B.Sc Engineering Thesis Paper
On

"Designing and Interfacing a Hospital-Based
Database System”

(A Case Study of BIRDEM)

Department of Computer Science & Engineering
Ahsanullah University of Science & Technology
Dhaka, Bangladesh.

A thesis paper submitted in partial fulfillment of the requirements
for the Degree of B.Sc Engineering (Computer Science &
Engineering)

Date: - July 12, 2010

Session: - Spring '10

"Designing and Interfacing a Hospital-Based
Database System”

(A Case Study of BIRDEM)

Submitted By:-

1. Syed Mahboob Nur 06.02.04.013
2. Jahid Hasan 06.02.04.036
3. Kazi Sumaiya 06.02.04.042
4. Tasfia Rahman 06.02.04.044

In Partial Fulfillment for the Degree of
B.Sc Engineering in Computer Science & Engineering

Ahsanullah University of Science & Technology.

Certification

We hereby, proclaim that the thesis on "Designing and Interfacing a
Hospital-Based Database System (A Case Study of BIRDEM)" was
conducted under the supervision of Ms. Rosina Surovi Khan.

We also declare that neither this nor any part thereof has been
submitted elsewhere for the award of any degree.

Approved By: Submitted By:

Dr. S. M. Abdullah Al-Mamun

Professor & Head of the Department

Dept of C.S.E, AUST

Supervised By:

Ms. Rosina Surovi Khan

Assistant Professor

Dept of C.S.E, AUST

Tasfia Rahman

CONTENTS AT A GLANCE

PREFACE

ABSTRACT

1. Introduction

2.Designing the Database System

3. Interfacing the Database System using
NET framework

4. Conclusion and Future work

Acknowledgement

Starting by the name of Almighty Allah......

Authors would like to express their sincere and hearty gratitude and profound
indebtedness to their respectful teacher Ms Rosina Surovi Khan, Assistant
Professor, AUST, for her constant timely and appropriate guidance, helpful
advice, invaluable assistance and endless patience throughout the progress of
their work, without which the work could not have been completed.

Authors also acknowledge with hearty thanks to all the members of the
BIRDEM hospital for their important information and cooperation.

Finally, authors acknowledge all cooperation of their friends, who helped them
through giving their important time, their knowledge and their best advice.

Special thanks to our parents and elders for their help and support.

Table of Contents

PREFACE

2. DESIGNING THE DATABASE SYSTEM

2.1 Determining Entities and Attributes.........ccccoocc...

2.2 Entity Relationship Diagramccoocrionrierivecnncnne.
2.3 Relational Model ..o,

2.3.1 Relational Tables' Descriptions

2.3.2 Explanation of Relational Model

2.4 Relational Database Desigh ..o,
2.4.1 Functional Dependencyccccou.c....

2.4.2 Normalizationocoovoeeoeoeeeeeeeeeeenen,

vi

X

4

26
.. 34
.34
.35

2.5 Implementation in SQL Server49
2.5.1 Creation of Tables and Insertion of data ..51
2.5.2 Sample Data Values of Tables53

2.6 Complex QUErieserorceneresrissiirirennnenn.00

3. INTERFACING THE DATABASE SYSTEM
USING .NET FRAMEWORK ... 64

3.1 Research on Interface Design Guidelines64
3.2 FRONT END Designcccovcomrmvemiennresssnnereeennn L 4
3.2.1 Forms' Designccccocovmvrivscricrninreee s 1D

3.2.2 Relating Interface Design Guidelines to
Front End Design ... 93

3.3 Security feature of FRONT ENDcccccceeuceeee... 96

3.4 Implementation of Insert, Delete, Update buttons &
S5earch OPtioNn ... 107
3.5 Usage of DLL file ..o 113

vii

4. CONCLUSION & FUTURE WORK115

41 CONCIUSION ..o ven e 1 1D
42 FUTUPrE WOPK ..o eeeeever e e 11D

421 Gridline View Features 116

4.2.2 Trigger Features ... 129

REFERENCES...........oenereeniereenierrerieenn 1 3 3

viii

PREFACE

Our thesis is about Designing and Interfacing a Hospital-Based Database
System. It forms a basic entity of the management of a Hospital. Hence, it is
very important for the system to be reliable, user friendly, and should be
properly functional for a long time without cropping up of any errors.

To start with the system study we visited Bangladesh Institute of Research and
Rehabilitation for Diabetes, Endocrine and Metabolic Disorders (BIRDEM). We
saw their system, studied it and tried to develop a better system. Our system is
an automated system for Hospital Management. This gave us the idea of the
different fields that ought to be in a Hospital Management System such as
patient registration, his/her advance payment, the records, the details etc. and
also how a software system can make the work easy both for the hospital staff
and the patients. Moreover, the evaluation helped us to arrive at the conclusion
that the automated software is far more superior to the manual ones.

ABSTRACT

Our motive is to develop a software that is very much user friendly and easy to
gather information in a very short time. We try to make our software reliable
and comfortable.

As our thesis paper is on Designing and Interfacing a Hospital Management
System (A Case Study of BIRDEM) we divide our work intfo two basic parts
Designing part and Interfacing Part.

® We give a flow chart on our work division in THESIS OVERVIEW part.

Chapter 1 - Introduction

In this chapter we discuss the definition of Database and its usefulness. We
also describe the reason to take HOSPITAL MANAGEMENT SYSTEM as our
thesis work.

Chapter 2 - Designing the Database System

In this chapter we describe the entities and attributes. We draw the Entity
Relationship Diagram (ERD) and Tables. We determine the attributes of tables
and its data types. We also find functional dependencies and normalize all the
tables. Then we implement our database in SQL Server and finally we execute
some complex queries on the system.

Chapter 3 > Interfacing the Database System using .Net Framework.

We made a research on Interface Design Guidelines and designed our front end
in C#. We applied some of the guidelines in our front end.

We control our software security using C#. We Insert Delete, Update and
Search data from the database in our software. We used a DLL file so that we

can easily access to any Operating System and we don't need to load our
database.

Chapter 4 > Conclusion and Future Work.

We tried to Save, Delete and Update data using Data Grid view and we also
tried to use Trigger in SQL Server but we cannot complete them. So we include
it as a part of future work.

Xi

CHAPTER!I

INTRODUCTION

% What is a Database?

» A Database is a collection of records which are stored on a
computer; a database organizes the data according to database
models such as a relational model. [1]

<+ Why do we need Databases?

> Databases collect items on which the user can carry out various
operations such as viewing, navigating, creating tables, and
searching. Databases can be seen as a symbolic form of the
computer age. [2]

We use databases for these reasons. Such as,

1. We use database because we can easily manipulate, edit or delete data.
2. Data are kept organized in a database so we can easily refrieve data.
3. Easy to find out desired data.

4. Data are secured.

< Advantages of Database
v" Reduced Data Redundancy.
v" Reduced updating errors and increased consistency.

v’ Greater data integrity and independence from applications
programs.

v Improved data access to users through use of host and query
languages.

v' Improved data security.
v' Reduced data entry, storage, and retfrieval costs.

v' Facilitated development of new application programs. [3]

In our thesis Designing and Interfacing a Hospital-Based Database
System (A case study of BIRDEM)we can see two basic parts.

v' Designing &
v' Interfacing

Our Thesis Teacher Ms. Rosina Surovi Khan decided that we have to complete
the design part in semester 4/1 and interfacing part in semester 4/2. In the
introductory class of the thesis our respected madam suggested to select a
specific database system to work on.

Choosing Hospital Management System for our thesis
We study and select three systems at first. The systems were

> Banking System
» Computer Sales Management System
> Hospital Management System

We saw the demos of the respective systems from different sources and all the
group members decided to do the thesis on Hospital Management System (A
Case Study of BIRDEM) because the system is less complex and easy to study.
Most Banking Systems and Computer Sales Management Systems are controlled
using online based software where users can access from any part of the
country. But we are determined fo make desktop based software. So we decided

to choose Hospital Management System based on a Case Study of BIRDEM. We
try our best to make the system efficient and user friendly with the help of our

database and front end software.

Thesis Overview

DATABASE

DESIGNING

A 4

> Determining Entities and
Attributes

Relational Model
Normalization
Implementation in SQL
Server

YV V V V

> Complex Queries

Entity Relationship Diagram

INTERFACING

\ 4

> Research on Interface
Design Guidelines

> Front End Design

> Security feature of Front
End

> Implementation

(Insert, Delete, Update
Buttons and Search Option)

> Usage of DLL file

CHAPTER2

DESIGNING THE DATABASE SYSTEM

2.1 Determining Entities and Attributes

< Entity

v An entity is something that has a distinct, separate existence, though it
need not be a material existence. In particular, abstractions and legal
fictions are usually regarded as entities. In general, there is also no
presumption that an entity is animate. Entities are used in system
developmental models that display communications and internal
processing of, say, documents compared to order processing.

v An entity could be viewed as a set containing subsets.

v A DBMS entity is either a thing in the modeled world or a drawing
element in an Entity Relationship Diagram(ERD) .[4]

% Afttfribute

v’ An attribute is a specification that defines a property of an object,
element, or file. It may also refer to or set the specific value for a
given instance of such.

v’ Aftributes should more correctly be considered metadata. It is
frequently and generally a property of an entity.

v' An attribute of an object usually consists of a name and a value; of an
element, a type or class name; of a file, a name and extension.[5]

<+ Data Type

v A data type (or datatype): In programming, a classification identifying
one of various types of data, as floating-point, integer, or Boolean, stating
the possible values for that type, the operations that can be done on that
type, and the way the values of that type are stored.[6]

We think our best and determine the entities and attributes
for our Database System. The Enftities and Attributes are given below.

Accountant

Patient Rect 3d
EEE_EE Acct name
Pat name AEe
Age Address
Sex MOB
DOB Working time
MOB Acct Salary
Tast Receptionis=t
Test id Rcp id
Test_name Rcp name
Date Age
Rep date Address
Time MOB
Fee Shifting
Rcp Salary
oT Driver
el Dr id
OT room name Dr name
MOB
Address
W_shift
DEpAT SmekL Dr Salary]
Dept id
Dept name
Treatment Nurse
Nr= id
Room Nrs_name
Room id Age
Room num Address
Room _ty'pe MOB
Room cost Nrs_wo_shift
B Experience
Nrs Salary
Bill
Bill id
Bill for
Bill type
Bill total

Figl:

Doctor

Doc id
Doc_name
Doc_type

Designation
Age
Address
MOB
Passed from
Salary

Medicine

Mdcn id
Mdcn name
Company
M date
E Date
Price

Carriers

Cr id
Cr name
MOB
Addres=ss
Cr_Salary

Ward Boy

Wb_Salary

Wb id
Wb_name

MOB
W _shift

Determining Entities and Attributes.

2.2 Entity Relationship Diagram (ERD):

We draw the Entity Relationship Diagram (ERD) very carefully and
efficiently for the whole system of BIRDEM.

We were able to cover all probable information of BIRDEM in our ERD.
The ERD is given below:

Fig2: Entity Relationship Diagram (ERD).

2.3 Relational Model:

After completing the ERD successfully we made the relational model
(table schemas) taking into account all the entities and the relationships.

Patient Table:-

Pat_id Pat_name Age Sex Address DOB MOB
Room Table:-
Room_id | Room_No | Room_type | Room_cost
Receptionist Table:-

Rcp_id | Rcp_name Age Address MOB shifting | salary

Admission Table:-

This is a junction table between Patient, Receptionist & Room tables.

Admsn_id Pat_id Room_id Rcp_id date | time
Doctor Table:-
Doc_id | Doc_name | Doc_type | Designation | Age | Address | MOB | Passed_from | Salary

Appointment Table:-

This is a junction table between Patient, Receptionist & Doctor tables.

Ap_id Pat_id | Doc_id | Rcp_id | apnmt_date | apnmt_time

Bill Table:-

Bill_id Bill_for | Bill_type | Bill_ total

Accountant Table:-

Acct_id | Acct_name | Age | Address | MOB | Working_time | Acct_salary

Payment Table:-

This is a junction table between Patient, Bill & Accountant Tables.

Pay_id Bill_for | Pat_id | Acct_id | Pay_type | Pay_date
Medicine Table:-
Mdcn_id Mdcn_name Company m_date e_date | price

Prescription Table: -

This is a junction table between Patient, Doctor & Medicine tables.

Prs_id

Doc_id

Mdcn_id

Pat_id

date

Fee

Test Table:-

Test_id | Test_name date | rep_date fee

Assist Table:-

This is a junction table between Patient, Doctor & Test tables.

Serial no | Pat_id | Doc_id | Test_id time date

OT Table:-

Ot _id | Ot_room_no

Operation Table:-

This is a junction table between Patient, Doctor & OT tables.

Op_id Doc_id | Pat_id Ot_id Op_date Op_time

Department Table:-

Dept_id | Dept_name | treatment

Doctor_from_Department Table:-

This is a junction table between Doctor & Department tables.

Dfd_id Doc_id | Dept_id

Nurse Table:-

Nrs_id | Nrs_name | Age | Address | MoB | Nrs_wo_shift | experience

Salary

10

Nursing_Service Table:-

This is a junction table between Patient, Room & Nurse tables.

Ns_id Pat_id | Nrs_id | Room_id
Ward Boy Table:-
Wb _id | wb_name | MoB w_shift Salary

Cleaning Service Table:-

This is a junction table between Patient, Room & Ward Boy tables.

Cls_id Pat_id | Wb_id | Room_id
Driver Table:-

Dr_id | Dr_name | Mob Address Shift Salary
Ambulance Table:-

Amb_id | Amb_num | Capacity

Ambulance Service Table:-

This is a junction table between Patient, Driver & Ambulance tables.

As_id Pat_id Dr_id | Amb_id
Carriers Table:-
Cr_id | Cr_name | MOB Address Salary

11

Carrying Service Table:-

This is a junction table between Patient, Ambulance & Carriers tables.

