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Abstract The areas of application of design of experiments principles have evolved, 

mimicking the growth of US industries over the last century, from agriculture to 

manufacturing to chemical and process industries to the services and government sectors.  

In addition, statistically based quality programs adopted by businesses morphed from 

total quality management to six sigma and most recently statistical engineering (see 

discussion paper, Hoerl and Snee, 2010).  The good news about these transformations is 

that each new packaging contains more technical substance, embedding the 

methodologies as core competencies, and is less of a ‘program’.  Design of experiments 

is fundamental to statistical engineering and is fortunately receiving increased attention 

within large government agencies such as NASA and the Department of Defense. Since 

test policy is intended to shape test programs, numerous test agencies have experimented 

with policy wording since about 2001.  The Director of Operational Test & Evaluation 

has recently (October, 2010) published guidelines to mold test programs into a sequence 

of well-designed and statistically defensible experiments. Signally, the guidelines require, 

for the first time, that test programs report statistical power as one proof of sound test 

design. This paper presents the underlying tenents of design of experiments, as applied in 

the Department of Defense, focusing on factorial, fractional factorial and response 

surface design and analyses.  The concepts of statistical modeling and sequential 

experimentation are also emphasized.  Military applications are presented for test and 

evaluation of weapon system acquisition, including force-on-force tactics, weapons 

employment and maritime search, identification and intercept.   

 

 



1. Why Does the Defense Community need Design of Experiments?  

Any organization serious about testing should embrace methods and a general strategy 

that will cover the range of product employment, extract the most information in limited 

trials, and identify parameters affecting performance.  For example, the purpose of Air 

Force (AF) test and evaluation is “mature system designs, manage risks, identify and help 

resolve deficiencies as early as possible, and ensure systems are operationally mission 

capable (i.e., effective and suitable).”  (AF/TE, 2009)  Similar instructions and 

regulations guide the other US armed services.  The fields of designed experiments and 

industrial statistics, with their rich histories spanning over a century, provide the 

framework for test science excellence.  Large-scale efforts are underway in the 

Department of Defense (DoD) to replace current test strategies of budget-only-driven test 

events, combat scenarios, changing one factor at a time, and preserving traditional test 

programs with a scientific and statistically rigorous approach to test – design of 

experiments.  Design of experiments improves DoD test rigor by objectively justifying 

the number of trials conducted based on decision risk, well apportioning test conditions in 

the battle space, guiding the execution order to control nuisance variation, and objectively 

separating the signal of true system responses from underlying noise.   

Effectiveness and efficiency are essential to all test, but especially military test and 

evaluation.  The footprint of the military test and evaluation (T&E) enterprise is 

substantial, whether measured in resources, people, or national defense capacity.  The 

DoD spent nearly $75B in research, development, test, and evaluation in fiscal year 2008.  

To illustrate the scope in one service - AF T&E accounts for an estimated 25-30% of all 

11,000 AF scientists and engineers; in expenditures AF research, development, test and 

evaluation was $26.7B -- 20% of the USAF budget (SAF/FM, 2007).  Design of 

experiments (DOE) enables effectiveness of system discovery with detailed process 

decomposition tying test objectives to performance measures, together with test matrices 

that span the operating region and allow for faults to be traced to causes.  Efficiencies are 

gained by combining highly efficient screening designs with initial analyses to learn 

early, then knowledge-based test augmentation for continued learning via statistical 

modeling, culminating in validation tests – all with the purpose of full system 

understanding using only the resources necessary.  The DoD is moving toward the use of 



design of experiments as the primary method of test. As stated in the guidance document 

(October, 2010), published by the Director of Operational Test and Evaluation, there is a 

specific request to “increase the use of both scientific and statistical methods to in 

developing rigorous, defensible test plans and in evaluating their results.” These 

guidelines require test programs not to explicitly "do DOE", but to report the evidences 

of well designed experiments including continuous response variables, how test factors 

are to be controlled during test, and the strategy (family of test designs) used to place 

individual points in the space to be explored. This paper supports the reshaping of the 

DoD T&E policy by detailing basic experimental design tools and their application in 

military context. 

Military T&E is serious business, as it dictates the future effectiveness of US defense 

forces.  Test programs designed using the principles of designed experiments stand to 

improve the cost-effectiveness of defense acquisition by ensuring experimentation and 

failures occur during development and not in the field; that correct decisions are reached 

in fielding new combat capability; and that only the appropriate amount is expended 

during test in an era of declining defense budgets.  

2. Background and History of Designed Experiments 

Statistically designed experiments are among the most useful, powerful and widely 

applicable statistical methods.  They are used extensively in many industrial and business 

settings, with applications ranging from medical/biopharmaceutical research and 

development, product design and development across virtually the entire industrial sector, 

agriculture, marketing and e-commerce.  There have been four eras in the modern 

development of statistical experimental design. The first or agricultural era was led by the 

pioneering work of Sir Ronald A. Fisher in the 1920s and early 1930s. During that time, 

Fisher was responsible for statistics and data analysis at the Rothamsted Agricultural 

Experimental Station near London, England. Fisher recognized that flaws in the way the 

experiment that generated the data had been performed often hampered the analysis of 

data from systems (in this case, agricultural systems). By interacting with scientists and 

researchers in many fields, he developed the insights that led to three basic principles of 

experimental design: randomization, replication, and blocking. By randomization we 



mean running the trials in an experiment in random order to minimize systematic 

variation from variables that are unknown to the experimenter but which are varying 

during the time the experiment is conducted.  Replication is repeating at least some of the 

trials in the experiment so that an estimate of the experimental error can be obtained.  

This allows the experimenter to evaluate the change observed in response when a factor 

is changed relative to the probability that the observed change is due to chance causes.   

This introduces scientific objectivity into the conclusions drawn from the experiment. 

Blocking is a technique to prevent the variability from known sources of nuisance from 

increasing the experimental error.  Typical sources of nuisance variability include 

operators or personnel, pieces of test equipment, weather conditions, and time. 

Fisher systematically introduced statistical thinking and principles into designing 

experimental investigations, including the factorial design concept and the analysis of 

variance. His two books [the most recent editions are Fisher (1958, 1966)] had profound 

influence on the use of statistics, particularly in agricultural and related life sciences. For 

an excellent biography of Fisher, see Box (1978). 

While industrial applications of statistical design began in the 1930s, the second, 

or industrial, era was catalyzed by the development of response surface methodology 

(RSM) by Box and Wilson (1951). They recognized and exploited the fact that most 

industrial experiments are fundamentally different from their agricultural counterparts in 

two ways: (1) the response variable can usually be observed (nearly) immediately, and 

(2) the experimenter can quickly learn crucial information from a small group of runs that 

can be used to plan the next experiment. Box (1999) calls these two features of industrial 

experiments immediacy and sequentiality. Over the next 30 years, RSM and other 

design techniques spread throughout the chemical and process industries, mostly in 

research and development work. George Box was the intellectual leader of this 

movement. However, the application of statistical design at the plant or manufacturing 

process level even in the chemical industry and in most other industrial and business 

settings was not widespread. Some of the reasons for this include inadequate training in 

basic statistical concepts and experimental methods for engineers and other scientists and 

the lack of computing resources and user-friendly statistical software to support the 

application of statistically designed experiments. 



