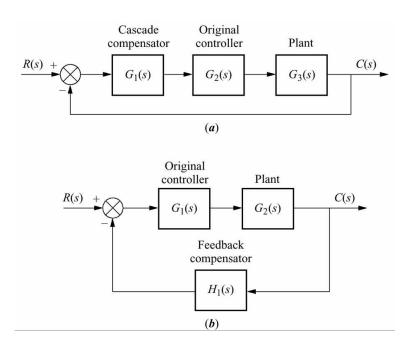

# Lecture 1 Design Via Root Locus

 $\mathbf{Motivation}:$  Consider the example below




- B is the desired root: we can't access by changing K!
- What can we do?
  - 1. Change parameters of the original system: Impossible or Expensive
  - 2. Add a *Compensation System*!.

# **A Compensation System?**

Simple controller system with two purposes:

- Improving the transient response by changing pole locations. (Differentiator Based)
- Improving the steady-state performance. (Integrator Based)

There are 2 types of compensators (Depending on where you place the compensator system): Cascade(a) or Feedback(b)



# **Improving Steady State Performance**

Goal: Improve steady state performance without affecting transient response.

**Basic Strategy:** Add integrators to increase the type of the system

Two Common Techniques:

- Ideal Integrator (a pole on origin):  $G_1(s) = K(a + \frac{1}{s})$ .
  - Increases the system type, can make steady-state error zero. (Excellent!)
  - Requires use of active elements(i.e., elements requiring power supply)(Expensive!)
- Non-ideal Integrator with a pole near origin.

$$G_1(s) = \frac{s - z_c}{s - p_c}$$

- Can not the increase system type, but can significantly improve steady state error performance. (Nice!)
- Requires passive elements only, so it is cheap. (Very Nice!)

Note that both approaches have a zero in addition to the pole. We will see why very soon...

.

# Compensator Naming Convention (for ideal compensators)

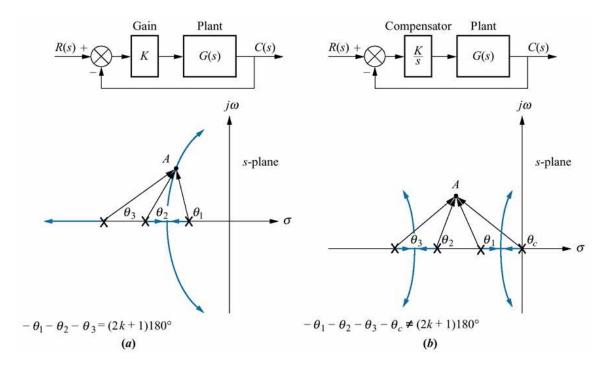
• Proportional Controller: feed scaled error to the plant.

$$G_1(s) = K. \tag{1}$$

• Integral Controller: feed integrated error to the plant.

$$G_1(s) = \frac{K}{s} \tag{2}$$

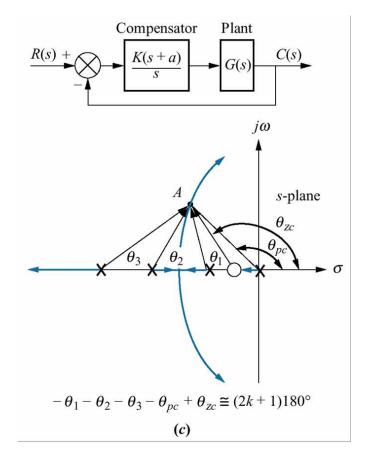
• **Derivative Controller:** feed differentiated error to the plant.


$$G_1(s) = Ks. \tag{3}$$

• Proportional-plus-Integrator (PI): feed scaled+integrated error to the plant:

$$G_1(s) = K(a + \frac{1}{s}).$$
 (4)

# Ideal Integral (PI) Compensator

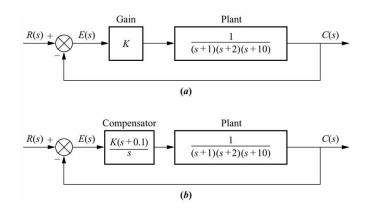

#### Consider the following Example



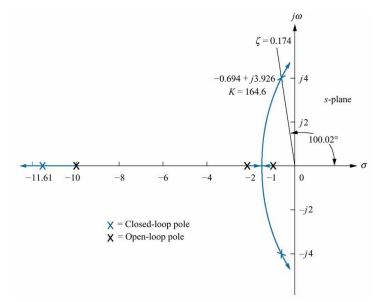
- (a) No Compensation
- (b) Only Integrator:
  - Steady-state performance improved.
  - However, the transient response in (a) can not be achieved!