CS id Cr_id

Amb_id

Pat_id

2.3.1 Relational Tables’' Descriptions

Patient table

Attributes Data type Comments
Pat_id int Unique id for a Patient
Pat_name varchar(20) Patient’'s Name
Age int Patient's Age
Sex varchar(20) Patient is Male or
Female
Address varchar(20) Patient's Address
Dob varchar(20) Date of Birth
Mob int Mobile Number
Room table
Attributes Data type Comments
Room_id int Unique id for a Room
Room_no varchar(20) Room number
Room_type varchar(20) Room is VIP or Normal
Room_cost int Cost of the Room

12

Receptionist table

Attributes Data type Comments
Recp_id int Unique id for a
Receptionist
Rcp_name varchar(20) Receptionist's name
Age int Receptionist's age
Address varchar(20) Receptionist's Address
MOB int Mobile Number
Shifting varchar(20) Receptionist working shift
Salary int Salary a Receptionist gets
Admission table
Attributes Data type Comments
Admsn_id int Unique id for an
Admission
Pat_id int Unique id for a Patient
Room_id int Unique id for a Room
Recp_id int Unique id for a
Receptionist
Date varchar(20) Date of Admission

13

Doctor table:

Attributes Data type Comments
Doc_id int Unique id for a Doctor
Doc_name varchar(20) Doctor's name
Doc_type varchar(20) Doctor's specialty
Age int Doctor's age
Address varchar(20) Doctor's address
Mob int Mobile Number
Designation varchar(20) Doctor's designation
Passed_from varchar(20) Doctor is passed from which
medical college
Salary int Salary of a doctor
Appointment table
Attributes Data type Comments
Apnmt_id int Unique id for an Appointment
Pat_id int Unique id for a Patient
Doc_id int Unique id for a Doctor
Rcp_id int Unique id for a Receptionist
Apnmt_date varchar(20) | Date of an Appointment

14

Bill table

Attributes Data type Comments
Bill_id int Unique id for a Bill
Bill_for varchar(20) Purpose of the bill

Bill_type varchar(20) Bill either in Cash or
Check
Bill_total int Total amount
Accountant table
Attributes Data type Comments
Acct_id int Unique id for an
Accountant
Acct_name varchar(20) Accountant’'s Name
Age int Accountant’s age
Address varchar(20) Accountant's Address
Mob int Mobile Number
Acct_salary int Salary of an Accountant

15

Payment table

Attributes Data type Comments
Pay_id int Unique id for a Payment
Bill_id int Unique id for a Bill
Pat_id int Unique id for a Patient
Acct_id int Unique id for an Accountant
Pay_type varchar(20) | Payment in Cash or Check
Pay_date varchar(20) | Date of Payment
Medicine table
Attributes Data type Comments
Mdcn_id int Unique id for a Medicine
Mdcn_name varchar(20) Medicine's Name
company varchar(20) Medicine's Company
M_date varchar(20) Manufacture Date
E_date varchar(20) Expire Date
price int Price of the Medicine

16

Prescription table

Attributes Data type Comments
Prs_id int Unique id for a
Prescription
Doc_.id int Unique id for a Doctor
Mdcn_id int Unique id for a Medicine
Pat_id int Unique id for a Patient
Date varchar(20) Date of the Prescription
Time varchar(20) Time of the Prescription
Fee varchar(20) Prescription Fees
Test table
Attributes Data type Comments
Test_id int Unique id for a Test
Test_name varchar(20) Name of the Test
Date varchar(20) Date of Test
Rep_date varchar(20) Date of the Report
Fee int Test Fees

17

Assist table

Attributes Data type Comments
Serial_no int Unique id for an Assisted
Test directed to a Patient
by a Doctor
Pat_id int Unique id for a Patient
Doc_id int Unique id for a Doctor
Test_id int Unique id for a Test
Date varchar(20) Date of the Assisted Test
Time varchar(20) Time of the Assisted Test
OT table
Attributes Data type Comments
Ot_id int Unique id for an
Operation Theater (OT)
Ot_room_no varchar(20) OT Room Number

18

Operation table

Attributes Data type Comments
Op_id int Unique id for an
Operation
Doc_id int Unique id for a Doctor
Pat_id int Unique id for a Patient
Ot_id int Unique id for an OT
Op_date varchar(20) Date of the Operation
Op_time varchar(20) Time of the Operation
Department table
Attributes Data type Comments
Dept_id int Unique id for a
Department
Dept_nhame varchar(20) Department's name
treatement varchar(20) Treatments of a patient

conducted in a Department

19

Doctor_from_Department table

Attributes Data type Comments
Dfd_id int Unique id for a
DoctorsfromDepartment junction
table
Doc_id int Unique id for a Doctor
Dept_id int Unique id for a Department
Nurse table
Attributes Data type Comments
Nrs_id int Unique id for a Nurse
Nrs_name varchar(20) Nurse's Name
Age int Nurse's age
Address varchar(20) Nurse's Address
Mob int Mobile Number
Nrs_wo_shift varchar(20) Nurse working Shift
example
morning,day evening,night
Experience varchar(20) Nurse's Experience
salary int Salary of a Nurse

20

Nursing_Service table

Attributes Data type Comments
Ns_id int Unique id for a Nursing
Service
Pat_id int Unique id for a Patient
Nrs_id int Unique id for a Nurse
Room_id int Unique id for a Room
Date varchar(20) Date of Nursing Service
Time varchar(20) Time of Nursing Service
Ward_boy table
Attributes Data type Comments
Wb_id int Unique id for a Ward Boy
Wb_name varchar(20) Ward Boy's Name
Mob int Mobile Number
W_shift varchar(20) Working shift of a Ward Boy
salary int Salary of a Ward boy

21

Cleaning_Service table

Attributes Data type Comments
Cls_id int Unique id for a Cleaning
Service
Pat_id int Unique id for a Patient
Wb_id int Unique id for a Ward Boy
Room_id int Unique id for a Room
Date varchar(20) Date of Cleaning Service
Time varchar(20) Time of Cleaning Service
Driver table
Attributes Data type Comments
Dr_id int Unique id for a Driver
Dr_name varchar(20) Driver's Name
mob int Mobile Number
address varchar(20) Driver's Address
Shift varchar(20) Working shift of a Driver
salary int Salary of a Driver

22

Ambulance table

Attributes Data type Comments

Amb_id int Unique id for an
Ambulance

Amb_num varchar(20) Ambulance’'s Number

Capacity int Capacity of an Ambulance

Ambulance_Service table

Attributes Data type Comments

As_id int Unique id for an Ambulance
Service

Pat_id int Unique id for a Patient

Dr_id int Unique id for a Driver

Amb_id int Unique id for an Ambulance

Date varchar(20) | Date of the Ambulance Service

Time varchar(20) | Time of the Ambulance Service

23

Carriers table

Attributes Data type Comments
Cr_id int Unique id for a Carrier
who will carry patients
inside the hospital's
premises from the
ambulance.
Cr_name varchar(20) Carrier's Name
Mob int Mobile Number
Address varchar(20) Carrier's Address
Salary int Salary of a Carrier
Carrying_Service table
Attributes Data type Comments
Cs_id int Unique id for a Carrying
Service
Cr_id int Unique id for a Carrier
Amb_id int Unique id for an Ambulance
Pat_id int Unique id for a Patient
Date varchar(20) Date of the Carrying Service
Time varchar(20) Time of the Carrying Service

24

2.3.2 Explanation of Relational Model

Relationship between Receptionist, Patient and Room Entities in the ER
Model:

Foam
oo |
ot Mo

oty pe

Receiptionist

> 1Receptionist can admit 1 Patient in 1 Room in a certain date and time.

> 1Receptionist can admit in 1 Room 1 Patient in a certain date and time.

» In 1 Room, 1 Patient is admitted by 1 Receptionist in a certain date and
time.
So the relationship is a Ternary Relationship named Admission (in the
diamond) with cardinality ratio from Patient to Receptionist to Room as 1
to1+to 1.

25

Relational model for Receptionist, Patient and Room Entities:

Receptionist, Patient and Room Entities become Receptionist, Patient and Room
tables.

Patient Table:-

Pat_id | Pat_name Age Sex DOB MOB Address

Room Table:-

Room_id | Room_No | Room_type | Room_cost

Receptionist Table:-

Rcp_id | Rcp_name Age Address | MOB shifting | salary

The junction Admission also becomes a table.

Admission Table:-

admsn_id Pat_id | Room_id Rcp_id Date time

> Primary Key of the Patient Table goes to Admission Table as Foreign Key.

» Primary Key of the Room Table goes to Admission Table as Foreign Key.

> Primary Key of the Receptionist Table goes to Admission Table as Foreign
Key.

Since the Cardinality Ratio from Patient o Receptionist to Room is 1 to 1 to 1,

26

admsn_id is a Primary key in the Admission Table. Pat_id from Patient Table,
Room_id from Room Table and Rcp_id from Receptionist Table become Foreign
Keys in the Admission Table.

In a similar way, as cardinality ratio for Receptionist_Patient_Doctor
relationship is 1 to 1 to 1, Receptionist, Patient and Doctor entities become
separate tables along with a junction Appointment table which has Rcp_id,
Pat_id and Doc_id as foreign keys. Similar logic applies to
Patient_Ambulance_Driver relationship with cardinality ratio 1 to 1 to 1.

Relationship between Doctor and Department Entities in the ER Model:

Doctor D

Dioctor fro
Crepart me

Dept_Id

> 1 Doctor can be from 1 or Many Departments.
> 1 Department may have 1 or Many Doctors.

So it is a Many to Many relationship named Doctor from Department (in the
diamond).

27

Relational model for Doctor and Department Entities:
Doctor and Department Entities become Doctor and Department tables.

Doctor Table:-

Doc_id | Doc_name | Doc_type | Designation | Age | Address | MOB | Passed_from | Salary

Department Table:-

Dept_id | Dept_name | treatment

The junction table Doctor from Department also becomes a table.

Doctor_from _Department Table:-

Dfd_id Doc_id | Dept_id

» Primary Key of the Doctor Table goes to Doctor_from_Department Table
as part of Primary Key.

> Primary Key of the Department Table goes to Doctor_from_Department
Table as part of Primary Key.

Since the Cardinality Ratio from Doctor to Department is Many o Many, Dfd_id
is a part of Primary key in the Doctor_from_Department Table. Doc_id from
Doctor Table and Dept_id from Department Table become parts of Primary Key
in the Doctor_from_Department Table.

28

Relationship between Patient, Doctor and Medicine Entities in the ER Model:

Doctor

> 1 Doctor gives 1 patient 1 or more medicine.

> 1 patient takes 1 medicine prescribed by 1 doctor.
» 1 medicine is prescribed by 1 doctor to 1 patient.

So the relationship is a Ternary Relationship named Prescription (in the

diamond) with a Cardinality Ratio from Patient to Doctor to Medicine 1 to
1 to Many.

29

Relational model for Patient, Doctor and Medicine Entities:

Patient, Doctor and Medicine Entities become Patient, Doctor and Medicine

tables.

Patient Table:-

Pat_Id | Pat_name Age Sex DOB MOB Address
Doctor Table:-
Doc_id | Doc_name | Doc_type | Designation | Age | Address | MOB | Passed_from | Salary
Medicine Table:-
Mdcn_id Mdcn_name company m_date | e_date | price

Prescription Table: -

This is a junction table between Patients, Doctor & Medicine Table.

Prs_id

Doc_id

Mdcn_id

Pat_id

date

fee

> Primary Key of the Patient Table goes fo Prescription Table as Foreign
Key.
» Primary Key of the Doctor Table goes to Prescription Table as Foreign
Key.
> Primary Key of the Medicine Table goes to Prescription Table as part of

Primary Key.

Since the Cardinality Ratio from Patient to Doctor to Medicine 1 to 1 to M,
Prs_id is a Primary key in the Prescription Table. Pat_id from Patient Table,

30

Doc_id from Doctor Table and Mdcn_id from Medicine Table become Foreign
Keys in the Admission Table.

In a similar way relational tables have been designed for Patient-Doctor-Test,
Patient-OT-Doctor, Patient-Bill-Accountant relationships with cardinality ratio 1
to 1 to M. Similar logic applies for Patient-Ambulance-Carrier relationship with
cardinality ratio 1 to 1 to M.

#Relationship Between Patient,Room & Nurse Entities in the ER Model :-

Foom

(o
Foor o>
o FE DL

> 1room is fixed for 1 Patient to provide nursing service for 1 or
Many nurses in a certain date.

> 1 patient receives nursing service from 1 Nurse in 1 Room in a
certain date.

> 1 nurse can render proper services in 1 room to many patients in a
certain date.

So it is a Ternary Relationship named Nursing Services (in the diamond)
with cardinality Ratio from Room to Nurse to Patient 1 to M to M.

31

#Relational model between Patient, Nurse and Room Entities:-

Patient Table:-

Pat_id | Pat_name Age Sex DOB MOB Address

Room Table:-

Room_id | Room_No | Room_type | Room_cost

Nurse Table:-

Nrs_id | Nrs_name | Age | Address | Mob | Nrs_wo_shift | experience | Salary

Nursing Service Table:-

This is a junction table between Patient, Room and Nurse Table.

Ns_id

Pat_id

Nrs_id

Room_id

» Primary Key of the Patient Table goes to Nursing Service Table as

part of Primary Key.

» Primary Key of the Nurse Table goes to Nursing Service Table as

part of Primary Key.

» Primary Key of the Room Table goes to Nursing Service Table as

Foreign Key.

Since the Cardinality Ratio from Room fo Patient to Nurse is 1fo M to M. Ns_id
is a Primary key in the Nursing Service Table. Pat_id from Patient Table, Nrs_id

32

from Nurse Table become parts of Primary Key in the Nursing Service Table.
Room_id from Room Table becomes Foreign Key in the Nursing Service Table.

In a similar way relational tables are created for Patient-Room-Wardboy
relationship with cardinality ratio 1 to M to M.

2.4 Relational Database Design

Relational databases are the most commonly used database today. It uses
the table to structure information so that it can be readily and easily
searched through.

To make a Relational database design we have to be clear about two parts:
1. Functional Dependency

2. Normalization

2.4.1 Functional Dependencies

Definition of functional dependencies:

Given a relational schema R (Al, A2, ..., An)and X, Y {Al, ..., An}.

Then X -> Y means that for every extension of R, the following holds:

R contains no two tuples that are equal in all values of X but differ in at least
one value of Y.

(Pronunciation: "X determines Y functionally" "Y is functionally dependent of
X").

Example:
Student (matNr, name):
{matNr} -> {name}

Definition of fu// functional dependencies:
Prerequisites as in Definition 1.

33

Y is said to be fully functionally dependent of X, if there is no proper subset X'
c X,

Where X' -> Y.

Notation: X => Y.

Example:

A University Database:-

Class (classId, room, day, pName)
{classId, room} -> {pName}
{classId, day, pName} -> {room}
{classId} => {pName}

{classId} => {room} [7]

2.4.2 Normalization

Normalization is the process of organizing data in a database. This includes
creating tables and establishing relationships between those tables according to
rules designed both to protect the data and to make the database more flexible
by eliminating redundancy and inconsistent dependency.

It has mainly two goals:-

v" First goal: eliminate redundant data

For example, storing the same data in more than one table

v' Second Goal: ensure data dependencies make sense

For example, only storing related data in a table

Benefits of Normalization:
B |ess storage space
B Quicker updates
B |ess data inconsistency

B (Clearer data relationships

34

B Easier to add data

B Flexible Structure

Bad database designs results in:
B Redundancy: inefficient storage.

B Anomalies: data inconsistency, difficulties in maintenance.[7]

INF, 2NF, 3NF, BCNF are some of the early forms in the list that address this
problem.

First Normal Form (INF)

Definition:
A relation is in first normal form if it contains only simple, atomic values for
attributes, no sets. Example:

Name Offspring Place
Child Age
Muller Christa 12 Stuttgart
Peter 10
Iris 9
Schmidt Martin 17 Trier
Rainer 18

35

The value of an attribute can be a relation by itself.
=> Operations in the model are much more complicated
=> In order to keep the model simple: INF

Ways to normalize the above relation:

First attempt:
Person (name, place, childl, child2, child3)

=> Not good. Reason: either not enough available columns for some data records
(How many children can a person have??) Or, if there are enough columns to

provide for all thinkable cases, waste of much space (many NULL values).

Second attempt:

Person:-

Name place

Muller Stuggart
Schmidt Trir
Child:-

Name chName age
Muller Christa 12
Muller Peter 10
Muller Iris 9

Schmidt Martin 17
Schmidt Rainer 18

36

Advantage:
This requires just the right amount of space that is actually needed.

Disadvantage:
It requires an additional table. pName is redundantly stored.

Second Normal Form (2NF)
Definitions:
Definition of second normal form (simple version):

A relation is in 2NF, if it is in INF and every non-primary-key attribute is fully
functionally dependent on the primary key of the relation.

Definition of second normal form (extended version):

A relation is in 2NF, if it is in INF and every non-candidate-key attribute is fully
functionally dependent on every candidate key.

