Lecture Note of Design Theories of Ship and Offshore Plant

Design Theories of Ship and Offshore Plant Part II. Optimum Design

Ch. 1 Introduction to Optimum Design

Fall 2017

Myung-II Roh

Department of Naval Architecture and Ocean Engineering Seoul National University

esign Theories of Ship and Offshore Plant, September 2017, Myung-II Roh

ydlab 1

Contents

- ☑ Ch. 1 Introduction to Optimum Design
- ☑ Ch. 2 Unconstrained Optimization Method: Enumerative Method
- ☑ Ch. 3 Applications to Design of Ship and Offshore Plant

esign Theories of Ship and Offshore Plant, September 2017, Myung-Il Roh

ydlab 2

Ch. 1 Introduction to Optimum Design

- 1.1 Overview
- 1.2 Problem Statement of Optimum Design
- 1.3 Classification of Optimization Problems
- 1.4 Classification of Optimization Methods

esign Theories of Ship and Offshore Plant, September 2017, Myung-II Ro

ydlab 3

1.1 Overview

sign Theories of Ship and Offshore Plant, September 2017, Myung-Il Rol

rydlab 4

Indeterminate and Determinate Problems (1/2)

Variables: x_1, x_2, x_3

Equation: $x_1 + x_2 + x_3 = 3$

- ✓ Number of variables: 3
- ✓ Number of equations: 1

Because the number of variables is larger than that of equations, this problem forms an indeterminate system.

Solution for the indeterminate problem:

two unknown variables

Number of variables (3) – Number of equations (1)

Example) assume that $x_1 = 1, x_2 = 0$

 $\Rightarrow x_3 = 2$

Equation of straight line

 $y = a_0 + a_1 x$ Where, a_0, a_1 are given.

- ✓ Number of variables: 2 x, y
- √ Number of equations: 1
- \sim We can get the value of y by assuming x.

..... Finding intersection point (x^*, y^*) of two straight lines

$$y = a_0 + a_1 x$$
 Where, a_0, a_1, b_0, b_1 are given.

$$y = b_0 + b_1 x$$

- ✓ Number of variables: 2 x, y
- √ Number of equations: 2

Because the number of variables is equals to that of equations, this problem forms an determinate system.

ries of Ship and Offshore Plant, September 2017, My

∕ydlab ₅

Indeterminate and Determinate Problems (2/2)

Determinate problem

Variables: x_1, x_2, x_3

Equations: $f_1(x_1, x_2, x_3) = 0$

$$f_2(x_1, x_2, x_3) = 0$$

$$f_3(x_1, x_2, x_3) = 0$$

- ✓ Number of variables: 3
- ✓ Number of equations: 3

Since the number of equations is equal to that of variables, this problem can be

What happens if $2 \times f_3 = f_2$?

Then f_2 and f_3 are linearly dependent.

Since the number of equations, which are linearly independent, is less than that of variables, this problem forms an indeterminate system.

Indeterminate problem

Variables: x_1, x_2, x_3

Equations: $f_1(x_1, x_2, x_3) = 0$

$$f_2(x_1, x_2, x_3) = 0$$

$$f_3(x_1, x_2, x_3) = 0$$

If f_1, f_2 , and f_3 are linearly independent, then f_1 and f_2 are only linearly independent, then

- ✓ Number of variables: 3
- √ Number of equations: 2

Since the number of equations is less than that of variables, one equation should be added to solve this problem.

Added Equation Solution We can obtain many sets of

 $\begin{array}{ccc} f_4^1 = 0 & (x_1^1, x_2^1, x_3^1) & \text{solutions by assuming} \\ f_4^2 = 0 & (x_1^2, x_2^2, x_3^2) & \text{different equations.} \\ & & \text{Indeterminate problem} \end{array}$

We need a certain criteria to determine the proper solution. By adding the criteria, this problem can be formulated as an optimization problem.

Example of a Design Problem

Esthetic* Design of a Dress

Find (Design variables)

- Size, material, color, etc.

Constraints

- There are some requirements, but it can be difficult to formulate
- By using the sense of a designer, the requirements are satisfied.