The increasing interest of Western industry in quality improvement that began in the 

late 1970s ushered in the third era of statistical design. The work of Genichi Taguchi 

[Taguchi and Wu (1980), Kackar (1985), and Taguchi (1987, 1991)] also had a 

significant impact on expanding the interest in and use of designed experiments. Taguchi 

advocated using designed experiments for what he termed robust parameter design, or  

1. Making processes insensitive to factors that are difficult to control (i.e. environmental 

factors) 

2. Making products insensitive to variation transmitted from components 

3. Finding levels of the process variables that force the mean to a desired value while 

simultaneously reducing variability around this value. 

Taguchi suggested highly fractionated factorial designs and other orthogonal arrays 

along with some novel statistical methods to solve these problems. The resulting 

methodology generated much discussion and controversy. Part of the controversy arose 

because Taguchi’s methodology was advocated in the West initially (and primarily) by 

consultants, and the underlying statistical science had not been adequately peer reviewed. 

By the late 1980s, the results of an extensive peer review indicated that although 

Taguchi’s engineering concepts and objectives were well founded, there were substantial 

problems with his experimental strategy and methods of data analysis. For specific details 

of these issues, see Box (1988), Box, Bisgaard, and Fung (1988), Hunter (1985, 1989), 

Pignatiello and Ramberg (1992), and Myers, Montgomery and Anderson-Cook (2009). 

Many of these concerns are also summarized in the extensive panel discussion in the May 

1992 issue of Technometrics [see Nair et al. (1992)]. 

There were several positive outcomes of the Taguchi controversy. First, designed 

experiments became more widely used in the discrete parts industries, including 

automotive and aerospace manufacturing, electronics and semiconductors, and many 

other application areas that had previously made little use of the techniques. Second, the 

fourth era of statistical design began. This era has included a renewed general interest in 

statistical design by both researchers and practitioners and the development of many new 

and useful approaches to experimental problems in the industrial and business world, 

including alternatives to Taguchi’s technical methods that allow his engineering concepts 



to be carried into practice efficiently and effectively. For example see Myers, 

Montgomery and Anderson-Cook (2009). Third, formal education in statistical 

experimental design is becoming part of many engineering programs in universities, at 

both undergraduate and graduate levels. The successful integration of good experimental 

design practice into engineering and science is a key factor in future industrial 

competitiveness and effective design, development and deployment of systems for the US 

Military.  

Applications of designed experiments have grown far beyond their agricultural 

origins. There is not a single area of science and engineering that has not successfully 

employed statistically designed experiments. In recent years, there has been a 

considerable utilization of designed experiments in many other areas, including the 

service sector of business, financial services, government operations, and many nonprofit 

business sectors. An article appeared in Forbes magazine on March 11, 1996, entitled 

“The New Mantra: MVT,” where MVT stands for “multivariable testing,” a term some 

authors use to describe factorial designs. The article describes many successes that a 

diverse group of companies have had through their use of statistically designed 

experiments. 

3. Factorial Experiments 

Most experiments involve the study of the effects of two or more factors. In general, 

factorial designs are most efficient for this type of experiment. By a factorial design, we 

mean that in each complete trial or replication of the experiment all possible 

combinations of the levels of the factors are investigated. For example, if there are two 

factors say A and B and there are a levels of factor A and b levels of factor B, each 

replicate of the experiment contains all ab combinations of the factor levels. When there 

are several factors to be investigated, factorial experiments are usually the best strategy 

because they allow the experimenter to investigate not only the effect of each individual 

factor but also the interactions between these factors. 

Figure 1 illustrates the concept of interaction.  Suppose that there are two factors, A 

and B, each with two levels. Symbolically we will represent the two levels as A- and A+ 

for factor A and B- and B+ for factors B.  The factorial experiment has four runs; A-B-, A-



B+, A+B-, and A+B+.   In Figure 1(a) we have plotted the average response observed at the 

design points as a function of the two levels of factor A and connected the points that 

were observed at the two levels of B for each level of A.  This produces two line 

segments.  The slope of the lines represents a graphical display of the effect of factor A. 

In this figure, both line segments have the same slope.    This means that there is no 

interaction between factors A and B.  In other words, any conclusion that the 

experimenter draws about factor A is completely independent of the level of factor B.  

Now consider Figure 1(b).  Notice that the two line segments have different slopes.  The 

slope of the lines still represents the effect of factor A, but now the effect of A depends 

on the level for B.  If B is at the minus level, A has a positive effect (positive slope), 

while if B is at the plus level A has a negative effect (negative slope).  This implies that 

there is a two-factor interaction between A and B. An interaction is the failure of one 

factor to have the same effect at different levels of another factor.  An interaction means 

that the decisions that are made about one factor depend on the levels for the other factor. 

 

 

Figure 1.  Illustration of Interaction (a) No Interaction (b) A Two-Factor Interaction 

Interactions are not unusual.  Both practical experience and study of the experimental 

engineering literature [see Li et al (2006)] suggest that interactions occur in between one-

third and one-half of all multi-factor experiments.  Often discovering the interaction is the 

key to solving the research questions that motivate the experiment.  For example consider 

the simple situation in Figure 1(b).  If the objective is to find the setting for factor A that 

maximizes the response, knowledge of the two-factor or AB interaction would be 

essential to answer even this simple question.  Sometimes experimenters use a one-

factor-at-a-time strategy, in which all factors are held at a baseline level and then each 



factor is varied in turn over some range or set of levels while all other factors are held 

constant at the baseline.  This strategy of experimentation is not only inefficient in that it 

requires more runs that a well-designed factorial but it yields no information on 

interactions between the factors. 

It is usually desirable to summarize the information from the experiment in terms of a 

mathematical model.  This is an empirical model, built using the data from the actual 

experiment, and it summarizes the results of the experiment in a way that can be 

manipulated by engineering and operational personnel in the same way that mechanistic 

models (such as Ohm’s law) can be manipulated.  For an experiment with two factors, a 

factorial experiment a model such as  

                                  0 1 1 2 2 12 1 2y x x x x                                           (1) 

could be fit to the experimental data, where 1 2 and x x represent the main effects of the 

two experimental factors A and B, the cross-product term 1 2x x  represents the interaction 

between A and B, the β’s are unknown parameters that are estimated from the data by the 

method of least squares, and ε represents the experimental error plus the effects of factors 

not consider in the experiment. Figure 2 shows a graphical representation from the model  

1 2 1 2
ˆ 35.5 10.5 5.5 8.0y x x x x       

Figure 2(a) is a response surface plot presenting a three-dimensional view of how the 

response variable is changing as a result of changes to the two design factors.   Figure 

2)b) is a contour plot, which shows lines of constant elevation on the response surface at 

different combinations of the design factors.  Notice that the lines in the contour plot are 

curved, illustrating that interaction is a form of curvature in the underlying response 

function. These types of graphical representation of experimental results are important 

tools for decision-makers. 

