
B.Sc Engineering Thesis Paper

On

“Designing and Interfacing a Hospital-Based

Database System”

(A Case Study of BIRDEM)

Department of Computer Science & Engineering

Ahsanullah University of Science & Technology

Dhaka, Bangladesh.

A thesis paper submitted in partial fulfillment of the requirements

for the Degree of B.Sc Engineering (Computer Science &

Engineering)

Date: - July 12, 2010

Session: - Spring ’10

 ii

“Designing and Interfacing a Hospital-Based

Database System”

(A Case Study of BIRDEM)

Submitted By:-

1. Syed Mahboob Nur 06.02.04.013

2. Jahid Hasan 06.02.04.036

3. Kazi Sumaiya 06.02.04.042

4. Tasfia Rahman 06.02.04.044

In Partial Fulfillment for the Degree of

B.Sc Engineering in Computer Science & Engineering

Ahsanullah University of Science & Technology.

 iii

Certification

We hereby, proclaim that the thesis on “Designing and Interfacing a

Hospital-Based Database System (A Case Study of BIRDEM)” was

conducted under the supervision of Ms. Rosina Surovi Khan.

We also declare that neither this nor any part thereof has been

submitted elsewhere for the award of any degree.

Approved By: Submitted By:

-------------------- -------------------

Dr. S. M. Abdullah Al-Mamun Syed Mahboob Nur

Professor & Head of the Department

Dept of C.S.E , AUST ---------------

 Jahid Hasan

Supervised By:

--------------------- Kazi Sumaiya Mona

Ms. Rosina Surovi Khan

Assistant Professor ----------------------

Dept of C.S.E, AUST Tasfia Rahman

 iv

CONTENTS AT A GLANCE

PREFACE

ABSTRACT

1. Introduction

2. Designing the Database System

 3. Interfacing the Database System using

 .NET framework

 4. Conclusion and Future work

 v

Acknowledgement

Starting by the name of Almighty Allah……

Authors would like to express their sincere and hearty gratitude and profound

indebtedness to their respectful teacher Ms Rosina Surovi Khan, Assistant

Professor, AUST, for her constant timely and appropriate guidance, helpful

advice, invaluable assistance and endless patience throughout the progress of

their work, without which the work could not have been completed.

Authors also acknowledge with hearty thanks to all the members of the

BIRDEM hospital for their important information and cooperation.

Finally, authors acknowledge all cooperation of their friends, who helped them

through giving their important time, their knowledge and their best advice.

Special thanks to our parents and elders for their help and support.

 vi

Table of Contents

PREFACE ………………………………………………………………………………ix

ABSTRACT …………………………………………………………………………… x

1. INTRODUCTION………………………………………………………… 1

2. DESIGNING THE DATABASE SYSTEM 4

 2.1 Determining Entities and Attributes……………………… 4

 2.2 Entity Relationship Diagram ………………………………………7

 2.3 Relational Model ……………………………………………………………9

 2.3.1 Relational Tables’ Descriptions ………… 13

 2.3.2 Explanation of Relational Model ……… 26

 2.4 Relational Database Design …………………………………… 34

 2.4.1 Functional Dependency …………………………34

 2.4.2 Normalization …………………………………………35

 vii

 2.5 Implementation in SQL Server ……………………………49

 2.5.1 Creation of Tables and Insertion of data …51

 2.5.2 Sample Data Values of Tables ……………………53

 2.6 Complex Queries ……………………………………………………….60

 3. INTERFACING THE DATABASE SYSTEM

 USING .NET FRAMEWORK ……………………… 64

 3.1 Research on Interface Design Guidelines ………………64

3.2 FRONT END Design ……………………………………………………74

 3.2.1 Forms’ Design ….……………………………………………75

3.2.2 Relating Interface Design Guidelines to

 Front End Design ………………………………………93

 3.3 Security feature of FRONT END ……………………………96

 3.4 Implementation of Insert, Delete, Update buttons &

 Search Option …………………………………………………………………107

 3.5 Usage of DLL file ……………………………………………………………113

 viii

4. CONCLUSION & FUTURE WORK ……………115

4.1 Conclusion ………………………………………………………………………115

4.2 Future Work …………………………………………………………………115

 4.2.1 Gridline View Features ……………………… 116

 4.2.2 Trigger Features …………………………………129

REFERENCES……………………………………………………………………133

APPENDIX …………………………………………………………………… 135

 ix

PPRREEFFAACCEE

Our thesis is about Designing and Interfacing a Hospital-Based Database

System. It forms a basic entity of the management of a Hospital. Hence, it is

very important for the system to be reliable, user friendly, and should be

properly functional for a long time without cropping up of any errors.

To start with the system study we visited Bangladesh Institute of Research and

Rehabilitation for Diabetes, Endocrine and Metabolic Disorders (BIRDEM). We

saw their system, studied it and tried to develop a better system. Our system is

an automated system for Hospital Management. This gave us the idea of the

different fields that ought to be in a Hospital Management System such as

patient registration, his/her advance payment, the records, the details etc. and

also how a software system can make the work easy both for the hospital staff

and the patients. Moreover, the evaluation helped us to arrive at the conclusion

that the automated software is far more superior to the manual ones.

 x

ABSTRACT

Our motive is to develop a software that is very much user friendly and easy to

gather information in a very short time. We try to make our software reliable

and comfortable.

As our thesis paper is on Designing and Interfacing a Hospital Management

System (A Case Study of BIRDEM) we divide our work into two basic parts

Designing part and Interfacing Part.

® We give a flow chart on our work division in THESIS OVERVIEW part.

Chapter 1 � Introduction

In this chapter we discuss the definition of Database and its usefulness. We

also describe the reason to take HOSPITAL MANAGEMENT SYSTEM as our

thesis work.

Chapter 2 � Designing the Database System

In this chapter we describe the entities and attributes. We draw the Entity

Relationship Diagram (ERD) and Tables. We determine the attributes of tables

and its data types. We also find functional dependencies and normalize all the

tables. Then we implement our database in SQL Server and finally we execute

some complex queries on the system.

Chapter 3 � Interfacing the Database System using .Net Framework.

We made a research on Interface Design Guidelines and designed our front end

in C#. We applied some of the guidelines in our front end.

We control our software security using C#. We Insert Delete, Update and

Search data from the database in our software. We used a DLL file so that we

 xi

can easily access to any Operating System and we don’t need to load our

database.

Chapter 4 � Conclusion and Future Work.

We tried to Save, Delete and Update data using Data Grid view and we also

tried to use Trigger in SQL Server but we cannot complete them. So we include

it as a part of future work.

 1

C H A P T E R 1

INTRODUCTION

� What is a Database?

� A Database is a collection of records which are stored on a

computer; a database organizes the data according to database

models such as a relational model. [1]

� Why do we need Databases?

� Databases collect items on which the user can carry out various

operations such as viewing, navigating, creating tables, and

searching. Databases can be seen as a symbolic form of the

computer age. [2]

 We use databases for these reasons. Such as,

 1. We use database because we can easily manipulate, edit or delete data.

 2. Data are kept organized in a database so we can easily retrieve data.

 3. Easy to find out desired data.

 4. Data are secured.

� Advantages of Database

� Reduced Data Redundancy.

� Reduced updating errors and increased consistency.

� Greater data integrity and independence from applications

programs.

 2

� Improved data access to users through use of host and query

languages.

� Improved data security.

� Reduced data entry, storage, and retrieval costs.

� Facilitated development of new application programs. [3]

 In our thesis Designing and Interfacing a Hospital-Based Database

System (A case study of BIRDEM) we can see two basic parts.

� Designing &

� Interfacing

 Our Thesis Teacher Ms. Rosina Surovi Khan decided that we have to complete

the design part in semester 4/1 and interfacing part in semester 4/2. In the

introductory class of the thesis our respected madam suggested to select a

specific database system to work on.

 # Choosing Hospital Management System for our thesis

We study and select three systems at first. The systems were

� Banking System

� Computer Sales Management System

� Hospital Management System

We saw the demos of the respective systems from different sources and all the

group members decided to do the thesis on Hospital Management System (A

Case Study of BIRDEM) because the system is less complex and easy to study.

Most Banking Systems and Computer Sales Management Systems are controlled

using online based software where users can access from any part of the

country. But we are determined to make desktop based software. So we decided

 3

to choose Hospital Management System based on a Case Study of BIRDEM. We

try our best to make the system efficient and user friendly with the help of our

database and front end software.

Thesis Overview

DATABASE

DESIGNING INTERFACING

� Determining Entities and

Attributes

� Entity Relationship Diagram

� Relational Model

� Normalization

� Implementation in SQL

Server

� Complex Queries

� Research on Interface

Design Guidelines

� Front End Design

� Security feature of Front

End

� Implementation

 (Insert, Delete, Update

 Buttons and Search Option)

� Usage of DLL file

 4

C H A P T E R 2

 DESIGNING THE DATABASE SYSTEM

2.1 Determining Entities and Attributes

� Entity

� An entity is something that has a distinct, separate existence, though it

need not be a material existence. In particular, abstractions and legal

fictions are usually regarded as entities. In general, there is also no

presumption that an entity is animate. Entities are used in system

developmental models that display communications and internal

processing of, say, documents compared to order processing.

� An entity could be viewed as a set containing subsets.

� A DBMS entity is either a thing in the modeled world or a drawing

element in an Entity Relationship Diagram(ERD) .[4]

 5

� Attribute

� An attribute is a specification that defines a property of an object,
element, or file. It may also refer to or set the specific value for a

given instance of such.

� Attributes should more correctly be considered metadata. It is

frequently and generally a property of an entity.

� An attribute of an object usually consists of a name and a value; of an

element, a type or class name; of a file, a name and extension.[5]

� Data Type

� A data type (or datatype): In programming, a classification identifying

one of various types of data, as floating-point, integer, or Boolean, stating

the possible values for that type, the operations that can be done on that

type, and the way the values of that type are stored.[6]

We think our best and determine the entities and attributes

for our Database System. The Entities and Attributes are given below.

 6

Fig1: Determining Entities and Attributes.

 7

2.2 Entity Relationship Diagram (ERD):

We draw the Entity Relationship Diagram (ERD) very carefully and

efficiently for the whole system of BIRDEM.

We were able to cover all probable information of BIRDEM in our ERD.

The ERD is given below:

Fig2: Entity Relationship Diagram (ERD).

 8

2.3 Relational Model:

After completing the ERD successfully we made the relational model

(table schemas) taking into account all the entities and the relationships.

 Patient Table:-

Room Table:-

Room_id Room_No Room_type Room_cost

Receptionist Table:-

Rcp_id Rcp_name Age Address MOB shifting salary

Admission Table:-

This is a junction table between Patient, Receptionist & Room tables.

Admsn_id Pat_id Room_id Rcp_id date time

Doctor Table:-

Doc_id Doc_name Doc_type Designation Age Address MOB Passed_from Salary

Pat_id Pat_name Age Sex Address DOB MOB

 9

Appointment Table:-

This is a junction table between Patient, Receptionist & Doctor tables.

Ap_id Pat_id Doc_id Rcp_id apnmt_date apnmt_time

Bill Table:-

Bill_id Bill_for Bill_type Bill_ total

 Accountant Table:-

Acct_id Acct_name Age Address MOB Working_time Acct_salary

Payment Table:-

This is a junction table between Patient, Bill & Accountant Tables.

Medicine Table:-

Mdcn_id Mdcn_name Company m_date e_date price

Prescription Table: -

This is a junction table between Patient, Doctor & Medicine tables.