Objective function (Criteria to determine the proper design variables)

- There are many design alternatives.
- Among them, we should select the best one. How?
- Criteria: Preference, cost, etc.
- But it can be also difficult to formulate the objective function.
- → Indeterminate, optimization problem

of Ship and Offshore Plant, September 2017, Myung-II Rol

sydlab 7

Mathematical Model for Determination of Optimal Principal Dimensions of a Ship - Summary ("Conceptual Ship Design Equation")

Find (Design variables) L, B, D, C_B length breadth depth block

Physical constraint

→ Displacement - Weight equilibrium (Weight equation) - Equality constraint

$$\begin{split} L \cdot B \cdot T \cdot C_B \cdot \rho_{sw} \cdot C_\alpha &= DWT_{given} + LWT(L, B, D, C_B) \\ &= DWT_{given} + C_s \cdot L^{1.6}(B+D) + C_o \cdot L \cdot B \\ &+ C_{power} \cdot (L \cdot B \cdot T \cdot C_B)^{2/3} \cdot V^3 \cdot \cdots (2.3) \end{split}$$

Economical constraints (Owner's requirements)

- → Required cargo hold capacity (Volume equation) Equality constraint Delivery date $CC = C L \cdot R \cdot D \cdots (3)$: It is related with the shipbuilding process.
- $CC_{req} = C_{CH} \cdot L \cdot B \cdot D \cdots (3.1)$

Min. Roll Period : e.g., $T_R \ge 12 \text{ sec}.....(6)$

Regulatory constraint

→ Freeboard regulation (ICLL 1966) - Inequality constraint

$$D \ge T + C_{FB} \cdot D \cdots (4)$$

Stability regulation (MARPOL, SOLAS, ICLL)

- DFOC (Daily Fuel Oil Consumption)

$$GM \ge GM_{\text{Re quired}} \cdots (5)$$

Objective function (Criteria to determine the proper principal dimensions)

$$GZ \ge GZ_{\text{Re }quired}$$

Building Cost =
$$C_{PS} \cdot C_s \cdot L^{1.6}(B+D) + C_{PO} \cdot C_o \cdot L \cdot B + C_{PM} \cdot C_{power} \cdot (L \cdot B \cdot T \cdot C_B)^{2/3} \cdot V^3$$

4 variables (L, B, D, C_B), 2 equality constraints ((2.3), (3.1)), 3 inequality constraints ((4), (5), (6))

Determination of Optimal Principal Dimensions of a Ship Engineering Design of Ship (Simplified) Optimization Problem → Minimize/maximize an $L(=x_1), B(=x_2), D(=x_3), C_B(=x_4)$ Find (Design variables) objective function with constraints on design variables depth coefficient Weight equation Find (Design variables) x_1, x_2, x_3, x_4 Equality constraint

 $h(x_1, x_2, x_3, x_4) = 0$ Inequality constraint

 $g(x_1, x_2, x_3, x_4) \le 0$

Objective function

 $f(x_1, x_2, x_3, x_4)$

 $\underbrace{L \cdot B \cdot T \cdot C_B \cdot \rho_{sw} \cdot C_\alpha}_{x_1 \cdot x_2} = \underbrace{DWT_{given}}_{given} + \underbrace{LWT(L, B, D, C_B)}_{widen}$ $x_1 \cdot x_2 \cdot x_4 \cdot C_1 - C_2 - h'(x_1, x_2, x_3, x_4) = h(x_1, x_2, x_3, x_4) = 0$

Objective function (Criteria to determine the proper principal dimensions)

Building
$$Cost = \underbrace{C_{PS} \cdot C_s} \cdot \underbrace{L^{1.6}(B+D)} + \underbrace{C_{PO} \cdot C_o \cdot L \cdot B} + \underbrace{C_{PM} \cdot C_{ma} \cdot NMCR} + \underbrace{f(x_1, x_2, x_3, x_4)} = C_3 \cdot x_1^{1.6} \cdot (x_2 + x_3) + C_4 \cdot x_1 \cdot x_2 + C_5$$

- $T, C_a, P_{SW}, DWT_{Siven}, C_{PS}, C_s, C_{PO}, C_o, C_{PM}, C_{ma}, NMCR \text{ are Given}$

Characteristics of the constraints

- ✓ <u>Physical constraints</u> are usually formulated as <u>equality constraints</u>. (Example of ship design: Weight equation)
- Economical constraints, regulatory constraints, and constraints related with politics and culture are formulated as inequality constraints. (Example of ship design: Required cargo hold capacity (Volume equation), Freeboard regulation (ICLL 1966))