 



 

Figure 2. Graphical Displays of the Model 1 2 1 2
ˆ 35.5 10.5 5.5 8.0y x x x x       

(a) Response Surface Plot (b) Contour Plot 

                Two-level factorial designs are probably the most widely used class of factorial 

experiment used in the industrial research and development environment [see 

Montgomery (2009)]. These are designs where all factors (say k) have two levels, usually 

called low and high and denoted symbolically by -1 and +1.  In these designs, the number 

of runs required is N = 2k, before any replication.  Consequently, these designs are 

usually called 2k designs. 

As an illustration, Figure 3 shows a 23 factorial design in the factors A, B, and C.  

There are N = 8 runs (before any replication).  Figure 3(a) is the geometric view of the 

design, showing that the eight runs are arranged at the corners of a cube.  Figure 3(b) is a 

tabular representation of the design.  This is an 8 3 design matrix, where each row in the 

matrix is one run in the design and each column is one of the three design factors. This 

design will support the model 

0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3y x x x x x x x x x x x x                        (2) 

where 1 2 3,  and x x x are the main effects of the three design factors, 1 2 1 3 2 3,  and x x x x x x are 

the two-factor interactions, and 1 2 3x x x is the three-factor interaction. Methods for the 

statistical analysis of these experimental designs, estimating the model parameters, and 

interpretation of results are described in Montgomery (2009). 

 



 

Figure 3. The 23 Factorial Design 

4. Fractional Factorial Designs 

As the number of factors in a factorial design increases, the number of runs required for 

the experiment rapidly outgrows the resources of most experimenters. For example, 

suppose that we have six factors and all factors have two levels.  A complete replicate of 

the 26 design requires 64 runs. In this experiment there are six main effects, and 15 two-

factor interactions. These effects account for 21 of the 63 available degrees of freedom 

between the 64 runs.  The remaining 42 degrees of freedom are allocated to higher-order 

interactions.  If there are eight factors the 28 factorial design has 256 runs.  There are only 

eight main effects and 28 two-factor interactions.  Only 36 of the 255 degrees of freedom 

are used to estimate the main effects and two-factor interactions.  In many experimental 

settings, interest focuses on the main effects of the factors and some of the low-order 

interactions, usually two-factor interactions.  The occurrence of three-factor and higher-

order interactions is relatively rare, usually occurring in less than about five percent of 

typical engineering and scientific experiments.  In the experimental design literature, this 

is called the sparsity of effects principle.  Consequently, it is often safe to assume that 

these higher-order interactions can be ignored.  This is particularly true in the early stages 

of experimentation with a system where system characterization (determining the most 

important factors and interactions is important, and we suspect that not all of the original 

experimental factors have large effects).  



If the experimenter can reasonably assume that most of the high-order interactions are 

negligible, information on the main effects and low-order interactions may be obtained 

by running only a fraction of the complete factorial experiment. These fractional factorial 

designs are among the most widely used types of experimental designs for industrial 

research and development. The 2k factorial designs are the most widely used factorial to 

use as the basis for fractional designs.  The 2k factorial design can be run in fractional 

sizes that are reciprocal powers of 2; that is 1
2

fractions, 1
4

fractions, 1
8

 fractions and so 

on.  As examples, the 1
2

fraction of the 25 design has only 16 runs in contrast to the full 

factorial that has 32 runs and the 1
16

fraction of the 28 has only 16 runs in contrast to the 

256 runs in the full factorial.   There are simple algorithmic methods for constructing 

these designs [see Montgomery (2009)].  These designs also lend themselves to 

sequential experimentation, where runs can be added to a fractional factorial to either 

increase the precision of the information obtained from the original experiment or to 

resolve ambiguities in interpretation that can arise if there really are higher-order 

interactions that are potentially important.  These techniques are implemented in standard 

software packages that are easy for experimenters to use.  

 

5. Response Surfaces and Optimization 

Sections 3 and 4 introduced the concepts of factorial and fractional factorial designs, 

respectively, which are typically used for screening – determining what factors or 

combinations of factors impact a response variable of choice.  Once the important factors 

are identified, a logical extension is to determine levels of these factors produce the best 

or most desirable results. One way this is accomplished is through the use of response 

surface methodology or RSM. RSM, which was developed in the second era of statistical 

experimental design, is a collection of statistical and mathematical techniques that are 

used for improving and/or optimizing processes. These techniques can be generalized to 

their use for the development of mathematical models that describe the response variable 

as a function of factors of interest. For example, suppose that you have a set of predictor 

variables x1,…, xk and a response variable y. The response can be modeled as a function 



of the input (predictor) variables. RSM can aid in the development of this function (or 

mathematical model). For example, consider the function  

y  f (x1,...,xk )   

where f(x1,…, xk) represents an function consisting of the predictor variables and ε 

represents the “error” in the system. This model can be used in any capacity of interest to 

the researcher  (such as visualization of the response variable(s), or optimization of the 

response). Equations (1) and (2) show polynomial functions in two and three variables, 

respectively, with main effects and interactions.  

The development of a function that translates the input variables into an output 

response plays a key role in the three main objectives of RSM which are: (1) mapping a 

response surface over a particular region of interest, (2) optimization of the response, and 

(3) selecting operating conditions to achieve a particular specification or customer 

requirement.  While these objectives are often described in the context of industrial 

problems, they are also prevalent in the defense community.  

Factorial and fractional factorial designs are sometimes used in RSM as an initial 

design intended to provide insight such as what factors are most important in the 

experiment. Recall that Box (1999) stressed the use of a sequential experimental design 

strategy. This means that after the initial experiment is conducted and analyzed to 

identify the important factors, more sophisticated experimental techniques can be used to 

describe and model the complexities in the response surface.  A classic response surface 

design that is both efficient and highly effective in fitting second order models is the 

central composite design (see Box and Wilson (1951)).  This design consists of factorial 

corner points (either a full factorial or appropriate fraction), center points and axial 

points.  The distance from the center of the design space to the axial points is often based 

on the shape of the region of interest.  A spherical region would call for axial points at a 

distance of = ±1.732 in coded units.  Whereas a central composite design with axial 

distances set to ± 1 fits into a cubical region as shown in Figure 4.  The addition of these 

center and axial points in the central composite design allows the experimenter to fit 

higher order terms, such as squared terms in the inputs.  



 

Figure 4.  The test point geometry of a face centered central composite design in 3 

factors. 

The use of higher order models provide valuable insights and allow the objectives of 

RSM (mapping the response surface, optimization, and selecting operating regions based 

on specifications) to be met. An application of RSM in the defense community is 

presented in the next section.  

 

6. Example DOE Applications  

Two example applications of DOE are presented in this section. First an example of a 

military force-level encounter is given. In this example, a fractional factorial is used to 

study the relationship between the input factors and the output response. Next, an 

example of air-to-air missile simulation model using RSM to study seven factors of 

interest is illustrated.  