Prs_id Doc_id Mdcn_id Pat_id date Fee

Pay_id Bill_for Pat_id Acct_id Pay_type Pay_date

 10

Test Table:-

Test_id Test_name date rep_date fee

Assist Table:-

This is a junction table between Patient, Doctor & Test tables.

Serial_no Pat_id Doc_id Test_id time date

OT Table:-

Ot_id Ot_room_no

Operation Table:-

This is a junction table between Patient, Doctor & OT tables.

Op_id Doc_id Pat_id Ot_id Op_date Op_time

Department Table:-

Dept_id Dept_name treatment

Doctor_from_Department Table:-

This is a junction table between Doctor & Department tables.

Dfd_id Doc_id Dept_id

Nurse Table:-

Nrs_id Nrs_name Age Address MoB Nrs_wo_shift experience Salary

 11

Nursing_Service Table:-

This is a junction table between Patient, Room & Nurse tables.

Ns_id Pat_id Nrs_id Room_id

Ward Boy Table:-

Wb_id wb_name MoB w_shift Salary

Cleaning Service Table:-

This is a junction table between Patient, Room & Ward Boy tables.

Cls_id Pat_id Wb_id Room_id

Driver Table:-

Dr_id Dr_name Mob Address Shift Salary

Ambulance Table:-

Amb_id Amb_num Capacity

Ambulance Service Table:-

This is a junction table between Patient, Driver & Ambulance tables.

As_id Pat_id Dr_id Amb_id

Carriers Table:-

Cr_id Cr_name MOB Address Salary

 12

Carrying Service Table:-

This is a junction table between Patient, Ambulance & Carriers tables.

CS_id Cr_id Amb_id Pat_id

2.3.1 Relational Tables’ Descriptions

Patient table

Attributes Data type Comments

Pat_id int Unique id for a Patient

Pat_name varchar(20) Patient’s Name

Age int Patient’s Age

Sex varchar(20) Patient is Male or

Female

Address varchar(20) Patient’s Address

Dob varchar(20) Date of Birth

Mob int Mobile Number

Room table

Attributes Data type Comments

Room_id int Unique id for a Room

Room_no varchar(20) Room number

Room_type varchar(20) Room is VIP or Normal

Room_cost int Cost of the Room

 13

Receptionist table

Attributes Data type Comments

Rcp_id int Unique id for a

Receptionist

Rcp_name varchar(20) Receptionist’s name

Age int Receptionist’s age

Address varchar(20) Receptionist’s Address

MOB int Mobile Number

Shifting varchar(20) Receptionist working shift

Salary int Salary a Receptionist gets

Admission table

Attributes Data type Comments

Admsn_id int Unique id for an

Admission

Pat_id int Unique id for a Patient

Room_id int Unique id for a Room

Rcp_id int Unique id for a

Receptionist

Date varchar(20) Date of Admission

 14

Doctor table:

Attributes Data type Comments

Doc_id int Unique id for a Doctor

Doc_name varchar(20) Doctor’s name

Doc_type varchar(20) Doctor’s specialty

Age int Doctor’s age

Address varchar(20) Doctor’s address

Mob int Mobile Number

Designation varchar(20) Doctor’s designation

Passed_from varchar(20) Doctor is passed from which

medical college

Salary int Salary of a doctor

Appointment table

Attributes Data type Comments

Apnmt_id int Unique id for an Appointment

Pat_id int Unique id for a Patient

Doc_id int Unique id for a Doctor

Rcp_id int Unique id for a Receptionist

Apnmt_date varchar(20) Date of an Appointment

 15

Bill table

Attributes Data type Comments

Bill_id int Unique id for a Bill

Bill_for varchar(20) Purpose of the bill

Bill_type varchar(20) Bill either in Cash or

Check

Bill_total int Total amount

Accountant table

Attributes Data type Comments

Acct_id int Unique id for an

Accountant

Acct_name varchar(20) Accountant’s Name

Age int Accountant’s age

Address varchar(20) Accountant’s Address

Mob int Mobile Number

Acct_salary int Salary of an Accountant

 16

Payment table

Attributes Data type Comments

Pay_id int Unique id for a Payment

Bill_id int Unique id for a Bill

Pat_id int Unique id for a Patient

Acct_id int Unique id for an Accountant

Pay_type varchar(20) Payment in Cash or Check

Pay_date varchar(20) Date of Payment

Medicine table

Attributes Data type Comments

Mdcn_id int Unique id for a Medicine

Mdcn_name varchar(20) Medicine’s Name

company varchar(20) Medicine’s Company

M_date varchar(20) Manufacture Date

E_date varchar(20) Expire Date

price int Price of the Medicine

 17

Prescription table

Attributes Data type Comments

Prs_id int Unique id for a

Prescription

Doc_id int Unique id for a Doctor

Mdcn_id int Unique id for a Medicine

Pat_id int Unique id for a Patient

Date varchar(20) Date of the Prescription

Time varchar(20) Time of the Prescription

Fee varchar(20) Prescription Fees

Test table

Attributes Data type Comments

Test_id int Unique id for a Test

Test_name varchar(20) Name of the Test

Date varchar(20) Date of Test

Rep_date varchar(20) Date of the Report

Fee int Test Fees

 18

Assist table

OT table

Attributes Data type Comments

Ot_id int Unique id for an

Operation Theater (OT)

Ot_room_no varchar(20) OT Room Number

Attributes Data type Comments

Serial_no int Unique id for an Assisted

Test directed to a Patient

by a Doctor

Pat_id int Unique id for a Patient

Doc_id int Unique id for a Doctor

Test_id int Unique id for a Test

Date varchar(20) Date of the Assisted Test

Time varchar(20) Time of the Assisted Test

 19

Operation table

Attributes Data type Comments

Op_id int Unique id for an

Operation

Doc_id int Unique id for a Doctor

Pat_id int Unique id for a Patient

Ot_id int Unique id for an OT

Op_date varchar(20) Date of the Operation

Op_time varchar(20) Time of the Operation

Department table

Attributes Data type Comments

Dept_id int Unique id for a

Department

Dept_name varchar(20) Department’s name

treatement varchar(20) Treatments of a patient

conducted in a Department

 20

Doctor_from_Department table

Attributes Data type Comments

Dfd_id int Unique id for a

DoctorsfromDepartment junction

table

Doc_id int Unique id for a Doctor

Dept_id int Unique id for a Department

Nurse table

Attributes Data type Comments

Nrs_id int Unique id for a Nurse

Nrs_name varchar(20) Nurse’s Name

Age int Nurse’s age

Address varchar(20) Nurse’s Address

Mob int Mobile Number

Nrs_wo_shift varchar(20) Nurse working Shift

example

morning,day,evening,night

Experience varchar(20) Nurse’s Experience

salary int Salary of a Nurse

 21

Nursing_Service table

Attributes Data type Comments

Ns_id int Unique id for a Nursing

Service

Pat_id int Unique id for a Patient

Nrs_id int Unique id for a Nurse

Room_id int Unique id for a Room

Date varchar(20) Date of Nursing Service

Time varchar(20) Time of Nursing Service

Ward_boy table

Attributes Data type Comments

Wb_id int Unique id for a Ward Boy

Wb_name varchar(20) Ward Boy’s Name

Mob int Mobile Number

W_shift varchar(20) Working shift of a Ward Boy

salary int Salary of a Ward boy

 22

Cleaning_Service table

Attributes Data type Comments

Cls_id int Unique id for a Cleaning

Service

Pat_id int Unique id for a Patient

Wb_id int Unique id for a Ward Boy

Room_id int Unique id for a Room

Date varchar(20) Date of Cleaning Service

Time varchar(20) Time of Cleaning Service

Driver table

Attributes Data type Comments

Dr_id int Unique id for a Driver

Dr_name varchar(20) Driver’s Name

mob int Mobile Number

address varchar(20) Driver’s Address

Shift varchar(20) Working shift of a Driver

salary int Salary of a Driver

 23

Ambulance table

Attributes Data type Comments

Amb_id int Unique id for an

Ambulance

Amb_num varchar(20) Ambulance’s Number

Capacity int Capacity of an Ambulance

Ambulance_Service table

Attributes Data type Comments

As_id int Unique id for an Ambulance

Service

Pat_id int Unique id for a Patient

Dr_id int Unique id for a Driver

Amb_id int Unique id for an Ambulance

Date varchar(20) Date of the Ambulance Service

Time varchar(20) Time of the Ambulance Service

 24

Carriers table

Attributes Data type Comments

Cr_id int Unique id for a Carrier

who will carry patients

inside the hospital’s

premises from the

ambulance.

Cr_name varchar(20) Carrier’s Name

Mob int Mobile Number

Address varchar(20) Carrier’s Address

Salary int Salary of a Carrier

Carrying_Service table

Attributes Data type Comments

Cs_id int Unique id for a Carrying

Service

Cr_id int Unique id for a Carrier

Amb_id int Unique id for an Ambulance

Pat_id int Unique id for a Patient

Date varchar(20) Date of the Carrying Service

Time varchar(20) Time of the Carrying Service

 25

2.3.2 Explanation of Relational Model

Relationship between Receptionist, Patient and Room Entities in the ER

Model:

� 1 Receptionist can admit 1 Patient in 1 Room in a certain date and time.

� 1 Receptionist can admit in 1 Room 1 Patient in a certain date and time.

� In 1 Room, 1 Patient is admitted by 1 Receptionist in a certain date and

time.

So the relationship is a Ternary Relationship named Admission (in the

diamond) with cardinality ratio from Patient to Receptionist to Room as 1

to 1 to 1.

 26

Relational model for Receptionist, Patient and Room Entities:

Receptionist, Patient and Room Entities become Receptionist, Patient and Room

tables.

Patient Table:-

Pat_id Pat_name Age Sex DOB MOB Address

Room Table:-

Room_id

Room_No Room_type Room_cost

Receptionist Table:-

Rcp_id

Rcp_name Age Address MOB shifting salary

The junction Admission also becomes a table.

Admission Table:-

admsn_id Pat_id Room_id Rcp_id Date time

� Primary Key of the Patient Table goes to Admission Table as Foreign Key.

� Primary Key of the Room Table goes to Admission Table as Foreign Key.

� Primary Key of the Receptionist Table goes to Admission Table as Foreign

Key.

Since the Cardinality Ratio from Patient to Receptionist to Room is 1 to 1 to 1,

 27

admsn_id is a Primary key in the Admission Table. Pat_id from Patient Table,

Room_id from Room Table and Rcp_id from Receptionist Table become Foreign

Keys in the Admission Table.

In a similar way, as cardinality ratio for Receptionist_Patient_Doctor

relationship is 1 to 1 to 1, Receptionist, Patient and Doctor entities become

separate tables along with a junction Appointment table which has Rcp_id,

Pat_id and Doc_id as foreign keys. Similar logic applies to

Patient_Ambulance_Driver relationship with cardinality ratio 1 to 1 to 1.

Relationship between Doctor and Department Entities in the ER Model:

� 1 Doctor can be from 1 or Many Departments.

� 1 Department may have 1 or Many Doctors.

So it is a Many to Many relationship named Doctor from Department (in the

diamond).

 28

Relational model for Doctor and Department Entities:

Doctor and Department Entities become Doctor and Department tables.

Doctor Table:-

Doc_id Doc_name Doc_type Designation Age Address MOB Passed_from Salary

Department Table:-

Dept_id Dept_name treatment

The junction table Doctor from Department also becomes a table.

Doctor_from _Department Table:-

Dfd_id Doc_id Dept_id

� Primary Key of the Doctor Table goes to Doctor_from_Department Table

as part of Primary Key.

� Primary Key of the Department Table goes to Doctor_from_Department

Table as part of Primary Key.