Classification of Optimization Problems and Methods

	Unconstrained optimization problem		Constrained optimization problem		
	Linear	Nonlinear	Linear		Nonlinear
Objective function (example)	Minimize $f(\mathbf{x})$ $f(\mathbf{x}) = x_1 + 2x_2$	Minimize $f(x)$ $f(x) = x_1^2 + x_2^2 - 3x_1x_2$	Minimize $f(\mathbf{x})$ $f(\mathbf{x}) = x_1 + 2x_2$	Minimize $f(\mathbf{x})$ $f(\mathbf{x}) = x_1^2 + x_2^2 - 3x_1x_2$	Minimize $f(\mathbf{x})$ $f(\mathbf{x}) = x_1^2 + x_2^2 - 3x_1x_2$
Constraints (example)	None	None	$h(\mathbf{x}) = x_1 + 5x_2 = 0$ $g(\mathbf{x}) = -x_1 \le 0$	$h(\mathbf{x}) = x_1 + 5x_2 = 0$ $g(\mathbf{x}) = -x_1 \le 0$	$g_1(\mathbf{x}) = \frac{1}{6}x_1^2 + \frac{1}{6}x_2^2 - 1.0 \le 0$ $g_2(\mathbf{x}) = -x_1 \le 0$
Optimization methods for continuous value	① Gradient method - Steepest descent method - Conjugate gradient method - Newton method - Davidon-Fletcher-Powell (DFP) method - Broyden-Fletcher-Goldfarb-Shanno (BFGS) method ② Enumerative method - Hooke & Jeeves method - Nelder & Mead method - Golden section search method		Linear Programming (LP) method is usually used.	Penalty function method: Converting the constrained optimization problem to the unconstrained optimization problem by usin the penalty function, the problem can be solved using unconstrained optimization method.	
			Simplex Method (Linear Programming)	Quadratic programming (QP) method First, linearize the nonli problem and then obtain th to this linear approximation p using the linear programming And then, repeat the lineari Sequential Quadratic Programming (SQP) m First approximate a qu objective function and constraints, find the search and then obtain the solution to quadratic programming proble	Sequential Linear Programming (SLP) method First, linearize the nonlinear problem and then obtain the solution to this linear approximation problem using the linear programming method. And then, repeat the linearization.
					Programming (SQP) method First, approximate a quadratic objective function and linear constraints, find the search direction and then obtain the solution to this quadratic programming problem in this direction. And then, repeat the
Optimization methods for discrete value	Integer programming: ① Cut algorithm ② Enumeration algorithm ③ Constructive algorithm				
Metaheuristic optimization	Genetic algorithm (GA), Ant algorithm, Simulated annealing, etc.				

1.2 Problem Statement of Optimum Design

sign Theories of Ship and Offshore Plant, September 2017, Myung-II Roh

sydlab 11

General Formulation of an Optimization Problem

Minimize

 $f(\mathbf{x})$

Subject to

Objective Function

Constraints

 $g_j(\mathbf{x}) \le 0, j = 1, \dots, m$

: Inequality Constraint

 $h_k(\mathbf{x}) = 0, k = 1, \dots, p$

: Equality Constraint

 $\mathbf{x}_{l} \leq \mathbf{x} \leq \mathbf{x}_{u}$

: Upper and Lower Limits of Design Variables

Where $\mathbf{x} = (x_1, x_2, \dots, x_n)$

Design Variables

sign Theories of Ship and Offshore Plant, September 2017, Myung-Il Rol

JUGLAN 12

Components of an Optimization Problem (1/3)

☑ Design variable

- A set of variables that describe the system such as size and position, etc.
- It is also called 'Free variable' or 'Independent variable'.
- **■** Cf. Dependent Variable
 - : A variable that is dependent on the design variable (independent variable)

☑ Constraint

- A certain set of specified requirements and restrictions placed on a design
- It is a function of the design variables.
- Inequality Constraint ('≤' or '≥'), Equality Constraint ('=')
- Feasible region: Design space where all constraints are satisfied ⇔ Infeasible region

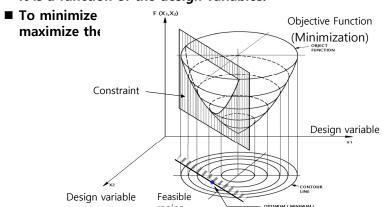
Design Theories of Ship and Offshore Plant September 2017 Myung-II Ro

ydlab 13

Components of an Optimization Problem (2/3)

