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ABSTRACT  
Indoor hydroponic farming has become an industry changing technology that has allowed 

for crop growth in areas of the world where it would never have been expected before. Freight 

Farms’ Leafy Green Machine allows for farmers to grow crops throughout the year, by 

controlling the climate inside the farm; it also allows the farmer to not concern themselves with 

the external environment. However, the farm is not able to predict how the climate of the farm 

will change based on its current sensor readings and equipment states. To allow the farmer to see 

how the farm will behave in the future, machine learning algorithms can utilize these readings 

and states to predict the future climate readings and notify the farmer of any harmful changes. 

This project seeks to build a predictive machine learning model to add further measures to help 

maintain the Leafy Green Machine’s self-sustaining climate.  
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Chapter 1: Introduction  
 Traditionally, farming was seen to be a laborious and time-consuming profession that 

yielded unpredictable results. Harvesting would only occur once a year due to seasonal 

restrictions, which could be further effected by natural disasters, animal infestations, or crop 

disease. To remedy the problem of a single harvest, hydroponics was developed to grow crops 

without soil. This method allows for the use a nutrient rich water solution to feed plants. 

Hydroponics allowed for farmers to grow crops in non-traditional locations. Recently, the 

consumer market for hydroponic crops and farming has grown significantly. Crops yielded from 

hydroponics are both cost-effective and easy to grow. One of the leaders in vertical hydroponic 

farming is Freight Farms.  

 Freight Farms’ Leafy Green Machine (LGM) uses vertical towers, and yield more crops 

than the conventional one acre of farmland. As opposed to the traditional 1 harvest per year, a 

freight can have anywhere from 8 to 12 harvests per year. The marketable yield of crops of a 

LGM is up to 93% as opposed to 75% from one acre of farmland.  

 The LGM can be set up anywhere around the world, the only necessary requirements are 

access to level ground, electricity, and water. This allows parts of the world that are not suited 

for traditional agriculture to produce crops year-round. The controlled environment permits 

optimal yields for any given crop, provided the correct parameters are maintained in the LGM. 

To maintain these parameters, it is important to know when the farm waivers outside the given 

ranges.  

 Leafy green vegetables, such as different types of lettuce, spinach and herbs are grown in 

the LGM. Freight Farms provides its farmers with the optimal growing conditions for each of 

these crops. While some conditions, like amount of sunlight, are simple to control, others, like 
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pH and electrical conductivity of water, cannot be controlled by the flip of a switch. They are 

influenced by many equipment inside the farm as well as the environment outside the farm. 

The LGM provides sensor data detailing the current conditions in the farm (i.e. air 

temperature, humidity, pH, and other readings useful readings). The state of the equipment (on or 

off), used to manipulate the environment inside the farm, is also given.  

 This project’s goal was to devise a data-driven solution, using the provided sensor and 

equipment data as features, to build a predictive model. The label was determined by the sensor 

reading the farmer is attempting to predict, allowing for a model to be trained on the farm’s 

existing dataset to provide predictions about the future climate.  

The datasets provided by a given LGM required extensive preprocessing, before they 

were used by the classifiers. The primary classifier used was random forest. For the predictive 

model to be considered successful it should predict out a given number of minutes with 80% 

accuracy. To demonstrate the dataset could be predicted with that high level of accuracy two 

parameters were chosen, air temperature and humidity. Three equipment, lights, coolbot, and 

main pump, were chosen as attributes that affected the given sensor readings.  

These five inputs were used as features for classifiers. To further authenticate the 

accuracy of the resulting model, the results were cross validated and tested against data that was 

withheld from the model during training.  

Initially, we saw promising results, indicating it would be possible to predict sensor 

ranges at least 10 minutes into the future with 80% accuracy. At that time, it was our goal to 

predict if the reading for the sensor would fall within an acceptable range. A major problem we 

encountered was that the farm was almost always with an acceptable range for the sensor 

readings; there were very few instances of the farm being outside the optimal ranges, giving us 
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insufficient amounts of data for the classifiers to train on. We then shifted our focus to predicting 

ranges that contained similar amounts of data. The results were less successful with the best 

classifiers only getting 75% accuracy for predicting the shortest duration in the future of 5 

minutes. 

The discussion will start with background information about Freight Farms, hydroponics, 

and related work in Chapter 2. Chapter 3 will introduce the problem of this project. Chapter 4 

articulates the approach taken for building the model’s framework. Chapter 5 further delves into 

the different experiments that were conducted, with their respective results. Possible future work 

and recommendations are described for this project in Chapter 6. Finally, Chapter 9 presents the 

conclusions of this project. 
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Chapter 2: Background 
 To understand this project, it is pertinent to have an understanding of hydroponics as a 

whole and Freight Farms’ Leafy Green Machine. Hydroponics have evolved over the past few 

decades and now allow farming in an indoor environment. Freight Farms has built upon 

hydroponics to build a self-sufficient freight that produces a constant optimal climate crops.  

2.1 History of Hydroponics 

 In 1634, Jan Baptist van Helmont conducted the “Willow Tree Experiment.” While he 

was put on house arrest by the Spanish Inquisition officers for studying plants scientifically. The 

theory at the time was that plants got their nutrients from the soil. Helmont studied this theory by 

weighing a willow try and dry soil. Once he planted the tree, he watered it and let it grow for five 

years. The tree had grown significantly and increased in mass. When he weighed the soil after 

drying it, he noticed it had the same mass. Therefore, he concluded the tree grew by drawing its 

nutrients from water. His experiment revolutionized botany and changed the way plant growth 

was studied [1].  

Building off of the discovery of Helmont, in the 19th century Julius von Sachs and W. 

Knop discovered the necessary nutrients plants needed to for plant growth, nitrogen, phosphorus, 

and potassium, earning them the names “The Fathers of Water Culture.” In the 1920s Hoagland’s 

Solution, developed by Dennis Hoagland, took account of the micronutrients necessary for plant 

growth, magnesium, sulfur and iron. His solution provided the essential nutrients for crop growth 

wherever weather and sun permitted [2].  