6.1 Force-Level Encounter Assessment  

Frequently, military testers encounter the problem of engaging in simulated combat 

operations against an “aggressor” adversary to determine methods of employing some 

new system or capability – tactics development.  In the Air Force, force sizes range from 

one versus one to 50-75 aircraft encounters (“many vs. many”) in the periodic Red Flag 

exercises outside Las Vegas, Nevada.   Valiant Shield, a June 2006 exercise, involved 

22,000 personnel, 280 aircraft and more than 30 ships (including 3 aircraft carriers and 

their strike groups) in the Pacific Ocean and surrounding lands. 

Such large scale force encounters offer appropriate scale to realistically exercise 

military systems against an unpredictable thinking adversary.  In this sense, exercises are 

the best simulation of combat short of war.  On the other hand, large scale encounters are 



unwieldy, noisy, and offer fewer battles as experimental units than smaller force 

exercises.  Experimental controls may restrict tactical free-play, thus hindering fighting 

force training.  Nevertheless, force exercises are an important opportunity to test our 

military systems and tactics in an environment far too expensive for any single military 

test activity to afford on its own.  This case illustrates effective experimentation in the 

midst of large force exercises.  The case was adapted from McAllister’s dissertation 

research (2002) concerning tactical employment of fighters.  Air Force doctrine calls for 

rapidly establishing air supremacy – the unrestricted use of air and space, while denying 

them to the adversary.  For the case study, 8 friendly (traditionally “Blue”) fighters with 

modern sensors, weapons, and communications contest the airspace with 8 adversary 

(“Red”) fighters.  Engagements of this size are typical of air combat exercises such as 

Red Flag.   

Figure 5 illustrates some possible input and output conditions for the engagement.     

Appendix A contains more complete lists.  Note: “SA” refers to the gold standard of air 

combat: situational awareness -- accurately knowing where friends and enemies are.  

Lack of (or loss of) SA is frequently a terminal condition in air combat. 

Inputs (X) Test Conditions Output (Y) Responses

1 Rules of Engagement

2 Red Radar Jammers Blue Losses

3 Blue Supporting Aircraft Red Losses

4 Red Tactics Choice Red/Blue Exchange Ratio

5 Blue Tactics Choice

Fighter Air 

Combat

 

Figure 5. Notional Blue-Red Force Engagement of 8 Fighters per Side 

The tables in Appendix A further show inputs and outputs measured on as rich a 

measurement scale as possible.  Real-valued variables (when possible) are a hall mark of 

a well designed experiment (Coleman 1993).  The output measures count the losses on 

both sides and the exchange ratio.  Combat exchange ratios have a long history and useful 

interpretations, but are uninformative if the losses are zero on either side.  McAllister 

(2003) considers three adjustments to the exchange ratios to deal with these problems. 

On the input side, some discussion is in order.  Rules of engagement specify the 

conditions under which a fighter is authorized to engage and destroy another aircraft.  



Rules of engagement may range from loose - allowing the destruction of any aircraft not 

positively identified to be friendly (a relatively quick process) to tight rules of 

engagement calling for closing the target for positive visual identification.  Looser rules 

of engagement allow sensors and missiles to be employed at maximum range (usually to 

Blue’s advantage) while tighter rules of engagement delay missile firings considerably.   

Radar jammers are employed to mask own-side aircraft from the enemy.  This condition 

counts the number of dedicated stand-off jamming aircraft available to the Red forces.  

Blue supporting assets refers to the number of airborne early warning, command and 

control, and intelligence aircraft available to the Blue side.  Finally, the Red and Blue 

tactics options are inserted in the experiment in an attempt to answer whether one Blue 

tactic is universally superior to the other, and whether Red’s choice of tactics should 

influence Blue’s tactical choices.  As an illustration of such tactics, consider Figure 6 and 

the two notional tactics developed for the Blue forces.      

 

Figure 6.  Notional Blue Tactical Employment Choices 

A prime tenant of modern air warfare is to avoid closing (merging) with the adversary 

and engaging in what is popularly known as a “dogfight.”  Such turning engagements 

nullify superior US weapons and sensors, putting even relatively unsophisticated 

opponents in a position from which they may be able to destroy Blue aircraft.  With the 

Lead-Trail tactic, one pair of fighters is always positioned to engage the adversary while 

the other turns away to maintain stand-off distance from the adversary.  With the Line-

Abreast tactic, all four shooters are available for the initial salvo, maximizing the number 

of first-shot missiles in the air.  The drawback to line abreast is that all four fighters turn 

away simultaneously, increasing the risk of a dogfight when Blue fighters turn back into 

the engagement.     



6.1.1 Choice of Experimental Designs and Data Generation    

As originally stated, the objective is to determine if any tactical choices are superior for 

the Blue forces across an array of typical combat encounters.  In line with Box’s advice 

on sequential experimentation referenced earlier, the experiment begins with a fractional 

factorial screening design1 with five factors, each at two levels; a ½ fraction requiring 16 

trials and yielding excellent information on the five main effects and ten two-factor 

interactions2.   

The design table and constructive response data are tabulated in tables 1 and 2.  The 

ROE values represent the number of seconds typically required for a positive 

identification under the two rule-sets; both Red and Blue supporting aircraft are 

represented by numeric counts, and the Red/Blue tactics choices are designated by the 

closest approach of the two adversary forces, with “0” representing a possible merge and 

resulting dogfight between Red and Blue fighters.     

Table 1.  Design Factors and Levels 

Factor Name Units Type Design Values

A ROE_t_ID seconds Numeric 10,60

B Red_Jammers count Numeric 0, 2

C Blue_Spt_AC count Numeric 2, 8

D Red_Tactic nm Numeric 0, 5

E Blue_Tactic nm Numeric 0, 5  

The Table 2 simulated data was generated by an Excel Monte Carlo simulation 

created some years ago.  The simulation has been used to produce sample data for 

classroom instruction, tactics development planning discussions and a variety of technical 

papers (McAllister, 2002 is typical).  The Excel simulation emulates up to four missile 

exchanges between Red and Blue forces.  It ends when the simulated missiles are 

exhausted or one force loses 50% of their aircraft.  

                                                           
1 In reality, since the 16 trials might take 8-10 days to complete, the design might be further blocked in 

groups of 4-8.  Additionally, it would be a good practice to replicate one or more points to objectively 

estimate pure error.   

2 In DOE terminology, this is a Resolution V design. One can estimate main effects clear of all but a single 

four way interaction, and each two factor interaction is aliased with a single three factor interaction.  

Sparsity of effects has empirically found these higher order interactions to be rare. 