## Ideal Integral (PI) Compensator: Continued

Now consider the following compensation:




- (c) Proportional+Integrator:
  - Transient Response almost unaffected!.
  - Steady State Improved.

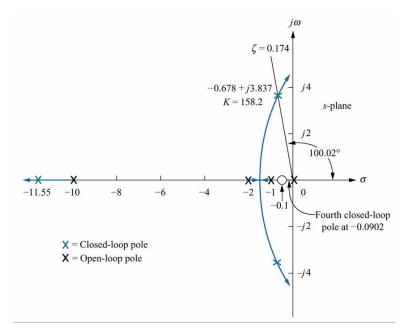

So the choice of  $G_1(s) = K(a + \frac{1}{s})$  over  $\frac{K}{s}$  should be clear now!: the inclusion of the proportional part ( and therefore the zero) avoids the effect on the transient response

#### Ideal Integral (PI) Compensator: Example

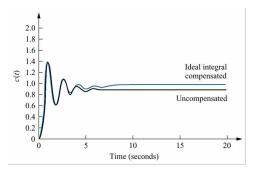
Consider the following example:



The Root-Locus for Uncompensated System



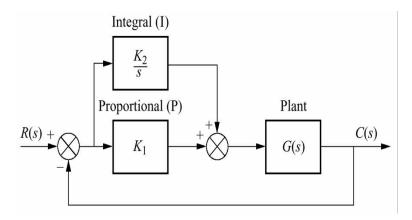

K=164.6 provides:


- Damping Ratio:  $\zeta = 0.174$ .
- Steady State Error:  $e(\infty) = \frac{1}{1+Kp} = 0.108$ .

#### Ideal Integral (PI) Compensator: Example Continued

Now with an ideal integrator ( PI) controller Root Locus is very similar: For this case



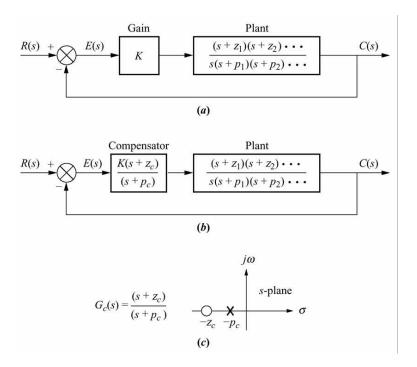

- Damping Ratio unchanged (with K = 158.2).
- Steady State Error is ZERO!.



### How to Implement PI Controller?

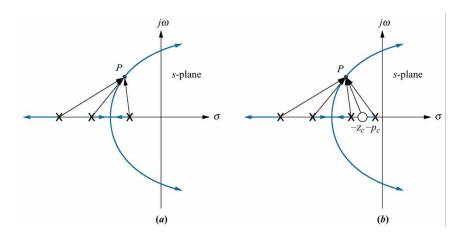
$$G_c(s) = K_1 + \frac{K_2}{s} = K_1 \frac{\left(s + \frac{K_2}{K_1}\right)}{s} \tag{1}$$

Simple!, use the following:



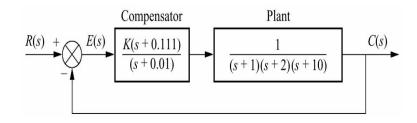

- Made steady-state error zero!.
- However, it is expensive to implement as the integrator requires active elements.
- We may want to use the solution presented next: *Lag Compensation*.

# Lag Compensation: A Cheaper Solution

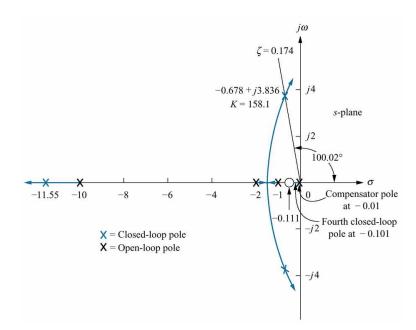

Similar to the Ideal Integrator, however it has a pole not on origin but close to the origin.

$$G_1(s) = \frac{s + z_c}{s + p_c} \tag{1}$$




## Lag Compensation: Continued

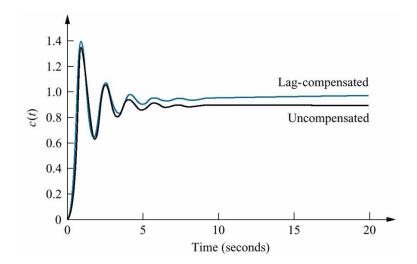
- Steady State Improvement: - Before compensation:  $K_{v_0} = \lim_{s \to 0} G(s) = K \frac{z_1 z_2 \dots}{p_1 p_2 \dots}$ . - After compensation:  $K_{v_{new}} = \frac{z_c}{p_c} \underbrace{K \frac{z_1 z_2 \dots}{p_1 p_2 \dots}}_{K_{v_0}}$
- the effect on the transient response is negligible:




# Lag Compensation: Example Revisited

Consider the following lag compensation for the previous example:




• The Root Locus: almost unchanged



## Lag Compensation: Example Revisited

• New Steady State Error:

$$e(\infty) = \frac{1}{1+K_p} = 0.0108 \tag{1}$$



#### Comparison of the Lag-Compensated and the Uncompensated Systems

| Parameter             | Uncompensated       | Lag-compensated          |
|-----------------------|---------------------|--------------------------|
| Plant and compensator | K                   | K(s + 0.111)             |
|                       | (s+1)(s+2)(s+10)    | (s+1)(s+2)(s+10)(s+0.01) |
| K                     | 164.6               | 158.1                    |
| $K_p$                 | 8.23                | 87.75                    |
| $e(\infty)$           | 0.108               | 0.011                    |
| Dominant second-      |                     |                          |
| order poles           | $-0.694 \pm j3.926$ | $-0.678 \pm j3.836$      |
| Third pole            | -11.61              | -11.55                   |
| Fourth pole           | None                | -0.101                   |
| Zero                  | None                | -0.111                   |

### Improving Steady State Response with Cascade Compensation: Summary

- Include Integrators or integrator-type systems to improve steady state performance
- Ideal Integral(Proportional-plus Integrator):  $G(s) = K \frac{(s+a)}{s}$ .
  - Can create zero steady state error.
  - Zero -a is to avoid change in the transient response.
  - Expensive due to the ideal integrator.

• Lag Compensation: 
$$G(s) = K \frac{(s+z_c)}{s+p_c}$$
.

- Can be considered as the cheaper approximation of PI.
- Steady-state error is not zero but can be made small.

Up to this point we dealt with improving steady-state response without affecting the transient response. Next subject is improving the transient response!

#### Improving Transient Response with Cascade Compensation

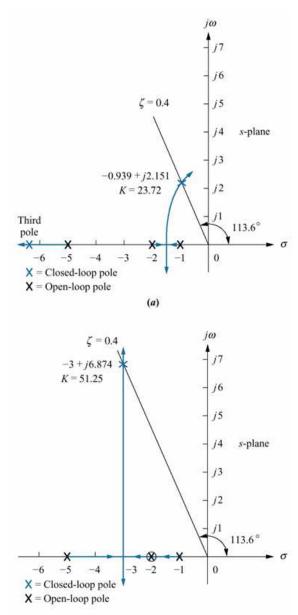
If the closed loop root locus doesn't go through the desired point, it needs to be reshaped.

Two approaches

• Ideal Derivative (Proportional-plus-Derivative (PD)):

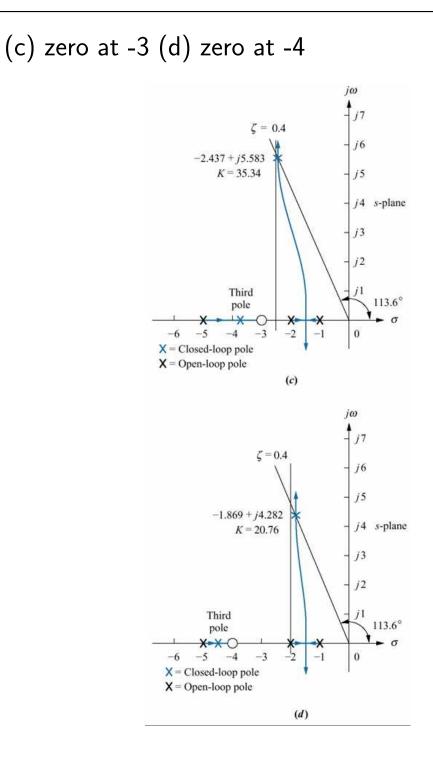
$$G_1(s) = s + z_c \tag{1}$$

- Can provide better performance than the other alternative. :)
- Requires active elements for implementation. : (
- Can amplify the high frequency noise. : (
- Lead Compensation:


$$G_1(s) = K \frac{s + z_c}{s + p_c} \tag{2}$$

where  $p_c$  is a distant pole in this case.