During World War II, the American military used hydroponics to grow vegetables in the 

Middle East and Pacific Islands to avoid transporting foods. This allowed for soldiers to grow 

fresh food in the harshest environments. This practice continued through the Korean War. In the 
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1960s, the Nutrient Film Technique (NFT) was developed as a drip system to provide nutrients 

directly to the roots of the plant. In the 1970s, after Nixon’s crackdown on the Mexican border 

for stopping marijuana from being brought into the United States, companies started producing 

equipment use hydroponics in an indoor environment. After further research over the past few 

decades, companies have begun building indoor systems for year-round crops [3].  

2.2 Freight Farms 

Freight Farms was founded in 2010 by Brad McNamara and Jon Friedman. It began with 

a Kickstarter campaign with a prototype for the current Leafy Green Machine. The goal was to 

produce crops year-round in climates and locations not hospitable to agriculture. Crops grown 

include many types of lettuce, hearty greens, and herbs. 

Leafy Green Machine                                                                          

Growth Cycle 

 

The growth cycle in the Leafy Green Machine is concerned specifically with 

germination, seedling growth, and mature plant growth [4].  

The germination process takes 5 to 14 days. Seedling trays are filled with growth plugs 

which each contain 1 to 2 seeds based on how likely the specific type of seed will sprout. To 

determine the number of seeds the farmer plants he desired number of plants and divides it by 

the germination rate. For example, if 275 Bambi Bib Lettuce seedlings are desired, they are 

divided by the Bambi Bib Lettuce germination rate which is 0.99. Leading to 728 seeds being 

planted. Seeded trays are then placed on the germination shelf where a humidity dome is placed 

on top of the tray to preserve moisture during germination. Once the seeds germinate and 2 
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leaves form, the tray is moved to the seedling trough. If more than one plant sprouted in a single 

cell they are separated [4]. 

Seedling growth stage is approximately 2 weeks long. During this time seedlings receive 

water and light periodically. True leaves form during this stage. A healthy seedling will have 

roots wrap around the bottom of the grow plug and have the stem strengthen, allowing for it to 

be pulled from the tray. Healthy roots are white and not slimy. When seedling leaves turn 

yellow, it can indicate many potential problems. The plant may not be getting the right nutrients 

or receiving unequal doses of nutrient A and B. Other causes are EC not being set to 700, poor 

water quality, and the pH not being in the range of 5.8 to 6.2. Slow growth comes from similar 

problems to leaves turning yellow like EC and pH unbalance and root rot. It can also come from 

exposure to differing air temperature and humidity or exposure to tower conditioning in early 

stages of growth. Some slow growth may just be normal growth for some crops the look smaller 

compared to other. Herbs, kale, and swiss chard seedlings look smaller than lettuce seedlings. 

At the end of seedling stage, the plants are transplanted from trays into vertical towers for 

the mature plant growth stage; plants grow from seedlings to mature plants in the towers. The 

plant in the growth plug is planted perpendicular to the tower with the wicking strips lying flat 

against the growth medium; it is set at least half an inch from the front edge of the tower. The 

bottom third of the plant’s grow should be in contact with the wicking strip. Both over contact 

and lack of contact are undesirable. Over contact can oversaturate the plant, potentially causing 

stem rot. The grow plug should not stick out past the front face of the grow medium, this differs 

based on if the plant needs its stem supported or not. Plants should be monitored throughout 

growth checking for adequate access to water, proper airflow and signs of disease and pests. 



 13 

Wilted plants may be the result of a lack of water from the emitter becoming clogged or wicking 

strop placement being incorrect [4]. 

Before plants are harvested the main pump should be turned off. New seedlings can 

immediately be placed in the tower. Mature plants are harvested with their grow plug intact. 

Plants that are harvested by trimming should be removed from the tower and place on the harvest 

rack where they can be trimmed. Basil is trimmed right above its second set of leaves and can be 

harvested every two weeks. Kale, swiss chard, and collards are harvested by breaking off outer 

larger leaves from the base of the plant. Once trimming is completed, they should be placed back 

on the tower. [4] 

Climate Ranges 

 
Figure 1:Ideal Climate Ranges for Crops 

Crops need to grow within specific ranges. For lettuce, kale, and basil, the ranges should 

be as follows: the seedling EC should be 600 to 900 µs/cm2; the seedling and main pH should be 

5.8 to 6.2; the seedling and main water temp should be 35ºF to 140ºF; the CO2 level should range 

from 500 ppm to 2000 ppm. For lettuce, the air temperature should be 53ºF to 73ºF, have a 
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humidity from 50% to 80% rH and have a main EC from 1000 to 1500 µs/cm2. For kale, the air 

temperature should be 53ºF to 73ºF, have a humidity from 60% to 80% rH and have a main EC 

from 1600 to 1800 µs/cm2. For basil, the air temperature should be 63ºF to 88ºF, have a 

humidity from 60% to 80% rH and have a main EC from 1400 to 1800 µs/cm2. [4] 

Sensors and Equipment 

 

During the Nursery Stage, the seedlings germinate in an aluminum workstation for about 

three weeks before being put in vertical towers. The space can grow up to 3,600 seedlings with 

the help of an irrigation system and a LED lighting array. After the germination period, the 

seedlings are transferred to one of 256 towers in the four rows of 7’ vertical towers. The 

container makes use of a drip irrigation system and a strip LED lighting system for the growth 

stage of the crops.  

Climate Control 

 

The climate of the LGM can be set to the ideal environment for each crop being grown 

inside the container. Environment sensors measure different factor, such as temperature, 

humidity, CO2, nutrient levels, and etc., to maintain the ideal climate for the crops by interacting 

with the farm controller. The container makes use of a multi-planes airflow and intercrop 

aeration system for air circulation. The ventilation system maintains the temperature and 

humidity of the environment with a 24,000 BTU air conditioner.  

Lighting System 

 

Freight Farms uses a high efficiency LED lighting system to imitate sunlight for the 

crops. This is done by emitting red and blue colored light for photosynthesis. Approximately, 
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128 strips run for 18 hours a day. This gives the plants enough light to maximize the growth 

cycle. The six-hour break allows for the plants to get time to rest and avoid using electricity 

during the day. 