Example:-

A University Database:

TA (matNr, classId, sName, hours, taSalary)

Full functional dependencies:
{matNr, classId} => {hours}
{matNr, classId} => {taSalary}
{matNr} => {sName}

TA (matNr, classId, sName, hours, taSalary)
Student (matNr, sName)

=> TA is not in 2NF

37

Redundancy since the name is repeated for every occurrence of the same
Matrikel Number.

Solution:
Move the dependency {matNr} => {name} to a separate relation.

=> Relation "Student"

Third Normal Form (3NF)

Definition:-

A functional dependency X->Y in a relation R is called a transitive dependency, if
R contains a set of attributes, Z for which holds:

. A chain Exists.

X->Z->Y

.Y is not a part of primary key

. Z is not a super key and

XZ->Y

Y is then called transitively dependent on X via Z.
Definition of Third Normal Form:

A Relation is in 3NF, if it is in 2NF and no non primary key attributes is
transitively dependent on the primary key.

Example:-

TA (matNr, classId, hours, taSalary)

38

Functional dependencies:
{matNr, classId} => {hours}
{matNr, classId} => {taSalary}

Assumption:

{hours} => {taSalary}

There is the following transitive dependency:

{matNr, classId} => {hours} => {taSalary}

Since taSalary is not an attribute in a candidate key and hours is not a superkey,
TA is not in 3NF.

There is unnecessary redundancy since taSalary is repeated for each
occurrence of the same value of hours.

Solution:

Move the dependency {hours} => {taSalary} to a separate relation.
Example:
TANew (matNr, classId, hours) and TASalary (hours, taSalary).

Boyce Coded Normal Form (BCNF)

A relation R is in 3NF relation and for a dependency X->A from an attributes
set X to an attributes A holds that,

v X is not a super key

v' Inaddition, A is a part of a primary key

v' Then this relation is not also in BCNF.
In all other cases, 3NF and BCNF are identical.

BCNF is a little stronger than 3NF. In most cases, relations in 3NF are also in
BCNF.

The alternative definition of BCNF shows in comparison to the 3NF definition
how the two differ: in BCNF, X must always be a super key; in 3NF it does not
need to be a super key if A is part of a candidate key.

v' A relation is in BCNF, if and only if, every determinant is a
candidate key.

39

v No part of the primary key is Fully Functional Dependent on the
non primary key.
Example:-

Relation Speedlimits (town, streetSegment, postcode, speed)

Full functional dependencies:

* {town, streetSegment} => {postCode}
* {town, streetSegment} => {speed}

* {postCode} => {town}

* {postcode, streetSegment} => {speed}

Candidate keys:
* (tfown, streetSegment)
* (postCode, streetSegment)

Speedlimits is in 3NF:
+ INF by definition

2NF since all non-primary-key attributes are fully functionally dependent on the
primary Key. For the extended definition: speed is the only attribute that is not
part of a Candidate key, and it is fully functionally dependent not only on the
primary key, but also on the other candidate.

* 3NF since the only non-candidate-key attribute is speed, and the only
transitive Dependencies ending in speed would be from one of the keys to the
other and then to speed. However, transitive dependencies where the middle
set is a candidate key do not violate the definition of 3NF.

But BCNF is violated:

The problematic dependency is from an attribute (postcode) which is not a
superkey to a part (town) of the primary key.

town streetSegment | postcode speed
Stuttgart A-Str 70000 30
Stuttgart B-Str 70000 30
Stuttgart C-Str 70000 50
Stuttgart D-Str 71234 70

40

Redundancy: postCode implies the town => unnecessary repetition

Transforming o BCNF:

1. Attempt:
Speedlimit (fown, streetSegment, speed)
Codes (postCode, town)

Schema is now in BCNF.
The dependency {town, streetSegment} => {postCode} is no longer
recognizable.

2. Afttempt:
Speedlimit (fown, streetSegment, speed)
PostCodes (streetsegement, postCode)

= BCNF

But:
* The dependency {town, streetSegment} => {postCode} is again not recognizable.
* The decomposition is lossy again!

3. Attempt:

Speedlimit (postCode, streetSegment, speed)

Codes (postCode, town)

Now both relations are in BCNF, and the decomposition is lossless.

However, the dependencies {town, streetSegment} => {postCode} and {town,
Street-

Segment} => {speed} are lost.

It is possible to show:

* A relation that is not in BCNF can always be losslessly decomposed towards
BCNF.

* A lossless decomposition into BCNF that preserves all dependencies does not
always exist. [7]

In our thesis we will try Normalize all the relational tables.

41

FULFILMENT OF NORMAL FORMS:

Room Table:-

Room_id | Room_no | Room_type | Room_cost

{Room_id} => {Room_no} Functional Dependency Exist
2 different room no's do not correspond to the same Room_id.

{Room_id} => {Room _type} Functional Dependency Exist
2 different room types’ do not correspond to the same Room_id
{Room_id} => {Room cost} Functional Dependency Exist
2 different room cost's do not correspond to the same Room_id

Relation :((Room_id, Room_No, Room_type, Room_cost)

Full Functional Dependencies:

{Room_.id} => {Room_no}

{Room_id} => {Room_type}

{Room_.id} => {Room_cost}

INF:-

Attributes do not have sub attributes.
So the relation is in INF.

2NF:-

Every non primary key is Fully Functional Dependent on the primary key.

42

So the relation is in 2NF.
3NF:-
No chain Exists.

So the relation is in 3NF.

BCNF:-

No part of the primary key is Fully Functional Dependent on the non primary
keys. So the relation is in BCNF.

Bill Table:-

Bill_id Bill_for | Bill_type | Bill_ total

{Bill_id} => {Bill_for} Functional Dependency Exist.
2 different Bill_for's do not correspond to the same Bill_id.

{Bill _id} => {Bill_type} Functional Dependency Exist.
2 different Bill_type do not correspond to the same Bill_id.

{Bill _id} => {Bill total Functional Dependency Exist.
2 different Bill total do not correspond to the same Bill_id.
Relation :(Bill_id, Bill_for, Bill total, Bill_type)

Full Functional Dependency:

{Bill_id} => {Bill_for}

{Bill_id} => {Bill_type}

{Bill _id} => {Bill total}

43

INF:-

Attributes do not have sub attributes.

So the relation is in INF.

2NF:-

Every non primary key is Fully Functional Dependent on the primary key.
So the relation is in 2NF

3NF:-

No chain Exists.

So the relation is in 3NF.

BCNF:-

No part of the primary key is Fully Functional Dependent on the non primary
key. So the relation is in BCNF.

In a similar way Bill, Doctor, Accountant, Receptionist, Driver, Ambulance,
Carriers, OT, Medicine, Test, Department and Nurse Tables fulfill all the normal
forms.

JUNCTION TABLES:

Admission Room Table:-

This is a junction table between Patient, Room, and Receptionist Table

Admsn_id | Room_id |Pat_id | Rep_id | Date Time

Full Functional Dependencies:

{admsn_.id} => {Room_id} Functional Dependency Exist
{admsn_id} => {Rcp_id} Functional Dependency Exist
{adsn_id} => {Date} Functional Dependency Exist

44

{admsn_id} => {Time} Functional Dependency Exist
{admsn_id} => {Pat_id} Functional Dependency Exist
INF:-

Attributes do not have sub attributes.

So the relation is in INF.

2NF:-

Every non primary key is Fully Functional Dependent on the primary key.
So the relation is in 2NF.

3NF:-

No chain Exists.

So the relation is in 3NF.

BCNF:-

No part of the primary key is Fully Functional Dependent on the non primary
keys. So the relation is in BCNF.

In a similar way Ambulance Service and Appointment Tables fulfill all the normal
forms.

Prescription Table:-

This is a junction table between Patient, Medicine & Doctor Table.

Prs id | Doc_id | Mdcn id | Pat_id Date Fees Time

45

Full Functional Dependencies:

{Prs_id, Mdcn_id}=> {Doc_.id} Functional Dependency Exist
{Prs_id, Mdcn_id}=> {Pat_.id} Functional Dependency Exist
{Prs_id, Mdcn_id}=> {Date, Fees, Time} Functional Dependency Exist

Relation: (Prs_id, Mdcn_.id, Doc_.id, Pat_id, Date, Fees, Time)

{Prs_id, Mdcn_id}=> {Doc_.id}

{Prs_id, Mdcn_id}=> {Pat_id}

{Prs_id, Mdcn_.id}=> {Date}

{Prs_id, Mdcn_id}=> {Time}

{Prs_id, Mdcn_.id}=> {Fees}

INF:-

Attributes do not have sub attributes.
So the relation is in INF.

2NF:-

Every non primary key is Fully Functional Dependent on the primary key.
So the relation is in 2NF.

3NF:-

No chain Exists.

So the relation is in 3NF.

BCNF:-

No part of the primary key is Fully Functional Dependent on the non primary
keys. So the relation is in BCNF.

46

In a similar way Assist, Carrying Service, Cleaning Service, Operation and
Nursing Service tables fulfill all normal forms.

VIOLATION OF NORMAL FORM:

Payment Table:-

This is a junction table between Patients, Bill & Accountant tables.

Pay_id Pat_id | Bill_id | Acct_id | Pay_type | Pay_date

For Payment relation, the following functional dependencies exist:
{Pay_id}=> {Pay_Type, Pay_date, Pat_id}

Two different patient ids, payment dates and payment types cannot correspond
to the same payment id. So Pay_Type, Pay-date and Pat_id are fully functionally

dependent on Pay_id.

{Bill_id}=> {Acct_id, Pat_id}

Similarly two different accountant ids and patient ids cannot correspond to the
same bill id. So Acct_Id and Pat_id are fully functionally dependent on Bill_id.
Based on the above functional dependencies:

The relation is in INF.

The relation is not in 2NF because all non-primary keys are not fully functionally

dependent on the primary key (Pay_id, Bill_id). So we split the relation to make

it 2NF.

Payment1 (Pay_id, Pay_Type, Pay_date, Pat_id)

47

Payment2 (Bill _id, Acct_id, Pat_id)

The relations are now in 2NF.

3NF:
There is no chain.

So the relations are in 3NF.

BCNF:

No Part of the primary key (Pay_Id, Bill Id) is fully functionally dependent on
any non primary key. So the relations are in BCNF.

2.5 Implementation in SQL Server:

After Normalization, we implemented our Database in SQL Server.
There were 27 tables and each of them was connected accurately in
the SQL Server's Entity Relationship Diagram. Then we entered the
data in the corresponding database tables.

48

Fig: Relational model Implementation on SQL Server.

49

2.5.1 Creation of Tables and Insertion of Data:

In our thesis we create tables and insert data using SQL server and
SQL Language.

MAIN TABLE

Create Patient Table

create table Patient |
Pat id int primary key,
Pat name wvarchar (20
Addrezs warchar (20
Sex warchar (20)
Age dint
MOB int,
DOH warchar (20

L

i) Messages ._

Command{s) completed successfully.

50

Insert Values into Patient Table

insert into Patient values (l,"Moni', "Hrtara', 'Female'

+20, 010914564987, '12/05/10")

1]

4 Messages

{1l rowis) affected)

In this way we create all the main tables and insert data in them.

Junction Table

Create Admission Table

create table Admission
l
BD id int primary key,
Bd date varchar(20},
Pat name varchar(20) references Patient,
Rcp name varchar (20}
references: Receptioniat,
Room no varchar{20) references Roam,

4]

:‘: Messages

Enmund-!s.:l completed successfully.

51

Insert Values into Admission Table

naer

T into Admission valueas

1 Messages

(1 row(=2) affected)

In this way we create all the junction tables and insert data in them.

2.5.2 Sample Data values of Tables

Patient table

Pat_id Pat_name
1 Mani
7 Karim
3 Mamun
4 Reimi
5 Kamal
Room table
Room_id

1

2

3

4

5

Age
| n
k|
10
13
50

Room_nao
R-101
R-102
R-103
R-205
R-205

5EX DoB
Female . 12/1/80
Male 12/12/80
Male 10/10/200
Female 1/10/92
Male 1/1/1950
Foom_type

Mormal

Mormal

Mormal

VIP

VIP

52

MoB
16245658
17254058
ML
ML
192456598

Room_cost

2000
2000
2000
4000
4000

Address
.Uttara

Mirpur

Elephantroad

Mirpur

Uttara

i1
12
13

B R I = R et

Receptionist table

lRl:p"_id_

Admission room table

_ Admsn_id

1
12

3

|4
|5

Doctor table

| Doc_id

Appointment table

Ap.id

1

2
3
4
5

Bill table

Bill_id

1
2
3
a
3

Acp_name Bige Sex Address MOB
Raj 20 Mail Mirpur 1502235235
Rasel 25 Mail Mohammadpur 912545682
Mir Karim 30 Mail Kazipara 1912456352
Pat_id Room _id Rop_id date
1 1 1 10/01/09
5 1 1 10/01/08
3 2 z 11/01/08
4 2 2 12/01/09
5 3 1 10,/01/09
Doc_name Doc_type Designation Age Address
Zelima Gyanicologist Assistant Professor 50 Dhanmondi
Rahat Dathope dist b ssistant Professor 45 Mrpur
Mohammed Heart Specialist Assistant Professor 50 Dhanmandi
Kibria Medicine A ssistant Professor 40 Mohammedpur
Rahima Mediring bssistant Professor 45 Mirniir
Pat_id Doc_id Rep_id
1 1 1
2 1 2
3 % 1
4 4 2
5 3 2
Bill_for Bill_type Bill_total
Doctor Fee Cash 500
Test Fee Cash BOO
Test Cash 600
Doctor Fee Cash 500
Medicince cost Cash 100

| Shiﬂ_ _ Salary
Marning 5000
Evening 6000
Night 5000
MOoB Passed_from
1315745685 bMC
1715871436 DMC
1679534562 DMC
1397545632 SMC
1917A54573 KM
Ap_date
100109
110109
12/01/09
13/01/09
14/04/09

Salary

20000
20000
20000
13600
TROAN

Accountant table

Acct id Acct_name Age Address MOE YWorking_time Salary
L Rajib 55 Mohammadpur 1954558125 Marring 15000
2 Rain 50 Mirpur 1715845759 Evening 15000
3 Monir 45 Mirpur 1315645362 Might 15000
BillPay table
| BP_id Bill_id Acct id Amount Pay Due
i 1 800 200 600
2 2 1 600 600 0
3 3 2 600 300 300
4 4 3 800 500 100
5 5 2 800 800 o
Payment Table
Pay _id Pay_type Pay_date Fat_id
1 Cash 12/05/0% 1
2 Cash 13/05/0% 3
|
i3 Cheque 14/05/028 3
4 Cash 15/05/09 El
5 Cash 16/05/0% 5
Medicine table
! Mdcn_id Mdcn_name Company M_Date E_Date Price
1 Napa Glaxo 12/12/08 8/11/11 15
|2 Omidan Incepta 12/1/08 12/01/10 30
! 3 Ace Incepta 12/1j08 12110 15
i 4 Yamadin Glaxo 1/12/10 1/12/12 30
i 8 Zymet Glaxa 11109 1/11/10 35

54

Prescription table

Prs_id Mdcn_id Doc_id Pat_id Date Time Fees
1 1 1 1 12/05/09 8.15AM 500
2 1 2 2 13/05/09 9.00 AM 500
3 2 3 3 16/05/09 12.00FM 500
4 2 2 2 17/05/09 1.00PM 500
5 5 5 5 20/05/09 9.00AM 500
Test table
_Test_id Test_name Date Rep_date Free
1 Blood 12/05/09 14f05/09 500
7 Urine 13/05/06 14/05/09 300
3 x-Hay 140509 15/05/09 a00
4 Ultra Sang 15/05/09 16/05/09 400
5 Engiogram 15/05/09 185/05/09 00
Assist table
i Serial_no Test_id Pat id Doc_id Date Time
1 i i i 12/05/09 9, 00AM
2 1 2 : | 13/05/09 10.004M
3 2 2 2 14/05,/09 11.00 &M
4 3 3 3 15/05,/09 11.004M
5 5 1 1 16/05/08 12.00PM
OT fable Ot _id Ot _room_no
i R-200
2 R.-300
3 R-400
4 R-500
3 R-500

55

Operation table

Op_id Dioc_Id

[, TR S % B ¥ [Y
o e e

Department table

:- Dept_i.c.l I.Z.Jept_ﬁame
.1 e - D'rﬁ;;ﬁe'gics
| & Burning

(3 Gymae

| 4 Cardiology

| 5 Medicine

Pat_id Ot_id Op_date
1 i 12/05/09
1 | 12/05/09
1 1 1205709
2 2 13/05/09
4 4 14/05,09

Treatment

. Bnr;es)
Minimize Burn

Preanensi and s...
HEART

Give proper med...