Since the Cardinality Ratio from Doctor to Department is Many to Many, Dfd_id

is a part of Primary key in the Doctor_from_Department Table. Doc_id from

Doctor Table and Dept_id from Department Table become parts of Primary Key

in the Doctor_from_Department Table.

 29

Relationship between Patient, Doctor and Medicine Entities in the ER Model:

� 1 Doctor gives 1 patient 1 or more medicine.

� 1 patient takes 1 medicine prescribed by 1 doctor.

� 1 medicine is prescribed by 1 doctor to 1 patient.

So the relationship is a Ternary Relationship named Prescription (in the

diamond) with a Cardinality Ratio from Patient to Doctor to Medicine 1 to

1 to Many.

 30

Relational model for Patient, Doctor and Medicine Entities:

Patient, Doctor and Medicine Entities become Patient, Doctor and Medicine

tables.

Patient Table:-

Pat_Id Pat_name Age Sex DOB MOB Address

Doctor Table:-

Doc_id Doc_name Doc_type Designation Age Address MOB Passed_from Salary

Medicine Table:-

Mdcn_id Mdcn_name company m_date e_date price

Prescription Table: -

This is a junction table between Patients, Doctor & Medicine Table.

Prs_id Doc_id Mdcn_id Pat_id date fee

� Primary Key of the Patient Table goes to Prescription Table as Foreign

Key.

� Primary Key of the Doctor Table goes to Prescription Table as Foreign

Key.

� Primary Key of the Medicine Table goes to Prescription Table as part of

Primary Key.

Since the Cardinality Ratio from Patient to Doctor to Medicine 1 to 1 to M,

Prs_id is a Primary key in the Prescription Table. Pat_id from Patient Table,

 31

Doc_id from Doctor Table and Mdcn_id from Medicine Table become Foreign

Keys in the Admission Table.

In a similar way relational tables have been designed for Patient-Doctor-Test,

Patient-OT-Doctor, Patient-Bill-Accountant relationships with cardinality ratio 1

to 1 to M. Similar logic applies for Patient-Ambulance-Carrier relationship with

cardinality ratio 1 to 1 to M.

#Relationship Between Patient,Room & Nurse Entities in the ER Model :-

� 1 room is fixed for 1 Patient to provide nursing service for 1 or

Many nurses in a certain date.

� 1 patient receives nursing service from 1 Nurse in 1 Room in a

certain date.

� 1 nurse can render proper services in 1 room to many patients in a

certain date.

So it is a Ternary Relationship named Nursing Services (in the diamond)

with cardinality Ratio from Room to Nurse to Patient 1 to M to M.

 32

#Relational model between Patient, Nurse and Room Entities:-

Patient Table:-

Pat_id Pat_name Age Sex DOB MOB Address

Room Table:-

Nurse Table:-

Nrs_id Nrs_name Age Address Mob Nrs_wo_shift experience Salary

Nursing Service Table:-

This is a junction table between Patient, Room and Nurse Table.

Ns_id Pat_id Nrs_id Room_id

� Primary Key of the Patient Table goes to Nursing Service Table as

part of Primary Key.

� Primary Key of the Nurse Table goes to Nursing Service Table as

part of Primary Key.

� Primary Key of the Room Table goes to Nursing Service Table as

Foreign Key.

Since the Cardinality Ratio from Room to Patient to Nurse is 1to M to M. Ns_id

is a Primary key in the Nursing Service Table. Pat_id from Patient Table, Nrs_id

Room_id Room_No Room_type Room_cost

 33

from Nurse Table become parts of Primary Key in the Nursing Service Table.

Room_id from Room Table becomes Foreign Key in the Nursing Service Table.

In a similar way relational tables are created for Patient-Room-Wardboy

relationship with cardinality ratio 1 to M to M.

2.4 Relational Database Design

Relational databases are the most commonly used database today. It uses

the table to structure information so that it can be readily and easily

searched through.

To make a Relational database design we have to be clear about two parts:

1. Functional Dependency

2. Normalization

2.4.1 Functional Dependencies

Definition of functional dependencies:
Given a relational schema R (A1, A2, ..., An) and X, Y {A1, ..., An}.

Then X -> Y means that for every extension of R, the following holds:

R contains no two tuples that are equal in all values of X but differ in at least

one value of Y.

(Pronunciation: "X determines Y functionally" "Y is functionally dependent of

X").

Example:
Student (matNr, name):

{matNr} -> {name}

Definition of full functional dependencies:
Prerequisites as in Definition 1.

 34

Y is said to be fully functionally dependent of X, if there is no proper subset X’

⊂ X,

 Where X’ -> Y.

Notation: X => Y.

Example:
A University Database:-

Class (classId, room, day, pName)

{classId, room} -> {pName}

{classId, day, pName} -> {room}

{classId} => {pName}

{classId} => {room} [7]

2.4.2 Normalization

Normalization is the process of organizing data in a database. This includes

creating tables and establishing relationships between those tables according to

rules designed both to protect the data and to make the database more flexible

by eliminating redundancy and inconsistent dependency.

It has mainly two goals:-

� First goal: eliminate redundant data

For example, storing the same data in more than one table

� Second Goal: ensure data dependencies make sense

For example, only storing related data in a table

Benefits of Normalization:

� Less storage space

� Quicker updates

� Less data inconsistency

� Clearer data relationships

 35

� Easier to add data

� Flexible Structure

Bad database designs results in:

� Redundancy: inefficient storage.

� Anomalies: data inconsistency, difficulties in maintenance.[7]

1NF, 2NF, 3NF, BCNF are some of the early forms in the list that address this

problem.

First Normal Form (1NF)

Definition:
A relation is in first normal form if it contains only simple, atomic values for

attributes, no sets. Example:

Name

Offspring

Child Age

Place

Muller Christa 12

Peter 10

Iris 9

Stuttgart

Schmidt Martin 17

Rainer 18

Trier

 36

The value of an attribute can be a relation by itself.

=> Operations in the model are much more complicated

=> In order to keep the model simple: 1NF

Ways to normalize the above relation:

First attempt:

Person (name, place, child1, child2, child3)

=> Not good. Reason: either not enough available columns for some data records

(How many children can a person have??) Or, if there are enough columns to

provide for all thinkable cases, waste of much space (many NULL values).

Second attempt:

 Person:-

pName place

Muller Stuggart

Schmidt Trir

Child:-

pName chName age

Muller Christa 12

Muller Peter 10

Muller Iris 9

Schmidt Martin 17

Schmidt Rainer 18

 37

Advantage:
This requires just the right amount of space that is actually needed.

Disadvantage:
It requires an additional table. pName is redundantly stored.

Second Normal Form (2NF)
Definitions:
Definition of second normal form (simple version):

A relation is in 2NF, if it is in 1NF and every non-primary-key attribute is fully

functionally dependent on the primary key of the relation.

Definition of second normal form (extended version):

A relation is in 2NF, if it is in 1NF and every non-candidate-key attribute is fully

functionally dependent on every candidate key.

Example:-

A University Database:

TA (matNr, classId, sName, hours, taSalary)

Full functional dependencies:
{matNr, classId} => {hours}

{matNr, classId} => {taSalary}

{matNr} => {sName}

TA (matNr, classId, sName, hours, taSalary)

Student (matNr, sName)

=> TA is not in 2NF

 38

Redundancy since the name is repeated for every occurrence of the same

Matrikel Number.

Solution:

Move the dependency {matNr} => {name} to a separate relation.

=> Relation "Student"

Third Normal Form (3NF)
Definition:-

A functional dependency X->Y in a relation R is called a transitive dependency, if

R contains a set of attributes, Z for which holds:

. A chain Exists.

.X->Z->Y

. Y is not a part of primary key

. Z is not a super key and

. X->Z-> Y

Y is then called transitively dependent on X via Z.

Definition of Third Normal Form:

 A Relation is in 3NF, if it is in 2NF and no non primary key attributes is

transitively dependent on the primary key.

Example:-

TA (matNr, classId, hours, taSalary)

 39

Functional dependencies:
{matNr, classId} => {hours}

{matNr, classId} => {taSalary}

Assumption:
{hours} => {taSalary}

There is the following transitive dependency:

{matNr, classId} => {hours} => {taSalary}

Since taSalary is not an attribute in a candidate key and hours is not a superkey,

TA is not in 3NF.

There is unnecessary redundancy since taSalary is repeated for each

occurrence of the same value of hours.

Solution:

Move the dependency {hours} => {taSalary} to a separate relation.

Example:

TANew (matNr, classId, hours) and TASalary (hours, taSalary).

Boyce Coded Normal Form (BCNF)
A relation R is in 3NF relation and for a dependency X->A from an attributes

set X to an attributes A holds that,

� X is not a super key

� In addition, A is a part of a primary key

� Then this relation is not also in BCNF.

In all other cases, 3NF and BCNF are identical.

BCNF is a little stronger than 3NF. In most cases, relations in 3NF are also in

BCNF.

The alternative definition of BCNF shows in comparison to the 3NF definition

how the two differ: in BCNF, X must always be a super key; in 3NF it does not

need to be a super key if A is part of a candidate key.

� A relation is in BCNF, if and only if, every determinant is a

candidate key.

 40

� No part of the primary key is Fully Functional Dependent on the

non primary key.

Example:-

 Relation Speedlimits (town, streetSegment, postcode, speed)

Full functional dependencies:
• {town, streetSegment} => {postCode}

• {town, streetSegment} => {speed}

• {postCode} => {town}

• {postcode, streetSegment} => {speed}

Candidate keys:
• (town, streetSegment)

• (postCode, streetSegment)

Speedlimits is in 3NF:
• 1NF by definition

2NF since all non-primary-key attributes are fully functionally dependent on the

primary Key. For the extended definition: speed is the only attribute that is not

part of a Candidate key, and it is fully functionally dependent not only on the

primary key, but also on the other candidate.

• 3NF since the only non-candidate-key attribute is speed, and the only

transitive Dependencies ending in speed would be from one of the keys to the

other and then to speed. However, transitive dependencies where the middle

set is a candidate key do not violate the definition of 3NF.

But BCNF is violated:
The problematic dependency is from an attribute (postcode) which is not a

superkey to a part (town) of the primary key.

town streetSegment postcode speed

Stuttgart A-Str 70000 30

Stuttgart B-Str 70000 30

Stuttgart C-Str 70000 50

Stuttgart D-Str 71234 70

 41

Redundancy: postCode implies the town => unnecessary repetition

Transforming to BCNF:

1. Attempt:

Speedlimit (town, streetSegment, speed)

Codes (postCode, town)

Schema is now in BCNF.

• The dependency {town, streetSegment} => {postCode} is no longer

recognizable.

2. Attempt:

Speedlimit (town, streetSegment, speed)

PostCodes (streetsegement, postCode)

� BCNF

But:

• The dependency {town, streetSegment} => {postCode} is again not recognizable.

• The decomposition is lossy again!

3. Attempt:

Speedlimit (postCode, streetSegment, speed)

Codes (postCode, town)

Now both relations are in BCNF, and the decomposition is lossless.

However, the dependencies {town, streetSegment} => {postCode} and {town,

street-

Segment} => {speed} are lost.

It is possible to show:

• A relation that is not in BCNF can always be losslessly decomposed towards

BCNF.

• A lossless decomposition into BCNF that preserves all dependencies does not

always exist. [7]

In our thesis we will try Normalize all the relational tables.

 42

FULFILMENT OF NORMAL FORMS:

Room Table:-

Room_id Room_no Room_type Room_cost

{Room_id} => {Room_no} Functional Dependency Exist

2 different room no’s do not correspond to the same Room_id.