 
Figure 2: LED Lighting System 

Irrigation System 

 

The LGM utilizes a close-looped hydroponic irrigation system to deliver a water solution, 

rich with nutrients, to the plant roots. The ensures all plants grow uniformly. The nutrient dosing 

panel interact with the temperature, pH, and EC sensors to control the water conditions and 

check for the optimal levels of nutrients for growth.  
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Figure 3: Freight Irrigation System 

 

In-farm Controller 

 

The container comes with an in-farm controller that communicates with the sensors to 

maintain an optimal environment for the crops. The farm’s data is displayed on a weatherproof 

screen so the information can be easily accessed by the farmer.  

Farm Camp 

To ensure the LGM is operates correctly, Freight Farms offers Farm Camp as a means to 

provide the necessary tools to each new farmer. The camp is composed of in-farm lessons and 

classroom sessions. 
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 2.3 Related Work  

  In one study, neural networks are incorporated in a predictive greenhouse control 

strategy for inside air temperature. The authors of the paper modeled air temperature based on 

the relative humidity and the outside temperature, along with incorporating solar radiation. They 

experimented with multiple different training and learning models and compared them. They 

utilized Multi-Objective Genetic Algorithms in this study [5]. Another study was done using 

simulations with the goal of predicting air temperature an hour in the future. That study used a 

particle swarm optimization algorithm to predict temperature with success in their simulations 

[6].  

 A third study used neural networks to predict the temperature and humidity in a 

greenhouse. That study also manipulated the greenhouse environment in addition to its 

prediction. The experiments were also largely concerned with energy efficiency of the 

greenhouse and how predictive models could lead to a more efficient use of machines controlling 

the environment. The work in this paper differs by using historical data with not ability to 

influence the environment of the greenhouse. The results also were not simulations, but tested on 

different part of the data set the classifiers had not been trained on. The main classifier used for 

prediction was a random forest unlike the commonly used neural network which was tried but 

found inaccurate [7]. 

Another group took the approach of developing an algorithm to predict greenhouse 

conditions which would optimize profits for the tomato crop’s production. The algorithm used 

two different programs, one that calculated crop yield, and a second that calculated the energy 

costs of the greenhouse in reference to the external climate. In conjunction, the two algorithms 
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predicted the set of climate parameters for each harvesting period. The overall goal was to 

minimize energy costs and maximize crop yield [8].  
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Chapter 3: Problem Statement 

Our goal was to build a predictive model that would understand the different equipment 

states to predict the future sensor data and the environment of the farm. Our hope is that the 

farmer can use this predictive model to see the projected future environment of the farm and 

decide if it is optimal or not. To make the preliminary model, we used the following equipment 

data: 

• Coolbot (AC) 

• Main Pump 

• Lights, 

and the following sensor data: 

• Temperature 

• Humidity.  
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Chapter 4: Approach 

To build a predictive model, first a large amount of data needed to be obtained and 

processed into a usable dataset. Pre-existing models were studied and tested on the respective 

dataset. The main motivation was to find the optimal model and parameters for the data. 

4.1 Data 

 Freight Farms provided us with 9 months of data from 1/1/17 to 8/31/17 from the farm 

located at their headquarters in Boston. This dataset included sensor and equipment readings for 

the freight. The original raw dataset contained instances where there was an overlap in data 

between months and windows of time where days of data was missing. In order to build our 

model, we needed to preprocess the data so that it could account for these anachronisms.  

Data Preprocessing 

 To preprocess the data, we first cleaned the data to remove the overlapped data and 

ignored the missing data readings. We wanted to ensure the data was continuous. Once the data 

was continuous, we preprocessed the data so that it could be used by the predictive models. 

 First, the data was divided by its start time and end time. This was done in the following 

manner, the data was either divided into 4 months of continuous data (January to April, March to 

June, or May to August) or kept in its original 9 month dataset. The goal was to use the first 70% 
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of the dataset for training the model that would be used for prediction and then the next 30% for 

testing the model, as described in the figure below.  

 
Figure 4:Training and Testing Data 

Before the data could be divided into testing and training, it had to be preprocessed and but in a 

data frame so the model could extract features for training and predicting. The model used three 

equipment (EEquipment) states and two sensor (SSensor) readings and calculated the average value for 

the allotted chunk (Cx) size (i.e. 5 mins, 10 mins, 15 mins, etc.) to build a feature within a block 

(BX) of data. A block of data is a specific size (30mins, 1 hr, 2hrs, 3 hrs, etc.)  that was used for 

training and testing the model. 

 
Figure 5:Preprocessed Data Block 
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The model would use these blocks to train the data and predict the next readings for the next n 

minutes using Cn. The goal was to use the previous block as the current state of the environment 

so that it could predict the next n chunks of data readings for the farm.  

 
Figure 6: Predicting Data 

4.2 Model 

Random Forest 

Random Forests are a type of ensemble learning method. They can be used for 

classification, regression and many other statistical methods; they were designed for decision 

tree classifiers. The forest contains multiple decision trees, where each tree is created using a set 

of random vectors. Each vector is generated from an established probability distribution. The 

random forest is preferred over decision trees because they help to avoid overfitting of the model 

to the training set. [5] 

Cross Validation 

Cross-validation is training method that allows for a model to train on as much data as 

possible to improve itself. This method divides the data equally into partitions, where each 

partition is used k – 1 times and once for testing. The process of utilizing all of the partitions for 
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training and testing is done k times and allows for the entire data set to be covered by the model 

for training and testing. [6] 

 K-Nearest Neighbor 

 K-Nearest Neighbor is a proximity based algorithm that finds the distance between the ith 

object to all its other neighbors of object. The algorithm then sorts the distances of the neighbors 

from the object in decreasing order, while keeping track of which object the distance belongs to. 

The algorithm then returns the neighbors associated with first K distances from the sorted list.[7] 

Gaussian Naïve Bayes 

 The Naïve Bayes algorithm converts the data into a frequency table and finds the 

likelihood for a possible outcome. It then uses the Naïve Bayesian equation to calculate the 

probability of the outcome occurring. Once it has calculated the outcome, it chooses the option 

with the highest probability of occurring. This is done assuming a gaussian or normal data 

distribution. [8] 
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Chapter 5: Tests and Results  

Six experiments were performed on the preprocessed dataset. As parameters were tuned 

the results generally improved for the first five experiments, indicating that the predictive model 

could predict up to 10 minutes in the future. The changing variables in the first five experiments 

were block and chunk size; this effected the amount of data the model had to train and test on. 