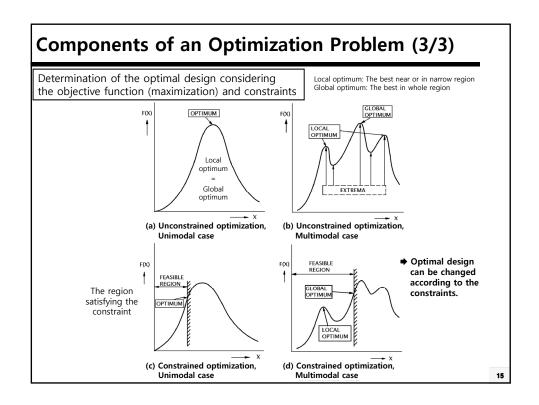
☑ Objective function

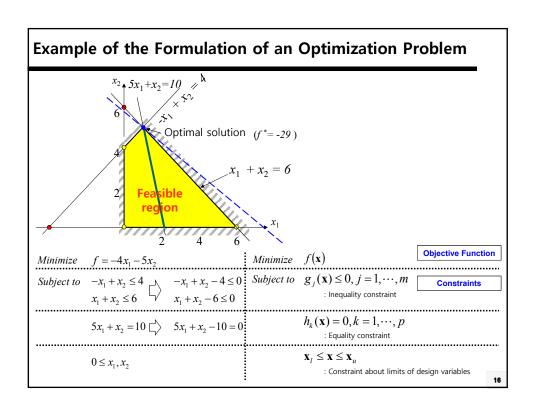
- A criteria to compare the different design and determine the proper design such as cost, profit, weight, etc.
- It is a function of the design variables.



esign Theories of Ship and Offshore Plant, September 2017, Myung-Il Roh

rydlab 14





1.3 Classification of Optimization Problems

esign Theories of Ship and Offshore Plant, September 2017, Myung-II Rol

sydlab 17

Classification of Optimization Problems (1/4)

☑ Existence of constraints

- Unconstrained optimization problem
 - ullet Minimize the objective function f(x) without any constraints on the design variables x.

- **■** Constrained optimization problem
 - ullet Minimize the objective function f(x) with some constraints on the design variables x.

 $\begin{array}{ll} \textit{Minimize} & \textit{f(x)} \\ \textit{Subject to} & \textit{h(x)=0} \\ & \textit{g(x)} \leq 0 \end{array}$

esign Theories of Ship and Offshore Plant, September 2017, Myung-Il Roh

ydlab 18

Classification of Optimization Problems (2/4)

☑ Number of objective functions

■ Single-objective optimization problem

Minimize	$f(\mathbf{x})$
Subject to	$h(\mathbf{x})=0$
	$g(x) \leq 0$

- Multi-objective optimization problem
 - Weighting Method, Constraint Method, etc.

Minimize
$$f_1(x), f_2(x), f_3(x)$$

Subject to $h(x)=0$
 $g(x) \le 0$

esign Theories of Ship and Offshore Plant, September 2017, Myung-II Ro

sydlab 19

Classification of Optimization Problems (3/4)

☑ Linearity of objective function and constraints

- **■** Linear optimization problem
 - The objective function (f(x)) and constraints (h(x), g(x)) are linear functions of the design variables x.

Minimize

$$f(\mathbf{x}) = x_1 + 2x_2$$
Subject to

$$h(\mathbf{x}) = x_1 + 5x_2 = 0$$

$$g(\mathbf{x}) = -x_1 \le 0$$

- Nonlinear optimization problem
 - The objective function (f(x)) or constraints (h(x), g(x)) are nonlinear functions of the design variables x.

