give a better chance of 9nding global optimum
in the proposed method than with the 9xed design patch layout.

5. CONCLUSIONS

A design space optimization problem is proposed and a solution method developed. The
dimension of design variable space is unknown in this problem and to be obtained. The
objective and constraint functionals are discrete functions in terms of the number of design
variables. By introducing a pivot phase between an initial design and a new design with
a diJerent design space, continuity of the functionals has been established, and sensitivity
analysis for the new design variables possible using directional derivatives.
This method is veri9ed with two important categories of problems. In the general topology

optimization, compared to the conventional 9xed design space optimization where the optimum
topology can only be a restricted one, the proposed design space optimization provides us
with a new capability in obtaining better optimums for topology. The second category of
application is plate thickness optimization, where the layout of design patches is adaptively
optimized and the optimum thickness distribution elaborated.
Although the design space is enlarged in both of the two examples, their concepts are

diJerent: in topology optimization, the domain shape changes whereas design patch is elabo-
rated in the plate optimization. It is possible to combine the two diJerent schemes for both
the categories. That is, in addition to shape change, design patch adaptation can be applied
to the topology optimization. However, this is left as a future topic.
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Figure 22. Several examples for plate optimization problem: (a) loading conditions; (b) results for 9xed
design patch layout (10×10); (c) optimum design patch layout for design adaptation; (d) results for

design adaptation; (e) objective function history.
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