Doctor_form_department table

Dfd_id Doc_id Dept_id
| 1 1 1
[2 1

3 3 3

3 3 4

B 3 5

Nurse table

Nrs_id HMrs_name Age
5 Shori 0
2 Sima 25
3 Kol 25
4 Hakaly 22
5 Prity 32

Address MCE W Shift
rv'iI.riJl;r” l iB 155245225 .Mc;rning-
MIrpur 17251473562 Evening
Mohammadpur 19152345822 MOrning
MIrpur 11919171822 Might

Uttara 13145373625 MIght

56

Op_fime
12.00PM
12.00PM
12.00FPM
1.00 PM
2.00PM

Experience

L= SR L o N S R 4 |

Salary
?dEIEI
6000
4000
7000
000

Nursing service table

| Ms_id Pat_id Nrs_id Room_id Date Time
i-l N 1 1 7 12/05/09 3.00PM
2 3 1 1 12j05/09 3,05FM
i3 3 2 2 12/05/09 G.00PM
|4 4 2 2 12/05/09 &,00PM
| 5 5 3 3 13/05/09 7.00PM
Ward_boy table
| wib_id Wh_name MOB W _shift Salary
: 3 Das 15585658222 Morning 2000
' 2 Kader 16752845621 Morning 2000
: 3 Saber 17895122131 Ewening 2000
! 4 Salam 19145653452 Ewvening 2000
! 5 Shafi 15525252352 Might 2000
Cleaning service table
j Cls.id Pat id Wh_id Room_id Date Time
l1 1 1 1 12/05/09 6.00PM
i 2 2 2 1 12/05/09 &, 00PM
; 3 3 3 2 1305409 3,004M
i 4 4 3 3 14/05/09 3.00PM
| 5 5 4 4 16/05/09 7.00PM
Driver table
Dri_id Dri_name Address MOB Shift Salary
1 Karim rrirpur 1234 MOrning 000
2 Fader mirpr 23456 Evening 6000
3 Kasem mirpur 456397 Might Ba0a0
;) Kamal rampoura 456321 Evening 6000
5 Dipon rampura 12345693 Might 5000

57

Ambulance table

| Amb_id

{95 IR N T R o B

17-1232
17-1233
17-1234
17-1235
17-1235

Ambulance service table

As_id

L35 I O L

Carriers table

| Crizid
1

[5 I CAR K I o |

Pat_id

[R L

Cri_name

Jubl:uar-

Jamial
Farim
Arif
Atik

Carrying service table

Cr=_id

[R

LN]

n &

Cri_id

[, TR S L S T =Y

MOE

Amb_num

Dri_id

=2 I I L R ™

158876252
165874522
174569356
1814768540
175469859

Amb_id

L I L R e R

Capadty

L IR o R i b R o i A # ¢

Amb_id

[0, Y O TR R A T

Address
Mohammadpur
Mirpur
Meohammadpur

Mipur

Pat_id

L S R N N

58

shift

Date

12/05/09

13/05/09
14/05/05
15/05/05
20/05/09

Morning
Marning
Maorning
Ewening

Evening

Date
12/05/03
12/05/09
13/05/09
10/05/09
10/05/09

Time
11.004M
12.00PM
1.00AM
12,004M
10.004M

Sakary

5000
5000
5000
5000
5000

Time

12,00AM
12,00AM
11,00AM
12.004M
12,00AM

2.6 Complex Queries

After completing the implementation we retrieved different
information from the system by joining 2 or more tables of the
system. Sample Examples are given below:

Question 1

Which tests are suggested by doctor Selima to which Patients?

Query 1:

select Pat_name, Doc_hame, Test_name from tbl_Patient, tbl_Doctor, tbl_Test ,
tbl_Assist where Doc_name="'Selima' and tbl_Doctor.Doc_id = tbl_Assist.Doc_id and
Tbl_Patient.Pat_id = Tbl_Assist.Pat_id and tbl_Test.Test_id = tbl_Assist. Test_id

Output:
F'at_narr;e. Du:u:_r;am.e Test_name
1 o Selima EBlood
| & K.arim Selima
| 3 o Selima
Question 2

Which doctors prescribed which medicine to patient Mamun?

Query 2:

select Pat_name, Doc_nhame, Mdcn_name from tbl_Patient, tbl_Doctor, tbl_Medicine,
tbl_Prescription where Pat_name = ‘Mamun’ and tbl_Patient Pat_id = tbl_Prescription.Pat_id
and tbl_Doctor.Doc_id = tbl_Prescription.Doc_id and tbl_Medicine.Mdcn_id =
tbl_Prescription.Mdcn_id

59

Output 2:

Pat_name [Doc name Mdeon name

1 EMamun EMDhammed Ormidon

Question 3:

Which Doctors are from which Department and they passed from which college

and got salaries below 20000 taka?

Query 3

select Doc_name Passed_from,Dept_name from tbl_Doctor, tbl_Department,
tbl_DFD where Salary <20000 and tbl_Doctor.Doc_id =

tbl_DFD.Doc_id and tbl_Department.Dept_id =

tbI_DFD. Dept_id

Output 3:

Doc_narme | Paszed from | Dept_name
5 | SME Cardialogy
2 Rakirma KT edicine

Question-4

Which doctor conducted the Urine Test for which Patient at 11.00 AM?

Query -4

select pat_name,doc_name from tbl_Patient tbl_Doctor tbl_Test tbl_Assist where
tbl_Assist. Time='11.00AM' and tbl_Test.Test_name="'Urine' and
tbl_Patient Pat_id=tbl_Assist Pat_id and tbl_Doctor.Doc_id=tbl_Assist.Doc_id

60

Output 4:-

pat_name doc_name

3! Marmun Mohammed

Question 5:

Which Patient is carried by which driver in Ambulance serial no 5?

Query -5:

select Pat_name,Dri_name from tbl_Patient tbl_Driver tbl_AmbulanceService where Amb_id =
5 and tbl_Patient Pat_id=tbl_AmbulanceService Pat_id and tbl_Driver.Dri_id =
tbl_AmbulanceService.Dri_id

Output 5 :-

Pat_name DOini_rame

...............................

Question 6:

In which time receptionist Rasel appointed patient Kamal to Doctor Selima?

Query 6:
Select pat_name, Ap_time from tbl_patient,tbl_Receiptionist tbl_Appoinment,tbl_Doctor where

Rcp_name-='Rasel'and Doc_name="Selima'and pat_name="kamal' and
tbl_patient.pat_id=tbl_Appoinment.pat_id and tbl_Receiptionist.Rcp_id=tbl_Appoinment.Rcp_id

Output 6:

pat_name Ap_time

1 iKamal : B.00PM

61

CHAPTERS33

INTERFACING THE DATABASE SYSTEM
USING .NET FRAMEWORK

3.1 Research on Interface Design Guidelines

s User Interface

User interface should be designed to match the skills,
experience and expectations of its anticipated users. System users
often judge a system by its interface rather than its functionality.

< Objectives
e To suggest some general design principles for user interface design.
e To explain different interaction styles and their use.

e To explain when to use graphical and textual information
presentation.

e To explain the principal activities in the user interface design
process.

e To introduce usability attributes and approaches to system
evaluation.[8]

62

“*User Interface Design Principle

Principle Description
User The interface should use terms and concepts
familiarity which are drawn from the experience of the
people who will make most use of the system.
Minimal Users should never be surprised by the behavior
Surprise of a system.

Recoverability

The interface should include mechanisms to allow
users to recover from errors.

User Guidance

The interface should provide meaningful
feedback when errors occur and provide context-
sensitive user help facilities.

User diversity

The interface should provide appropriate
interaction facilities for different types of
system users.

“*User Interface Design Guidelines

1. Consistency

o It is known as ("Principle of least astonishment").

o Certain aspects of an inferface should behave in consistent
ways at all times for all screens

o Terminology should be consistent between screens

o Icons should be consistent between screens

o Colors should be consistent between screens of similar
function.[9]

63

2. Simplicity

Break complex tasks into simpler tasks

Break long sequences into separate steps

Keep tasks easy by using icons, words efc.

Use icons/objects that are familiar to the user. [9]

3. Match between system and the real world

o The system should speak the users' language, with words,
phrases and concepts familiar to the user, rather than
system-oriented terms.

o Follow real-world conventions, making information appear in
a natural and logical order.[9]

4. Human Memory Limitations

Organize information into a small number of "chunks"

Try to create short linear sequences of tasks

Don't flash important information onto the screen for
brief time periods

o Organize data fields to match user expectations, or to
organize user input (e.g. auto formatting phone numbers)

o Provide cues/navigation aids for the user to know where
they are in the software or at what stage they are in an
operation

o Provide reminders, or warnings as appropriate

o Provide ongoing feedback on what is and/or just has
happened
Let users recognize rather than recall information
Minimize working memory loads by limiting the length of
sequences and quantity of information - avoid icon
manial[9]

64

5. Display issues

o Maintain display inertia - make sure the screen changes
little from one screen to the next within a functional task
situation
Organize screen complexity
Eliminate unnecessary information
Use concise, unambiguous wording for instructions and
messages
Use easy to recognize icons
Use a balanced screen layout - don't put too much
information at the fop of the screen - try to balance
information in each screen quadrant

o Use plenty of 'white space’ around text blocks - use at
least 50% white space for text screens

o Group information logically
Structure the information rather than just presenting a
narrative format (comprehension can be 40% faster for a
structured format).[9]

6. Error prevention

o Even better than good error messages is a careful design
which prevents a problem from occurring in the first place.

o Either eliminate error-prone conditions or check for them
and present users with a confirmation option before they
commit to the action.[9]

7. Help and documentation:

o Even though it is better if the system can be used without
documentation, it may be necessary to provide help and
documentation.

65

o Any such information should be easy to search, focused on
the user's task, list concrete steps to be carried out, and
not be too large.[9]

8. System messages:

o Provide user-centered wording in messages (e.g. "there was a
problem in copying the file to your disk" rather than
"execution error 159")

o Avoid ambiguous messages (e.g. hit 'any’ key to continue -
there is no ‘any’ key and there's no need to hit a key, reword
to say 'press the return key to continue)

o Avoid using threatening or alarming messages (e.g. fatal error,
run aborted, kill job, catastrophic error)

o Use specific, constructive words in error messages (e.g. avoid
general messages such as ‘invalid entry’ and use specific
phrases such as 'please enter your name')

o Make the system 'take the blame' for errors (e.g. "illegal
command" versus "unrecognized command").[9]

9. Attention

O Use attention grabbing techniques cautiously (e.g. avoid
overusing 'blinks' on web pages, flashing messages, bold colors
etc.)

Don't use more than 4 different font sizes per screen
Use serif or sans serif fonts appropriately as the visual task
situation demands.

o Don't use all uppercase letters - use and uppercase/lowercase
mix
Don't overuse audio or video
Use colors appropriately and make use of expectations (e.g.
don't have an OK button colored red! use green for OK, yellow
for 'caution, and red for 'danger’ or 'stop')

66

Don't use more than 4 different colors on a screen
Don't use blue for text (hard to read), blue is a good
background color.

Don't put red text on a blue background

Use high contrast color combinations

Use colors consistently

Use only 2 levels of /ntensity on a single screen

On text screens don't use more than 3 fonts on a single
screen. [9]

O O O O O

10. Anthropomorphization

o Don't anthropomorphize (i.e. don't attribute human
characteristics to objects) - avoid the "Have a nice day"
messages from your computer. [9]

11. Choose specific fonts, font sizes and font
characteristics to represent certain types of information

With the proliferation of high resolution display devices,
designers no longer need fo be as concerned about the
technical problems associated with what types of fonts and
font characteristics are used on the monitor. Using a
particular font in a particular location or for a particular
portion of a program can aid users when searching for screens
that contain the type of information they are searching for.
Font characteristics such as bold, italic, and underlining can
be used to designate key words that are hot or active. [10]

67

12. Provide selectable areas to allow users to access
information

Some possible selectable areas to consider are buttons and hot
text within a text field. The location of these elements on the
screen will depend on the available screen real estate and the
function of the selectable areas. It is recommended that the
placement of selectable areas be tested with users to find out
what is the optimal location for them. The selectable area will be
a control element for users to access information. The control
chosen will depend on the task fo be done. Be consistent in
implementing particular controls for particular functions. [10-15]

13. Provide visual effects to give users visual
feedback that their choices have been made and
registered by the program

Buttons, icons, and menus can be highlighted or animated to show
users that a choice has been made. Keep the highlighting or
animation simple. The duration of a highlight or animation should
be long enough to be registered visually by the users, but short
enough so that users are not waiting for an animation to be over
so that they can get o the information they want.

Visual effects, such as wipes, fades, and zooms may be used to
indicate access to a particular piece of information. The use of
these visual effects should be consistent. Do not use them simply
because they are available, but rather use them to indicate a
particular action of the program. Additionally, be consistent in
the use of a visual effect. If wipes are used when clicking on a
right arrow, use them throughout the program. If zoom outs are
used when clicking on a menu item, then use zoom INS when
returning tfo the menu. Above all, make the visual effect have
meaning and be consistent with its use throughout the program.
[10-15]

68

“*Human Factors in Interface Design

(I Limited Short-term memory

> People can instantaneously remember about 7 items of
information. If you present more than this, they are more
liable to make mistakes.

OO0 People make mistakes

> When people makes mistakes and systems go wrong,
inappropriate alarms and messages can increase stress and
hence the likelihood of more mistakes.

[1 People are different

> People have a wide range of physical capabilities. Designers
should not just design for their own capabilities.

[1 People have different interaction preferences

> Some people like picture and some like text. [16]

Sample of Interfaces

69

Here we show some samples of Interfaces:

SAMPLE-1

[0 A Report Writer

ILAST NAME B [FIRST NAME: IDDLE IN:|
5 [FILE NUMBER:
8 RANSFER:

A 8 ONE Pl g

1TY 8 STATE: Z1P:

D

AUSE NUMBER : CENTENCING DATE :
0 9

ILENGTH OF SENT :

ILENGTH SUS SENT: [DURATION OF PROB:
ODIF DATE : [PROBATION ON DATE:
DOC REL DATE _: [PROBATION OFF DATE:

DOS-Based Q&A[16]

SAMPLE-2

B Search Board {Newer) : Form E@@
Begin Search

Last Name: ,7 Status:
First Mame: ,7 Active I=|
True Mame: ,7
Court Name: ,7
DateofBirth: [
Social Security Number: ,7
Address: ,7
a: [

State: [

Ze: [

Search

Reset Search Criteria

Begin Search Form Created with MS Access [16]
Tippecanoe County Probation Department has made DOS

Based Q&A and A Search Form using Access as shown in Sample-1
and Sample-2.