Minimize

$$f(\mathbf{x}) = x_1^2 + x_2^2 - 3x_1x_2$$
Subject to

$$h(\mathbf{x}) = x_1 + 5x_2 = 0$$

$$g(\mathbf{x}) = -x_1 \le 0$$

Minimize

$$f(\mathbf{x}) = x_1^2 + x_2^2 - 3x_1x_2$$
Subject to

$$g_1(\mathbf{x}) = \frac{1}{6}x_1^2 + \frac{1}{6}x_2^2 - 1.0 \le 0$$

$$g_2(\mathbf{x}) = -x_1 \le 0$$

20

Classification of Optimization Problems (4/4)

☑ Type of design variables

- **■** Continuous optimization problem
 - Design variables are continuous in the optimization problem.
- **■** Discrete optimization problem
 - Design variables are discrete in the optimization problem.
 - It is also called a 'combinatorial optimization problem'.
 - Example) Integer programming problem

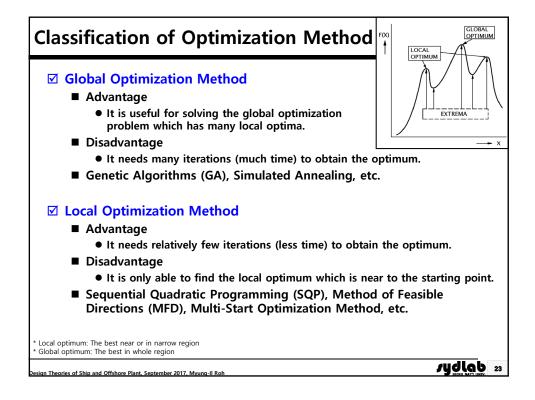
esign Theories of Ship and Offshore Plant, September 2017, Myung-Il Roh

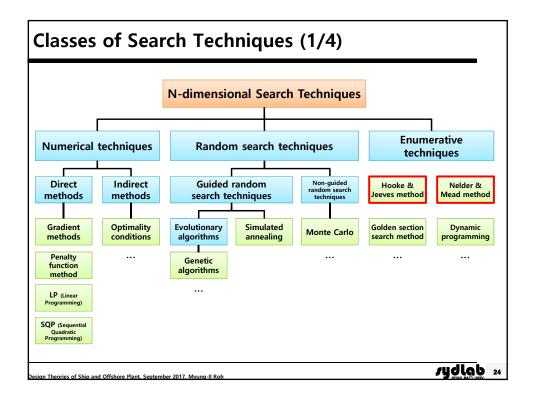
sydlab 21

1.4 Classification of Optimization Methods

sign Theories of Ship and Offshore Plant, September 2017, Myung-Il Rol

Jydlab 22





Classes of Search Techniques (2/4)

- ✓ Numerical techniques (Classical or calculus based techniques)
 - Use deterministic approach to find best solution. That is, Use a set of necessary and sufficient conditions to be satisfied by the solutions of an optimization problem.
 - Require knowledge of gradients or higher order derivatives.
 - Indirect methods
 - Search for local extremes by solving the usually nonlinear set of equations resulting from setting the gradient of the objective function to zero.
 - The search for possible solutions (function peaks) starts by restricting itself to points with zero slope in all directions.
 - Methods using optimality conditions (e.g., Kuhn-Tucker condition)
 - Direct methods
 - Seek extremes by hopping around the search space and assessing the gradient of the new point, which guides the search.
 - This is simply the notion of hill climbing, which finds the best local point by climbing the steepest permissible gradient.
 - These techniques can be used only on a restricted set of well behaved functions.
 - Gradient methods, Penalty function method, LP, SQP, etc.

esign Theories of Ship and Offshore Plant, September 2017, Myung-II Roh

/ydlab 25

Classes of Search Techniques (3/4)

- ☑ Guided random search techniques (Stochastic techniques)
 - Based on enumerative, stochastic techniques but use additional information to guide the search.
 - Two major subclasses are simulated annealing and evolutionary algorithms that both can be seen as evolutionary processes.
 - **■** Evolutionary algorithms
 - Use natural selection principles.
 - This form of search evolves throughout generations, improving the features of potential solutions by means of biological inspired operations.
 - Genetic algorithms, Evolutionary Strategies (ES), etc.
 - Simulated annealing
 - Uses a thermodynamic evolution process to search minimum energy states.

ydlab 26

sign Theories of Ship and Offshore Plant, September 2017, Myung-Il Roh

Classes of Search Techniques (4/4)

☑ Enumerative techniques

- Search every point related to the function's domain space (finite or discretized), one point at a time.
- At each point, all possible solutions are generated and tested to find optimum.
- They are very simple to implement but usually require significant computation.
- These techniques are not suitable for applications with large domain spaces.
- Dynamic programming, Hooke and Jeeves method, Nelder and Mead method, golden section method, etc.

esign Theories of Ship and Offshore Plant, September 2017, Myung-Il Roh

sydlab 27