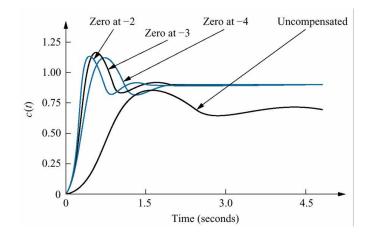
- Can provide reasonable performance. :)
- Requires passive elements only. :)
- $\mbox{ Less sensitive to high frequency noise. :})$


#### Ideal Derivative Compensation (PD)

 $-G_1(s) = s + z_c$ : Introduction of a new zero. Lets see how it affects by an example:(a) uncompensated (b) zero at -2






## Ideal Derivative Compensation (PD)



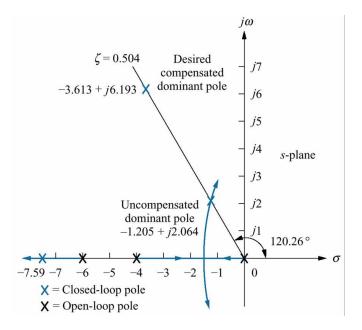
# Ideal Derivative Compensation (PD)

#### **Observations and facts:**

- In each case gain K is chosen such that percent overshoot is same.
- Compensated poles have more negative real and imaginary parts: smaller settling and peak times.

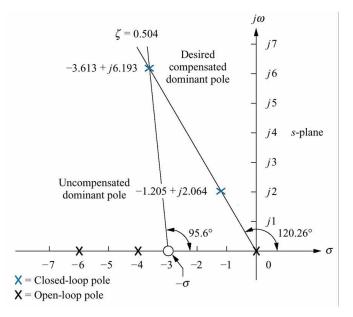


• Farther the zero from the dominant poles, closer the the dominant pole to the origin.


#### Ideal Derivative Compensation (PD): Example

Given

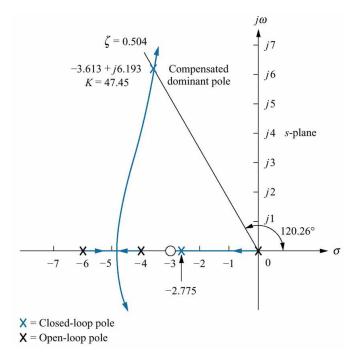



Design an ideal derivative compensator to yield, %16 overshoot with threefold reduction in settling time. Solution:

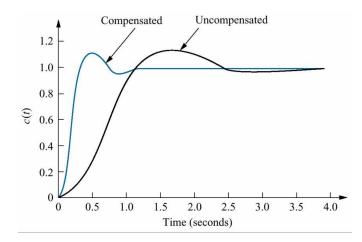
Root-Locus and desired pole location:



#### Ideal Derivative Compensation (PD): Example Continued


#### Determining the location of the zero:

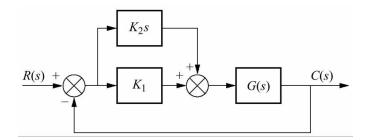



- The angle contribution of poles for the desired pole location: -275.6
- In order to achieve -180 the angle contribution of the placed zero should be 95.6.
- From the figure:  $\frac{6.193}{3.613-\sigma} = tan(180 95.6)$  which yields  $\sigma = 3.006$ .

#### Ideal Derivative Compensation (PD): Example Continued

#### Root-Locus After Compensation



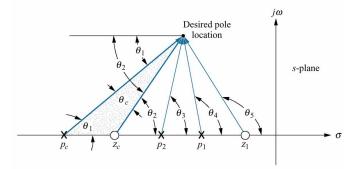

#### Improvement in the transient response



## Ideal Derivative Compensation (PD): Implementation

$$G_c(s) = K_2 s + K_1 = K_2 (s + \frac{K_1}{K_2}).$$

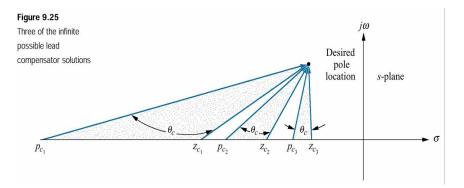
A trivial implementation:




Implementation of ideal differentiator is expensive. So we may use the next technique: *Lead Compensation* 

## Lead Compensation

- Passive element approximation of PD.
- it has an additional pole far away on the real axis.
- Advantage 1: Cheaper
- Advantage 2: Less noise amplification
- Disadvantage: Doesn't reduce the number of branches.

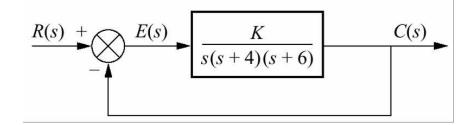

**Basic Idea**: Angular contribution of the lead



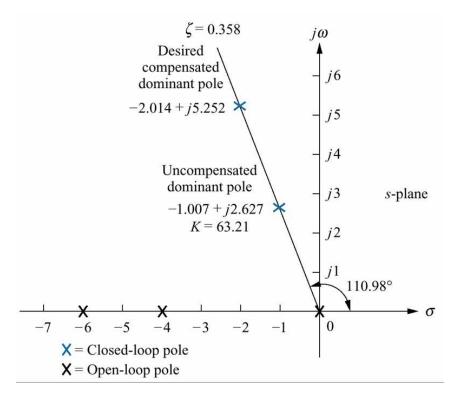
compensator is  $\Theta_2 - \Theta_1$ .