Table 2.  Simulated Tactics-Development Design and Exchange Ratios 

Std

A:ROE_t_

ID

B:Red_ 

Jammers

C:Blue_ 

Spt_AC

D:Red_ 

Tactic

E:Blue_ 

Tactic

Red/Blue

_KRatio

Units>> sec count count nm nm ratio

1 60 0 2 0 0 0.3

2 10 2 2 0 0 1.3

3 10 0 8 0 0 1.0

4 60 2 8 0 0 1.3

5 10 0 2 5 0 2.0

6 60 2 2 5 0 0.3

7 60 0 8 5 0 3.0

8 10 2 8 5 0 0.0

9 10 0 2 0 5 1.0

10 60 2 2 0 5 0.3

11 60 0 8 0 5 1.0

12 10 2 8 0 5 9.0

13 60 0 2 5 5 3.0

14 10 2 2 5 5 0.5

15 10 0 8 5 5 9.0

16 60 2 8 5 5 0.0  

Table 3.  ANOVA Table for Simulated Tactics-Development Design 

Sum of Mean F p-value

Source Squares df Square Value Prob > F

Model 120.2 9 13.4 32.9 0.0002

  A-ROE_t_ID 13.3 1 13.3 32.7 0.0012

  B-Red_Jammers 3.4 1 3.4 8.5 0.0271

  C-Blue_Spt_AC 15.2 1 15.2 37.3 0.0009

  D-Red_Tactic 0.4 1 0.4 1.0 0.3503

  E-Blue_Tactic 13.3 1 13.3 32.7 0.0012

  AC 10.2 1 10.2 25.0 0.0025

  AE 15.5 1 15.5 38.1 0.0008

  BD 38.8 1 38.8 95.4 < 0.0001

  CE 10.2 1 10.2 25.0 0.0025

Residual 2.4 6 0.4

Cor Total 122.7 15

ANOVA for Response Surface Reduced 2FI Model

Analysis of variance table [Partial sum of squares - Type III]

 

6.1.2 Discussion of Results    

Table 3 shows that 8 of the potential 32 terms in the regression model appear to have an 

effect on the exchange ratio. The main effect of variable D, the Red Tactic was included 

for hierarchy, since the interaction BD between Red Tactic and Red Jammers was highly 

significant.  We shall focus on the model terms involving the factor E – Blue tactical 

choice.  Plots of the AE and CE interaction are shown in Figures 7a and 7b.   In both 

interaction plots it is clear that the tactical choice maintaining larger separation distances 

between the Blue and Red Forces (E at +5 level – red lines) exploits the benefits from 



both looser rules of engagement (ROE) and additional supporting aircraft.  With the other 

tactical choice (E at 0 level – black lines), neither looser ROE nor additional supporting 

aircraft lead to increased kills of Red aircraft. Examination of residuals shows no 

apparent violations of assumptions.  

In a noisy exercise, the experimenter should have reasonable expectations for what 

sorts of effects can be detected.  Pilot learning, daily weather changes, aborted sorties due 

to aircraft malfunctions, and the “fog of war” can lead to substantial swings in outcomes 

from day to day.  In such a noisy environment, tactics and equipment that double or triple 

the effectiveness of a given force should be readily detectable; conversely, tactics that 

lead to modest improvements of 20 to 30 percent may be masked by exercise noise.   To 

illustrate - in this table-top simulation, a noise standard deviation of 0.64 implies day to 

day swings of +/- 1 unit in force exchange ratios would not be remarkable (or found to be 

statistically significant).         

 

Figure 7.  Interaction Between Blue Tactical Choice and (a) Blue Rules of 

Engagement (b) Blue Support Aircraft 

Tactics and equipment development are analogous to robust product design in that 

Blue tactics are design parameters under USAF control, while environmental conditions 

and adversary equipment and tactics are uncontrollable “noise” variables.  In this 

particular example, happily, Blue tactic effectiveness does not depend on Red equipment 

or tactics, making the Blue tactics choice robust to anything Red chooses to do. 



6.2 Air-to-Air Missile Capability Assessment 

The military is engaged in the continual development and acquisition of highly complex, 

sophisticated and technologically superior war fighting systems, from helmet mounted 

information systems to aircraft carriers.  Among these capabilities requiring enhancement 

are aircraft launched weapons for attack against ground and air targets – a key capability 

for all services in close air support, destruction of air defenses or counter air operations.  

The weapons must perform as required and function reliably under diverse operating 

conditions.  In this example we consider just one of the services’ weapon variants from 

the classes of air-to-air or air-to-surface missiles.  Examples of such munitions include 

AIM-120 Slammer, AIM-9X Sidewinder, AGM-65K Maverick, and AGM-114 Hellfire.   

These weapon systems undergo product development in phases based on their levels 

of acquisition maturity, and test and evaluation is used to assess readiness for the next 

phase.  Various computer simulation and flight test capabilities are utilized for weapon 

system performance evaluation, depending on the available fidelity level and resources 

required per test point (Table 4).  For missile design, development and evaluation, the 

tools typically involve computational fluid dynamics aero simulations, physics-based 6- 

degree of freedom (DOF) kinematic models, integrated constructive, or hardware-in-the-

loop (HWIL) simulations, captive carry flight test, and delivery of inert or live weapons. 

   



Table 4. Representations of Weapon Systems Used in the Product Acquisition Life Cycle 

Simulation of Reality

Acquisition Phase Modeling & Simulation Hardware System/Flight Test

Requirements Development

Warfare

Materiel Solution Analysis 

Physics

Technology Development 

Hardware-in-
the-Loop / 

Systems 
Integration 

Lab

Captive Subsystem

Prototype
Engineering, Manufacturing  & 

Development 

Production & Deployment 
Production  

Representative

Operations and Support Production

 

Of the test entries for a next generation air-to-air missile acquisition, three primary 

tests include (1) early developmental testing to perform product design initial 

assessments using digital simulation, and (2) later stage developmental test capability 

assessments using a validated integrated flight simulation or hardware-in-the-loop 

simulation, and finally (3) operational test for weapons effectiveness using captive carry 

and weapon releases.  Figure 8 shows how various simulation forms can be used for test 

affordably to support system assessment along the various stages of the product life 

cycle.  The tests performed earlier in development feed the experiment designs for future 

phases, while the more realistic complex hardware-based simulations in turn serve to 

validate physics-based purely constructive simulations.  More tests are required earlier 

and these experiments are typically more affordable.  The factor and run numbers are 

only notional to provide a rough sense for the relative magnitudes of the experimental 

designs.  Experimental design is an elegant solution to the complex challenge of 

comparing simulations of reality as to which factors affect performance and which ones 

do not.  Empirical statistical models of proper polynomial degree (e.g. equations (1) and 

(2)), serve directly to compare the predictions from each succeeding level of simulation. 



# runs        # factors

10’s       3-5

Live Shot

HWIL or
Captive

Digital
Mod/Sim

Credibility Cost

Predict

Predict

Validate

Validate

3

2

1

# runs        # factors

100’s       8-12

# runs        # factors

1000’s       15-20

 

Figure 8.  Integrated testing across stages of developmental and operational test using 

simulation and open air testing. 

This example details the testing of an air-to-air missile during an advanced stage of 

product development using a high fidelity, stochastic, multiple component missile fly-out 

simulation passing end-game fuzing and fragmentation to a terminal engagement model.  

It is assumed that the target has been tracked and correctly identified.   

