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ana
Generalizead
Linear Models

ANOVAs

T-tests All can be done as GLMs
Binomial Test

Chi-Square Test

CURVE-FITTING METHODS
AND THE. MESSAGES THEY SEND

"HEY, L DDA
REGRESSION.

“LOOK, IT'S GROVING
UNCONTROLLABLY™

"I NEED TO CONNECT THESE
TWO LINES, BUT MY FIRST IDEA
DIDN'T HAVE ENOUGH MATH"

“T CLICKED 'SMOOTH
UNES IN EXCEL

"L UANTED A CURVED
LINE, 50 I MADE ONE
UITH MATH"

"I™M SOPHISTICATED, NOT
LIKE THOSE BUMBLING
POLYNOIMIAL PEOPLE

e :.' *

.\*

“USTEN, SCIENCE IS HARD.
BUT IM A SERIOUS
PERSON DOING MY BEST."

“T HAD AN IDEA FOR HOU
TO CLEAN UP THE DATA.
WHAT DO YOU THINK?"

LOOK, IT'S
TAPERING OFF!"

.
.
* o®

"M MAKING A
SCATTER PLOT BUT
I DONT WANT TO;

"I HAVE A THEORY,
AND THIS |5 THE ONLY
DATA I COULD FIND.

"PS YOU CAN SEE, THIS
MODEL SMOOTHLY FiT5
THE- LIAIT MO NO DONT
EXTEND IT ARARAA!"




Common name Built-in function in R Equivalent linear model in R Exact? | The linear model in words Icon

y is independent of x 8
= P: One-sample t-test t.test(y) Im(y ~ 1) v One number (intercept, i.e., the mean) predicts y. T
+ | N: Wilcoxon signed-rank wilcox.test(y) Im(signed_rank(y) ~ 1) for N >14 | - (Same, but it predicts the signed rank of y.) '
- *
l ]
> | P: Paired-sample t-test t.test(ys, y2, paired=TRUE) Im(y2-y1~1) v One intercept predicts the pairwise y.-y, differences. _>j,
€ | N: Wilcoxon matched pairs | wilcox.test(y:, y2, paired=TRUE) Im(signed_rank(yz - y1) ~ 1) for N >14 | - (Same, but it predicts the signed rank of y»-y..) '
g '
% | Y ~ continuous x E Z
8 P: Pearson correlation cor.test(x, y, method="Pearson’) Im(y ~ 1 + x) v One intercept plus x multiplied by a number (slope) predicts y. +
:',’ N: Spearman correlation cor.test(x, y, method="Spearman’) | Im(rank(y) ~ 1 + rank(x)) for N>10 | - (Same, but with ranked x and y)
1
2 |y ~discrete x >
£ | P: Two-sample t-test t.test(y, y2, var.equal=TRUE) Im(y ~ 1 + G, v An intercept for group 1 (plus a difference if group 2) predicts y. !i Z‘!
» | P: Welch’s t-test t.test(ys, y2, var.equal=FALSE) gls(y ~ 1 + Gz, weights=...5)* v - (Same, but with one variance per group instead of one common.)

N: Mann-Whitney U wilcox.test(y1, y2) Im(signed_rank(y) ~ 1 + G2)* for N>11 | - (Same, but it predicts the signed rank of y.)
—_— - .

: | P: One-way ANOVA aov(y ~ group) Im(y ~ 1+ Gz + G; +...+ Gy)* v An intercept for group 1 (plus a difference if group # 1) predicts y.
"; N: Kruskal-Wallis kruskal.test(y ~ group) Im(rank(y) ~ 1 + Gz + Gs +...+ Gy)* for N>11 | - (Same, but it predicts the rank of y.) . *
» a
+ .
X - (Same, but plus a slope on x.) bt
o - ~ = A v ’