 The first five experiments used the same values for temperature and humidity ranges. 

Ranges were changed in the final experiment, proving it to be more difficult for the model to 

predict the future temperature and humidity accurately. 

5.1 Experiment 1 

Methodology 

 

The dataset used was from the beginning of May to the end of August. Data labels for 

temperature ranges were: “Too Hot” > 85°F; 85°F ≥ “Hotter than Expected” > 70°F; 70°F ≥ 

“Expected Range” ≥ 60°F; 60°F > “Colder than Expected” ≥ 55°F; “Too Cold” < 55°F; chunk 

size was C = 5, block size was B = 11, and predicted chunk was P = 1. This meant that 55 

minutes of data was used, and the label for that block of data the next 5 minute chunk slotted into 

the correct air temp range. These experiments were run as above to find ideal random forest 

parameters in a realistic environment that will predict the state of farm in the next five minutes, 

forest size is the variable changing.  

Results 

Cross Validation was also done on the same dataset using a random forest classifier with 

the same parameters as above. The first 70% of the chronological May to August dataset, or the 
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training dataset, was used in the cross validation set. The number of trees was used to as the 

factor to contribute the most to the variance of the model, but it had little effect.  

 
Figure 7: Cross Validation Results Using Different Trees 

Cross validation put the random forest at around 92% to 94% accurate as shown in the 

Figure 7. The results are similar between the number of trees used in the classifier with only 

minor differences between the best and worst classifiers. The best classifier, by a small margin, 

used 100 trees. 
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Figure 8: Heat Map of Confusion Matrix Using 100 Trees 

Using the results from cross validation the random forest was trained on all the training 

data and then tested on the remaining test data. Figure 8 shows the confusion matrix with 100 

trees, the best result from cross validation, in the random forest. The vertical labels are the 

predicted values while the horizontal labels are the actual value. For instance, in the matrix the 

slot containing 24 indicates that the model predicted the block to be in the “Expected Range” 

how “Expected Range” however they were actually “Hotter than Expected”. The diagonal from 

top left to bottom right indicates correct predictions. This model was 84.72% accurate in 

predicting the test data. 
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This experiment served as a basis for future experiments. It allowed for us to test the 

random forest model built.  

5.2 Experiment 2 

Methodology 

This dataset used was again from the beginning of May to the end of August. Chunk size 

was C = 5 and block size varied so that B = [1 hour = (11,10,9), 2 hours = (23,22,21), 3 hours = 

(35,34,33), 30 mins = (5,4,3)]. The predicted chunk varied so that P = (1, 2, 3). This meant that 9 

chunks or 45 minutes of data was used to predict the 3rd 5-minute average. In other words, 45 

minutes was used in the classifier and the label range was determined based on the average from 

55 to 60 minutes. Similarly, 50 minutes was used with the label being the 2nd five minutes. This 

same treatment was applied to other sets of block sizes so that the classifier would be predicting 

10 and 15 minutes out. The same process was done for humidity, where the ranges for humidity 

were “Too Humid” > 80%, 70%, ≤ “More Humid than Expected” ≤ 80%, 60% ≤ “Expected 

Range” ≤ 70%, 50%< “Less Humid than Expected” < 60%, “Not Humid Enough” < 50. Air 

temp was also used with the same range parameters as the previous experiment. The number of 

trees used remained the same as the previous experiment, for the graphs the number of trees 

giving best result was chosen. Cross validation and 70/30 was run on the formatted dataset. The 

goal was to see how the model would predict for humidity data compared to temperature.  
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Results 

 

 
Figure 9:Cross Validation Results from Experiment 2 

  

The cross validation results and 70/30 prediction results show a trend that cross 

validation is more accurate than 70/30. It also showed the prevailing trend that air temp typically 

improves with more data and the humidity generally does worse. Figure 9 only shows the 

accuracy at predicting 5 minutes out and that relatively high accuracy prediction for a short 

interval is possible under the given parameters. 

 
Figure 10: Accuracy Results Based on Time Predicted 

Figure 10 shows only three of the main block sizes and the accuracy of predictions for 5, 

10 and 15 minutes out. Accuracy falls the further out predictions are made and similar to the 
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cross validation results more data improves accuracy of the classifier for air temp and gives 

worse accuracy for humidity. The classifier is also better at predicting air temp than humidity. 

This experiment allowed for us to test our model on humidity from the sensor readings 

and understand how well the model predicted on humidity data.  

5.3 Experiment 3 

Methodology 

 

This dataset used all data provided by Freight Farms breaking it up into three sections 

from January to April, March to June, and May to August. Chunk size was C = 5 and block size 

varied so that B = [1 hour = 12, 2 hours = 24, 3 hours = 36, 30 mins = 6]. The predicted chunk 

varied so that P = (1, 2, 3). Using these parameters for the experiments removes the problem of 

unequal data for the number of chunks predicted out. The same number of chunks was used 

regardless of the chunk that was being predicted on. As in previous iterations, the first 70% of 

the data was used for training and the next 30% was used for testing. Our goal was to see how 

these changes would affect the accuracy of the model compared to how the model was setup in 

previous experiments.  
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Results 

 

 
Figure 11: Cross Validation Results from January to April (Experiment 3) 

Data from January to April in Figure 11 shows an unusual case were the 70/30 prediction 

accuracy outperformed the cross validation for both air temp and humidity. It then showed some 

inconsistent results for whether more data was beneficial for the prediction. One reason for this 

may be that there are less total blocks being used by the random forest for block of a greater size. 

3 hour blocks have significantly less blocks of data than the number of 30 minute blocks. 

 
Figure 12: Accuracy Results for January to April (Experiment 3) 

Similar results here show worse prediction the farther out time becomes and inconsistent results 

for the different block sizes. Overall, air temp was quite a bit more accurate at over 90% 

accuracy in its predictions than humidity which ranged from 70% to 90%. 
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 This experiment introduced changing block and chunk sizes. This became the basis for 

future experiments where different block sizes and chunk sizes were tested along with sliding 

window and different classifiers.  