## Lead Compensation: Continued

There are infinitely many choices of  $z_c, p_c$  providing same  $\Theta_c = \Theta_2 - \Theta_1$ .

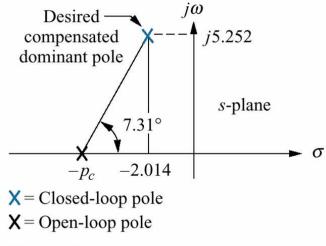



The choice from infinite possibilities affects:


- Static Error Constants.
- Required gain to reach the design point.
- Justification of the second order assumption.

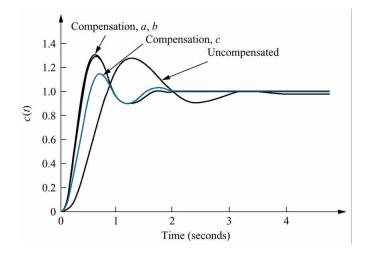
## Lead Compensation: Example

Design three lead compensators for the system to reduce the settling factor by a factor of 2 while maintaining %30 overshoot for the system




Solution: Root-Locus and the desired pole location




#### Lead Compensation: Example

Place the zero on -5 arbitrarily. Figure out the required  $p_c$ 



Note: This figure is not drawn to scale.

From this figure,  $p_c = 42.96$ . We also obtain  $p_c$  for  $z_c = 4$ (Case b) and  $z_c = 2$  (Case c). The transient responses are shown in Figure below Second order



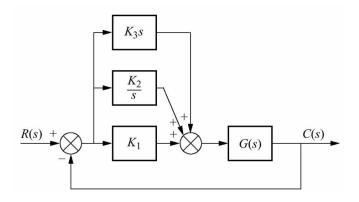
approximation is not valid for case C!

#### Improving Steady-State Error and Transient Response

Suggested Method:

- Improve the transient response first.(PD or lead compensation)
- Then improve the steady-state response. (PI or lag compensation).

Two Alternatives

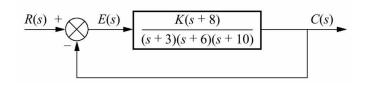

- PID (Proportional-plus-Integral-plus-Derivative) (with Active Elements)
- Lag-Lead Compensator. (with Passive Elements)

### **PID Controller**

• Transfer Function:

$$G_c(s) = K_1 + \frac{K_2}{s} + K_3 s \tag{1}$$

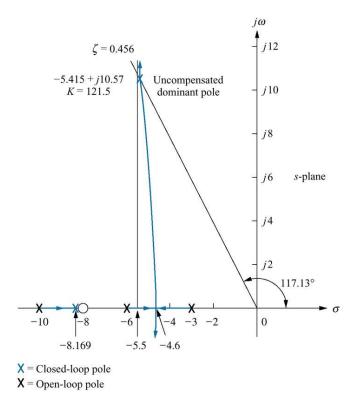
• Implementation




• Design Procedure

- 1. From the requirements figure out the desired pole location to meet transient response specifications.
- 2. Design the PD controller.
- 3. Check validity of the design by simulation.
- 4. Design PI controller to yield steady state error performance.
- 5. Combine PD and PI to obtain  $K_1, K_2, K_3$ .

## **PID Controller: Example**

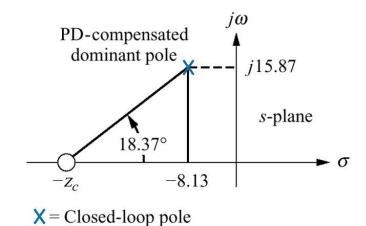

Consider the system below:



Design a PID controller such that

- The peak time is  $\frac{2}{3}$  of the uncompensated system with 20%OS.
- Zero steady state error for unit-step input.