: P One-way ANCOVA Y= GO Y Im(y ~1+ Gz + Gs +...+ Gn + x) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous Xx. =g
l
2 | P: Two-way ANOVA aov(y ~ group * sex) Imly~1+Gx+Gs+..+ Gy + v Interaction term: changing sex changes the y ~ group parameters.
§ S,+S;+...+ S+ Note: Gz n is an indicator (0 or 1) for each non-intercept levels of the group variable. :
‘e G.*S, + G.*S. + + G\*S Similarly for Sz k for sex. The first line (with G;) is main effect of group, the second (with [Coming]
c 2702 3703 T ... N K) S) f . , ,
o) ) for sex and the third is the group % sex interaction. For two levels (e.g. male/female),
i line 2 would just be “S2” and line 3 would be S: multiplied with each Gi.
0
% Counts ~ discrete x Equivalent log-linear model Interaction term: (Same as Two-way ANOVA.)
@ | N: Chi-square test chisq.test(groupXsex_table) glmy~1+G,+Gs+ ...+ Gy + v Note: Run glm using the following arguments: gim (model, family=poisson()) Same as
o - S, + St +Sc+ As linear-model, the Chi-square test is log(y;) = log(N) + log(a;) + log(B)) + log(ai8;) where a; Two-way
- 2T 93T ... T OK and B; are proportions. See more info in the accompanying notebook. ANOVA
% G,*S, + Gg*Sa +...+ GN*SK, famlly=)A
S
= | N: Goodness of fit chisq.test(y) gim(y ~ 1 + G, + G; +...+ Gy, family=...)* v (Same as One-way ANOVA and see Chi-Square note.) 1TW-ANOVA




Stats and Genetics/Evolution

The Correlation between relatives on the supposition of
Mendelian Inheritance

By R.A.FISHER, B.A.

Communicated by Professor J. ARTHUR THOMSON
With Four Figures in Text

(MS. received 15 June 1918. Read 8 July 1918, Issued separately 1 October 1918)

ON THE "PROBABLE ERROR" OF A COEFFICIENT OF
CORRELATION DEDUCED FROM A SMALL SAMPLE

Fisher 1921

Author's Note (CMS 1.2a)

This is the second of three papers dealing with the sampling errors of
correlation coefficients covering the cases (¢) ‘““The frequency dis-
tribution of the values of the correlation coefficient in samples from
an indefinitely large population,” Biometrika, Vol. 10, pp. 507-521,

1915.



Analysis of Variance

* Used to compare the means among more than two
groups

* |f you are comparing three groups, for instance, you
cannot just do three pair-wise t-tests — this approach
would cause too many false positives

 ANOVA takes into account the fact that you are comparing
multiple groups and controls the false positive rate.



Analysis of Variance
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Analysis of Variance
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Analysis of Variance

A B C o P 0 — o0
o

2 5 7 4 o- o o - l T

] [ ) [ ) -]
2 8 4 § <« S v -

€ Y €
3 8 5 N-ee ~ o e
5 7 4 e | | I e | I |

Group A Group B Group C Group A Group B Group C

measure
4
| |

) o |
=11 (% — %)* )
_y d
f statistic =— .fSSb ° 1 | |

j_l Z?ll(xl] — fj)z Group A Group B Group C
Adfssw




Running ANOVA in R

> data("chickwts")
> fit <- aov(weight~feed, data=chickwts) Q-
> summary(fit) <
Df Sum Sg Mean Sq F value Pr(GF) S
feed 5 231129 46226  15.37 5.94e-1Q *** N _
Residuals |65 195556 3009
T S | | | l
Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1 0 5 10 15 20
F-statistic
=) 2
] (X — x)
e . g dfssb
This significant result tells us that at least one of the groups f statistic =
of chickens have significantly different mean weights than at 59 1 Z (xl] — x])z

least one other groups. (significant ANOVA result allows us d
. fssw
to reject the null that they are all the same)




Running ANOVA in R

between group variance within group variance
o o
S o —
> data("chickwts") N B M A
> z <- chickwts 2 o = = %o
_ _ > O — S < [t sl M0 e | 1L
> z$weight <- sample(z$weight) 'g = 'g < ST | dlll |
> fit <- aov(weight~feed, data=z) % g | ® g i
> summary(fit) al N l
Df Sum Sq Mean Sq F value Pr(>F) S _ 3
feed S 32244 6449 1.063 0.389 - -
Residuals 65 394441 0068
© _]
o
N
o
N
o
i~
o