5.4 Experiment 4 

Methodology 

This dataset used all data provided by Freight Farms breaking it up into three sections 

from January to April, March to June, and May to August. Chunk size was C = 5 and block size 

varied so that B = [1 hour = 12, 2 hours = 24, 3 hours = 36, 30 mins = 6]. The predicted chunk 

varied so that P = (1, 2, 3). These are the same parameters as the previous experiment; the only 

change was on the approach, instead of starting the next block of formatted data at the end of the 

last block the blocks overlap. Two blocks that are next to each other in the formatted data will 

differ by only two chunks, the first and last chunk. This sliding window method makes the 

number of blocks for each of the given block size B equal. As in previous iterations, the first 

70% of the data was used for training and the next 30% was used for testing. More consistent 

results were expected with the same parameters given the methodology change. 
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Results 

 
Figure 13: Cross Validation Results January to April (Experiment 4) 

The data in Figure 13 remained abnormal for 70/30 data being more accurate than cross 

validation. However, the more consistent trend of air temp getting better prediction accuracy 

with more data and humidity getting slightly worse is more easily visible. The best tree is still 

being chosen for each point on the figure. 

 

 
Figure 14: Accuracy Results from January to April (Experiment 4) 

Figure 14 shows the block size not be the major factor for either air temp or humidity. The 

downward trend in prediction accuracy the further out predicted is expected. There is however 

little difference between block size of 3 hours and a block size of 30 minutes at only a couple 

percent.  
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 From this experiment on, we switched our focus to fine tuning our parameters and testing 

different classifiers.  

5.5 Experiment 5 

Methodology 

 This dataset used all data provided by Freight Farms, breaking it up into three sections 

from January to April, March to June, and May to August. Chunk size was C = (5, 10, 15) and 

block size varied so that B = [1 hour = 12, 2 hours = 24, 3 hours = 36, 30 mins = 6] when C = 

5, B = [1 hour = 6, 2 hours = 12, 3 hours = 18, 30 mins = 3] when C = 10, and B = [1 hour = 4, 2 

hours = 8, 3 hours = 12, 30 mins = 2] when C = 15. The predicted chunk varied so that P = (1, 2, 

3). The number of chunks per block was also reduced respective to chunk size to keep the overall 

time for the classifier to learn on equal for all chunk sizes at: 30 minutes; 1 hour; 2 hours; 3 

hours. We hoped that the additional fine tuning would prove the model to become more accurate. 

Results 

 

Figure 15: Cross Validation Results for January to April, Chunk Size 10 (Experiment 5) 

In Figure 15, results for chunk size 10 are shown Accuracy of Cross Validation and 70 / 

30 graphs show how accurate each time interval was at predicting the next chunks label, 

predicting the range of the next 10 minutes for chunk size 10. The graphs include both the ten-
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fold cross validation results as well as test data results where the classifier was trained on the 

first 70% of the data and tested on the last 30%. The number of trees resulting in the highest 

accuracy for each block was used. Cross validation results are better than the test data results, but 

remain mostly consistent with air temp accuracy improving with a larger training set and 

humidity accuracy declining with a larger training set. 

 

 

Figure 16:Accuracy Results for January to April, Chunk Size 10 (Experiment 5) 

In Figure 16, chunk size 10 was also used. Accuracy of prediction length vs the model 

time graphs show the best result of a classifier predicting a certain time number of chunks out 

after having been trained for the given amount of time. As expected, the data shows prediction 

accuracy drops the further out the prediction. For air temp, generally having a larger training set, 

3 hours vs 30 mins, resulted in higher accuracy. The opposite was true for humidity. 

5.6 Experiment 6 

Methodology 

 This dataset used all data provided by Freight Farms breaking it up into three sections 

from January to April, March to June, and May to August. Chunk size was C = (5, 10, 15) and 

block size varied so that B = [1 hour = 12, 2 hours = 24, 3 hours = 36, 30 mins = 6] when C = 
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5, B = [1 hour = 6, 2 hours = 12, 3 hours = 18, 30 mins = 3] when C = 10, and B = [1 hour = 4, 2 

hours = 8, 3 hours = 12, 30 mins = 2] when C = 15. Same parameters as the previous experiment 

except for label ranges. The 5 predefined ranges for air temp and humidity were changed to 5 

generated ranges based on the sensor readings for a given time duration. The ranges were 

calculated for each block size as well as for each time duration i.e. May to August. This decision 

was made because the outer ranges of the predefined ranges were virtually empty this led the 

classifier to mostly ignore them. The middle range also had the largest amount of data labels so it 

was previous classifiers may have been fairly accurate based on how the data was distributed. To 

solve this problem every data point for each sensor was sorted before the 5 ranges were made so 

they would hold about an equal number of sensor readings. This was done for each sensor and 

for each time duration. Some sensor ranges ended with only 1% to 2% between its starting and 

ending values, which gave presented problems for the random forest classifier. In addition, 8 

other classifiers in addition to random forest to try to find a model that would be more accurate 

for the dataset. Classifiers used: C-Support Vector Classifier; quadratic classifier; passive 

aggressive classifier (type of linear classifier); neural network; Linear classifiers (SVM, logistic 

regression, i.e.) with SGD training; k-nearest neighbor; Gaussian Naive Bayes; decision tree 

classifier. 

Results 

 Overall the accuracy results plummeted from the range changes. When the random forest 

classifier had a difficult problem to solve with even amounts of instances of each classifier 

accuracy could not be maintained near the other experiment levels. Random forest remains the 

best classifier. The two closest are k-nearest neighbor and gaussian naive bayes, with other 
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classifiers having inconsistent to erratic results. In their best-case scenarios those three were 60% 

to 70% accurate. 

K-Nearest Neighbor 

Figure 17, 18, and 19 from Iteration 6, K-Nearest Neighbor Classifier for chunk sizes 5, 

10, and 15 showing prediction accuracy for air temp and humidity. Dataset used is from January 

to August and predictions are 1 to 6 chunks out and block size from 30 minutes to 3 hours were 

used. 