A designed experiment approach to building the test strategy and analyzing the data 

will be illustrated.  The key relevant factor categories include weapon deployment 

geometries bounded by limitations on the missile kinematics, target characteristics, 

guidance challenges, environmental influences and terminal flight condition variables.  

Regardless of the test scenario, careful planning using all the relevant test team 

representatives (program management, aircrew operators, engineers and analysts) must 

jointly develop the test program specific objectives, the influential factors, the responses 

to be measured, and the appropriate test matrices (i.e. experimental design).   

6.2.1 Choice of Experimental Designs and Data Generation 

A sequence of test matrices should be planned to leverage knowledge gained from each 

test phase, feeding the findings of the previous test into the scope of the one succeeding.  

As such, a reasonable strategy in the developmental phase is to conduct a screening 

experiment followed by augmentation experiments to discern the true influential 

interactions and or nonlinear effects.  Often a response surface design capable of well 



mapping the underlying input space is the end objective. It is highly encouraged to have 

several separate, sequential experiments, each building on knowledge gained from the 

previous experiment (see Montgomery, 2009).  Table 5 shows some of the factors 

typically considered for air-to-air missile capability assessment.   

Table 5.  Partial List of Typical Variables for an Air-to-Air Missile Engagement Test 

Number Variable Variable Range 

1 Angle off the nose (boresight) of the shooter 0 - 90 

2 Range to target (in % of max range for that set 
of conditions) 

20 - 90 

3 Target type A, B, C, … 

4 Shooter aircraft type A, B, C, … 

5 Target aspect angle 0 - 180 

6 Target Maneuver 0 – 90 deg of turn 

7 Shooter Altitude 15 - 25 

8 Target Altitude 5 - 30 

9 Shooter Velocity 300 - 500 

10 Target Velocity 300 - 500 

11 Infrared (IR) Detector Resolution 1 - 4 

12 Target countermeasure (CM) type A, B, C, … 

 

These factors are generated during a rigorous planning session in which the full test 

team decomposes the process.  The team decides on objectives and performance 

measures (parameters measured during flight and at the target) key to answering the 

objective, then well defines all the relevant factors associated with the shooter, target and 

engagement scenario.  For this example, the objective of the test is to assess the lethality 

performance of an improved air-to-air missile against a known threat aircraft using a 

previously validated integrated flight simulation.  A reduced set of factors and responses 

used for this example are listed in Figure 9 and from an analysis perspective the purpose 

is to fully characterize the lethality of this missile across the spectrum of its kinematic 

envelope.  Factors include those associated with the relative location, direction, speed and 

tactics of the target, as well as a missile design change ultimately increasing the 

resolution of the infrared (IR) detection.  Air-to-air missiles guide using either radio 

frequency or infrared tracking.  Essentially two IR missile variants are tested here, one 



with traditional resolution (IR detector resolution = 1) and one with enhanced resolution 

(IR detector resolution = 4). 

 

Miss Distance

Time to Acquire Target

INPUTS

(Factors)

OUTPUTS

(Responses)
PROCESS:

Rocket motor burn time
Boresight misalignment
Radome transmissivity

Fragmentation pattern
Fuze timing

Shooter Boresight Angle

Target Altitude

Target Aspect Angle

Range to Target

Target Maneuver Air-to-Air Missile

Hit or Miss (Prob of Kill)

Target Velocity

IR Detector Resolution

 

Figure 9.  Diagram showing the final input control factors and responses for a capability 

assessment of an air-to-air missile. 

Suppose initially that the team is primarily interested in modeling miss distance 

across this 7-variable input region (some variables fixed, others combined from Table 5).  

Factors with quantitative levels, if applicable, are always preferred because the 

experiments and subsequent analysis provide insight across the entire region of factor 

space between the low and high settings.  It turns out that each of the seven inputs can be 

defined such that numeric continuous values are appropriate.  Based on engineering 

knowledge and historical performance of related missiles, it is suspected that at least a 

second order polynomial relationship will exist between some inputs and outputs.  

Because 3rd order polynomial terms are anticipated to well model miss distance, it makes 

sense to span the input space such that both the interior and perimeter of the region are 

reasonably populated with design or test points.   

As mentioned, the classic central composite design (Box and Wilson, 1951) is useful 

for experiments where the anticipated model is second order. In this case, a cubical 



region is a natural fit, so an axial distance = +1 in coded units is selected.  This design 

(Figure 10a) with axial distances set to ± 1 is referred to as a face centered design (FCD).   

a)                            b) -1

+0.5-0.5

+1

+1

-1

-0.5

+0.5

+1

-1

 

Figure 10.  The test point geometry of a a) face centered central composite design in 3 

factors: difference between shooter and target altitude, range to target, and the angle off 

the shooter aircraft nose, and b) a nested face centered design. 

Because there is also sufficient rationale for highly nonlinear relations between inputs 

and the response, and because runs are relatively inexpensive, a second FCD design will 

be embedded or nested in the interior of the first FCD canvassing the perimeter of the 

input space (Landman et al. 2007; Tucker et al. 2010).  The interior design would place 

the corner and axial points at ± 0.5 in coded units.  This nested FCD design (Figure 10b) 

structure well populates the interior of the input space, has nice symmetry, low 

correlation among input variables and is quite efficient when alternate, small-run 

fractions are used for the corner point designs (Yang, 2008).  

The factors and settings are provided below (Table 6).  For proprietary reasons 

generic descriptions and coding of the input levels will be used to display the findings.  

Simulated data is used for the same reasons to illustrate potential influences due to the 

factors on the primary response, miss distance.  The experiment used consists of a nested 

face centered design, with complementary fractional factorial designs used for the corner 

points.  Because each test point resulted from a simulated fly out from an integrated flight 

model, the 100 points associated with this nested face centered design were easily 

affordable.   

Diff in Altitude

Angle off Nose Range



Table 6.  List of Factors and Settings for the Capability Assessment Test 

Factor Name Low Actual High Actual 

A Shooter Boresight Angle Nose Beam 

B Range Low High 

C Target Aspect Inbound Outbound 

D Target Maneuver None 90 deg turn 

E Target Altitude Co-altitude Look down 

F IR Detector Focal Plane 
Array Resolution (Pixels) 

1 (200x200) 4  (400x400) 

G Target Velocity Low High 

 

Of note in simulation experimentation is that the fundamental principles of 

randomization and sequential experimentation play a less important role.  The execution 

order of simulation experiments matters little as long as the noise component is 

accurately modeled.  The sequential nature becomes relevant as simulation run time 

grows.  So if runs are expensive or time consuming, we suggest a sequential strategy of a 

fractional factorial plus center points, followed by axial points to complete the FCD, 

followed by (if needed) the nested FCD.  

 

6.2.2 Discussion of Results 

The air-to-air missile experimental test points are typically conducted in batch mode 

using the integrated flight simulation over a weekend, causing little disruption in the 

acquisition program.  The stochastic nature of the simulation allows for analysis using 

conventional empirical modeling techniques such as least squares regression.  The 

simulated data is generated via Monte Carlo simulation based on behavior typical of 

traditional air-to-air engagements.  Statistical modeling diagnostics are performed during 

analysis to check for possible violations of the model underlying assumptions.  The 

residual errors from this investigation are well behaved such that the model assumptions 

are satisfied. 