F—statistic



Post-hoc tests

If your ANOVA is significant, you may be interested in discovering which groups are
different from one another

A variety of post-hoc comparisons of the means can be used

Fisher’s LSD
* Least conservative test, basically uses t-tests to compare the means

Scheffe’s method
* Performs all comparisons simultaneously, but has relatively low power

Tukey-Kramer method
* A pair-wise method, like a t-test, but corrected for multiple comparisons



Post-hoc tests

> data("chickwts™)

> fit <- aov(weight~feed, data=chickwts)“ anova and AoV funCtionS W|”

> TukeyHSD(f1it)

Tukey multiple comparisons of means
95% family-wise confidence level bOth perform an ANOVA bUt the
results are stored slightly

differently. For this posthoc test

Fit: aov(formula = weight ~ feed, data = chickwts)

$feed
diff Twr upr  p adj we want the aov format

horsebean-casein -163.383333 -232.346876 -94.41979 0.0000000
linseed-casein -104 .833333 -170.587491 -39.07918 0.0002100
meatmeal -casein -46.674242 -113.906207 20.55772 0.3324584
soybean-casein -77.154762 -140.517054 -13.79247 0.0083653
sunflower-casein 5.333333 -60.420825 71.08749 0.9998902
linseed-horsebean 58.550000 -10.413543 127.51354 0.1413329
meatmeal-horsebean 116.709091 46.335105 187.08308 0.0001062
soybean-horsebean 86.228571 19.541684 152.91546 0.0042167
sunflower-horsebean 168.716667 99.753124 237.68021 0.0000000
meatmeal-linseed 58.159091 -9.072873 125.39106 0.1276965
soybean-1l1inseed 27.678571 -35.683721 91.04086 0.7932853
sunflower-linseed 110.166667 44.412509 175.92082 0.0000884
soybean-meatmeal -30.480519 -95.375109 34.41407 0.7391356
sunflower-meatmeal 52.007576 -15.224388 119.23954 0.2206962
sunflower-soybean 82.488095 19.125803 145.85039 0.0038845



Interpreting post-hoc tests

> data("chickwts™)

> fit <- aov(weight~feed, data=chickwts)

> TukeyHSD(f1it)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = weight ~ feed, data =

$feed

horsebean-casein
linseed-casein
meatmeal -casein
soybean-casein
sunflower-casein
linseed-horsebean
meatmeal -horsebean
soybean-horsebean
sunflower-horsebean
meatmeal-linseed
soybean-1linseed
sunflower-linseed
soybean-meatmeal
sunflower-meatmeal
sunflower-soybean

-163.
-104.
-46.
-77,
D%
58.
116.
86.
168.
58.
27.
110.
.480519
V4

-30

82

diff
383333
833333
674242
154762
333333
550000
709091
228571
716667
159091
678571
166667

007576

.488095

-232.
-170.
-113.
-140.
-60.
-10.
46.
19
o

-35.
44
-95.
-15.
112

lwr
346876
587491
906207
517054
420825
413543
335105
541684
753124

.072873

683721
412509
375109
224388
125803

-94.
-39
20.
-13.
75158
127
187.
i L7
237,
1255
91,
173.
34.
119
145.

chickwts)

upr
41979

.07918

35772
79247
08749
51354
08308
91546
68021
39106
04086
92082
41407
23954
85039

(S IO I O IO O T S TGS IS IS I S IS BRGSO BRGSO

p adj

.0000000
.0002100
.3324584
.0083653
.9998902
. 1413329
.0001062
.0042167
.0000000
. 1276965
. 7932853
.0000884
. 7391356
. 2206962
.0038845

When we examine all the significantly
different ones we can draw several
conclusions:

1) Chicks fed casein are significantly
heavier than those fed horsebean,
linseed, and soybean.

Chicks fed horsebean are significantly
lighter than those fed meatmeal,
soybean, and sunflower.

Chicks fed sunflower are significantly
heavier than those fed linseed or
soybean.