 

Figure 17: K-Nearest Model; Block Size 5 (Experiment 6) 

 
Figure 18 : K-Nearest Model; Block Size 10 (Experiment 6) 
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Figure 19: K-Nearest Model; Block Size 15 (Experiment 6) 

 

Gaussian Naive Bayes 

Figures 20, 21 and 22 show the accuracy results for the Gaussian Naive Bayes classifier 

for block size 5, 10 and 15 respectively. This was one of the few consistent classifiers as well 

produced decent accuracy. It was the best classifier for predicting humidity. Being one the better 

classifiers still did not get good enough prediction accuracy to realistically useful for predicting 

outside of 15 minutes for air temp where just above 60% accuracy was attained. Humidity faired 

a bit better with the best results getting above 70% accuracy predicting 15 minutes out. The 

figures show the expected downward trend of prediction accuracy the further out predicted. 

Interestingly having larger block sizes, more data, hurt the classifiers performance in most cases. 

 

Figure 20: Gaussian Naive Bayes; Block Size 5 (Experiment 6) 
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Figure 21: Gaussian Naive Bayes; Block Size 10 (Experiment 6) 

 

 

Figure 22: Gaussian Naive Bayes; Block Size 10 (Experiment 6) 

 

Random Forest Classifier 

Figures 23, 24 and 25 show the accuracy results for the Random Forest classifier for 

block size 5, 10 and 15 respectively. This was another one of the few consistent classifiers as 

well produced the best overall accuracy, and the best air temp prediction accuracy. Being one the 

better classifiers still did not get good enough prediction accuracy to realistically useful for 

predicting outside of 15 minutes for air temp where just above 70% accuracy was attained. 

Humidity faired a bit better with the best results getting above 60% accuracy predicting 15 

minutes out. The figures show the expected downward trend of prediction accuracy the further 
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out predicted. Block size had little effect on performance showing inconsistent results as to 

whether more data help the classifiers accuracy. 

 

Figure 23: Random Forest; Block Size 5 (Experiment 6) 

 

Figure 24:Random Forest; Block Size 10 (Experiment 6) 

 

Figure 25:Random Forest; Block Size 15 (Experiment 6) 
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After changing the ranges for temperature and humidity to ensure we had equal data in 

each range, we realized that building a predictive model for the Leafy Green Machine’s 

environment is a much more difficult task than initially expected.  
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Chapter 6: Future Work and Recommendations 
 The project focused on building a predictive model for a freight’s environment. Further 

work can be done to improve the model and build upon it. To ensure that the model has enough 

data to train on, more data without any discrepancies, such as missing days and overlapping data, 

should be provided. This will allow for the model to improve its accuracy and be tested on data 

from multiple different environments. Different equipment and sensor combinations can be used 

to predict trends of other sensor reading such as pH, EC and nutrients and understand how each 

piece of equipment affects each other.  

 Another possible course that can be taken is watching how the sensor data behaves and 

instead of predicting the environment, the model can detect anomalies. A model can also be built 

to see how the outside environment affects the freight’s environment. Though Freight Farms says 

its environment stays normalized throughout the year, the climate can change based on the 

farmer walking in and out of the farm and letting heat escape or get into the farm. Many different 

approaches can be taken to build upon the data-driven framework we built in this project.  
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Chapter 7: Conclusions 
The goal of this project was to design a data-driven framework that could accurately 

predict relevant conditions inside of a freight farm. Once accurate predictions were made, they 

could be used to alert the farmer when the conditions are predicting to be outside of an 

acceptable range. Two crucial conditions to plant growth were experimented with, air 

temperature and humidity. Three key equipment to controlling those condition were chosen, 

lights, coolbot, and main pump. To be considered effective, prediction results would need to be 

at least 80% accurate at the given prediction range.  

Two main methods were attempted. The first used ranges set by air temperature and 

humidity parameters from real world crops to create five ranges that indicated if the condition of 

the freight farm was at an acceptable level for the crops. The best results for that method came 

from Experiment 4, which indicated that prediction up to 10 minutes out could be done with 80% 

accuracy for both air temperature and humidity with the random forest classifier. While that 

seemed like a success, the lack of data in all ranges meant the model was learning to solve a 

trivial problem. The second method used ranges that were generated so that each range would 

have an equal number instances. The results were poor for random forest and the 8 other 

classifiers used with none being able to predict the next 5 minute average with 80% accuracy. 

Random forest classifier was the closest with over 75% accuracy at predicting the next 5 minute 

average for both air temperature and humidity. Prediction accuracy needs to be improved for 

predictions further into the future for this to be useful for freight farmers.  

New learning models could be used as well as incorporating more equipment states and 

adding derived features to these models could improve accuracy. 
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Appendix 

A.1: Data Exploration 

Introduction 

Before we could begin building our model, we explored a preliminary dataset provided to 

us by Freight Farms. The dataset was used to understand how each variable, CO 2, air 

temperature, pH, electrical conductivity, and humidity, behaves in the farm environment. We 

conducted data exploration in hope of answering the following question: 

How does the presence of humans affect the environment of the Freight Farm container? 

Methodology 

Initial Data 

 

A set of preliminary data was provided in five JSON files. Wpi-sensors-meta.json and 

wpi-sensors.json gave information about the temperature, humidity, CO2 levels, pH, and 

electrical conductivity for different parts of the freight containers. Wpi-images.json contained 

urls of the images taken in the farm approximately every three minutes. Wpi-equipment-

meta.json and wpi-equipment.json contained data from the equipment, which is used to control 

the environment of the container. 

Data Format Conversion 

 

To study the sensor data provided, the JSON files were converted into three CSV files. 

Python was chosen for tool development due to its portability and external library support. Wpi-

sensors-meta.json and wpi-sensors.json were converted into ff_sensor.csv, using 

sensor_data_to_csv.py, which allowed for the data to be viewed in data analytics programs, such 
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as Excel. Wpi-equipment-meta.json and wpi-equipment.json were similarly converted to 

equipment_data.csv, using equipment_data_to_csv.py. Wpi-images.json was converted to 

image_data.csv, using image_data_to_csv.py. Once the data was in CSV format it was ready 

visualized for trends and behavior. 