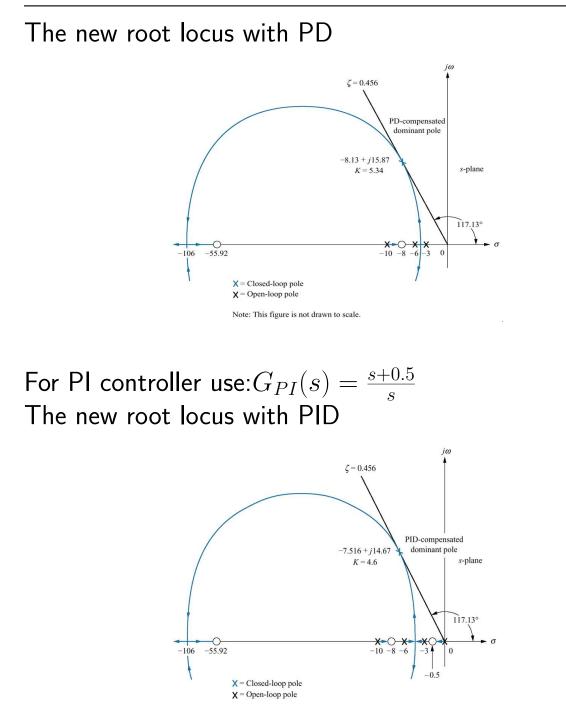
The uncompensated system has the following root-locus




## **PID Controller: Example Continued**

In order to reduce the peak time by  $\frac{2}{3}$  the new pole location

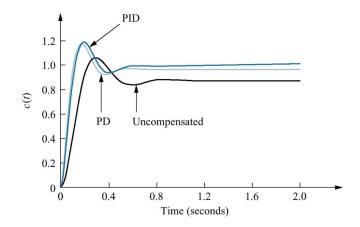
$$p_{desired} = \frac{3}{2} \times \underbrace{-5.415 + j10.57}_{\text{uncompensated pole location}} = -8.13 + 15.87$$
(1)


The angle of  $G(p_{new})H(p_{new})$  is -198.37. So the desired contribution from the PD zero is 180 - 198.37 = 18.37.



Note: This figure is not drawn to scale.

Controller's zero position:  $\frac{15.87}{z_c-8.13} = tan(18.37) \Rightarrow z_c = 55.92.$ 


### **PID Controller: Example Continued**



Note: This figure is not drawn to scale.

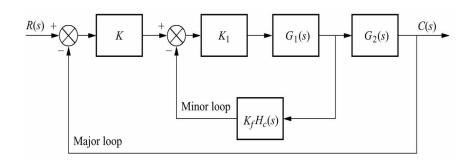
### **PID Controller: Example Continued**

#### Comparison of step responses



Calculation of the PID parameters:

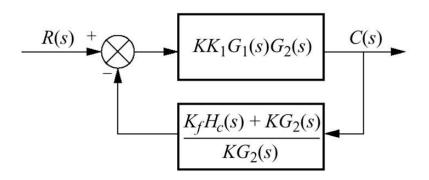
$$G_{pid}(s) = K \frac{(s+55.92)(s+0.5)}{s} = \frac{4.6(s+55.92)(s+0.5)}{s}$$
$$= \underbrace{259.5}_{K_1} + \underbrace{128.6}_{K_2} \frac{1}{s} + \underbrace{4.6}_{K_3} s$$


# Lag-Lead Compensation: Cheaper solution then PID

#### Procedure:

- 1. Determine the desired pole location based on specifications.
- 2. Design the lead compensator.
- 3. Evaluate the steady state performance of the lead compensated system to figure out required improvement.
- 4. Design the lag compensator to satisfy the improvement in steady state performance.

# **Feedback Compensation**


Compensator is at the feedback... (as opposed to the cascade compensators we have seen up to this point..)



- More complicated then cascade.
- Generally provide faster response.
- Can be used in cases where noise is a concern if we use cascade compensators.
- May not require additional gain.

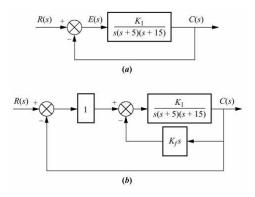
#### Two Approaches for Feedback Compensation

1. Consider compensation as adding poles and zeros to feedback section for the equivalent system:



- 2. First design the minor loop then design the major loop.
  - The minor loop is designed to change the open loop poles and open loop transient-response.
  - Loop gain is used to adjust the closed loop performance.

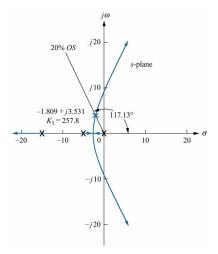
## Feedback Compensation: Approach 1


- Does it make a difference whether you place a zero
  - in G(s) by a cascade compensator.
  - or in H(s) by a feedback compensator.
- In terms of root-locus you obtain the same diagram because what matters is the product G(s)H(s)!.
- The difference is the following: Since the overall transfer function

$$T(s) = \frac{KN_G(s)D_H(s)}{D_G(s)D_H(s) + KN_G(s)N_H(s)}$$
(1)

– the zeros of G(s) are the zeros of T(s).