70

SAMPLE-3:

Connection |

Data Source: [JDSLOCAL ;I
Add ..

e

Connecl |

I Automatically Connect

Connection Dialog Box using VB.Net[16]

#Usability Attributes:

Attribute Description

Learnability How long does it take a new user to become productive with
the system?

Speed of operation How well does the system response match the user’s work
practice?

Robustness How tolerant is the system of user error?

Recoverability How good is the system at recovering from user errors?

Adaptability How closely 1s the system tied to a single model of work?

Source: [16]

71

Summary

We can say that we have to design interfaces clearly and
efficiently according to the user choice. A poorly designed
interface can cause a user to make catastrophic errors. Poor
user interface design is the reason why so many software
systems are never used.

3.2 FRONT END Design

Introduction:

Front end and Back End are generalized terms that refer to the initial

and the end stages of a process. The front end is responsible for
collecting input in various forms from the user and processing it to
conform to a specification the back end can use. The front end is an
interface between the user and the back end.

% The separation of software systems into front and back ends
simplifies development and separates maintenance.

% For major computer subsystems, a graphical file manager is a front
end to the computer's file system. The front end faces the user
and the backend launches the programs of the operating system in
response.[17]

72

We have completed the backend design using SQL Server and now
we have designed the front end using .NET Framework/(C#).

3.2.1 FORMS DESIGN:

Front end Forms Design includes

O Login Form
0 Form Menu

O Admin Part

Accountant Form
Receptionist Form
Nurse Form

Room Form

Ward boy Form
Ambulance Form
Carrier Form

Driver Form

Bill Form

Admission Form
Appointment Form
Ambulance Service Form
Carrying Service Form
Nursing Service Form
Cleaning Service Form

AN NN Y U N N N N N Y N N NN

Payment Form

73

O Medical Part

Patient Form

Doctor Form

Department From

Medicine Form

Test Form

Operation Theater Form
Doctor's from Department Form
Prescription Form

Assist Form

Operation Form

AN N N N N R N N NN

[0 Search Option

O Login Form:

This form comes at the very beginning of the software:

agd | Ol = o

Il Diabetic Association of Bangladesh |

Fesxworg

dul Doupis gl Cevrced

Fig: Login page

| Diabetic Association of Bangladesh

Administrator - Administrator

Password anen

l&l togin & cancel

When Designation and password will match we can switch to
the Form Menu.

O Form Menu:

a.l Hospital Management(BIRDEM) [|]
Entry Search Wiewr Tools Windows Help

Status

75

In this form we can see a menu strip and there are many menu options like
Entry, Search, View, Tools, Windows, Help and other icons.

Example: In Patient Form which comes under Medical Part of Entry
menu bar, we can enter the new patient data.

In Search option under Search menu bar we can retfrieve information
of different tables of our choice according to Search criteria.

ADMINISTRATION PART

The way we enter data in the administration forms is given below.

76

5 Hospital Management(BIRDEM)
?ryl Search View Tools Windows Help
| Administrator b | Room
Medical » Bill
| Accountant
Feceptionist
i Driver
i Ambulance
ll.- Carriers
I MNurse

Wardboy
Admissicn
Appoinment
Ambulance Service

MNursing Service

i i, e

Cleaning Service

Carrying Service

)

Payment

Room Form:

a2 Hospital Management(BIRDEM) - [frmRoom]
o5l Entry Search View Tools Windows Help

DEH SR @

g X

|

m

|l AddNew |l save @l Update | & Delete @ cancel

I Room _id7 Room_nol Room_typel Room_cost] D
v N -0 | Normal 2500 0
|2 R-102 | Normal 2000 |a
E R-103 | Normal | 2000 o
|2 | R-205 | vip | 4000 |
6 | R15 Noma 500 o
|7 R-798 | viP 8870 o
|8 R-106 | Normal 7000 | g

Status

77

Bill Form:

Ry
a5l Entry Search View Tools Windows Help - 8 X
PETIE TN |
Bill id
Bill For
Bill Type
Bill Total
i I | Bill_id1 Bill_for1 Bill_type1 Bill_total B &
O o ——
| 2 Medicine Cash 800 1} =
3 Test Cash 600 o |
4 Operation Cash 500 1]
5 Test Cash G000 0
7 Operation Cash 500 i}
4 - ~ e ~ can . T
| (& Addivew |1 Save |3 Update |8 Delete [Cancel
' Status

Accountant Form:

78

=)
a5l Entry Search View Tools Windows Help - 5 X
NESH GRS |
Accountant Id
Accountant Name
Mobile
Shift
Salary
| Acct_id1 Acct_name Address1 MOEBT Salary1
» Rajib Mohammedpur 1718765860 15000
2 Raijin Mirpur 1913133760 15000
3 Morir Mirpur 1718765862 15000
4 Sadek Kazipara 1913133768 34000
=il Dulal Framget 1718765868 23000
: [l A
Status

Receptionist Form:

= Hosp

ol Entry Search View Tools Windows Help - 30X
] H S A @
Recepitionist fd
Recepifroriist Name
Mobifle
Skt
Salary
| Rep_id1 Recp_namel Address1 MCBA Sexl Salary1
» R i Mirpur 1718755866 Male 6000
2 Rasel Mohamedpur 1718765867 Male G000
3 Mir Karim Kazipara 1718765868 Male 6O00
4 Saaif Littra 1718765861 Male TO00
5 Zayed Framget 1718765862 Male BO00
sl
Status

Driver Form

79

Diriver Name
Address
Mobile
Salary
Dri_id1 Dri_name1 Address1 MOEBT Salany1
(3 Karim mirpur 1712346789 6000
2 Kader mirpur 1712345665 6000
3 Kasem mirpur 1712456897 6000
4 Kamal rampoura 1913456321 6000
5 Dipon rampura 12345658 /000
4 s

k& AddNew | Save tpdate & Delete Cancel

Ambulance Form

ot Entry Search View Tools Windows Help

NE2H S48 @

Amb i1 Amb_num1 Capacy D
>—_ 171232 8 0
2 171233 6 0
3 171234 5 0
4 171235 8 0

: (@ Addiew || Save & Update [@] Delete [§] Cancel

Status

80

Carriers Form

o5l Entry Search View Tools Windows Help - B X
DSHER @ |
Camiers _Id
Carmiers_Name
Address
Mobile
Salary
| Ca_idi Cn_name1 Address1 MOB1 | Salaryl
v N - Mirpur 1718765860 5000
2 Jamal Mohhamdpur 1718765861 5000
Karim Mirpur 17187658852 5000
4 Arf Mohhamdpur 1718765863 5000
‘&l A
fStatus
Nurse Form

ﬂ Entry Search View Tools Windows Help - = X
DB Hd an |6 |
Nurse Id !
Nurse Name
Address
Mobile
Shifr
Exprience
Salary
Nrs_id1 Mrs_name1 Address1 MOB1 W _shift 1 Exprience 1
| 4 MNipa Mirpur_1 1718765060 Moming 5 years
2 Mila Mirpur_10 1718765861 Might B_years
3 Limi Mirpur_2 1718765862 Evening 10_years
4 Shimu Kazipars 1718765863 Moming 1_vears
: E 5 Fatema Mirpur 1718765864 Evening 3_years
| Status

81

Ward boy Form

ool Entry Search \View Tools Windows Help - 8 X
DEHaa e ,
Wardboy Id
Wardboy Name
Address
Mobile
Salary
| Wh_id1 Wh_name1 Address1 MOBT Salanyl
4 Das Dhaka 1718765860 2000
& Kader Khulna 1913133760 2000
3 Saber Comilla 1513133765 2000
5 Shiafi Kazipara 1670620256 2000
&l Addvew [& Save (@ Update [Delete & Cancel

Status

Admission Form

Receiptionist Id

Date

Time

& : o
 Adimen_id Pat_id Room_id Rep_id date
14 1 1 1 1 10/01/0%
2 2 1 1 10/01/08
i 3 2 2 11/01/05
4 4 2 2 12!0 1/09
5 5 3 1 10./o1/09

: & Addwew | Save [El Update [F Delete [l cancel .

82

Appointment Form

Appoinment Id '
Patient Id
Doctor Id
Receiptionist Id
Date
)
i Pat id i T I
o1 1 1 1 0/01j0a
2 2 | 2 11/01/09
3 3 1 1 120109
4 4 3 2 Bf01j0s
5 5 3 2 14/04/09
c (@] Addtew & save @ Update &) Delete & Cancel [T ~| m
Ambulance Service Form
Ambulance Service Id
Patient Id
Driver Id
Amibnrlance Id
Date
Time
| As id 24t id rijd Anb jd Date Time
A 1 1 1 12105108 “1.004M
2 1 2 2 1305108 2.00RM
3 5 2 2 1405105 - 00AM
4 ¢ 3 3 15005105 2008
; : 5 5 2005109 0.00AM

(&l Addnew @& save [vpdate [& Delete [Cancel

83

Nursing Service Form

o) Nursing_Service.
Nursing Service Id
Patient id
Nurse Id
Room Id
Date
Time
| Nid Pat_id Mrs_id Raoom_id Date Time
4 1 1 1 1 12/05/09 3.00PM
2 2 p 1 12/05/09 3.05PM
3 3 2 2 12{05/09 .00PM
|4 4 2 2 12f05/09 o.00PM
|
5 5 3 3 13/05/08 7.00PM
&l Addnew (@ save [Update @ Delete & Cancel
Cleaning Service Form
o Cteaning Service. elaEs
GCleaning Service Id
Patient Id
Ward boy Id
Room Id
Date
Time
T Pat_id Wh_id Room_id Date Tine
1l 1 1 ! 12/05/00 6.00PM
! 2 2 2 1 12/05/09 6,00PM
3 3 3 2 13/05/08 8,00AM
4 4 3 3 14/05/09 8.00PM
5 5 4 4 16105108 7.00PM
1l Addvew |3l Save [tpndate [E] Delere |5 Cancel

84

Carrying Service Form

52 Canying Senvice =lEEs
Camying Service Id
Carier Id
Hoom id
Patient Id
Date
Time
- |(Csid Criid Amb_id Pat id Date Tirne
L 'T 1 1 1 12/05/03 12.008M
éz 2 1 1 12/05/09 12.004M
3 3 2 2 13/05/09 11.004M
4 4 2 2 100509 12.008M
!5 5 H 2 10/o5/03 12,008M
@l Addnew [l Save |G Update |§ Delete | & Cancel

Payment Form

Payment Id
Fay type
Pay date
Patient Id
I I;— mij_Pi;ly_id - ___F' ay_type Pay_dabe
e Cash 12/05/09
[IE Cash 13/05/09
I %3 Chegue’ 14/05/098
: 3 Zash 15/05/09
i |s Cash _ 15/05/09
&l Addwew & save & Update [&E petete & cancel

Pat_id

2
3
4
5

85

MEDICAL PART

The way we enter data in the Medical forms is given below.

s Hospital Management(BIRDEM)
Entry | Search. View Tools Windows Help
Administrator k

== |EoH =)

'| Medical 3 | Doctor
oT

Medicine

! Department
Test
Patient
DFD

Prescription
Assist

Operaticn

Status

Doctor Form

s Hospital Mansgement(BIRDEM) - frmDoctor] =
atl Entry Search View Tools Windows Help S i
DEHSRB S

Doctor Id

Doctor Name

Doctor Type

Designation

Address

MOB

Passed From

Salary
| Doc_id1 Doc_name1 Doc_typel Designation1 Address1 MOE1

[3 lS;lima_ e I-.Gy;c:alogist .P\;Si;l‘l; Professor ;thEEwndi .151 3133760
i Rahat | Athopetics Assistent Professor | Mipur 1913133761
| Mohammed |Heart Specialist | Asstent Professor | Dharmond 1913133762
g !4 Kibria [Medicine E'Assitent Professor | Mohammedpur | 1913133763
e mole [P T e Sy T 4ndmannTra
Status

86

OT Form

s5! Entry Search View Tools Windows Help L

NEH SR @]

Operation_Id |

Of _room_no

Ct_id1 ~ Ot_room_no 1D -~
> R-200 1

R-300
R-400
R-500
R-600
R-400

=N RN RN -]

@b | | R

: @l Addnew [Save @ Update |8 Delete & Cancel |
Status _:g'

Medicine Form

87

ot Entry Search View Tools Windows Help 5

DSHEn @ ,
Medicine_Id
Medicine Name
Company
Manufacture Date J
Expire_Date
Price
| Mden_id1 Mdcn_name1 Compary1 M_date1
3 Napa Glan 12/12/08
2 Crmidon Incepta 12/1/08
3 Ace Incepta 12/1/08
- &l AddNew | Save @& Update & Defete & Cancel

Status

Department Form

ot} Entry Search View Tools Windows Help

DEHd a8l @
Department Id |
Department Name
Treatment
Dept _id1 Dept_name] Treatment 1 18]
» Arthopedics Bones 0
2 Buming Minimize: Bum 0
Gayni Pregnensiand so... |0
CRF e b
: (& Addrew |1 save (& Update [Delete |& Cancel

Status

Test Form

88

o5l Entry Search View Tools Windows Help -5 x
Test Id |
Test Name
Date
Report_Date
Fees
| Test_id1 Test_name1 Date1 Rep_date Fees
B 12/05/09 14/05/09 200
Urine 13/05/06 14/05/09 300
*-Ray 14/05/09 15/05/09 400
LA iz i ’
: (&l Addnvew | Save |@ Update |3 Delete | cancel
Status

Patient Form

BEl Entry Search View Tools Windows Help

NEH G D S

Patient Id |
Patient_Name
Address

Date OFf Birth

Pat_id1 Pat_name Address1 DOB1 MOB1 Agel
> Maori Litars 124180 1718765860 20
& Karim Mirpur 12/12/80 1718765861 30

3 Mamun Elephantroad 107104200 1718765862 10
4 Rimi Mirpur 1410452 1718765863 18

% g T

: @l Addwew & Save & vpdate & Pefete @ Cancel :
| Status i

89

DFD Form

D Id
Doctor fd
Deparfrment Id
| _i_I;J_E:id Doc_id Dept_id
! 1 1
|
2 2 1
| 2 3 3
|4 4 4
5 5 5
8l Addew |8 Save &l Update &l Delete &8l Cancel
Prescription Form
sl Prescription = pomi <
Prescription Iid
Medicine Id
Doctor id
Patient Id
Date
e
Fees
Pre id Mdcn_id Doc_d Pat_id Date Time
b 1 1 1 1 12fn5/jce 8. 104M
2 1 2 2 13/n5/ce 9.00 AM
3 3 3 3 16/05/09 12,00PW
9 Z 2 2 L7j05/c3 1.007M
5 5 5 5 20/05/03 2,008M

&l AddNew |&] Save |[@] Update |g@] Delete [§] Cancel

Assist Form

90

8l Assist E=3EnS F)
Serial No
Test Id
Patient fd
Doctor Id
Date
Time
| SeEm i et BecHl: B o=
E s 3 1 1 1210509 9.30AM
2 3 2 3 130503 LLODAM
3 2 2] 14j0509 00 AM
4 3 3 3 150529 LL00AM
5 5 1 i 160505 ~a00OPM
8l AddWew [&E] Save |& Update &l Delete @] Cancel
Operation Form
s Operation =]
Operation id
Docior Id
Patrent Id
orid
Date
Time
Cp.id Dec Id Pat id Ot id Op_date O time |
4 1 1 i i 1205/ 12.00PM
2 2 1 1 12{05/09 12.00PM
3 = 1 1 12/05/09 12.00PM
4 4 2 2 13/05/09 1,00 FM
| 5 4 4 4 14/05/09 2.00PM
. & Addnew [F save [F Update |& Delete | Cancel [7 ~]

Search Form

We can search the data in the way given below

91

Entry Search Wiew Teols Windows Help

=]
3 | i

| Search 3 ||| Search Option |

o5l Entry Search View Teools Windows Help

DEWH S 0B | €

Id_Number = #]
Room =
Room_id Room_no Room_type Room_cost
» 2 [R-102 Nommal EI
* I |
Status

In this form we can search different information of our software
according to search criteria.