{Room_id} => {Room _type} Functional Dependency Exist

2 different room types’ do not correspond to the same Room_id

{Room_id} => {Room cost} Functional Dependency Exist

2 different room cost’s do not correspond to the same Room_id

Relation :(Room_id, Room_No, Room_type, Room_cost)

Full Functional Dependencies:

{Room_id} => {Room_no}

{Room_id} => {Room_type}

{Room_id} => {Room_cost}

1NF:-

Attributes do not have sub attributes.

So the relation is in 1NF.

2NF:-

Every non primary key is Fully Functional Dependent on the primary key.

 43

So the relation is in 2NF.

3NF:-

No chain Exists.

So the relation is in 3NF.

BCNF:-

 No part of the primary key is Fully Functional Dependent on the non primary

keys. So the relation is in BCNF.

Bill Table:-

Bill_id Bill_for Bill_type Bill_ total

{Bill_id} => {Bill_for} Functional Dependency Exist.

2 different Bill_for’s do not correspond to the same Bill_id.

{Bill _id} => {Bill_type} Functional Dependency Exist.

2 different Bill_type do not correspond to the same Bill_id.

{Bill _id} => {Bill total Functional Dependency Exist.

2 different Bill total do not correspond to the same Bill_id.

Relation :(Bill_id, Bill_for, Bill total, Bill_type)

Full Functional Dependency:

{Bill_id} => {Bill_for}

{Bill_id} => {Bill_type}

{Bill _id} => {Bill total}

 44

1NF:-

Attributes do not have sub attributes.

So the relation is in 1NF.

2NF:-

Every non primary key is Fully Functional Dependent on the primary key.

So the relation is in 2NF

3NF:-

No chain Exists.

So the relation is in 3NF.

BCNF:-

 No part of the primary key is Fully Functional Dependent on the non primary

key. So the relation is in BCNF.

In a similar way Bill, Doctor, Accountant, Receptionist, Driver, Ambulance,

Carriers, OT, Medicine, Test, Department and Nurse Tables fulfill all the normal

forms.

JUNCTION TABLES:

Admission Room Table:-

This is a junction table between Patient, Room, and Receptionist Table

Admsn_id Room_id Pat_id Rcp_id Date Time

Full Functional Dependencies:

{admsn_id} => {Room_id} Functional Dependency Exist

{admsn_id} => {Rcp_id} Functional Dependency Exist

{adsn_id} => {Date} Functional Dependency Exist

 45

{admsn_id} => {Time} Functional Dependency Exist

{admsn_id} => {Pat_id} Functional Dependency Exist

1NF:-

Attributes do not have sub attributes.

So the relation is in 1NF.

2NF:-

Every non primary key is Fully Functional Dependent on the primary key.

So the relation is in 2NF.

3NF:-

No chain Exists.

So the relation is in 3NF.

BCNF:-

No part of the primary key is Fully Functional Dependent on the non primary

keys. So the relation is in BCNF.

In a similar way Ambulance Service and Appointment Tables fulfill all the normal

forms.

Prescription Table:-

This is a junction table between Patient, Medicine & Doctor Table.

Prs_id Doc_id Mdcn_id Pat_id Date Fees Time

 46

 Full Functional Dependencies:

 {Prs_id, Mdcn_id}=> {Doc_id} Functional Dependency Exist

 {Prs_id, Mdcn_id}=> {Pat_id} Functional Dependency Exist

 {Prs_id, Mdcn_id}=> {Date, Fees, Time} Functional Dependency Exist

 Relation: (Prs_id, Mdcn_id, Doc_id, Pat_id, Date, Fees, Time)

 {Prs_id, Mdcn_id}=> {Doc_id}

{Prs_id, Mdcn_id}=> {Pat_id}

{Prs_id, Mdcn_id}=> {Date}

{Prs_id, Mdcn_id}=> {Time}

{Prs_id, Mdcn_id}=> {Fees}

1NF:-

Attributes do not have sub attributes.

So the relation is in 1NF.

2NF:-

Every non primary key is Fully Functional Dependent on the primary key.

So the relation is in 2NF.

 3NF:-

No chain Exists.

So the relation is in 3NF.

BCNF:-

No part of the primary key is Fully Functional Dependent on the non primary

keys. So the relation is in BCNF.

 47

 In a similar way Assist, Carrying Service, Cleaning Service, Operation and

Nursing Service tables fulfill all normal forms.

VIOLATION OF NORMAL FORM:

Payment Table:-

This is a junction table between Patients, Bill & Accountant tables.

Pay_id Pat_id Bill_id Acct_id Pay_type Pay_date

For Payment relation, the following functional dependencies exist:

{Pay_id}=> {Pay_Type, Pay_date, Pat_id}

Two different patient ids, payment dates and payment types cannot correspond

to the same payment id. So Pay_Type, Pay-date and Pat_id are fully functionally

dependent on Pay_id.

{Bill_id}=> {Acct_id, Pat_id}

Similarly two different accountant ids and patient ids cannot correspond to the

same bill id. So Acct_Id and Pat_id are fully functionally dependent on Bill_id.

Based on the above functional dependencies:

The relation is in 1NF.

The relation is not in 2NF because all non-primary keys are not fully functionally

dependent on the primary key (Pay_id, Bill_id). So we split the relation to make

it 2NF.

Payment1 (Pay_id, Pay_Type, Pay_date, Pat_id)

 48

Payment2 (Bill_id, Acct_id, Pat_id)

The relations are now in 2NF.

3NF:

There is no chain.

So the relations are in 3NF.

BCNF:

No Part of the primary key (Pay_Id, Bill_Id) is fully functionally dependent on

any non primary key. So the relations are in BCNF.

2.5 Implementation in SQL Server:

After Normalization, we implemented our Database in SQL Server.

There were 27 tables and each of them was connected accurately in

the SQL Server’s Entity Relationship Diagram. Then we entered the

data in the corresponding database tables.

 49

Fig: Relational model Implementation on SQL Server.

 50

2.5.1 Creation of Tables and Insertion of Data:

In our thesis we create tables and insert data using SQL server and

SQL Language.

MAIN TABLE

Create Patient Table

 51

Insert Values into Patient Table

In this way we create all the main tables and insert data in them.

Junction Table

Create Admission Table

 52

Insert Values into Admission Table

In this way we create all the junction tables and insert data in them.

2.5.2 Sample Data values of Tables

Patient table

Room table

 53

Receptionist table

Admission room table

Doctor table

Appointment table

Bill table

 54

Accountant table

BillPay table

Payment Table

Medicine table

 55

Prescription table

Test table

Assist table

OT table

 56

Operation table

Department table

Doctor_form_department table

Nurse table

 57

Nursing service table

Ward_boy table

Cleaning service table

Driver table

 58

Ambulance table

Ambulance service table

Carriers table

Carrying service table

 59

2.6 Complex Queries

After completing the implementation we retrieved different

information from the system by joining 2 or more tables of the

system. Sample Examples are given below:

Question 1

Which tests are suggested by doctor Selima to which Patients?

Query 1:

select Pat_name, Doc_name, Test_name from tbl_Patient, tbl_Doctor, tbl_Test ,

tbl_Assist where Doc_name='Selima' and tbl_Doctor.Doc_id = tbl_Assist.Doc_id and

Tbl_Patient.Pat_id = Tbl_Assist.Pat_id and tbl_Test.Test_id = tbl_Assist.Test_id

Output:

Question 2

Which doctors prescribed which medicine to patient Mamun?

Query 2:

select Pat_name, Doc_name, Mdcn_name from tbl_Patient, tbl_Doctor, tbl_Medicine,

tbl_Prescription where Pat_name = 'Mamun' and tbl_Patient.Pat_id = tbl_Prescription.Pat_id

and tbl_Doctor.Doc_id = tbl_Prescription.Doc_id and tbl_Medicine.Mdcn_id =

tbl_Prescription.Mdcn_id

 60

Output 2:

Question 3:

Which Doctors are from which Department and they passed from which college

and got salaries below 20000 taka?

Query 3

select Doc_name,Passed_from,Dept_name from tbl_Doctor, tbl_Department,

tbl_DFD where Salary <20000 and tbl_Doctor.Doc_id =

tbl_DFD.Doc_id and tbl_Department.Dept_id =

tbl_DFD. Dept_id

Output 3:

Question-4

Which doctor conducted the Urine Test for which Patient at 11.00 AM?

Query -4

select pat_name,doc_name from tbl_Patient,tbl_Doctor,tbl_Test,tbl_Assist where

tbl_Assist.Time='11.00AM' and tbl_Test.Test_name='Urine' and

tbl_Patient.Pat_id=tbl_Assist.Pat_id and tbl_Doctor.Doc_id=tbl_Assist.Doc_id

 61

Output 4:-

Question 5:

Which Patient is carried by which driver in Ambulance serial no 5?

Query -5:

select Pat_name,Dri_name from tbl_Patient,tbl_Driver,tbl_AmbulanceService where Amb_id =

5 and tbl_Patient.Pat_id=tbl_AmbulanceService.Pat_id and tbl_Driver.Dri_id =

tbl_AmbulanceService.Dri_id

Output 5 :-

Question 6:

In which time receptionist Rasel appointed patient Kamal to Doctor Selima?

Query 6:

Select pat_name,Ap_time from tbl_patient,tbl_Receiptionist,tbl_Appoinment,tbl_Doctor where

Rcp_name='Rasel'and Doc_name='Selima'and pat_name='kamal' and

tbl_patient.pat_id=tbl_Appoinment.pat_id and tbl_Receiptionist.Rcp_id=tbl_Appoinment.Rcp_id

Output 6:

 62

C H A P T E R 3

INTERFACING THE DATABASE SYSTEM

USING .NET FRAMEWORK

3.1 Research on Interface Design Guidelines

� User Interface

User interface should be designed to match the skills,

experience and expectations of its anticipated users. System users

often judge a system by its interface rather than its functionality.

� Objectives

• To suggest some general design principles for user interface design.

• To explain different interaction styles and their use.

• To explain when to use graphical and textual information

presentation.

• To explain the principal activities in the user interface design

process.

• To introduce usability attributes and approaches to system

evaluation.[8]

 63

� User Interface Design Principle
Principle Description

User

familiarity

The interface should use terms and concepts

which are drawn from the experience of the

people who will make most use of the system.

Minimal

Surprise

Users should never be surprised by the behavior

of a system.

Recoverability The interface should include mechanisms to allow

users to recover from errors.

User Guidance The interface should provide meaningful

feedback when errors occur and provide context-

sensitive user help facilities.

User diversity The interface should provide appropriate

interaction facilities for different types of

system users.

� User Interface Design Guidelines

1. Consistency

o It is known as ("Principle of least astonishment").

o Certain aspects of an interface should behave in consistent

ways at all times for all screens

o Terminology should be consistent between screens

o Icons should be consistent between screens

o Colors should be consistent between screens of similar

function.[9]

 64

2. Simplicity

o Break complex tasks into simpler tasks

o Break long sequences into separate steps

o Keep tasks easy by using icons, words etc.

o Use icons/objects that are familiar to the user. [9]

3. Match between system and the real world

o The system should speak the users' language, with words,

phrases and concepts familiar to the user, rather than

system-oriented terms.

o Follow real-world conventions, making information appear in

a natural and logical order.[9]

4. Human Memory Limitations

o Organize information into a small number of "chunks"

o Try to create short linear sequences of tasks

o Don't flash important information onto the screen for

brief time periods

o Organize data fields to match user expectations, or to

organize user input (e.g. auto formatting phone numbers)

o Provide cues/navigation aids for the user to know where

they are in the software or at what stage they are in an

operation

o Provide reminders, or warnings as appropriate

o Provide ongoing feedback on what is and/or just has

happened

o Let users recognize rather than recall information

o Minimize working memory loads by limiting the length of

sequences and quantity of information - avoid icon

mania![9]

 65

5. Display issues

o Maintain display inertia - make sure the screen changes

little from one screen to the next within a functional task

situation

o Organize screen complexity

o Eliminate unnecessary information

o Use concise, unambiguous wording for instructions and

messages

o Use easy to recognize icons

o Use a balanced screen layout - don't put too much

information at the top of the screen - try to balance

information in each screen quadrant

o Use plenty of 'white space' around text blocks - use at

least 50% white space for text screens

o Group information logically

o Structure the information rather than just presenting a

narrative format (comprehension can be 40% faster for a

structured format).[9]

6. Error prevention

o Even better than good error messages is a careful design

which prevents a problem from occurring in the first place.

o Either eliminate error-prone conditions or check for them

and present users with a confirmation option before they

commit to the action.[9]

7. Help and documentation:

o Even though it is better if the system can be used without

documentation, it may be necessary to provide help and

documentation.