2)

3)



Plotting this kind of data

Our results from the ANOVA and
Tukey match up pretty well with
our rules of thumb about 95% ClI
overlaps
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Example of code

#sets the order of the treatments
chickwts$feed <- factor(chickwts$feed,
levels=c("sunflower", "casein",
"meatmeal”, "soybean",
"linseed", "horsebean"
stripchart(weight ~ feed, data=chickwts,
method = "jitter"”, vertical = TRUE, cex.axis =.7,
col = "gray", pch = 1, cex .5, las = 3
#Add error bars:
#First calculate means and SDs
meanShift tapply(chickwts$weight, chickwts$feed, mean
sdevShift tapply(chickwts$weight, chickwts$feed, sd
n tapply(chickwts$weight, chickwts$feed, length
feed_table data.frame(mean = meanShift,
std.dev = sdevShift, n = n
#Now add the SEM for each group:
seShift 1.96 * sdevShift / sqgrt(n
segments(1l:6, meanShift - seShift,
1:6, meanShift + seShift
points(meanShift ~ c(1:6), pch = 16



Assumptions of the ANOVA

* The variable is normally distributed within each group
* The variance is the same in the different groups
* The design is balanced — you have the same sample size for each group

* But... ANOVA is fairly robust to violations of these assumptions



A Non-Parametric Alternative

* Kruskal-Wallis Test
* Based on ranks
 The multiple-group version of the Mann-Whitney U-test

p-value suggests this
test has lower power

. . than ANOVA
R-implementation:

> kruskal.test(weight ~ feed, data = chickwts)
Kruskal-Wallis rank sum test

data: weight by feed
Kruskal-Wallis chi-squared = 37.343, df = 5, p-value = 5.113e-07



A Non-Parametric post-hoc

> dunn.test(chickwts$weight, g=chickwts$feed,

+ altp = T, method = "bonferroni")
’ : ; Kruskal-Walli k test
e Dunn’s test —is the non-parametrlc ruskat-iiatiis rdnicsum tes
E data: x and group
equivalent of the Tukey ruskal-Wallis chi-squared = 37.3427, df = 5, p-value = 0
Comparison of x by group
(Bonferroni)
Not in base R need to install: ;01 mean—: o e e b
install.packages(“dunn.test”, dependencies=TRUE) _(_)‘f'__(_e(_’rj_Jr _____ ff"f’f}?____?ffff‘_’ _____ Tff‘f____rff‘_’_rff(_’ _____ f(_))_'_(_efr_'
horsebea 4.813069
0.0000*
linseed 3.308292 -1.658736

0.0141* 1.0000

I
I
I
I
I
I
meatmeal | 1.415755 -3.364059 -1.819817
I 1.0000 0.0115* 1.0000
I
I
I
I
I
I

soybean 2.499922 -2.602093 -0.933255 0.974144
0.1863 0.1390 1.0000 1.0000
sunflowe -0.182969 -4.987524 -3.491262 -1.594703 -2.689798
1.0000 0.0000* 0.0072* 1.0000 0.1072
alpha = 0.05

Reject Ho if p <= alpha



ANOVA Summary

« ANOVA is the foundation of essentially all tests comparing multiple
means

 Don’t make it too complicated — the null hypothesis is simple: they are all
the same.

* Post-hoc tests are important for determining which means are the source
of a significant ANOVA.

* You can only justify a post-hoc test if the ANOVA is significant in the first
place.

 Before applying ANOVA, check that your data fit the assumptions
(consider transforming the data lots of times this will be based on your
biological knowledge because you will have insufficient data to say much
about the observed distribution)



ANOVA Practice Problems

 Use the chick weights dataset included in R data("chickwts"). Reduce the
data down to just soybean and sunflower. Run an ANOVA and determine
whether these foods lead to significant differences in weight.

 Use the offspring.csv file from the course website and determine
whether XY and ZW systems have different numbers of male offspring.



Hypothesis testing has limits

Often times we want to say more than something has an effect. We
want to understand exactly how a predictor variable impacts a
response variable.

Often times we have complex relationships where several variables
(continuous and discrete) impact our response variable and we need to
understand how all of these things work together to determine our
observations.