92

3.2.2 Relating Interface Design Guidelines to our
Front end Design:

In our front end we refer to the User Interface Guidelines
that we researched

1. Match between system and the real world

o The system should speak the users' language, with
words, phrases and concepts familiar to the user,
rather than system-oriented terms.[9]

= In our system we tried to make it more users
friendly and familiar to the user, so that it should
speak the user's language.

o Follow real-world conventions, making information
appear in a natural and logical order.[9]

= To match between real world and the system we tried

to arrange all the information of our system appears
in a natural and logical order.

2. Help and Documentation

o Any such information should be easy to search,
focused on the user's task, list concrete steps to
be carried out, and not be too large.[9]

= To follow this guideline we tried to make our
information list small and easy to search.

93

3. Attention
o Don't use more than 4 different font sizes per
screen.[9]

= In our front ends we use a single font (Comic
Sans MS) in 4 Different sizes.

o Don't use all uppercase letters - use and
uppercase/lowercase mix.[9]

=> If we use all uppercase or lowercase letters it is
not so comfortably visible for users. That's why
we have followed the instructions and mixed the
upper and lower cases.

o Don't overuse audio or video.
> We do not use any audios or videos in the forms.
o Use colors appropriately and make use of expectations
(e.g. don't have an OK button colored red! use green
for OK, yellow for 'caution, and red for 'danger' or
'stop').
= We do not use buttons in red color in our front
end, we use system color in the button and it
looks good with the background color.
o Don't use more than 4 different colors on a screen.
- We use two different colors in our front ends. The

colors are Lavender (as background), Linen (in the
Groupbox).

94

Summary

Don't use blue for text (hard to read), blue is a good
background color.

> We use blue as our front end background and
black as text color.

Don't put red text on a blue background.
> Red is not matchable on a blue background .To
follow the guidelines we don't use it in our

system.

Use italic, underlining, bold, inverse video or other
markers sparingly.

= We use italic and bold in our form texts.

Use colors consistently.[9]

> We tried to use colors consistently.

We try our level best to follow the guidelines which were very helpful for

us in our form design. We hope a user friendly and efficient interface has

been developed.

3.3 Security feature of FRONT END

95

v’ Security has to be compared to related concepts: Safety,
continuity, reliability. The key difference between security and
reliability is that security must take intfo account the actions of
people attempting to cause destruction.

Here, we discuss about security for any Computer Software System.
To start this topic we must have to know about Computer system

security and Database Security. [26]

< Computer System Security

>

The term computer system security means the collective
processes and mechanisms by which sensitive and valuable
information and services are protected from publication,
tfampering or collapse by unauthorized activities or
untrustworthy individuals and unplanned events respectively.

Computer security is critical in almost any technology-driven
industry which operates on computer systems. Computer security
can also be referred to as computer safety. [19]

Database security includes the system, processes, and
procedures that protect a database from unintended activity.

Data security is the means of ensuring that data is kept safe
from corruption and that access to it is suitably controlled.

v" Data security helps to ensure privacy.
v' Helps in protecting personal data.

To control and work with the Database Security we need an
administrator. [20]

96

*» Features of Database Administrator:-

v' Database administrators work with database management software
and determine ways to store, organize, analyze, use, and present
data.

v' Identify user needs and set up new computer databases. Database
administrators must integrate data from old systems into a new
system.

v' Test and coordinate modifications to the system when needed. [21]

An organization's database administrator ensures the performance of the
system, understands the platform on which the database runs, and adds
new users o the system.

Our Software is about BIRDEM Hospital Management System. After
comprehending the importance of security we try to secure our system
from any type of unintended activity.

In our security panel there are 3 types of members.
1. Administrator,
2. Receptionist,

3. Accountant.

sgt | Ol P

o i
LI_ ,51 Disbetic Association of Bangladesh |
4

Feazworg

dul Doupit gl Cevrced

Fig : Login page of our software.

' Diabetic Association of Bangladesh

I Administratar
rEmT——
Accountant
Receiptionist

&l Login & Cancel

Fig: When we run our software we can see 3 options

98

a LOGIN '

fan

Diabetic Association of Bangladesh

J-'u:lministlator - Administrator

Password sesssl

l&l Login & Cancel

Fig: Administrator option is selected and password is entered

o LOGIN ===

Diabetic Association of Bangladesh

=
Administrator - Administrator e

Password LLLL L Password Matched

(& Login @] Cancel

Fig: The password is matched

99

a:/ Hospital Management(BIRDEM) E=H Eol =<
Entry Search View Tools Windows Help

DSHER @

‘Status

Fig: When the password is matched we can switch to the Form Menu

o2 Loan =)

Accountant - Accountant

Password seens|

@l Login @ Cancel

Fig: Now the Accountant option is selected and password is entered.

100

sl | OGIN =a |

Diabetic Association of Bangladesh

Accountant - Accountant ! F 1

Password Sahee Password Matched

i Login &l cancel

Fig: The password is matched

" 22 Hospital Management{BIRDEM)

Entry Search View Tools Windows Help

NEH SRS

101

Fig: When the password is matched we can switch to the Form Menu

% LOGIN = o

Receiptiorist - Receiptionist

Password ARRRE

|&l Login |&] Cancel

Fig: Now Receptionist option is selected and password is entered

-

ot LOGIN = =

Diabetic Association of Bangladesh

"'-Ej
Receiptionist - Receiptionist

Password Matched

Password sk

\&l Login & Cancel

102

Fig: The password Matched.

52! Hospital Management(BIRDEM) =1 Eol =
Entry Search View Tools Windows Help

DS H Gl @

ol LOGIN (===
O

(. -“\\

i } Diabetic Association of Bangladesh

@
d#
Receiptionist = Receiptionist | =5
Password sanen Invalid Password

|l Login & Cancel

103

Fig: If the password does not match Error Message is showed.

% Security Code:

int password = Convert.ToInt32(passwordtext.Text);

if (DesignationText.Text == "Administrator" && password
== 62413)

{
MessageBox.Show("'Password Matched"):

frmMenubar f = new frmMenubar();

f.Show();
}
else if (DesignationText.Text == "Accountant" && password
== 62436)
{
MessageBox.Show("Password Matched");
frmMenubar f = new frmMenubar();
f.Show();
}

104

else if (DesignationText.Text == "Receiptionist" &&
password == 62444)

{
MessageBox.Show("Password Matched"):
frmMenubar f = new frmMenubar();
f.Show();
}
else
{
MessageBox.Show("Invalid Password");
}

We design the security part of our Software by following a Point
which is taken from the User Guidelines Interfaces. It is very much
helpful for us to think and design the interface of our software in this
respect. The point is given below:-

*» Provide selectable areas to allow users to access
information

> Some possible selectable areas to consider are buttons
and hot text within a text field. The location of these

105

elements on the screen will depend on the available
screen real estate and the function of the selectable
areas.

v Here we use the 'Login' and 'Cancel’ as a 'Button’ and
also use group box, where we include combo box,
textbox and label.

» It is recommended that the placement of selectable
areas be tested with users to find out what is the
optimal location for them.

> The selectable area will be a control element for users
to access information. The control chosen will depend
on the task to be done. Be consistent in implementing
particular controls for particular functions. [10-15]

To control and work with the Database Security we do some
tasks which are given below ->

v Determine ways to store, organize, analyze, use, and
present data.

v’ Identify user needs and set up new computer
databases,

v Ensure privacy, to protect personal data by Testing
and coordinate modifications to the system when we
need so.

<+ Summary:

106

Security is very important in software development. We apply
security in our software so that any user cannot access the information,
entered by the input users. We control the security from the front end.
It works efficiently.

3.4 Implementation of Insert, Delete, Update
buttons and Search Option

In our software save, delete and update buttons are very common
features and search option is a special feature. These buttons carry out
the actions as their names imply, Search option helps to search info
according to selections of id and table name.

Software Overview

LOGIN

y

Switch Forms (Form Menu)

O

Administration Medical Part

Part

107

Login Form
Action:

v When the Designation and Password matched we can go to the next
step "Form Menu".

® Refer to the codes and Description in the Appendix.
Form Menu
Action:
v We can easily switch to the different forms of our software.

® Refer to the codes and Description in the Appendix.

Administration part:

Room Form
. Bill Form
. Accountant Form
. Receptionist Form

a

b

c

d

e. Driver Form

f. Ambulance Form

g. Carriers Form

h. Nurse Form
WardBoy Form

Admission Service Form

Appointment Service Form

— X &

Ambulance Service Form
. Nursing Service Form

Cleaning Service Form

Carrying Service Form

T ©° 5 3

Payment Form

108

Medical Part:

i. Doctor Form

ii. OT Form

iii. Medicine From
iv. Department Form

v. Test Form
vi. Patient Form
vii. DFD Form

viii. Prescription Form
ix. Assist Form
x. Operation Form

Save, Delete, Update and Search codes are similar for all the forms.

So we are describing the codes of the Room form as an example.

Save Action for Room Form

Code

private void btSave Click(object sender, EventArgs e)

{
if (!Validation()) return;
SetRoomInstant () ;
roomInstant.Save() ;
dataGridViewl.DataSource = roomInstant.GetAllData();
ClearTextBox () ;
ButtonControl (false) ;

}

When Save button is clicked these codes are executed.

We can see three functions

109

a. Validation()

This function checks all the insert data in the form is valid or not.

private bool Validation ()
{
if (textBoxl.Text == "")
{
MASICEIU.MessageShow.Information ("Select Item from room list.");

return false;

}

else if (textBox2.Text == "")

{
MASICEIU.MessageShow.Information ("Room No") ;
textBox2.Focus () ;
return false;

}

else if (textBox3.Text == "")

{
MASICEIU.MessageShow.Information ("Room Type");
textBox3.Focus () ;
return false;

}

else if (textBox4.Text == "")

{
MASICEIU.MessageShow.Information ("Room Cost");
textBox4.Focus () ;
return false;

}

return true;

b. SetRoomInstant();

This function sets instances and convert variables to string if necessary.

private void SetRoomInstant ()

{

roomInstant.Room_idl =Convert.ToIntl6 (textBoxl.Text);

roomInstant.Room nol = textBox2.Text;
roomInstant.Room_ typel = textBox3.Text;
roomInstant.Room costl = Convert.ToIntl6 (textBox4.Text);

c. ClearTextBox()

This function clears all the textbox of the form after Save button is
clicked.

110

private void ClearTextBox ()
{
textBoxl.Text = "";
textBox2.Text = "";
textBox3.Text "y
textBox4.Text

ww o,
’

Delete Action for Room Form

Code

private void btDelete Click(object sender,

{

if (!Validation()) return;

SetRoomInstant () ;
roomInstant.Delete () ;

dataGridViewl.DataSource

ClearTextBox () ;

}
We can also see three functions

a. Validation()

b. SetRoomInstant();
c. ClearTextBox()

EventArgs e)

roomInstant.GetAllData () ;

® The descriptions of these functions have been described earlier.

Update Action for Room Form

Code

private void btUpdate Click(object sender,

{

if (!Validation()) return;

SetRoomInstant () ;
roomInstant.Update () ;

dataGridViewl.DataSource

ClearTextBox () ;

111

EventArgs e)

roomInstant.GetAllData () ;

We can also see three functions

a. Validation()

b. SetRoomInstant():
c. ClearTextBox()

® The descriptions of these functions have been described earlier.

Search Action

In the search form combobox2 we can select a form's data grid view as
shown as page 104. Then we can search id from the combobox1 as shown
as page 104. Accordingly single row is displayed. The code is given below:

Code

private void Search Click(object sender, EventArgs e)

{
if (comboBox2.Text != "" && comboBoxl.SelectedIndex > -1)

{
dataGridvViewl.DataSource =
CommonDataAccess.GetData (comboBoxl.Text, comboBox2.Text);
}
}

In order to do the Save, Delete, Update and Search we use 3 helping
files

e RoomDataAccess.cs
e RoomDataObject.cs
e RoomService.cs

® The description of these classes and codes are described in the
Appendix part.

112

3.5 Usage of DLL file
<+ DLL File

Dynamic-link library (also written without the hyphen), or DLL, is
Microsoft's implementation of the shared library concept in the
Microsoft Windows and OS/2 operating systems. These libraries usually
have the file extension DLL, OCX (for libraries containing ActiveX
controls), or DRV (for legacy system drivers). The file formats for DLLs
are the same as for Windows EXE files — that is, Portable Executable
(PE) for 32-bit and 64-bit Windows, and New Executable (NE) for 16-bit
Windows. As with EXEs, DLLs can contain code, data, and resources, in
any combination. [22]

Dynamic link library

Filename 1L or BEL
extension
Internet application/x—

media type madownload

Uniform Type com.microsoft windows-

identifier dynamic-link-library
Magic WMZ
number

Developed by Microsoft

Container for Shared library

Fig:DLL(Dynamic-link library) Details

113

SpecialBuild

Key [Value

FILEVERSION 1,0,0,0

PRODUCTVERSION 1,000

FILEFLAGSMASK 03l

FILEFLAGS 0:8L

FILEOS VOS_WINDOWS32

FILETYPE VFT_DLL

FILESUBTYPE VFT2_UNKNOWN

Block Header Language Neutral (000004b0)
Asgembly Version 1000

Comments This Sofware is made for Thesis Implementation of CSE -4-2 (Ahsanullah University of Science &Technology)
CompanyName AUSTCSE18

FileDescription masiceiu

FileVersion 1000

IntemalName masiceiudll

LegalCopyright Copyright @ austesed-2 2010
LegalTrademarks @13364442

OriginalFilename masiceiu.dll

PrivateBuild Fully Private

ProductName masiceiu

ProductVersion 1000

Fig: the DLL file used in our Software

Source: [22]

» The purpose of using the DLL file

e Using DLL file we can easily carry our database with our software.

e We don't need to load the database first.

e The software becomes more efficient and user friendly.

e After using DLL file we do not need to load the database to
interface with the front end in different PC s.

114

CHAPTER/4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

By the glace of Allah, the Almighty we have come to the end of our
thesis report. It is not the work of one day. In fact it fook us a year to
complete. The group members worked hard to make it a good and
improvised thesis.

Summing up, we worked on a case study of BIRDEM Hospital
Management, designing and storing its information in a sample database
of our creation. We designed ER models, Relational Models and
Normalized tables of the relational model and finally implemented the
SQL Server Diagram, filled the server tables with data values and
queried different useful information from the database.