 66

o Any such information should be easy to search, focused on

the user's task, list concrete steps to be carried out, and

not be too large.[9]

8. System messages:

o Provide user-centered wording in messages (e.g. "there was a

problem in copying the file to your disk" rather than

"execution error 159")

o Avoid ambiguous messages (e.g. hit 'any' key to continue -

there is no 'any' key and there's no need to hit a key, reword

to say 'press the return key to continue)

o Avoid using threatening or alarming messages (e.g. fatal error,

run aborted, kill job, catastrophic error)

o Use specific, constructive words in error messages (e.g. avoid

general messages such as 'invalid entry' and use specific

phrases such as 'please enter your name')

o Make the system 'take the blame' for errors (e.g. "illegal

command" versus "unrecognized command").[9]

9. Attention

o Use attention grabbing techniques cautiously (e.g. avoid

overusing 'blinks' on web pages, flashing messages, bold colors

etc.)
o Don't use more than 4 different font sizes per screen

o Use serif or sans serif fonts appropriately as the visual task

situation demands.

o Don't use all uppercase letters - use and uppercase/lowercase

mix

o Don't overuse audio or video

o Use colors appropriately and make use of expectations (e.g.

don't have an OK button colored red! use green for OK, yellow

for 'caution, and red for 'danger' or 'stop')

 67

o Don't use more than 4 different colors on a screen

o Don't use blue for text (hard to read), blue is a good

background color.

o Don't put red text on a blue background

o Use high contrast color combinations

o Use colors consistently

o Use only 2 levels of intensity on a single screen
o On text screens don't use more than 3 fonts on a single

screen. [9]

10. Anthropomorphization

o Don’t anthropomorphize (i.e. don't attribute human

characteristics to objects) - avoid the "Have a nice day"

messages from your computer. [9]

11. Choose specific fonts, font sizes and font

characteristics to represent certain types of information

With the proliferation of high resolution display devices,

designers no longer need to be as concerned about the

technical problems associated with what types of fonts and

font characteristics are used on the monitor. Using a

particular font in a particular location or for a particular

portion of a program can aid users when searching for screens

that contain the type of information they are searching for.

Font characteristics such as bold, italic, and underlining can

be used to designate key words that are hot or active. [10]

 68

12. Provide selectable areas to allow users to access

information

Some possible selectable areas to consider are buttons and hot

text within a text field. The location of these elements on the

screen will depend on the available screen real estate and the

function of the selectable areas. It is recommended that the

placement of selectable areas be tested with users to find out

what is the optimal location for them. The selectable area will be

a control element for users to access information. The control

chosen will depend on the task to be done. Be consistent in

implementing particular controls for particular functions. [10-15]

13. Provide visual effects to give users visual

feedback that their choices have been made and

registered by the program

Buttons, icons, and menus can be highlighted or animated to show

users that a choice has been made. Keep the highlighting or

animation simple. The duration of a highlight or animation should

be long enough to be registered visually by the users, but short

enough so that users are not waiting for an animation to be over

so that they can get to the information they want.

Visual effects, such as wipes, fades, and zooms may be used to

indicate access to a particular piece of information. The use of

these visual effects should be consistent. Do not use them simply

because they are available, but rather use them to indicate a

particular action of the program. Additionally, be consistent in

the use of a visual effect. If wipes are used when clicking on a

right arrow, use them throughout the program. If zoom outs are

used when clicking on a menu item, then use zoom INS when

returning to the menu. Above all, make the visual effect have

meaning and be consistent with its use throughout the program.

[10-15]

 69

� Human Factors in Interface Design

� Limited Short-term memory

� People can instantaneously remember about 7 items of

information. If you present more than this, they are more

liable to make mistakes.

� People make mistakes

� When people makes mistakes and systems go wrong,

inappropriate alarms and messages can increase stress and

hence the likelihood of more mistakes.

� People are different

� People have a wide range of physical capabilities. Designers

should not just design for their own capabilities.

� People have different interaction preferences

� Some people like picture and some like text. [16]

Sample of Interfaces

 70

Here we show some samples of Interfaces:

SAMPLE-1

DOS-Based Q&A[16]

 SAMPLE-2

Begin Search Form Created with MS Access [16]

Tippecanoe County Probation Department has made DOS

Based Q&A and A Search Form using Access as shown in Sample-1

and Sample-2.

 71

SAMPLE-3:

Connection Dialog Box using VB.Net[16]

#Usability Attributes:

Source: [16]

 72

Summary

 We can say that we have to design interfaces clearly and

efficiently according to the user choice. A poorly designed

interface can cause a user to make catastrophic errors. Poor

user interface design is the reason why so many software

systems are never used.

3.2 FRONT END Design

Introduction:

 Front end and Back End are generalized terms that refer to the initial

and the end stages of a process. The front end is responsible for

collecting input in various forms from the user and processing it to

conform to a specification the back end can use. The front end is an

interface between the user and the back end.

� The separation of software systems into front and back ends

simplifies development and separates maintenance.

� For major computer subsystems, a graphical file manager is a front

end to the computer's file system. The front end faces the user

and the backend launches the programs of the operating system in

response.[17]

 73

We have completed the backend design using SQL Server and now

we have designed the front end using .NET Framework/(C#).

3.2.1 FORMS DESIGN:

Front end Forms Design includes

� Login Form

� Form Menu

� Admin Part

� Accountant Form

� Receptionist Form

� Nurse Form

� Room Form

� Ward boy Form

� Ambulance Form

� Carrier Form

� Driver Form

� Bill Form

� Admission Form

� Appointment Form

� Ambulance Service Form

� Carrying Service Form

� Nursing Service Form

� Cleaning Service Form

� Payment Form

 74

� Medical Part

� Patient Form

� Doctor Form

� Department From

� Medicine Form

� Test Form

� Operation Theater Form

� Doctor’s from Department Form

� Prescription Form

� Assist Form

� Operation Form

� Search Option

� Login Form:

This form comes at the very beginning of the software:

 75

Fig: Login page

When Designation and password will match we can switch to

the Form Menu.

� Form Menu:

 76

In this form we can see a menu strip and there are many menu options like

Entry, Search, View, Tools, Windows, Help and other icons.

Example: In Patient Form which comes under Medical Part of Entry

menu bar, we can enter the new patient data.

In Search option under Search menu bar we can retrieve information

of different tables of our choice according to Search criteria.

ADMINISTRATION PART

The way we enter data in the administration forms is given below.

 77

Room Form:

 78

Bill Form:

Accountant Form:

 79

Receptionist Form:

Driver Form

 80

Ambulance Form

 81

Carriers Form

Nurse Form

 82

Ward boy Form

Admission Form

 83

Appointment Form

Ambulance Service Form

 84

 Nursing Service Form

Cleaning Service Form

 85

Carrying Service Form

Payment Form

 86

MEDICAL PART

The way we enter data in the Medical forms is given below.

Doctor Form

 87

OT Form

 Medicine Form

 88

Department Form

Test Form

 89

Patient Form

 90

DFD Form

Prescription Form

Assist Form

 91

Operation Form

Search Form

We can search the data in the way given below

 92

In this form we can search different information of our software

according to search criteria.

 93

3.2.2 Relating Interface Design Guidelines to our

Front end Design:

In our front end we refer to the User Interface Guidelines

that we researched

1. Match between system and the real world

o The system should speak the users' language, with

words, phrases and concepts familiar to the user,

rather than system-oriented terms.[9]

� In our system we tried to make it more users

friendly and familiar to the user, so that it should

speak the user’s language.

o Follow real-world conventions, making information

appear in a natural and logical order.[9]

� To match between real world and the system we tried

to arrange all the information of our system appears

in a natural and logical order.

2. Help and Documentation

o Any such information should be easy to search,

focused on the user's task, list concrete steps to

be carried out, and not be too large.[9]

� To follow this guideline we tried to make our

information list small and easy to search.

 94

3. Attention
o Don't use more than 4 different font sizes per

screen.[9]

� In our front ends we use a single font (Comic

Sans MS) in 4 Different sizes.

o Don't use all uppercase letters - use and

uppercase/lowercase mix.[9]

� If we use all uppercase or lowercase letters it is

not so comfortably visible for users. That’s why

we have followed the instructions and mixed the

upper and lower cases.

o Don't overuse audio or video.

� We do not use any audios or videos in the forms.

o Use colors appropriately and make use of expectations

(e.g. don't have an OK button colored red! use green

for OK, yellow for 'caution, and red for 'danger' or

'stop').

� We do not use buttons in red color in our front

end, we use system color in the button and it

looks good with the background color.

o Don't use more than 4 different colors on a screen.

� We use two different colors in our front ends. The

colors are Lavender (as background), Linen (in the

Groupbox).

 95

o Don't use blue for text (hard to read), blue is a good

background color.

� We use blue as our front end background and

black as text color.

o Don't put red text on a blue background.

� Red is not matchable on a blue background .To

follow the guidelines we don’t use it in our

system.

o Use italic, underlining, bold, inverse video or other

markers sparingly.

� We use italic and bold in our form texts.

o Use colors consistently.[9]

� We tried to use colors consistently.

Summary

We try our level best to follow the guidelines which were very helpful for

us in our form design. We hope a user friendly and efficient interface has

been developed.

3.3 Security feature of FRONT END

 96

� Security has to be compared to related concepts: Safety,

continuity, reliability. The key difference between security and

reliability is that security must take into account the actions of

people attempting to cause destruction.

Here, we discuss about security for any Computer Software System.

To start this topic we must have to know about Computer system

security and Database Security. [26]

� Computer System Security

� The term computer system security means the collective

processes and mechanisms by which sensitive and valuable

information and services are protected from publication,

tampering or collapse by unauthorized activities or

untrustworthy individuals and unplanned events respectively.

� Computer security is critical in almost any technology-driven

industry which operates on computer systems. Computer security

can also be referred to as computer safety. [19]

� Database security includes the system, processes, and

procedures that protect a database from unintended activity.

� Data security is the means of ensuring that data is kept safe

from corruption and that access to it is suitably controlled.

� Data security helps to ensure privacy.

� Helps in protecting personal data.

To control and work with the Database Security we need an

administrator. [20]

 97

� Features of Database Administrator:-

� Database administrators work with database management software

and determine ways to store, organize, analyze, use, and present

data.

� Identify user needs and set up new computer databases. Database

administrators must integrate data from old systems into a new

system.

� Test and coordinate modifications to the system when needed. [21]

An organization’s database administrator ensures the performance of the

system, understands the platform on which the database runs, and adds

new users to the system.

Our Software is about BIRDEM Hospital Management System. After

comprehending the importance of security we try to secure our system

from any type of unintended activity.

In our security panel there are 3 types of members.