Data Visualization 

 

Plotly is a python-graphing library, which is used to visualize different kinds of data. The 

tool creates graphs over a specified data set and allows for the customization of graph type, 

range, and multiple axes. In the scope of the project, the library is currently being used to 

visualize the sensor and labeled image data. Our hope was to expand this to equipment data once 

accurate equipment data was provided. 

Two scripts were used for the visualization of sensor and labeled image data: genPlots.py 

and genPlotsByDay.py. These scripts automate the graph creation process by requiring two to 

three inputs: the number of data sets (either 1 or 2), the set(s) of data to graphed for example 

humidity1, airtemp1, etc. The first script, genPlots.py, plots the inputted sensors so they can be 

compared against one another. The second script, genPlotsByDay.py, has the same parameters as 

the first. In addition, it segments the data into days and graphs the labeled image data. In the 

future, it is likely these will be combined into one tool with an additional argument to specify if 

images and segments by day are desired. 

Analyzing and Labeling Image Data 

 

Two scripts, downImages.py and lookup_image.py, were used as tools to analyze the 

image data. downImages.py downloaded all the images so they could be viewed as a set, as 

opposed to individual images looked up by their urls. This allowed finding patterns and early 
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observations on the types of images of the farm; this will be used for classification in the future. 

The second script, lookup_image.py, allowed for image lookup. A date was provided as an 

argument and three images would be downloaded and saved. The images represent a 9 to 12 

minutes time slice before the date provided in the command line argument. Utilizing these tools 

with graphing tools described above showed some correlation between sensor data the farm 

being in use. 

Pedestrian Detection 

To correlate the farm being used with sensor data, the image data needed to be labeled. 

Two tools were explored for the task. The first tool was Pedestrian Detection, a python library, 

which uses OpenCV Image Recognition to determine the presence of people in images. This tool 

did not work well with our images. The tool was recognizing random objects in the farm as 

people. The problems likely were lack of face in many images and significant portions of the 

body not being in frame. An example of the tool attempting to recognize people in the 

environment can be seen below. 

 
Figure 26: ClarifAI Pedestrian Detection 
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ClarifAI 

The next tool used was ClarifAI, which assigns images tags base on how likely a certain 

feature is in the image. While this tool was equally as bad at determining if a person was in an 

image, it did tag similar looking images consistently. The shift went from finding people in the 

images to determining whether or not the farm was in use. This was done by checking if the 

main lights were on in the farm container. The initial image_data_to_csv.py was edited in order 

to implement labels to the images. The first tag was used to determine if the farm was in use. 

During testing, the first tag only produced 1% false positives. This allowed for using the method 

for labeling the image data. Eventually, ClarifAI will be further trained to improve image 

detection accuracy.  

Three main image types were present in the data set: lights on, purple images, and 

monochrome images.  

When the lights were on, it was found that people were present in the images of the 

environment; the tag “indoors” was used to detect this type of image. 

 
Figure 27: Indoor Tag 
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When the LED Lighting System was on, it produced a purple hue in the images; it was 

found that no people were present in these images. The tag “no person” was used to detect this 

type of image.  

 

 
Figure 28: No Person Tag 

No people were present in the monochrome pictures; ironically, the tag “people” was 

used to detect this type of image.  
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Figure 29: People Tag 

Findings 

We visually studied the trends in the sensor data for the following variables: CO 2, air 

temperature, pH, electrical conductivity, and humidity. We focused on the trends of the readings 

in the main tank and disregarded the seedling data. The trends for each variable were studied first 

studied individually, meaning as a whole throughout the full week. Then they were studied how 

they were dependent on the presence of humans in the container. Finally, we studied the data by 

sectioning of the data into days. Our goal was to see how each variable contributed to answering 

our overarching question, “How does the presence of humans affect the environment of the 

freight farm?” 

CO2 

CO2 was the first variable studied by the group. We found that after humans had been 

found to be in the farm, the CO2 levels in the environment would increase depending on the 

duration of the human's’ presence (this is excluding the data from days one and two) and then 
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begin to decrease after the humans would leave the farm. This led to us believing that CO2 will 

be an important variable to study in future data sets in relation to human presence.  

 
Figure 30: CO2 Levels 

Air Temperature and Humidity 

 

We then studied air temperature and humidity inside the freight farm. We noticed that the 

temperature would drastically drop throughout the week. Our first thought was that the door was 

being opened and the heat from the environment would escape. We then noticed that the 

temperature would drop around the same time every day when studied in conjunction to 

humidity. We think that the drops in temperature and humidity occur around the same time due 

to a combination of the fans turning on and the botanists coming into the environment to run 

tests on the vegetables being grown. 
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Figure 31: Air Temperature and Humidity 

pH and Electrical Conductivity 

 

We then studied pH and electrical conductivity (EC) in the freight farm environment. It 

was found that EC is dependent on the pH levels in the environment. The graph below shows 

that EC and pH somewhat reflect each other, meaning that as pH increases, EC decreases and 

vice versa. When the data was looked at in conjunction with human presence in the environment, 

we found that pH and EC had no correlation with people being in the farm. 

 

Figure 32: Main Tank pH and EC When Farm in in Active Use 
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CO2 Levels Analysis 

 

CO2 level changes, in human presence, were further analyzed to understand the changes 

occurring in the environment. The mean, variance, and percent difference between the maximum 

and minimum level were calculated of the CO2 levels for the segments of time the farm was 

active. The values of time segments of the same length were averaged. This allowed for there to 

be one entry for each length of time. The graphs were generated using google sheets. Thus far, it 

seems that the percent difference between the minimum and maximum CO2 levels can prove to 

be useful in the future.  

One problem that could have been run into in the future, was not accounting for the 

number of people in the container during certain time segments. A higher number of people in 

the environment can lead to a greater CO2 level.  

 
Figure 33: CO2 Levels vs Minutes 
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Figure 34: CO2 Variance vs Minutes 

 
Figure 35: CO2 Percent Difference vs Minutes 
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Conclusions 

After studying each of the variables, we concluded that CO2 and humidity were the 

variables that could be used to indicate that a person is in the farm environment. When the CO2 

levels increased, the humidity in the farm started jumping drastically between and out of its 

range of 60 to 80%. These jumps in CO2 and humidity occurred whenever a person was present 

in the environment. 