The second part of the thesis involved developing a user friendly and
efficient interface to the backend database in SQL Server. We
researched User Interface Guidelines and applied some of those to our
front end forms design. We have taken into account issues of security
too.

4.2 Future Work

While an efficient user friendly interface to SQL-based backend
database has been successfully developed, we have in mind some scope
for future work involving Guideline View Features and Trigger
Features. These are explained as follows.

115

4 2.1 Data GridView:

The DataGridView control provides a customizable table for
displaying data. The DataGridView class allows customization of
cells, rows, columns, and borders through the use of properties such
as DefaultCellStyle, ColumnHeadersDefaultCellStyle,
CellBorderStyle, and GridColor.

We can use a DataGridView control to display data with or without
an underlying data source. Without specifying a data source, we can
create columns and rows that contain data and add them directly to
the Data6GridView using the Rows and Columns properties. You can
also use the Rows collection to access DataGridViewRow objects and
the DataGridViewRow.Cells property to read or write cell values
directly. The Item indexer also provides direct access to cells.

As an alternative o populating the control manually, we can set the
DataSource and DataMember properties to bind the DataGridView
to a data source and automatically populate it with data.

When working with very large amounts of data, you can set the
VirtualMode property to true to display a subset of the available
data. Virtual mode requires the implementation of a data cache
from which the DataGridView control is populated. [23]

116

% Use Data Gridview in .NET FRAMEWORK

1. Retrieve Data from the Database:

&% Operation Theature |‘ZHE|®

Operafion id |—|

Ot room no | |

| Ot_id Qt_roam:_no

: @l close |l Save
Fig: When A DataGridView is loaded in a form.

117

Operation Theature

Oparafion Id | |

I 01 room_no | |

at_id Ot_room_no E dit Drelete i

» [[Edt || Delete |

E R-200 [Eat || Delte |
3 R-300 [Edt) peete |

¥ R-400 [Eat [Delee |
5 R-500 [Edt || Delkte |
5 R-605 [Eat [Delete v

! @l Close & Save J

Fig: When we run the form, GridView retrieves data from the
database.

Here we can see Operation Theater Information where Ot_id and
Ot_room_no are the information. We manage to add two more columns
named Edit and Delete. Edit Column contain Edit Button and Delete
Column Contains Delete Button.

118

“» See the recently entered data:

&8 Operation Theature

Oparation id | i |

O room no | R-7od |

| Ot_id Ot_raom_no Eddit Dalete ~
- O e i
|2 'R-200 [Edt | Delete |
E R-300 [et |[Delee |
r 'R-400 [E@t J[peete]
5 'R-500 [Edt || Dekte |
B R-605 [Edt || Delste | ¥
e @oon |

Fig: Inserting New Data in the form and clicking the Save Button.

119

t¥ Dperation Theature]l@IXI

Operation Id | & |

F room no | - R700 |
| ot id Ot rof ©peration Insertedin Database Successfully ~

> I -)

o] [
. 3 R-300 I Edit JL_ opelete |
4 R-400 [Edit JL_ Delete |
5 R0 [Edit [Delete |
E | F-B05 [Edit [Delete |+

Fig: Confirmation of Data Insertion in the Database

t® Operation Theature

Operation id |

N _room_no | i

0t_id EIt oam_no Edit Delete

2 'R-200 Edit Delete |
E ' R-300 [T|W]
4 F-400 | Edt || Delete |-
5 500 |m— “t—

7 |RB-700 Edit ' — Doen |

: |l Close [& Save

Fig: Recently inserted data is seen in the DataGridView.

120

% Delete Data from the DataGridView:

B Operation Theature

Oparafion Id | |

8 _room no | |

? Ot _id Ot roan_fo E dit Delebe

i B Ran | Edit Delete l
. o e
5 \R-500 ! Edit [Delete |

Eﬂn ration Theature

Oparation id |:|

1
Ot room_no | |

| Ot_id Ot_raam_na 3=y Confirmation
13 |H 300 i -
b _'C_ J ?
! 4 | - 4EIEI " - Are vou sure wank to Delete?
|5 | R-500
I |R-E05 | g ves J[w0 |
! | !
7 BGEC: [t —re——
» 5 | B-200 [Edit I Delete | >
! |l Close [@l Save L
s e :

Fig: A Message Box is Displayed for the User Confirmation

121

L¥ Dperation Theature

Oparafion id _|
OFf_room_Ro

]
Ot_id Ot room_na Edit) Information Deleted g
3 R-300
s F-400
5 RS0 .
E R-605 [Deete]
b g F-500 [Edt | Delete ¥

i & Close |3 Save

Fig: Confirmation that the information or data is deleted successfully.

[# Operation Theature [:| @ E|

Opearation id | |

N _room_nRo | |

| Ot_id Ot_roam_no E dit Delate ~
17 'R-200 [Edi | Delete]{
3 |R-300 (Edit J(__Delete]
4 |R-400 [Edi 1T peete]
5 'R-500 [Edit [Delete |
3 E |R-B05 | E dit : _ :
7 R-700 [Edit [Dolete |~

Fig: The Picture of Grid View after the data is deleted.

122

Edit and Update Data from the DataGridView:

i Operation Theature

Oparalion id | 7 |
& room_ no '— ﬁ-:.f‘_lil'l':l_—i
Ot id Ot oo Ao E dit Delete -~
ES ‘R200 : Edit [Deete |
E 'R-300 [Ear [Delete |
4 'R-400 [Ea [oeete |
5 'R-500 [Edit [Delete |
& | R-605 [Edt [Delte |
. = e | " e] &

: (&l Close &l tpgate

H

Fig: When the Edit Button is clicked the data is seen in the form. The
Save Button is changed to Update Button.

123

= Operation Theature

Operaiion Id .
¢ room _nRo | SETi-

| Ot_id Ot_room_no Edit Delete -
2 Remn Eu:llt [ek |
5 |R-600 [T] Delete |
£ |R-B05 [Edit [Delete]' =
N R-700 Edi I ceee |
: & Close &l Update J

Fig: After Edit the data Update button is clicked.

£¥ Operation Theature - [B]X]

Operafion /d | i |

Updated SuccessFully

| ot _id 0t_room_no Edit LJEEIEE

2 R-200 | Edi poete)|

F-300 mll
Fi-4010 T T
|Re500 o [b

N T T

R-700 I E dit I Delete | e

= |'m || &

4
i |8 Close & tpdate

Fig: Confirmation that the data is updated.

124

s =i

Operation Id

Of room_no

! t_id Ct_room_no

| n | e |t | B
z
=

& close & Save

Fig: The Picture of the DataGridView after data update.

#Codes for Data Gridline View:
Code OT Class:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling:

using System.Text;

using System.Windows.Forms;

namespace OperationTheature

{

public partial class OT : Form

{
public OT()

{

InitializeComponent();

}

125

public int otid;

OperationBasic ob = hew OperationBasic();
OTGateway og = hew O TGateway();
OTManager om = new OTManager();

bool isTrue = false;

public string msg = null;

private void OT_Load(object sender, EventArgs e)

{
this.tbl_OTTableAdapterl.Fill(this.db_PatientDataSetl.tbl_OT);

this.AddColumns();

}

private void LoadInitializes()

{
OTManager om = new OTManager();
OTDataGridView.DataSource = om.ShowOperation();

}

private void AddColumns()

{
Data6ridViewButtonColumn EditCol = new DataGridViewButtonColumn();
EditCol.Name = "Edit";
EditCol. Text = "Edit";
EditCol.UseColumnTextForButtonValue = true;
this.OTDataGridView.Columns.Add(EditCol);
DataGridViewButtonColumn DeleteCol = new DataGridViewButtonColumn();
DeleteCol.Name = "Delete";
DeleteCol.Text = "Delete";
DeleteCol.UseColumnTextForButtonValue = true;
this.OTDataGridView.Columns.Add(DeleteCol);

public void Clear()
{

operationidText.Text = null;
otroomnoText.Text = null;
this.Save_Button.Text = "Save";

}

private void Save_Button_Click(object sender, EventArgs e)

{
OTManager om = new OTManager();
OperationBasic ob = new OperationBasic();

126

ob.ot_id = Convert.ToInt32(operationidText.Text);
ob.ot_room_no = otroomnoText.Text;

if (this.otid == 0)
{

msg = om.SaveOperation(ob);

MessageBox.Show(msg);
this.OTDataGridView.Columns.Remove("Edit");
this.OTDataGridView.Columns.Remove("Delete");

}

else

{
OTGateway og = hew O TGateway();
0g.UpdateOperation(ob);
MessageBox.Show("Updated Successfully");
this.OTDataGridView.Columns.Remove("Edit");
this.OTData6ridView.Columns.Remove("'Delete");

}

Clear();

OT_Load(null, null);

}

private void DeleteButton_Click(object sender, EventArgs e)
{

ob = new OperationBasic();

om = new OTManager():

int operationcode = ob.ot_id =
Convert.ToInt32(OTDataGridView.Rows[OTData6ridView.SelectedCells[0].RowIndex].Cells["Ot
_id"].Value.ToString()):

OTDataGridView.Rows[OTDataGridView.SelectedCells[0].RowIndex].Cells["Ot_id"].Value. ToStri
ng():

msg = om.DeleteOperation(operationcode);
Close();
MessageBox.Show(msg);
}

private void OTDataGridView_CellClick(object sender, DataGridViewCellEventArgs e)

{
if (e.ColumnIndex == this.OTDataGridView.Columns["Edit"].Index)

{
EditAction(e);

}
else if (e.ColumnIndex == this.OTDataGridView.Columns["Delete"].Index)

{
DeleteAction(e);

127

}
}

private void EditAction(DataGridViewCellEventArgs e)

{
otid=int.Parse(this.OTDataGridView.Rows[e.RowIndex].Cells[0].Value. ToString()):;

this.operationid Text. Text=otid. ToString();

this.otroomno Text. Text=this.OTDataGridView.Rows[e RowIndex].Cells[1].Value. ToString():
this.Save_Button.Text = "Update";

}

private void DeleteAction(DataGridViewCellEventArgs e)
{

if (MessageBox.Show("Are you sure want to Delete?", "Confirmation",
MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes)

{
otid = int.Parse(this.OTDataGridView.Rows[e. RowIndex].Cells[0].Value. ToString()):

o0g.DeleteOperation(otid);
MessageBox.Show("Information Deleted");
this.OTData6ridView.Columns.Remove("Edit");
this.OTDataGridView.Columns.Remove("'Delete");

OT_Load(null, null);

Difficulties:

v’ This process works well but some fimes changes of
commands make forms disable and invalid.

v If we give more time and afford we can complete the
software using Grid view control in the future.

128

4 2.2 TRIGGER Features:

A database trigger is procedural code that is automatically executed in
response to certain events on a particular table or view in a database. The
trigger is mostly used for keeping the integrity of the information on the
database. For example, when a new record (representing a new worker) is
added to the employees table, new records should be created also in the
tables of the taxes, vacations, and salaries.

We can write triggers that fire whenever one of the following operations
occurs:

1. DML statements (INSERT, UPDATE, DELETE) on a particular table
or view, issued by any user.

2. DDL statements (CREATE or ALTER primarily) issued either by a
particular schema/user or by any schema/user in the database.

3. Database events, such as logon/logoff, errors, or startup/shutdown,
also issued either by a particular schema/user or by any
schema/user in the database.

Triggers are similar to stored procedures. A trigger stored in the
database can include SQL and PL/SQL or Java statements to run as a unit
and can invoke stored procedures. However, procedures and triggers
differ in the way that they are invoked. A procedure is explicitly run by a
user, application, or trigger. Triggers are implicitly fired by Oracle SQL
server when a friggering event occurs, no matter which user is connected
or which application is being used. [24, 25]

129

Database

e T

J Applications : Table t Undate Trigger
UPDATELSET...; (=t e | EEGIN
rOW Insert Trigger
INSERT INTO L. ..; (=t > EEGIN
"7 7| Delete Trigger
DELETE FROM t. .. r=—m > F_!Ei_s"ﬂfl
" v

\ _///

Fig: Triggers

Trigger Structure:

) —
~>{ CREATE TRIGGER \Grigger
L)

\/
’0

/

dml_svent_clause

SCHEMA

DATABASE

LG:all_pro:ced uUre_statement

K110 G0

130

Sample Code:
create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < O
begin atomic
insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number =
depositor.account-number);
insert into /oan values
(n.row.account-number, nrow.branch-name,
- nrow.balance),
update account set balance = 0
where account.account-number = nrow.account-number
end

Source: [25]

Applying Triggers in our Database:

The trigger we may apply in our database is similar for all tables. So
trigger applied on Room Table and Admission Table can be given as
an example:

Create or replace trigger Admission after insert on Room
for each row

begin

insert into Admission

(select * from Admission

131

where Admission.Room_no=:new.Room_no);
end;

Source: [25]

Difficulties:

v' The triggers are created but when we insert values it does not work
properly.

v' This is left as a part of future work.

Summary

We can say that Data Grid view is very essential in .NET
Framework. We can do a lot of things easily and efficiently using
Data Grid view. Though the coding is not so easy but it will help us
to make user friendly software. On the other hand trigger is a very
essential approach in database. We can make a database for
functional and efficient using Triggers.

132

REFERENCES

1. http://www.blurtit.com/q959542 html
2. http://en.wikipedia.org/wiki/Database#Applications
3. http://www.cl500.net/pros_cons.html

4. http://en.wikipedia.org/wiki/Entity

o1

. http:/en.wikipedia.org/wiki/Attribute_%28computing%29

6. http://en.wikipedia.org/wiki/Data_type

7. Prof. Dorothee Koch, Lecture Notes : Hf T Stuuttgart-Normalaization.e.fm

8. Source: SOFTWARE ENGINEERING A Practical Approach 6™ Edition
McGRAW-HILL INTERNATIONAL EDITION by ROGER S. PRESSMAN
(Chapter-26)

9. http://ergo.human.cornell.edu/ahtutorials/interface.html

10. Jones, M. K. (1989). Human-computer interaction: A design guide. Englewood
Cliffs, NJ: Educational Technology Publications.

11. Nicol, A. (1990). Interfaces for learning: What do good teachers know that
don't? In B. Laurel (Ed.), the art of human-computer interface design. (pp. 113-
123). Maidenhead Birkshire: Pergammon Infotech Limited.

12. Reingold, H. (1990). An interview with Don Norman. In B. Laurel (Ed.), the art
of human-computer interface design. (pp. 113-123). Maidenhead Birkshire:
Pergammon Infotech Limited.

133

13. Laurel, B. (1991). Computer as theatre. Menlo Park, CA: Addison Wesley;
Laurel, B. (Ed.). (1991). the art of human-computer interface design. Menlo Park,
CA: Addison Wesley.

14. Laurel, B, Oren, T., & Don, A. (1992). Issues in multimedia design: Media
integration and interface agents. In M. M. Blattner & R. B. Dannenberg (Eds.),
Multimedia interface design. (pp. 53-64), ACM Press.

15. Jones, M.G. (1993). Guidelines for screen design and user-interface design in
computer-based learning environments. (Doctoral Dissertation, The University
of Georgia, 1993). Dissertation Abstracts International, 54 (9), 308a - 309a.