1. Administrator,

2. Receptionist,

 3. Accountant.

 98

Fig : Login page of our software.

Fig: When we run our software we can see 3 options

 99

Fig: Administrator option is selected and password is entered

Fig: The password is matched

 100

Fig: When the password is matched we can switch to the Form Menu

Fig: Now the Accountant option is selected and password is entered.

 101

Fig: The password is matched

 102

Fig: When the password is matched we can switch to the Form Menu

Fig: Now Receptionist option is selected and password is entered

 103

Fig: The password Matched.

Fig: When the password is matched we can switch to the Form Menu.

 104

Fig: If the password does not match Error Message is showed.

� Security Code:

 int password = Convert.ToInt32(passwordtext.Text);

 if (DesignationText.Text == "Administrator" && password

== 62413)

 {

 MessageBox.Show("Password Matched");

 frmMenubar f = new frmMenubar();

 f.Show();

 }

 else if (DesignationText.Text == "Accountant" && password

== 62436)

 {

 MessageBox.Show("Password Matched");

 frmMenubar f = new frmMenubar();

 f.Show();

 }

 105

 else if (DesignationText.Text == "Receiptionist" &&

password == 62444)

 {

 MessageBox.Show("Password Matched");

 frmMenubar f = new frmMenubar();

 f.Show();

 }

 else

 {

 MessageBox.Show("Invalid Password");

 }

 }

We design the security part of our Software by following a Point

which is taken from the User Guidelines Interfaces. It is very much

helpful for us to think and design the interface of our software in this

respect. The point is given below:-

� Provide selectable areas to allow users to access

information

� Some possible selectable areas to consider are buttons

and hot text within a text field. The location of these

 106

elements on the screen will depend on the available

screen real estate and the function of the selectable

areas.

� Here we use the ‘Login’ and ‘Cancel’ as a ‘Button’ and

also use group box, where we include combo box,

textbox and label.

� It is recommended that the placement of selectable

areas be tested with users to find out what is the

optimal location for them.

� The selectable area will be a control element for users

to access information. The control chosen will depend

on the task to be done. Be consistent in implementing

particular controls for particular functions. [10-15]

To control and work with the Database Security we do some

tasks which are given below ->

� Determine ways to store, organize, analyze, use, and

present data.

� Identify user needs and set up new computer

databases,

� Ensure privacy, to protect personal data by Testing

and coordinate modifications to the system when we

need so.

� Summary:

 107

Security is very important in software development. We apply

security in our software so that any user cannot access the information,

entered by the input users. We control the security from the front end.

It works efficiently.

3.4 Implementation of Insert, Delete, Update

buttons and Search Option

In our software save, delete and update buttons are very common

features and search option is a special feature. These buttons carry out

the actions as their names imply, Search option helps to search info

according to selections of id and table name.

Software Overview

LOGIN

Switch Forms (Form Menu)

Administration

Part

Medical Part

 108

Login Form

Action:

� When the Designation and Password matched we can go to the next

step “Form Menu”.

 ® Refer to the codes and Description in the Appendix.

Form Menu

Action:

� We can easily switch to the different forms of our software.

® Refer to the codes and Description in the Appendix.

Administration part:

a. Room Form

b. Bill Form

c. Accountant Form

d. Receptionist Form

e. Driver Form

f. Ambulance Form

g. Carriers Form

h. Nurse Form

i. WardBoy Form

j. Admission Service Form

k. Appointment Service Form

l. Ambulance Service Form

m. Nursing Service Form

n. Cleaning Service Form

o. Carrying Service Form

p. Payment Form

 109

Medical Part:

i. Doctor Form

ii. OT Form

iii. Medicine From

iv. Department Form

v. Test Form

vi. Patient Form

vii. DFD Form

viii. Prescription Form

ix. Assist Form

x. Operation Form

Save, Delete, Update and Search codes are similar for all the forms.

So we are describing the codes of the Room form as an example.

Save Action for Room Form

Code

private void btSave_Click(object sender, EventArgs e)
 {
 if (!Validation()) return;
 SetRoomInstant();
 roomInstant.Save();
 dataGridView1.DataSource = roomInstant.GetAllData();
 ClearTextBox();
 ButtonControl(false);
 }

When Save button is clicked these codes are executed.

We can see three functions

 110

a. Validation()

This function checks all the insert data in the form is valid or not.

private bool Validation()
 {
 if (textBox1.Text == "")
 {
 MASICEIU.MessageShow.Information("Select Item from room list.");
 return false;
 }
 else if (textBox2.Text == "")
 {
 MASICEIU.MessageShow.Information("Room No");
 textBox2.Focus();
 return false;
 }
 else if (textBox3.Text == "")
 {
 MASICEIU.MessageShow.Information("Room Type");
 textBox3.Focus();
 return false;
 }
 else if (textBox4.Text == "")
 {
 MASICEIU.MessageShow.Information("Room Cost");
 textBox4.Focus();
 return false;
 }
 return true;
}

b. SetRoomInstant();

This function sets instances and convert variables to string if necessary.

private void SetRoomInstant()
 {
 roomInstant.Room_id1 =Convert.ToInt16(textBox1.Text);
 roomInstant.Room_no1 = textBox2.Text;
 roomInstant.Room_type1 = textBox3.Text;
 roomInstant.Room_cost1 = Convert.ToInt16(textBox4.Text);

 }

c. ClearTextBox()

This function clears all the textbox of the form after Save button is

clicked.

 111

 private void ClearTextBox()
 {
 textBox1.Text = "";
 textBox2.Text = "";
 textBox3.Text = "";
 textBox4.Text = "";

 }

Delete Action for Room Form

Code

private void btDelete_Click(object sender, EventArgs e)
 {
 if (!Validation()) return;
 SetRoomInstant();
 roomInstant.Delete();
 dataGridView1.DataSource = roomInstant.GetAllData();
 ClearTextBox();

 }

We can also see three functions

a. Validation()

b. SetRoomInstant();

c. ClearTextBox()

® The descriptions of these functions have been described earlier.

Update Action for Room Form

Code

 private void btUpdate_Click(object sender, EventArgs e)
 {
 if (!Validation()) return;
 SetRoomInstant();
 roomInstant.Update();
 dataGridView1.DataSource = roomInstant.GetAllData();
 ClearTextBox();
 }

 112

We can also see three functions

a. Validation()

b. SetRoomInstant();

c. ClearTextBox()

® The descriptions of these functions have been described earlier.

Search Action

In the search form combobox2 we can select a form’s data grid view as

shown as page 104. Then we can search id from the combobox1 as shown

as page 104. Accordingly single row is displayed. The code is given below:

Code

private void Search_Click(object sender, EventArgs e)
 {
 if (comboBox2.Text != "" && comboBox1.SelectedIndex > -1)
 {
 dataGridView1.DataSource =
CommonDataAccess.GetData(comboBox1.Text, comboBox2.Text);
 }
 }

In order to do the Save, Delete, Update and Search we use 3 helping

files

• RoomDataAccess.cs

• RoomDataObject.cs

• RoomService.cs

® The description of these classes and codes are described in the

Appendix part.

 113

 3.5 Usage of DLL file

� DLL File

 Dynamic-link library (also written without the hyphen), or DLL, is

Microsoft's implementation of the shared library concept in the

Microsoft Windows and OS/2 operating systems. These libraries usually

have the file extension DLL, OCX (for libraries containing ActiveX

controls), or DRV (for legacy system drivers). The file formats for DLLs

are the same as for Windows EXE files — that is, Portable Executable

(PE) for 32-bit and 64-bit Windows, and New Executable (NE) for 16-bit

Windows. As with EXEs, DLLs can contain code, data, and resources, in

any combination. [22]

Fig:DLL(Dynamic-link library) Details

 114

Fig: the DLL file used in our Software

Source: [22]

� The purpose of using the DLL file

• Using DLL file we can easily carry our database with our software.

• We don’t need to load the database first.

• The software becomes more efficient and user friendly.

• After using DLL file we do not need to load the database to

interface with the front end in different PC s.

 115

C H A P T E R 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

By the glace of Allah, the Almighty we have come to the end of our

thesis report. It is not the work of one day. In fact it took us a year to

complete. The group members worked hard to make it a good and

improvised thesis.

Summing up, we worked on a case study of BIRDEM Hospital

Management, designing and storing its information in a sample database

of our creation. We designed ER models, Relational Models and

Normalized tables of the relational model and finally implemented the

SQL Server Diagram, filled the server tables with data values and

queried different useful information from the database.

The second part of the thesis involved developing a user friendly and

efficient interface to the backend database in SQL Server. We

researched User Interface Guidelines and applied some of those to our

front end forms design. We have taken into account issues of security

too.

4.2 Future Work

While an efficient user friendly interface to SQL-based backend

database has been successfully developed, we have in mind some scope

for future work involving Guideline View Features and Trigger

Features. These are explained as follows.

 116

4.2.1 Data GridView:

The DataGridView control provides a customizable table for

displaying data. The DataGridView class allows customization of

cells, rows, columns, and borders through the use of properties such

as DefaultCellStyle, ColumnHeadersDefaultCellStyle,

CellBorderStyle, and GridColor.

 We can use a DataGridView control to display data with or without

an underlying data source. Without specifying a data source, we can

create columns and rows that contain data and add them directly to

the DataGridView using the Rows and Columns properties. You can

also use the Rows collection to access DataGridViewRow objects and

the DataGridViewRow.Cells property to read or write cell values

directly. The Item indexer also provides direct access to cells.

As an alternative to populating the control manually, we can set the

DataSource and DataMember properties to bind the DataGridView

to a data source and automatically populate it with data.

When working with very large amounts of data, you can set the

VirtualMode property to true to display a subset of the available

data. Virtual mode requires the implementation of a data cache

from which the DataGridView control is populated. [23]

 117

� Use Data Gridview in .NET FRAMEWORK

1. Retrieve Data from the Database:

Fig: When A DataGridView is loaded in a form.

 118

Fig: When we run the form, GridView retrieves data from the

database.

Here we can see Operation Theater Information where Ot_id and

Ot_room_no are the information. We manage to add two more columns

named Edit and Delete. Edit Column contain Edit Button and Delete

Column Contains Delete Button.

 119

� See the recently entered data:

Fig: Inserting New Data in the form and clicking the Save Button.

 120

Fig: Confirmation of Data Insertion in the Database

Fig: Recently inserted data is seen in the DataGridView.

 121

� Delete Data from the DataGridView:

Fig: A Column is selected to Delete.

Fig: A Message Box is Displayed for the User Confirmation

 122

Fig: Confirmation that the information or data is deleted successfully.

Fig: The Picture of Grid View after the data is deleted.

 123

Edit and Update Data from the DataGridView:

Fig: When the Edit Button is clicked the data is seen in the form. The

Save Button is changed to Update Button.

 124

Fig: After Edit the data Update button is clicked.

Fig: Confirmation that the data is updated.

 125

Fig: The Picture of the DataGridView after data update.