The Plan

Linear regression

Poisson regression

Binomial regression

GLMs with a mix of variable types
Mixed effects models

R



1)  With linear regression we find the
linear equation that best predicts
the values of Y based on the values
of X.

response

2) y=bx+a

3) Least-squares regression minimizes L e e
the squared deviations of the data
points from that line. predictor



Example of regression

set.seed(3
X <- runif(min = 1, max = 10, 20 y=ibx+a
y <- rnorm(20, mean = x, sd = 2 l?
fit.xy <- Im(y ~ x t = 0
summary(fit.xy SE}
0 —
Call:
Ilm(formula = y ~ x) 8 o - [
C
Residuals: Ei
Min 1Q Median 3Q Max e ¥ 7
-2.7000 -0.9742 -0.4539 0.9479 3.0728 =
o —
Coefficients:
Estimate Std. Error t value Pr(GItl) o - I l I I l i ] I
(Intercept) -0.7173 1.0302 -0.696 0.495
X 1.0150 0.1708 5.943 1.27e-05 *** 2 3 4 5 6 7 8 9
Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ° ’ 1 predictor

Residual standard error: 1.625 on 18 degrees of freedom
Multiple R-squared: 0.6624, Adjusted R-squared: 0.6437
F-statistic: 35.32 on 1 and 18 DF, p-value: 1.267e-05



Example of regression

set.seed(3) _
X <- runif(min = 1, max = 10, 20 y=ibx+a g —
y <- rnorm(20, mean = x, sd = 2 f?
fit.xy <- Im(y ~ x p = 08 o |
summary(fit.xy SE} o
Call: N
Im(formula = y ~ x) o
Residuals: Z; —
Min 1Q Median 3Q Max

-2.7000 -0.9742 -0.4539 0.9479 3.0728 o

. © | | | | l ! |
Coefficients:

Estimate Std. Error t value Pr(>Itl) 0 1 2 3 4 5 6

(Intercept) -0.7173 1.0302 -0.696 0.495
X 1.0150 0.1708 5.943 1.27e-05 *** t-distribution

Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 1.625 on 18 degrees of freedom
Multiple R-squared: 0.6624, Adjusted R-squared: 0.6437
F-statistic: 35.32 on 1 and 18 DF, p-value: 1.267e-05



Example of regression

Set'seed, 3 , _ This can help to justify the biological importance
X <- runif(min = 1, max = 10, 20 . . e .
, assuming you have a regression that is significant. ©
y <- rnorm(20, mean = x, sd = 2 . . . .
: | , ; It is the proportion of total variance explained by |
fit.xy <- Im(y ~ x _ © : l
summary(fit.xy the regression. < ‘l ] I
Call: AN —
Im(formula = y ~ x)
o —
Residuals: | | | ! | | | |
Min 1Q Median 3Q Max 2 3 4 5 6 7 8 9
-2.7000 -0.9742 -0.4539 0.9479 3.0728
Coefficients: h ll
Estimate Std. Error t value P ll
(Intercept) -0.7173  1.0302 -0.6 0.495 & = 1l
x 1.0150 0.1708 5043 1.27e-05 *** l,‘
- < - | I
Signif. codes: @ ‘***’ @.001 J&*’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1 & — ll
l
Residual standard error: 17625 on 18 degrees of freedom o J i i i i i i i
Multiple R-squared: 0.6624, Adjusted R-squared: 0.6437
F-statistic: 35.32 on 1 and 18 DF, p-value: 1.267e-@5 2 3 4 5 6 7 8 9




Multiple vs Adjusted R-squared

Call:
Im(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-2.7060 -0.9742 -0.4539 0.9479 3.0728

Coefficients: Adjusted R-squared penalizes for additional parameters
Estimate Std. Error t value Pr(>Iltl)

(Intercept) -0.7173 1.0302 -0.696 0.495
X 1.0150 0.1708 5.943 1.27e-05 ***

Signif. codes: @ ‘***’ @, 001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ° 1

Residual standard error: 1.625 on 18 degrees of freedom
Multiple R-squared: 0.6624, Adjusted R-squared: 0.6437
F-statistic: 35.32 on 1 and 18 DF, p-value: 1.267e-05



Linear regression uses

* Depict the relationship between two variables in an eye-catching fashion

e Test the null hypothesis of no association between two variables
 The testis whether or not the slope is zero

* Predict the average value of variable Y for a group of individuals with a given

value of variable X

e variation around the line can make it very difficult to predict a value for a given
individual with much confidence

* Predictions outside of the range of observed data is generally discouraged

 Used both for experimental and observational studies



What are Residuals

In general, the residual is the individual’s departure from the value predicted by
the model

In this case the model is simple — the linear regression — but residuals also exist
for more complex models

For a model that fits better, the residuals will be smaller on average

Residuals can be of interest in their own right, because they represent values
that have been corrected for relationships that might be obscuring a pattern.