- \* When a closed loop pole in root locus is close to the zero of G(s) we can (most probably) assume that it will be cancelled,
- \* then the second order assumption is better justified.
- the zeros of H(s) are not the zeros of T(s).
  - $\ast$  Therefore, the closed loop pole close to the zero of H(s) may not be cancelled by a zero of  $T(s){\rm ,}$
  - \* then we need to be more careful about the second order approximation.


## Feedback Compensator Example: Tachometer



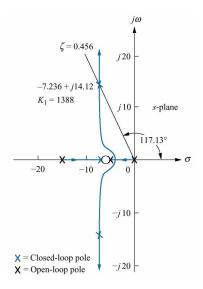
Design a feedback compensator to reduce the settling time by a factor of 4 while continuing to operate the system with 20% overshoot.

#### Solution:

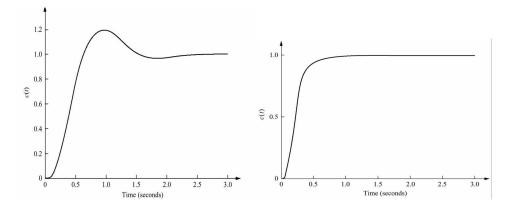
**Uncompensated System:** The root locus and 20% OS line:



Intersection point:  $p = -1.809 \pm j3.531$ . Desired poles:  $4 \times p = -7.236 \pm j14.12$ .

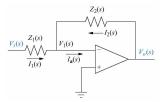

#### Feedback Compensator : Tachometer Example Continued

The angle of G(s) at the desired pole point is  $-277.33^{\circ}$ . Required contribution from the compensator zero is  $97.33^{\circ}$ . The zero location  $\frac{14.12}{7.236-z_c} = tan(180 - 97.33) \Rightarrow z_c = 5.42.$ jω j14.12 s-plane 97.33° - σ  $-7.236 - z_c$ Compensator  $\mathbf{X} = \text{Closed-loop pole}$ zero R(s)C(s) $K_1$ s(s+5)(s+15) $K_f s +$ (c) C(s)R(s)E(s) $K_1$  $s[s^2 + 20s + (75 + K_1K_f)]$ (d)


$$K_f = \frac{1}{z_c} = 0.185.$$

#### Feedback Compensator : Tachometer Example Continued

Root-Locus of the compensated system:



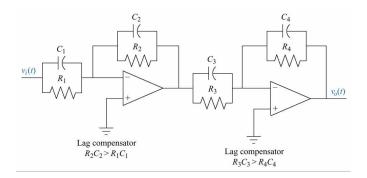

So  $K_1 = 1388$ . Transient (unit step) response of uncompensated and compensated systems:



#### Physical Realization of Compensation Systems

Active Systems where  $T(s) = -\frac{Z_2(s)}{Z_1(s)}$ . Impedances we



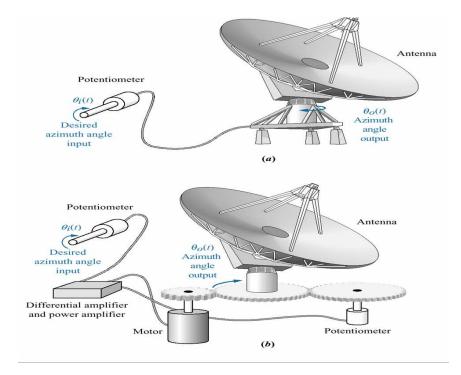

use determine the type of compensator:

| Function        | $Z_1(s)$                                                                    | $Z_2(s)$                                                                    | $\mathbf{G}_{c}(\mathbf{s}) = -\frac{\mathbf{Z}_{z}(\mathbf{s})}{\mathbf{Z}_{1}(\mathbf{s})}$ |
|-----------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Gain            | $-\sqrt{\overset{R_1}{\bigvee}}$                                            | -                                                                           | $-\frac{R_2}{R_1}$                                                                            |
| Integration     | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $\stackrel{c}{\dashv} \leftarrow$                                           | $-\frac{1}{\frac{RC}{s}}$                                                                     |
| Differentiation |                                                                             | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | -RCs                                                                                          |
| PI controller   | $-\sqrt{\overset{R_1}{\bigvee}}$                                            | $- \bigvee^{R_2} \bigvee^C (-$                                              | $-\frac{R_2}{R_1} \frac{\left(s + \frac{1}{R_2C}\right)}{s}$                                  |
| PD controller   |                                                                             | -                                                                           | $-R_2C\left(s+\frac{1}{R_1C}\right)$                                                          |