#Codes for Data Gridline View:

Code_OT Class:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace OperationTheature

{

 public partial class OT : Form

 {

 public OT()

 {

 InitializeComponent();

 }

 126

 public int otid;

 OperationBasic ob = new OperationBasic();

 OTGateway og = new OTGateway();

 OTManager om = new OTManager();

 bool isTrue = false;

 public string msg = null;

 private void OT_Load(object sender, EventArgs e)

 {

 this.tbl_OTTableAdapter1.Fill(this.db_PatientDataSet1.tbl_OT);

 this.AddColumns();

 }

 private void LoadInitializes()

 {

 OTManager om = new OTManager();

 OTDataGridView.DataSource = om.ShowOperation();

 }

 private void AddColumns()

 {

 DataGridViewButtonColumn EditCol = new DataGridViewButtonColumn();

 EditCol.Name = "Edit";

 EditCol.Text = "Edit";

 EditCol.UseColumnTextForButtonValue = true;

 this.OTDataGridView.Columns.Add(EditCol);

 DataGridViewButtonColumn DeleteCol = new DataGridViewButtonColumn();

 DeleteCol.Name = "Delete";

 DeleteCol.Text = "Delete";

 DeleteCol.UseColumnTextForButtonValue = true;

 this.OTDataGridView.Columns.Add(DeleteCol);

 }

 public void Clear()

 {

 operationidText.Text = null;

 otroomnoText.Text = null;

 this.Save_Button.Text = "Save";

 }

 private void Save_Button_Click(object sender, EventArgs e)

 {

 OTManager om = new OTManager();

 OperationBasic ob = new OperationBasic();

 127

 ob.ot_id = Convert.ToInt32(operationidText.Text);

 ob.ot_room_no = otroomnoText.Text;

 if (this.otid == 0)

 {

 msg = om.SaveOperation(ob);

 MessageBox.Show(msg);

 this.OTDataGridView.Columns.Remove("Edit");

 this.OTDataGridView.Columns.Remove("Delete");

 }

 else

 {

 OTGateway og = new OTGateway();

 og.UpdateOperation(ob);

 MessageBox.Show("Updated Successfully");

 this.OTDataGridView.Columns.Remove("Edit");

 this.OTDataGridView.Columns.Remove("Delete");

 }

 Clear();

 OT_Load(null, null);

 }

 private void DeleteButton_Click(object sender, EventArgs e)

 {

 ob = new OperationBasic();

 om = new OTManager();

 int operationcode = ob.ot_id =

Convert.ToInt32(OTDataGridView.Rows[OTDataGridView.SelectedCells[0].RowIndex].Cells["Ot

_id"].Value.ToString());

OTDataGridView.Rows[OTDataGridView.SelectedCells[0].RowIndex].Cells["Ot_id"].Value.ToStri

ng();

 msg = om.DeleteOperation(operationcode);

 Close();

 MessageBox.Show(msg);

 }

 private void OTDataGridView_CellClick(object sender, DataGridViewCellEventArgs e)

 {

 if (e.ColumnIndex == this.OTDataGridView.Columns["Edit"].Index)

 {

 EditAction(e);

 }

 else if (e.ColumnIndex == this.OTDataGridView.Columns["Delete"].Index)

 {

 DeleteAction(e);

 128

 }

 }

 private void EditAction(DataGridViewCellEventArgs e)

 {

 otid=int.Parse(this.OTDataGridView.Rows[e.RowIndex].Cells[0].Value.ToString());

 this.operationidText.Text=otid.ToString();

this.otroomnoText.Text=this.OTDataGridView.Rows[e.RowIndex].Cells[1].Value.ToString();

 this.Save_Button.Text = "Update";

 }

 private void DeleteAction(DataGridViewCellEventArgs e)

 {

 if (MessageBox.Show("Are you sure want to Delete?", "Confirmation",

MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes)

 {

 otid = int.Parse(this.OTDataGridView.Rows[e.RowIndex].Cells[0].Value.ToString());

 og.DeleteOperation(otid);

 MessageBox.Show("Information Deleted");

 this.OTDataGridView.Columns.Remove("Edit");

 this.OTDataGridView.Columns.Remove("Delete");

 OT_Load(null, null);

 }

 }

 }

}

Difficulties:

� This process works well but some times changes of

commands make forms disable and invalid.

� If we give more time and afford we can complete the

software using Grid view control in the future.

 129

4.2.2 TRIGGER Features:

A database trigger is procedural code that is automatically executed in

response to certain events on a particular table or view in a database. The

trigger is mostly used for keeping the integrity of the information on the

database. For example, when a new record (representing a new worker) is

added to the employees table, new records should be created also in the

tables of the taxes, vacations, and salaries.

We can write triggers that fire whenever one of the following operations

occurs:

1. DML statements (INSERT, UPDATE, DELETE) on a particular table

or view, issued by any user.

2. DDL statements (CREATE or ALTER primarily) issued either by a

particular schema/user or by any schema/user in the database.

3. Database events, such as logon/logoff, errors, or startup/shutdown,

also issued either by a particular schema/user or by any

schema/user in the database.

Triggers are similar to stored procedures. A trigger stored in the

database can include SQL and PL/SQL or Java statements to run as a unit

and can invoke stored procedures. However, procedures and triggers

differ in the way that they are invoked. A procedure is explicitly run by a

user, application, or trigger. Triggers are implicitly fired by Oracle SQL

server when a triggering event occurs, no matter which user is connected

or which application is being used. [24, 25]

 130

Fig: Triggers

Trigger Structure:

�

�

�

�

�

 131

Sample Code:
 create trigger overdraft-trigger after update on account

referencing new row as nrow

for each row

when nrow.balance < 0

begin atomic

 insert into borrower

 (select customer-name, account-number

 from depositor

 where nrow.account-number =

 depositor.account-number);

 insert into loan values

 (n.row.account-number, nrow.branch-name,

 – nrow.balance);

 update account set balance = 0

 where account.account-number = nrow.account-number

end

Source: [25]

Applying Triggers in our Database:

The trigger we may apply in our database is similar for all tables. So

trigger applied on Room Table and Admission Table can be given as

an example:

Create or replace trigger Admission after insert on Room

for each row

begin

insert into Admission

(select * from Admission

 132

 where Admission.Room_no=:new.Room_no);

end;

 Source: [25]

Difficulties:

� The triggers are created but when we insert values it does not work

properly.

� This is left as a part of future work.

Summary

We can say that Data Grid view is very essential in .NET

Framework. We can do a lot of things easily and efficiently using

Data Grid view. Though the coding is not so easy but it will help us

to make user friendly software. On the other hand trigger is a very

essential approach in database. We can make a database for

functional and efficient using Triggers.

 133

REFERENCES

1. http://www.blurtit.com/q959542.html

2. http://en.wikipedia.org/wiki/Database#Applications

3. http://www.cl500.net/pros_cons.html

4. http://en.wikipedia.org/wiki/Entity

5. http:/en.wikipedia.org/wiki/Attribute_%28computing%29

6. http://en.wikipedia.org/wiki/Data_type

7. Prof. Dorothee Koch, Lecture Notes : HfT Stuuttgart-Normalaization.e.fm

8. Source: SOFTWARE ENGINEERING A Practical Approach 6th Edition

 McGRAW-HILL INTERNATIONAL EDITION by ROGER S. PRESSMAN

 (Chapter-26)

9. http://ergo.human.cornell.edu/ahtutorials/interface.html

10. Jones, M. K. (1989). Human-computer interaction: A design guide. Englewood

Cliffs, NJ: Educational Technology Publications.

11. Nicol, A. (1990). Interfaces for learning: What do good teachers know that

don't? In B. Laurel (Ed.), the art of human-computer interface design. (pp. 113-

123). Maidenhead Birkshire: Pergammon Infotech Limited.

12. Reingold, H. (1990). An interview with Don Norman. In B. Laurel (Ed.), the art

of human-computer interface design. (pp. 113-123). Maidenhead Birkshire:

Pergammon Infotech Limited.

 134

13. Laurel, B. (1991). Computer as theatre. Menlo Park, CA: Addison Wesley;

Laurel, B. (Ed.). (1991). the art of human-computer interface design. Menlo Park,

CA: Addison Wesley.

14. Laurel, B, Oren, T., & Don, A. (1992). Issues in multimedia design: Media

integration and interface agents. In M. M. Blattner & R. B. Dannenberg (Eds.),

Multimedia interface design. (pp. 53-64), ACM Press.

15. Jones, M.G. (1993). Guidelines for screen design and user-interface design in

computer-based learning environments. (Doctoral Dissertation, The University

of Georgia, 1993). Dissertation Abstracts International, 54 (9), 308a - 309a.

16. Presentation Slide (Judical Database System) by Kipp Scott and Michael

Sinks

17. http://en.wikipedia.org/wiki/Front_and_back_ends

18. http://en.wikipedia.org/wiki/Security

19. http://en.wikipedia.org/wiki/Computer_Security

20. http://en.wikipedia.org/wiki/Database_Security

21. http://en.wikipedia.org/wiki/dba

22. http://en.wikipedia.org/wiki/Dynamic-link_library

23.http://msdn.microsoft.com/enus/library/system.windows.forms.

 datagridview.aspx

24. http://en.wikipedia.org/wiki/Database_trigger

25. http://download.oracle.com/docs/cd/B19306_01/server.102/b14220/

 triggers.htm#CNCPT017

 135

APPENDIX

Login Form:

Code for Login Form:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using WindowsFormsbirdem.UI;
namespace WindowsFormsbirdem
{
 public partial class LOGIN : Form
 {
 public void dis()
 {
 LOGIN l = new LOGIN();
 l.WindowState = FormWindowState.Maximized;
 }
 public enum Designation
 {
 Administrator,
 Accountant,
 Receiptionist

 }

 public LOGIN()
 {
 InitializeComponent();
 this.DesignationCombo.DataSource =
Enum.GetNames(typeof(Designation));

 }

 private void btAddNew_Click(object sender, EventArgs e)
 {
 int password = Convert.ToInt32(passwordtext.Text);

 if (DesignationText.Text == "Administrator" && password ==
62413)
 {
 MessageBox.Show("Password Matched");
 frmMenubar f = new frmMenubar();
 f.Show();

 }

 136

 else if (DesignationText.Text == "Accountant" && password ==
62436)
 {
 MessageBox.Show("Password Matched");
 frmMenubar f = new frmMenubar();
 f.Show();

 }

 else if (DesignationText.Text == "Receiptionist" && password ==
62444)
 {
 MessageBox.Show("Password Matched");
 frmMenubar f = new frmMenubar();
 f.Show();

 }

 else
 {
 MessageBox.Show("Invalid Password");
 }

 //this.Close();
 }

 private void DesignationCombo_SelectedIndexChanged(object sender,
EventArgs e)
 {
 Designation des = (Designation)Enum.Parse(typeof(Designation),
DesignationCombo.Text);
 switch (des)
 {
 case Designation.Administrator:
 DesignationText.Text = "Administrator";
 break;

 case Designation.Accountant:
 DesignationText.Text = "Accountant";
 break;

 case Designation.Receiptionist:
 DesignationText.Text = "Receiptionist";
 break;

 }
 }
 }
}

 137

Form Menu:

Codes for the Form Menu:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Forms;

namespace WindowsFormsbirdem.UI
{
 public partial class frmMenubar : Form
 {
 private int childFormNumber = 0;

 public frmMenubar()
 {
 InitializeComponent();
 }

 private void ShowNewForm(object sender, EventArgs e)
 {
 Form childForm = new Form();
 childForm.MdiParent = this;
 childForm.Text = "Window " + childFormNumber++;
 childForm.Show();
 }

 private void OpenFile(object sender, EventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.InitialDirectory =
Environment.GetFolderPath(Environment.SpecialFolder.Personal);
 openFileDialog.Filter = "Text Files (*.txt)|*.txt|All Files
(*.*)|*.*";
 if (openFileDialog.ShowDialog(this) == DialogResult.OK)
 {
 string FileName = openFileDialog.FileName;
 }
 }

 private void SaveAsToolStripMenuItem_Click(object sender, EventArgs
e)
 {
 SaveFileDialog saveFileDialog = new SaveFileDialog();
 saveFileDialog.InitialDirectory =
Environment.GetFolderPath(Environment.SpecialFolder.Personal);
 saveFileDialog.Filter = "Text Files (*.txt)|*.txt|All Files
(*.*)|*.*";
 if (saveFileDialog.ShowDialog(this) == DialogResult.OK)
 {
 string FileName = saveFileDialog.FileName;