The nominal seven factor second order model contains the linear terms, two-factor 

interactions, and pure quadratics.  The experiment design is capable of estimating all 35 



model effects of this general second order model, plus higher order interaction and cubic 

terms.  The analysis shows that a second order model is sufficient.  Only three of the 

seven factors influence the miss distance response and just six model terms of the 35 

possible are significant (Table 7).   

Table 7.  Results of Model for Miss Distance with 3 Linear Terms, 2 Two-Factor 

Interactions and a Quadratic Term  

  Coefficient Standard 95% CI 95% CI 

Factor Estimate Error Low High 

Intercept 14.68 0.41 13.86 15.49 

A:  Shooter Angle 2.84 0.48 1.90 3.79 

C:  Target Aspect 3.46 0.49 2.49 4.43 

F:  IR Detector Resolution 6.33 0.49 5.36 7.29 

AC -7.14 0.55 -8.23 -6.05 

AF -2.80 0.55 -3.89 -1.72 

C2 5.18 0.71 3.78 6.59 

 

Since the statistical model is displayed for coded factor levels, the coefficients can be 

compared directly to determine which model terms are most influential.  In this case, both 

the interaction between shooter angle and the target aspect (AC) and the pure quadratic 

for target aspect (C2) have large explanatory power (see Figure 11).  

Shooter
Angle

Target Aspect

Shooter

Target  

Figure 11.  Illustration of shooter angle off the nose and target aspect factor geometries. 



Figure 12 conveys both the interaction and nonlinear relationship that A and C have 

with miss distance.  There are several ways to interpret this response surface.  One is that 

worse performance (higher miss distances) is achieved when the shooter angle is off the 

beam (A = 90) and the target moving away from the shooter (C = 180) while lower 

miss distances are obtained if the target is approaching (C=0).  By contrast, for shots off 

the shooter nose (A= 0), miss distances are generally reasonable. Design-Expert® Software
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Figure 12.  Response surface characterizing the target aspect and shooter angle influences 

on air-to-air missile miss distance performance. 

Another major finding involves the engineering design choice of IR Array (control) 

and the shooter angle (noise).  Figure 13 displays an interaction plot, indicating that the 

new IR detector resolution (red line) have the intended effect of reduced miss distances.  

The lower resolution IR detector performs worse except for shots directly off the shooter 

nose, and for this resolution the shooter boresight angle largely impacts performance.  

Conversely for the improved resolution IR detector, lower miss distances are achieved 

and performance is insensitive to shooter angle.  This result is an example of a 

meaningful finding in a robust design study.  Robust designs involve control factors that 

are set during employment (e.g. missile IR detector) and noise factors that vary during 

employment (e.g. shooter angle).  A robust design problem is one having a significant 

interaction between the control and noise factors.  It is desired to determine control factor 

settings that provide acceptable overall average performance, as well as reduced response 



variability in the presence of noise variables. The enhanced resolution IR detector 

provides better average miss distance as well as resistance to the shooter angle setting.   
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Figure 13.  Two-factor interaction plot showing the combined effects of two factors (CM 

difficulty and shooter angle) on air-to-air missile miss distance performance. 

 

7. Advanced DOE 

Traditional experimental design tools are extremely powerful and provide great insight 

with the use of as few resources as possible. The advancement of technology and 

computing power has also expanded the ability of experimental design and analysis to 

solve more complex problems and tackle issues that previously could not be addressed.  

Areas considered advanced DOE include (but are not limited to): experiments with 

computer models, experiments with hard-to-change and easy-to-change factors, 

experiments in which there are constraints on the experimental region, and experiments 

where the response surface is expected to be a complex or non-linear model. Experiments 

that need to account for uncontrollable sources of variability, such as the impact of 

weather or other environmental forces are not unusual in operational testing.  Similarly, 

experiments that involve human operators are also relatively common, and these 

operators are random factors that have different levels of skill and/or experience that 

must be accounted for in both design of the experiment and analysis of the resulting data.  



Design of experiments for software testing or for testing of complex embedded software 

systems is also of growing importance.  Another important topic is combining data from 

different sources, such as wind tunnel, computer model, and flight tests or from earlier-

stage development tests and current operational tests. Some of these topics are relatively 

well studied in the literature, where other topics are just emerging as areas of research. 

Some of the “unsolved” problems motivate the need for joint collaborative research 

between DoD partners and the DOE academic and practitioner community.  To illustrate 

the application of one such advanced DOE topic, we will use a maritime domain 

awareness (MDA) application.   

Chung et al. (2009) have developed a decision support tool for the task of search, 

identification, and interception (SII) of multiple objects in a maritime setting. This is a 

broad area of persistent surveillance vision with a limited number of assets, which 

requires an understanding of asset platforms and sensor characteristics. The SII tool is a 

simulation based tool that is used to generate optimal routing of assets over time to most 

effectively search the area for hostile contacts. Typical assets include direct support 

unmanned aerial vehicles (UAVs), which provide situational updates to surface vessels.  

The objectives of DOE and specifically RSM can help enhance the information 

provided by the decision support tool.  The first objective in RSM, mapping a response 

surface over a particular region of interest is particularly useful for visualizing a response 

or studying the effect of factors of interest based on the mathematical model created. 

Using the SII example, consider the sensor characteristics of the UAV’s and how they 

influence the time to find a hostile object in an area of interest. Two sensor characteristics 

are α and β, which are the false positive rates and false negative rates, respectively, of 

detection.  

In this example, factorial design and central composite design could be used to map 

these input factors, α and β, to the output response (time to find hostile objects), however 

there are special considerations. The first consideration, is that the response, based on 

previous information, is expected to be highly non-linear and may require the use of a 

non-linear polynomial model or a special type of spatial correlation model, such as the 

Kriging model, which is a special form of the Gaussian process model (see Santner et al., 



2003 and Jones and Johnson, 2009). The use of these more complicated empirical models 

potentially warrants the use of an experimental design that has more levels than the 

factorial or central composite designs. A good choice in this case might be a space-filling 

design, such as a sphere packing design (Johnson et al., 1990), a uniform design (Fang, 

1980), or a Latin hypercube design (McKay et al., 1979). For a review on empirical 

modeling and experimental design in computer simulation models, see Chen et al. 

(2006).  

A space-filling experimental design was used to study the relationship between α and 

β, where the response of interest was measured in the number of cells (a cell 2-D area on 

the surface) traversed by the UAV before the threat was found. The fewer cells traversed, 

the faster the hostile was intercepted. A response surface plot, created by using a 

Gaussian Process model is shown in Figure 14.   

 

Figure 14.  Example response surface of average cells traversed by a UAV before the 

surface team intercepts the hostile entity as a function of α and β. 