16. Presentation Slide (Judical Database System) by Kipp Scott and Michael
Sinks

17. http://enwikipedia.org/wiki/Front_and_back_ends

18. http://en.wikipedia.org/wiki/Security

19. http://en.wikipedia.org/wiki/Computer_Security

20. http://en.wikipedia.org/wiki/Database_Security

21. http://en.wikipedia.org/wiki/dba

22. http://en.wikipedia.org/wiki/Dynamic-link_library

23.http://msdn.microsoft.com/enus/library/system.windows.forms.
datagridview.aspx

24. http://en.wikipedia.org/wiki/Database_trigger

25. http://download.oracle.com/docs/cd/B19306_01/server.102/b14220/
triggers.htm#CNCPTO17

134

APPENDIX

Login Form:

Code for Login Form:

using
using
using
using
using
using
using
using
using

System

System.
System.
System.
System.
System.
System.
System.

Window

Collections.Generic;
ComponentModel;
Data;

Drawing;

Ling;

Text;

Windows.Forms;
sFormsbirdem.UI;

namespace WindowsFormsbirdem

{

public partial class LOGIN : Form

{

publ
{

}
publ

{

}

publ
{

ic void dis ()

LOGIN 1 = new LOGIN();
1.WindowState = FormWindowState.Maximized;

ic enum Designation
Administrator,

Accountant,
Receiptionist

ic LOGIN ()

InitializeComponent () ;
this.DesignationCombo.DataSource =

Enum.GetNames (typeof (Designation));

62413)

private void btAddNew Click (object sender, EventArgs e)

{

int password = Convert.ToInt32 (passwordtext.Text);

if (DesignationText.Text == "Administrator"

MessageBox.Show ("Password Matched") ;
frmMenubar f = new frmMenubar();
f.Show() ;

135

&& password ==

else if (DesignationText.Text == "Accountant" && password ==

62436)
{
MessageBox.Show ("Password Matched") ;
frmMenubar £ = new frmMenubar ();
f.Show();
}
else if (DesignationText.Text == "Receiptionist" && password ==
62444)

MessageBox.Show ("Password Matched") ;
frmMenubar £ = new frmMenubar ();
f.Show () ;

else
{

MessageBox.Show ("Invalid Password") ;

//this.Close () ;

private void DesignationCombo_SelectedIndexChanged(object sender,
EventArgs e)
{
Designation des = (Designation)Enum.Parse (typeof (Designation),
DesignationCombo.Text) ;
switch (des)
{
case Designation.Administrator:
DesignationText.Text = "Administrator";
break;

case Designation.Accountant:
DesignationText.Text = "Accountant";
break;

case Designation.Receiptionist:

DesignationText.Text = "Receiptionist";
break;

136

Form Menu:

Codes for the Form Menu:

using
using
using
using
using
using
using
using
using

System;
System.Collections.Generic;
System.ComponentModel;
System.Data;
System.Drawing;
System.Ling;

System.Text;
System.Windows;
System.Windows.Forms;

namespace WindowsFormsbirdem.UI

{

public partial class frmMenubar : Form

{

private int childFormNumber = 0;

public frmMenubar ()
{
InitializeComponent () ;

}

private void ShowNewForm(object sender, EventArgs e)

{

Form childForm = new Form();
childForm.MdiParent = this;
childForm.Text = "Window " + childFormNumber++;

childForm.Show () ;
}

private void OpenFile (object sender, EventArgs e)

{
OpenFileDialog openFileDialog = new OpenFileDialog();
openFileDialog.InitialDirectory =

Environment.GetFolderPath (Environment.SpecialFolder.Personal);

openFileDialog.Filter = "Text Files (*.txt) |*.txt|All Files

(*.*) |*.*";

if (openFileDialog.ShowDialog(this) == DialogResult.OK)
{
string FileName = openFileDialog.FileName;
}
}

private void SaveAsToolStripMenulItem Click(object sender, EventArgs
{

SaveFileDialog saveFileDialog = new SaveFileDialog();
saveFileDialog.InitialDirectory =

Environment.GetFolderPath (Environment.SpecialFolder.Personal);

(*.*) |*.*";

saveFileDialog.Filter = "Text Files (*.txt) |*.txt|All Files
if (saveFileDialog.ShowDialog(this) == DialogResult.OK)
{

string FileName = saveFileDialog.FileName;

137

e)

}

private void ExitToolsStripMenultem Click(object sender, EventArgs

{
this.Close();

}

private void ToolBarToolStripMenultem Click(object sender,

EventArgs e)

{
toolStrip.Visible = toolBarToolStripMenultem.Checked;

}

private void StatusBarToolStripMenultem Click(object sender,

EventArgs e)

{
statusStrip.Visible = statusBarToolStripMenultem.Checked;

}

private void CascadeToolStripMenultem Click (object sender,

EventArgs e)

{
LayoutMdi (MdiLayout.Cascade) ;

}

private void TileVerticalToolStripMenultem Click (object sender,

EventArgs e)

{
LayoutMdi (MdiLayout.TileVertical) ;

}

private void TileHorizontalToolStripMenultem Click(object sender,

EventArgs e)

{
LayoutMdi (MdiLayout.TileHorizontal);

}

private void ArrangeIconsToolStripMenultem Click (object sender,

EventArgs e)

{
LayoutMdi (MdiLayout.ArrangelIcons) ;

}

private void CloseAllToolStripMenultem Click(object sender,

EventArgs e)

{
CloseAllChildForm() ;

}

private void CloseAllChildForm()

{
foreach (Form childForm in MdiChildren)

{
childForm.Close() ;

}
}

private void aboutToolStripMenultem Click (object sender, EventArgs

{

138

Show (new frmAboutDeveloper());

private void roomToolStripMenultem Click(object sender, EventArgs
e)
{

Show (new frmRoom()) ;

private void Show (Form frm)

{
CloseAllChildForm() ;
frm.WindowState = FormWindowState.Maximized;

frm.MdiParent = this;
frm.Show () ;

private void roomToolStripMenulIteml Click(object sender, EventArgs

{

Show (new Search info());

private void billToolStripMenultem Click(object sender, EventArgs
e)
{
Show (new frmBill());

}

private void driverToolStripMenulItem Click(object sender, EventArgs

{

Driver d = new Driver();
d.Show () ;

private void frmMenubar Load(object sender, EventArgs e)

{

BackColor = Color.Lavender;

Show (new Forml (this.menuStrip, this.toolStrip));
BackColor = Color.Lavender;

}

private void accountantToolStripMenultem Click (object sender,
EventArgs e)
{

Show (new frmAccountant ());

private void receptionistToolStripMenultem Click (object sender,
EventArgs e)
{

Show (new frmReceptionist());

private void ambulanceToolStripMenultem Click(object sender,

EventArgs e)
{

139

Show (new

}

private void

EventArgs e)

{

Show (new

}

private void

{

Show (new

}

private void

EventArgs e)

{

Show (new

}

private void

EventArgs e)

{

Show (new

}

private void

{

Show (new

}

private void

EventArgs e)

{

Show (new

}

private void

EventArgs e)

e)

{

Show (new

}

private void

{

Show (new

}

private void

EventArgs e)

{

Show (new
}
private void

{
}

frmAmbulance ());

carriersToolStripMenuItem Click(object sender,

frmCarriers()):;

nurseToolStripMenultem Click(object sender, EventArgs

frmNurse ()) ;

wardboyToolStripMenultem Click (object sender,

frmWardboy()) ;

doctorToolStripMenulteml Click(object sender,

frmDoctor ());

oTToolStripMenultem Click(object sender, EventArgs e)

frmOT ()) ;

medicineToolStripMenultem Click(object sender,

frmMedicine ());

departmentToolStripMenultem Click (object sender,

frmDepartment ()) ;

testToolStripMenultem Click(object sender, EventArgs

frmTest ()) ;

patientToolStripMenulItem Click (object sender,

frmPatient ());

doctorToolStripMenultem Click(object sender, EventArgs

140

private void dFDToolStripMenultem Click (object sender, EventArgs e)
{
Show (new frmDFD()) ;

}

Room Form:

Codes for the Room Form:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using WindowsFormsbirdem.DAL;

namespace WindowsFormsbirdem.UI
{
public partial class frmRoom : Form
{
public static RoomDataObject roomInstant = new RoomDataObject();
public frmRoom ()
{
InitializeComponent () ;
dataGridViewl.DataSource = roomInstant.GetAllData();
}
private void toolStripButton4 Click(object sender, EventArgs e)
{
ClearTextBox () ;
ButtonControl (false) ;
}

private void dataGridViewl MouseDoubleClick(object sender,
MouseEventArgs e)
{
textBoxl.Text =
dataGridvViewl.Rows [dataGridViewl.SelectedCells[0] .RowIndex].Cells[0].Value.
ToString () ;
textBox2.Text =
dataGridViewl .Rows [dataGridViewl.SelectedCells[0] .RowIndex].Cells[1l].Value.
ToString () ;
textBox3.Text =
dataGridViewl .Rows [dataGridViewl.SelectedCells[0] .RowIndex].Cells[2] .Value.
ToString () ;
textBox4.Text =
dataGridViewl .Rows [dataGridViewl.SelectedCells[0] .RowIndex].Cells[3].Value.
ToString () ;
ButtonControl (false);
}
private bool Validation()
{
if (textBoxl.Text == "")

141

MASICEIU.MessageShow.Information ("Select Item from room
list.");
return false;
}
else if (textBox2.Text == "")
{
MASICEIU.MessageShow.Information ("Room No") ;
textBox2.Focus () ;
return false;
}
else if (textBox3.Text == "")
{
MASICEIU.MessageShow.Information ("Room Type");
textBox3.Focus () ;
return false;
}
else if (textBox4.Text == "")
{
MASICEIU.MessageShow.Information ("Room Cost");
textBox4.Focus () ;
return false;
}
return true;

}

private void ButtonControl (bool boolValue)
{
btSave.Enabled = boolValue;
btUpdate.Enabled = !boolValue;
btDelete.Enabled = !boolValue;
btAddNew.Enabled = !boolValue;
}
private void ClearTextBox ()
{
textBoxl.Text = "";
textBox2.Text ",
textBox3.Text "y
textBox4.Text

ww o,
’

}

private void SetRoomInstant ()
{

roomInstant.Room idl =Convert.ToIntl6 (textBoxl.Text);

roomInstant.Room nol = textBox2.Text;
roomInstant.Room typel = textBox3.Text;
roomInstant.Room costl = Convert.ToIntl6 (textBox4.Text);

}
private void toolStripButton5 Click(object sender, EventArgs e)
{
textBoxl.Text = new RoomDataAccess () .NextID("Select
max (Room id) from tbl Room") .ToString() ;
ButtonControl (true);
}
private void toolStripButtonl Click(object sender, EventArgs e)
{
if (!vValidation()) return;
SetRoomInstant () ;
roomInstant.Save() ;
dataGridViewl.DataSource = roomInstant.GetAllData();
ClearTextBox () ;
ButtonControl (false);

142

}

private void toolStripButton2 Click(object sender, EventArgs e)

{

if (!Validation()) return;

SetRoomInstant () ;

roomInstant.Update () ;
dataGridViewl.DataSource

ClearTextBox () ;
}

= roomInstant.GetAllData();

private void toolStripButton3 Click(object sender, EventArgs e)

{

if (!Validation()) return;

SetRoomInstant () ;

roomInstant.Delete () ;
dataGridViewl.DataSource

ClearTextBox () ;

}

= roomInstant.GetAllData();

private void frmRoom Load (object sender, EventArgs e)

{

btSave.Enabled = false;

}

}

Actions:

. Save, Delete, Update, Addnew buttons are controlled in this

form.

. DataGridview is controlled from this form.

. Helping file RoomDataOb ject is called from this class.

Code of RoomDataObject.cs class

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using MASICEIU.BaseDatalayer;
using WindowsFormsbirdem.DAL.DOL;

namespace WindowsFormsbirdem.DAL

{

143

public class RoomDataObject:DataObject
{
RoomService service = new RoomService();
private int Room id;
private string Room no;
private string Room_ type;
private int Room cost;

public int Room idl { get { return Room id; } set { Room id =
value; } }

public string Room nol { get { return Room no; } set { Room no =
value; } }

public string Room typel { get { return Room type; } set ({
Room type = value; } }

public int Room costl { get { return Room cost; } set { Room cost =
value; } }

public override List<object> GetAllData ()

{ return service.GetAllData();

éublic override void Save ()

{ service.Save (WindowsFormsbirdem.UI.frmRoom.roomInstant) ;
gublic void Update ()

{ service.Update (WindowsFormsbirdem.UI.frmRoom.roomInstant) ;
;ublic override void Delete ()

{
service.Delete (WindowsFormsbirdem.UI.frmRoom.roomInstant.Room idl.ToString (

))
}

Actions:

v' All Private variables are used as public variables using set
and get methods.

v' Helping file RoomService is called.

v' Save, Delete, Update instances are called.

144

Code of RoomService.cs Class

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using MASICEIU.BaseDatalayer;
using MASICEIU;

using System.Data;

namespace WindowsFormsbirdem.DAL.DOL
{

public class RoomService : Service

{

RoomDataAccess dataAccess = new RoomDataAccess () ;

public override List<object> GetAllData ()
{
DataTable dt = dataAccess.GetAllData();
return MapObject (dt);
}
public override List<object> MapObject (System.Data.DataTable
dataTable)
{
List<object> list = new List<object>();
foreach (DataRow row in dataTable.Rows)
{
RoomDataObject roomDataObject = new RoomDataObject () ;
roomDataObject.Room idl =
NullHandler.GetInt (row["Room 1id"]);
roomDataObject.Room nol =
NullHandler.GetString (row["Room no"]) ;
roomDataObject.Room typel
NullHandler.GetString (row["Room type"]);
roomDataObject.Room costl
NullHandler.GetInt (row["Room cost"]);
list.Add (roomDataObject) ;

}

return list;

}

public override void Save (object objectValue)

{

dataAccess.Save (objectValue) ;

}
public void Update (object objectValue)

{
dataAccess.Update (objectValue) ;

}

public override bool Delete(string query)

{
dataAccess.Delete (query) ;
return true;

145

Actions:

v' All variable types are set.
v' Helping class RoomDataAccess is called
v' Save, Delete and Update are ensured.

Code of RoomDataAccess.cs Class

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using MASICEIU.BaseDatalayer;
using System.Data;

using System.Data.SglClient;

namespace WindowsFormsbirdem.DAL
{ public class RoomDataAccess: DataAccess
{ public override DataTable GetAllData ()
{ return ConnectionManager.DatabaseInstant.GetTable ("Select *from
tbl Room");

}

public override void Save (object objectValue)

{

RoomDataObject obj = (RoomDataObject)objectValue;
string qury = "insert into tbl Room values (" + obj.Room idl +
",'" + obj.Room nol + "','" + obj.Room typel + "'," + obj.Room costl + ")";

ConnectionManager.DatabaseInstant.Insert (qury) ;
}
public override int NextID(string query)
{
return ConnectionManager.DatabaseInstant.NextID(query) ;
}
public void Update (object objectValue)
{
RoomDataObject obj = (RoomDataObject)objectValue;
string quary = "Update tbl Room set Room no='" + obj.Room nol +
"',Room type='" + obj.Room typel + "', Room cost=" + obj.Room costl + "
where Room id='" + obj.Room idl + "'";
ConnectionManager.DatabaseInstant.Update (quary) ;
}
public override bool Delete(string query)
{
ConnectionManager.DatabaseInstant.Delete ("delete from tbl Room
where Room id='" +query + "'");
return true;

146

Actions:

v" All sql queries like Save, Delete, Update are done here.

v" Data from Sql Server is controlled using this class.

THE END

147