 138

 }
 }

 private void ExitToolsStripMenuItem_Click(object sender, EventArgs
e)
 {
 this.Close();
 }
 private void ToolBarToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 toolStrip.Visible = toolBarToolStripMenuItem.Checked;
 }

 private void StatusBarToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 statusStrip.Visible = statusBarToolStripMenuItem.Checked;
 }

 private void CascadeToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 LayoutMdi(MdiLayout.Cascade);
 }

 private void TileVerticalToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 LayoutMdi(MdiLayout.TileVertical);
 }

 private void TileHorizontalToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 LayoutMdi(MdiLayout.TileHorizontal);
 }

 private void ArrangeIconsToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 LayoutMdi(MdiLayout.ArrangeIcons);
 }

 private void CloseAllToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 CloseAllChildForm();
 }

 private void CloseAllChildForm()
 {
 foreach (Form childForm in MdiChildren)
 {
 childForm.Close();
 }
 }

 private void aboutToolStripMenuItem_Click(object sender, EventArgs
e)
 {

 139

 Show(new frmAboutDeveloper());
 }

 private void roomToolStripMenuItem_Click(object sender, EventArgs
e)
 {
 Show(new frmRoom());
 }

 private void Show(Form frm)
 {
 CloseAllChildForm();
 frm.WindowState = FormWindowState.Maximized;

 frm.MdiParent = this;
 frm.Show();
 }

 private void roomToolStripMenuItem1_Click(object sender, EventArgs
e)
 {
 Show(new Search_info());
 }

 private void billToolStripMenuItem_Click(object sender, EventArgs
e)
 {
 Show(new frmBill());

 }

 private void driverToolStripMenuItem_Click(object sender, EventArgs
e)
 {
 Driver d = new Driver();
 d.Show();
 }

 private void frmMenubar_Load(object sender, EventArgs e)
 {
 BackColor = Color.Lavender;

 Show(new Form1(this.menuStrip,this.toolStrip));
 BackColor = Color.Lavender;

 }
 private void accountantToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 Show(new frmAccountant());
 }

 private void receptionistToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 Show(new frmReceptionist());
 }

 private void ambulanceToolStripMenuItem_Click(object sender,
EventArgs e)
 {

 140

 Show(new frmAmbulance());
 }

 private void carriersToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 Show(new frmCarriers());
 }

 private void nurseToolStripMenuItem_Click(object sender, EventArgs
e)
 {
 Show(new frmNurse());
 }

 private void wardboyToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 Show(new frmWardboy());
 }

 private void doctorToolStripMenuItem1_Click(object sender,
EventArgs e)
 {
 Show(new frmDoctor());
 }

 private void oTToolStripMenuItem_Click(object sender, EventArgs e)
 {
 Show(new frmOT());
 }

 private void medicineToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 Show(new frmMedicine());
 }

 private void departmentToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 Show(new frmDepartment());
 }

 private void testToolStripMenuItem_Click(object sender, EventArgs
e)
 {
 Show(new frmTest());
 }

 private void patientToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 Show(new frmPatient());
 }

 private void doctorToolStripMenuItem_Click(object sender, EventArgs
e)
 {

 }

 141

 private void dFDToolStripMenuItem_Click(object sender, EventArgs e)
 {
 Show(new frmDFD());
 }
 }
}

Room Form:

 Codes for the Room Form:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using WindowsFormsbirdem.DAL;

namespace WindowsFormsbirdem.UI
{
 public partial class frmRoom : Form
 {
 public static RoomDataObject roomInstant = new RoomDataObject();
 public frmRoom()
 {
 InitializeComponent();
 dataGridView1.DataSource = roomInstant.GetAllData();
 }
 private void toolStripButton4_Click(object sender, EventArgs e)
 {
 ClearTextBox();
 ButtonControl(false);
 }

 private void dataGridView1_MouseDoubleClick(object sender,
MouseEventArgs e)
 {
 textBox1.Text =
dataGridView1.Rows[dataGridView1.SelectedCells[0].RowIndex].Cells[0].Value.
ToString();
 textBox2.Text =
dataGridView1.Rows[dataGridView1.SelectedCells[0].RowIndex].Cells[1].Value.
ToString();
 textBox3.Text =
dataGridView1.Rows[dataGridView1.SelectedCells[0].RowIndex].Cells[2].Value.
ToString();
 textBox4.Text =
dataGridView1.Rows[dataGridView1.SelectedCells[0].RowIndex].Cells[3].Value.
ToString();
 ButtonControl(false);
 }
 private bool Validation()
 {
 if (textBox1.Text == "")

 142

 {
 MASICEIU.MessageShow.Information("Select Item from room
list.");
 return false;
 }
 else if (textBox2.Text == "")
 {
 MASICEIU.MessageShow.Information("Room No");
 textBox2.Focus();
 return false;
 }
 else if (textBox3.Text == "")
 {
 MASICEIU.MessageShow.Information("Room Type");
 textBox3.Focus();
 return false;
 }
 else if (textBox4.Text == "")
 {
 MASICEIU.MessageShow.Information("Room Cost");
 textBox4.Focus();
 return false;
 }
 return true;
 }

 private void ButtonControl(bool boolValue)
 {
 btSave.Enabled = boolValue;
 btUpdate.Enabled = !boolValue;
 btDelete.Enabled = !boolValue;
 btAddNew.Enabled = !boolValue;
 }
 private void ClearTextBox()
 {
 textBox1.Text = "";
 textBox2.Text = "";
 textBox3.Text = "";
 textBox4.Text = "";
 }
 private void SetRoomInstant()
 {
 roomInstant.Room_id1 =Convert.ToInt16(textBox1.Text);
 roomInstant.Room_no1 = textBox2.Text;
 roomInstant.Room_type1 = textBox3.Text;
 roomInstant.Room_cost1 = Convert.ToInt16(textBox4.Text);
 }
 private void toolStripButton5_Click(object sender, EventArgs e)
 {
 textBox1.Text = new RoomDataAccess().NextID("Select
max(Room_id)from tbl_Room").ToString();
 ButtonControl(true);
 }
 private void toolStripButton1_Click(object sender, EventArgs e)
 {
 if (!Validation()) return;
 SetRoomInstant();
 roomInstant.Save();
 dataGridView1.DataSource = roomInstant.GetAllData();
 ClearTextBox();
 ButtonControl(false);

 143

 }

 private void toolStripButton2_Click(object sender, EventArgs e)
 {
 if (!Validation()) return;
 SetRoomInstant();
 roomInstant.Update();
 dataGridView1.DataSource = roomInstant.GetAllData();
 ClearTextBox();
 }

 private void toolStripButton3_Click(object sender, EventArgs e)
 {
 if (!Validation()) return;
 SetRoomInstant();
 roomInstant.Delete();
 dataGridView1.DataSource = roomInstant.GetAllData();
 ClearTextBox();

 }
 private void frmRoom_Load(object sender, EventArgs e)
 {
 btSave.Enabled = false;
 }

 }
 }

Actions:

• Save, Delete, Update, Addnew buttons are controlled in this

form.

• DataGridview is controlled from this form.

• Helping file RoomDataObject is called from this class.

Code of RoomDataObject.cs class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MASICEIU.BaseDataLayer;
using WindowsFormsbirdem.DAL.DOL;

namespace WindowsFormsbirdem.DAL
{

 144

 public class RoomDataObject:DataObject
 {
 RoomService service = new RoomService();
 private int Room_id;
 private string Room_no;
 private string Room_type;
 private int Room_cost;

 public int Room_id1 { get { return Room_id; } set { Room_id =
value; } }
 public string Room_no1 { get { return Room_no; } set { Room_no =
value; } }
 public string Room_type1 { get { return Room_type; } set {
Room_type = value; } }
 public int Room_cost1 { get { return Room_cost; } set { Room_cost =
value; } }

 public override List<object> GetAllData()
 {
 return service.GetAllData();
 }
 public override void Save()
 {
 service.Save(WindowsFormsbirdem.UI.frmRoom.roomInstant);
 }
 public void Update()
 {
 service.Update(WindowsFormsbirdem.UI.frmRoom.roomInstant);
 }
 public override void Delete()
 {

service.Delete(WindowsFormsbirdem.UI.frmRoom.roomInstant.Room_id1.ToString(
));
 }
 }
}

Actions:

� All Private variables are used as public variables using set

and get methods.

� Helping file RoomService is called.

� Save, Delete, Update instances are called.

 145

Code of RoomService.cs Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MASICEIU.BaseDataLayer;
using MASICEIU;
using System.Data;

namespace WindowsFormsbirdem.DAL.DOL
{
 public class RoomService : Service
 {
 RoomDataAccess dataAccess = new RoomDataAccess();

 public override List<object> GetAllData()
 {
 DataTable dt = dataAccess.GetAllData();
 return MapObject(dt);
 }
 public override List<object> MapObject(System.Data.DataTable
dataTable)
 {
 List<object> list = new List<object>();
 foreach (DataRow row in dataTable.Rows)
 {
 RoomDataObject roomDataObject = new RoomDataObject();
 roomDataObject.Room_id1 =
NullHandler.GetInt(row["Room_id"]);
 roomDataObject.Room_no1 =
NullHandler.GetString(row["Room_no"]);
 roomDataObject.Room_type1 =
NullHandler.GetString(row["Room_type"]);
 roomDataObject.Room_cost1 =
NullHandler.GetInt(row["Room_cost"]);
 list.Add(roomDataObject);
 }
 return list;
 }
 public override void Save(object objectValue)
 {
 dataAccess.Save(objectValue);
 }
 public void Update(object objectValue)
 {
 dataAccess.Update(objectValue);
 }
 public override bool Delete(string query)
 {
 dataAccess.Delete(query);
 return true;
 }
 }
}

 146

Actions:

� All variable types are set.

� Helping class RoomDataAccess is called

� Save, Delete and Update are ensured.

Code of RoomDataAccess.cs Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MASICEIU.BaseDataLayer;
using System.Data;
using System.Data.SqlClient;

namespace WindowsFormsbirdem.DAL
{
 public class RoomDataAccess: DataAccess
 {
 public override DataTable GetAllData()
 {
 return ConnectionManager.DatabaseInstant.GetTable("Select *from
tbl_Room");
 }

 public override void Save(object objectValue)
 {

 RoomDataObject obj = (RoomDataObject)objectValue;
 string qury = "insert into tbl_Room values(" + obj.Room_id1 +
",'" + obj.Room_no1 + "','" + obj.Room_type1 + "'," + obj.Room_cost1 + ")";
 ConnectionManager.DatabaseInstant.Insert(qury);
 }
 public override int NextID(string query)
 {
 return ConnectionManager.DatabaseInstant.NextID(query);
 }
 public void Update(object objectValue)
 {
 RoomDataObject obj = (RoomDataObject)objectValue;
 string quary = "Update tbl_Room set Room_no='" + obj.Room_no1 +
"',Room_type='" + obj.Room_type1 + "',Room_cost=" + obj.Room_cost1 + "
where Room_id='" + obj.Room_id1 + "'";
 ConnectionManager.DatabaseInstant.Update(quary);
 }
 public override bool Delete(string query)
 {
 ConnectionManager.DatabaseInstant.Delete("delete from tbl_Room
where Room_id='" +query + "'");
 return true;

 147

 }
 }
}

Actions:

� All sql queries like Save, Delete, Update are done here.

� Data from Sql Server is controlled using this class.

THE END