| Function          | $Z_1(s)$ | $Z_2(s)$ | $\mathbf{G}_{c}(\mathbf{s})=-\frac{\mathbf{Z}_{2}(\mathbf{s})}{\mathbf{Z}_{1}(\mathbf{s})}$                                   |
|-------------------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------|
| Lag compensation  |          |          | $-\frac{C_1}{C_2} \frac{\left(s + \frac{1}{R_1 C_1}\right)}{\left(s + \frac{1}{R_2 C_2}\right)}$<br>where $R_2 C_2 > R_1 C_1$ |
| Lead compensation |          | -        | $-\frac{C_1\left(s+\frac{1}{R_1C_1}\right)}{C_2\left(s+\frac{1}{R_2C_2}\right)}$<br>where $R_IC_I > R_2C_2$                   |

## Physical Realization of Compensation Systems: Continued

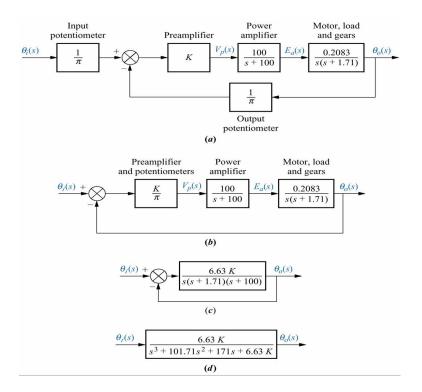
As an example, active lag-lead compensator




We are actually able to implement lag, lead compensators with passive circuits:

| Function          | Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transfer function, $\frac{V_o(s)}{V_i(s)}$                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Lag compensation  | $ \begin{array}{c} \stackrel{R_1}{\longrightarrow} & \stackrel{R_2}{\longrightarrow} $ | $\frac{R_2}{R_1 + R_2} \frac{s + \frac{1}{R_2C}}{s + \frac{1}{(R_1 + R_2)C}}$ |
| Lead compensation | $\xrightarrow{R_1} \xrightarrow{R_1} \xrightarrow{+} \underbrace{V_0(t)} \xrightarrow{+} \underbrace{V_0(t)} \xrightarrow{-} \xrightarrow{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\frac{s+\frac{1}{R_1C}}{s+\frac{1}{R_1C}+\frac{1}{R_2C}}$              |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |
| Function          | Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transfer function, $\frac{V_o(s)}{V_i(s)}$                                    |

## **Antenna Control Case Example**


Remember the antenna position control system?



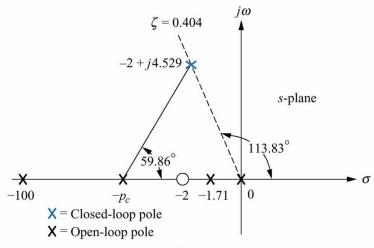
We want to add a cascade compensator for

- 25% **OS**
- $\bullet\ 2-{\rm second}$  settling time
- $K_V = 20$ .

## Antenna Control Case Example Continued



**Uncompensated Case:** 


- 25% OS is achieved with preamplifier gain of 64.21,
- The dominant poles are at  $-0.833 \pm j1.888$ .
- The settling time  $T_s = \frac{4}{0.833} = 4.8$  seconds.

• 
$$K_V = \frac{1.61K}{1.71 \times 100} = 2.49$$

#### Antenna Control Case Example Continued

Lead Compensation to improve transient

- The desired pole location  $\frac{4.8}{2} \times -0.833 \pm j1.888 = -2 \pm j4.529.$
- Assume a compensator zero at -2.
- The poles angular contribution should be -59.86.

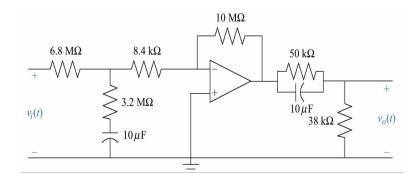


Note: This figure is not drawn to scale.

- From this figure  $p_c = 4.63$ .
- The gain 6.63K = 2549.

#### Antenna Control Case Example Continued

Lag Compensation to improve steady state


•  $K_v$  of the lead compensated system

$$K_v = \frac{2549 \times 2}{1.71 \times 100 \times 4.63} = 6.44 \tag{1}$$

- Since the desired  $K_v = 20$ , a factor of  $\frac{20}{6.44} = 3.1$  improvement is required.
- choose  $p_c = -0.01$  then  $z_c = 0.031$ .
- Overall lag-lead Compensator

$$G_{LLC}(s) = \frac{6.63K(s+2)(s+0.031)}{s(s+0.01)(s+1.71)(s+4.63)(s+100)}$$
(2)

• The corresponding circuit