 

 
Figure 36: CO2 and Humidity Levels 

 

Studying the preliminary data allowed us to explore the different trends each variable 

exhibited in the freight farm environment. This allowed for us to gain on understanding of how 

the farm works and what we can look for in future datasets to understand how human presence 

affects the environment. 
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A.2 Further Detail on Experiments 

Experiment 3  

March to June 

 

 
Figure 37: Cross Validation Results March to June 

 

From Iteration 3, the accuracy of cross validation and 70/30 of air temp and humidity for 

prediction of the next 5 minutes using different block sizes on the March to June dataset. 

 

 
Figure 38: Accuracy Results for March to June 

 

From Iteration 3, accuracy of 70/30 air temp and humidity prediction accuracy 5 to 15 minutes 

out using block sizes of 3 hours, 2 hours, and 1 hour. March to June dataset. 
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May to August 

 

 
Figure 39: Cross Validation Results for May to August 

 

From Iteration 3, accuracy of 70/30 air temp and humidity prediction accuracy 5 to 15 minutes 

out using block sizes of 3 hours, 2 hours, and 1 hour. May to August dataset. 

 

Figure 40: Accuracy Results for May to August 

From Iteration 3, the accuracy of cross validation and 70/30 of air temp and humidity for 

prediction of the next 5 minutes using different block sizes on the May to August dataset. 
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Experiment 4 

March to June 

 

 
Figure 41: Cross Validation Results for March to June 

From Iteration 4, the accuracy of cross validation and 70/30 of air temp and humidity for 

prediction of the next 5 minutes using different block sizes on the March to June dataset. 

 
Figure 42: Accuracy Results for March to June 

From Iteration 4, accuracy of 70/30 air temp and humidity prediction accuracy 5 to 15 minutes 

out using block sizes of 3 hours, 2 hours, 1 hour, and 30 minutes. March to June dataset. 
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May to August 

 

 
Figure 43: Cross Validation Results for May to August 

From Iteration 4, the accuracy of cross validation and 70/30 of air temp and humidity for 

prediction of the next 5 minutes using different block sizes on the May to August dataset. 

 
Figure 44: Accuracy Results for May to August 

Experiment 6 

C-Support Vector Classifier 

Figure 45, 46 and 17 from Iteration 6, C-Support Vector Classifier for chunk sizes 5, 10, 

and 15 showing prediction accuracy for air temp and humidity. Dataset used is from January to 

August and predictions are 1 to 6 chunks out and block size from 30 minutes to 3 hours were 

used. 
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Figure 45: C-Support Vector Block Size 5 (Experiment 6) 

 

Figure 46: C-Support Vector, Block Size 10 (Experiment 6) 

 

 

Figure 47: C-Support Vector, Block Size 15 (Experiment 6) 

Quadratic Classifier 

 

Figure 48, 49, and 50 from Iteration 6, Quadratic Classifier for chunk sizes 5, 10, and 15 

showing prediction accuracy for air temp and humidity. Dataset used is from January to August 

and predictions are 1 to 6 chunks out and block size from 30 minutes to 3 hours were used. 
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Figure 48:Quadratic Classifier, Block Size 5 (Experiment 6) 

 
Figure 49:Quadratic Classifier, Block Size 10 (Experiment 6) 

 

Figure 50: Quadratic Classifier, Block Size 15 (Experiment 6) 

Passive Aggressive Classifier (type of linear classifier) 

 

Figure 51, 52, and 53 from Iteration 6, Passive Aggressive Classifier for chunk sizes 5, 

10, and 15 showing prediction accuracy for air temp and humidity. Dataset used is from January 
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to August and predictions are 1 to 6 chunks out and block size from 30 minutes to 3 hours were 

used. 

 

Figure 51:Passive Aggressive Classifier, Block Size 5 (Experiment 6 

 

Figure 52: Passive Aggressive Classifier, Block Size 10 (Experiment  

 

Figure 53: Passive Aggressive Classifier, Block Size 15 (Experiment 6) 
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Neural Network 

 

Figure 54, 55, and 56 from Iteration 6, Neural Network Classifier for chunk sizes 5, 10, 

and 15 showing prediction accuracy for air temp and humidity. Dataset used is from January to 

August and predictions are 1 to 6 chunks out and block size from 30 minutes to 3 hours were 

used. 

 

Figure 54:Neural Network, Block Size 5 (Experiment 6) 

 

 

Figure 55: Neural Network, Block Size 10 (Experiment 6) 
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Figure 56: Neural Network, Block Size 15 (Experiment 6) 

Linear Classifiers (SVM, logistic regression, i.e.) with SGD training 

 

Figure 57, 58, and 59 from Iteration 6, Linear Classifiers (SVM, logistic regression, i.e.) 

with SGD training Classifier for chunk sizes 5, 10, and 15 showing prediction accuracy for air 

temp and humidity. Dataset used is from January to August and predictions are 1 to 6 chunks out 

and block size from 30 minutes to 3 hours were used. 

 

Figure 57: Linear Classifiers, Block Size 5 (Experiment 6) 
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Figure 58: Linear Classifiers, Block Size 10 (Experiment 6) 

 

Figure 59: Linear Classifiers, Block Size 15 (Experiment 6) 

Decision Tree Classifier 

 

Figures 60, 61 and 62 show the accuracy results for the Random Forest classifier for 

block size 5, 10 and 15 respectively. This was another one of the few consistent classifiers as 

well produced the best overall accuracy, and the best air temp prediction accuracy. Being one the 

better classifiers still did not get good enough prediction accuracy to realistically useful for 

predicting outside of 15 minutes for air temp where just above 70% accuracy was attained. 

Humidity faired a bit better with the best results getting above 60% accuracy predicting 15 

minutes out. The figures show the expected downward trend of prediction accuracy the further 

out predicted. Block size had little effect on performance showing inconsistent results as to 

whether more data help the classifiers’ accuracy. 
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Figure 60: Decision Tree Classifier, Block Size 5 (Experiment 6) 

 

Figure 61: Decision Tree Classifier, Block Size 10 (Experiment 6) 

 

Figure 62: Decision Tree Classifier, Block Size 15 (Experiment 6) 
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