Figure 14 illustrates that as α and β approach zero (i.e. a perfect sensor) the number of 

cells traversed decreases dramatically. Now, imagine pairing this plot with information 

on the cost to obtain such sensor characteristics. This information could greatly influence 

the decision as to how good the sensors should be. For example, notice that in Figure 14, 

the response surface is relatively flat (unchanging) when α and β are below 0.35, but the 

surface increases exponentially from 0.35 to 0.5.  

In addition to mapping the response surface, the Gaussian process model fit can also 

aid in tasks such as selection of operating conditions. In a military environment or setting, 



there are always many factors that are uncontrollable and/or unpredictable. Given these 

uncontrollable factors, it is of utmost importance to provide adequate recommendations 

and draw accurate conclusions in the presences of these uncertain conditions. RSM can 

play a key role in these decisions. Maritime settings are often influenced heavily by 

weather conditions. Simulation models used to study the SII strategies take into account 

modeling these uncontrollable factors such as weather, location of hostile and neutral 

objects, and movement of hostile and neutral objects. It would be extremely desirable for 

decision makers have the opportunity to select levels of controllable factors, such as 

number of assets, movement of assets, payload of assets, and speed of assets that provide 

things such as consistent performance and/or high probability of interdiction.  

The air-to-air missile example and the SII example illustrate the use of experimental 

design and analysis techniques and emphasize the enormous potential for solving 

problems encountered in the defense community. This information is extremely 

important and there are situations currently (e.g. Nigerian river delta region, horn of 

Africa, and straight of Malacca) in which benefit of decision support is greatly amplified 

by conducting these types of analysis techniques. 

 

8. Conclusions  

Statistically designed experiments have a long history of successful application in 

science, engineering, and business.  As we moved from the agricultural era into the first 

industrial era there were new technical challenges that had to be overcome and new 

methodology that had to be developed so that designed experiments could be successfully 

employed.  This led to the development and growth of response surface methodology 

throughout the 1950s, 1960, and 1970s.  The second industrial era saw new methodology 

developed so that designed experiments could be successfully employed to make 

products and processes robust to uncontrollable sources of variability and to make the 

RSM framework more broadly applicable to product design and process development.  

The current era has seen designed experiments applied to new problems involving 

computer models, software development and testing, market research, e-commerce, and 

many other areas.  The problems faced by the test community in the DoD are challenging 



and have many novel characteristics.  Solving these problems and integrating statistically 

designed experiments into the DoD testing philosophy will require (1) broad education of 

current and future practitioners, (2) development of strong statistical expertise within the 

test community with high-level capabilities in designed experiments, and (3) research 

activities involving the test community and DOE researchers focused on specific problem 

areas vital to the DoD. 
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Appendix A – More Complex Measures and Test Conditions for Force Engagements 

 

Table A-1.  Candidate Real-Valued Response Variables for Fighter Force Engagements 

N Measure of Performance - Responses - Y Units Rationale for Measuring

1 Red Killed count Tradition

2 Blue Killed count Tradition

3 Red Survive count Tradition

4 Blue Survive count Tradition

5 Red/Blue Exchange Ratio ratio Tradition

6 Blue Bombers Survive count The reason for fighter escort - bombers survive

7 Blue Bombs on time seconds bombers delayed/disrupted?

8 Blue Bombs on target meters bomber targeting disrupted?

9 Number of Red fighters unobserved count Superior Situational Awareness (SA)=no leakers

10 Number of Blue in Red rear unobserved count Superior SA=sneak into rear areas

11 Percent Blue Fighters that Merge percent Superior SA - hold at beyond visual range - no "dog fight"

12 Percent Time Offensive/Defensive/Neutral percent Goal -- Blue 100% offensive

13 Wasted/Denied Shots - Red percent Red fighters waste shots

14 Wasted/Denied Shots - Blue percent Blue fighter shots count

15 Number unobserved shots on Red count maximize unobserved shots on Red

16 Number unobserved shots on Blue count Superior SA -- no unobserved shots  Count or percent?

17 Time advantage to manuever minutes Blue sort/target/ react earlier and farther from Red formation

18 Number of saves by Wingman count Superior SA means no lack of mutual support after merge

19 Time to re-est mutual support after lost wingman seconds Red -- maximize Blue -- minimize

20 Time w/o mutual support seconds Alternate is expert judgment on a rating scale of adequacy

21 Picture accuracy (red and blue) - who/where/when rating scale 1-10 scale?  Worse/same or accurate/inaccurate

22 Num asymmetric engagements (2v1 or 4v2) count No fair fights - Blue gang up on Red

23 Time advantage in detect-shoot loop seconds direct measure of what we get from SA

24 Range advantage in detect-shoot loop nm direct measure of what we get from SA

25 Accuracy of data link positions -- all players meters Compare to instrumentation measurements

 

 

 

 

 

 

 

 

 

 

 

 



Table A-2.  Candidate Categoric and Physically-Based Test Conditions for Fighter Force 

Engagements  

 

N Potential Test Conditions - X's Simple Categoric Levels Physically-Based Levels

1 Radar Support Hawkeye, AWACS, none detection range of fighter-target

2 Weapons AIM-120 C3/C7/D, AIM-9X Blk I/II missile launch range/lethality

3 Electronic Intel Support RC-135 or none 1-10 scale of intel awareness

4 Radar Jamming Support EA-6, B-52, EF-18G, or none watts/cm2 at radar, detection range

5 Blue Long Range ID Rules loose, medium, tight time required or distance required to ID

6 Blue Tactic Choices 1,2,3 … intent of tactic: first shot, stealth, etc.

7 Comm Jamming Support EC-130 Compass Call or none percent comms degraded or allowed

8 Blue Fighter Force Size Small, Medium, Large Aircraft count: 2, 4, 8

9 Blue Fighter Mix F-15/16, F-22/35, mixed force 1-10 scale of capability, detect range

10 Fighter Radar Control/Support Ground radar or none detection range of fighter-target

11 Weapons AA-XX, AA-yy missile launch range/lethality

12 Radar Jamming Support Red jammers type 1,2,3 watts/cm2 at radar, detection range

13 Red Long Range ID Rules loose, medium, tight time required or distance required to ID

14 Red Tactic Choices 1,2,3… intent of tactic: first shot, stealth, etc.

15 Red Fighter Mix 3rd/4th/5th generation 1-10 scale of capability, detect range

16 Red Fighter Numbers Small, Medium, Large Aircraft count: 2, 4, 8

17 Red Ground Defense Quality Light, Medium, Heavy Numbers, shot range, loss rates

18 Red Ground Defense Numbers Few, Medium, Many SAM count: 2,4,6, etc.  

19 Temperature Cold, Ambient, Hot Temperature degress C/F

20 Lighting Day, Night lumens available

21 Visibility (visual) low, medium, high visibility in nautical miles

22 Visibility infrared low/medium/high humidity water in gm/cm3 or IR absorbed (db/km)

23 Clutter Background (spectrum) low/medium/high 1-10 clutter scale for spectrum

24 Weather (Percipitation) clear, misty, raining inches per hour or water density
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