

Designing an AC Magnetic Susceptometer Measurement Technique in Conjunction with High Pressures and Low Temperatures in Neutron Beam Experiments

Presenter: Paul Neves

Mentors: Nicholas Butch & Juscelino Leão NIST Center for Neutron Research Summer Undergraduate Research Fellowship

Outline

- Background
- Methodology
- Results

Currently, users can:

 Load their sample in a pressure cell

Currently, users can:

- Load their sample in a pressure cell
- Bring that sample to low temperatures in a cryostat

Currently, users can:

- Load their sample in a pressure cell
- Bring that sample to low temperatures in a cryostat
- Then look at it with a beam of neutrons

What is an AC Susceptometer and Why Do We Need One Here?

- Measures magnetic susceptibility
- Tells you about the magnetic phase
- In situ with neutrons

What it Measures

- $M = \chi H$
- Diamagnets, paramagnets, ferromagnets, superconductors, etc

No Field

With Field

What it Measures

- $M = \chi H$
- Diamagnets, paramagnets, ferromagnets, superconductors, etc

Material:	Response:
Para- or Dia- Magnet	~0
Superconductor	-1
Ferromagnet	Very large

No Field

With Field

How It Works

- Drive coil makes field
- Pickup coils measure response
- Sample sits in the center

Constraints

- Size
- Low Temperature
- Vacuum Sealed
- Time
- Sensitivity

	≪Ø59mm
	♥ Ø40.4mm
44	(, 0 atm

Designed thin profile coil

- Designed thin profile coil
- Which must be supported

- Designed thin profile coil
- Which must be supported
- And the sample stick must be modified

- Designed thin profile coil
- Which must be supported
- And the sample stick must be modified
- And given motion

Winding the Coils

Lathe controls turning

Winding the Coils

- Lathe controls turning
- Raspberry pi counts turns

Winding the Coils

- Lathe controls turning
- Raspberry pi counts turns
- A lot of turns...

• Function generator controls drive coil

- Function generator controls drive coil
- Multimeter measures drive current

- Function generator controls drive coil
- Multimeter measures drive current
- Oscilliscope measures pickup coil response

- Function generator controls drive coil
- Multimeter measures drive current
- Oscilliscope measures pickup coil response
- LabView controls all three instruments and records data

Testing the Coils

- Baseline
- Empty pressure cell
- ~0.5g steel
- ~6g steel

Test Samples

- Empty pressure cell
- MgB₂, a low temperature superconductor (T_c=39K)

https://www.ncnr.nist.gov/ equipment/Pressure.html

wikipedia

Results

Results

Pressure:	Тс (К):
Ambient	~38.4
0.65 GPa	~38.6

Pressure:	Тс (К):
Ambient	~38.4
0.65 GPa	~38.6

Buzea, Cristina, and Tsutomu Yamashita. "Review of the superconducting properties of MgB2." *Superconductor Science and Technology* 14.11 (2001): R115.

Summary

- Many constraints
- Useful capability
- It works!

Acknowledgements

- Nick Butch and Juscelino Leão
- NIST and the SURF program
- The NCNR and CHRNS
- Julie Borchers and Joe Dura
- Dan Neumann
- Doug Johnson, Patrick Connelly, Scott Slifer, Colin Wrenn, Andrew Malone
- Markus Bleuel, Alan Ye, Shannon Watson

References

- Feynman, Richard P., Robert B. Leighton, and Matthew Sands. *The Feynman Lectures on Physics, Desktop Edition Volume I*. Vol. 1. Basic books, 2013.
- Nikolo, Martin. "Superconductivity: A guide to alternating current susceptibility measurements and alternating current susceptometer design."*American Journal of Physics* 63.1 (1995): 57-65.