What are Residuals
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Making that plot

ggtheme <- theme_bw() + theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.background = element_blank(),

panel .border=element_blank(),

axis.line = element_line(colour="grey30"),
axis.title = element_text(colour="grey20"),
axis.text = (element_text(colour="grey30")),
legend.title = element_text(colour="grey20"),
legend.text = element_text(colour="grey30"))

dat <- read.csv("gnatocerus.csv")
ggplot(data = dat, aes(x=body, y=horns)) +

geom_point() + ggtheme +
geom_smooth(method="1m")



Strong Inference for Observational Studies

* Noticing a pattern in the data and reporting it represents a post hoc
analysis

* This is not hypothesis testing

* The results, while potentially important, must be interpreted cautiously

What can be done?
 Based on a post-hoc observational study, construct a new hypothesis for a

novel group or system that has not yet been studied



1)

2)

3)

We already knew that the P53
network is important in guarding
against cancer in long lived species.
We also knew that primates and
elephants show rather little change
in this network when compared to
rodents.

Collect data on many more species
and test apriori hypothesis that
there will be a significant and
negative regression coefficient.

Sig. gene count

15

10

® Rodent

® Marsupial

@ Lizard

@® Snake

@ Birds

@® Monotreme

@ Primate

p-value = 0.02
R"2 =0.42
@ reptiles

@® mammals

Crocodile @

I
10

I I
20 30

I
40

life span

50

60

70




Assumptions of Linear Regression

* The true relationship must be linear

At each value of X, the distribution of Y is normal (i.e., the residuals are
normal)

 Thevariance in Yis independent of the value of X

* Note that there are no assumptions about the distribution of X



Common Problems

Outliers

* Regression is extremely sensitive to outliers

 Theline will be drawn to outliers, especially along the x-axis
 Consider performing the regression with and without outliers
Non-linearity

 Best way to notice is by visually inspecting the plot and the line fit
 Try atransformation to get linearity [often a log transformation]
Non-normality of residuals

 (Can be detected from a residual plot

* Possibly solved with a transformation

Unequal variance

e Usually visible from a scatterplot or from a residual plot



Outliers

o
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3800 4000 4200 4400
body size
Coefficients: Coefficients:
Estimate Std. Error t value Pr(>Itl) Estimate Std. Error t value Pr(>1tl)
(Intercept) -100.24112 297.38717 -0.337 0.7390 (Intercept) -386.07048 272.48381 -1.417 ©.16993
x2 0.13870 0.07431 1.867 0.0742 . X 0.21264 0.06837 3.110 0.00493 **
Signif. codes: Signif. codes:
Q@ “***° @0.001 ‘**’ 9.01 ‘*° 0.05 ‘.’ 0.1 ¢’ 1 Q@ “***> 9 Q001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1
Residual standard error: 86.81 on 24 degrees of freedom Residual standard error: 74.73 on 23 degrees of freedom
Multiple R-squared: 0.1268, Adjusted R-squared: 0.09038 Multiple R-squared: 0.296, Adjusted R-squared: 0.2654

F-statistic: 3.484 on 1 and 24 DF, p-value: 0.07423

F-statistic: 9.673 on 1 and 23 DF, p-value: 0.004928

Leverage and cooks distance

Theil-Sen estimator



Homework

e Homework 3

 Use the betta fish data from week 5 and determine whether sex and color
have an impact on the price of fish. If color is significant then do a posthoc
test to determine which colors are significantly different.

 Use the betta fish data from week 5 and perform a linear regression of price
on size. Is the regression significant? What is the Adjusted R-Squared?

* Whatis the core limitation of the methods that we are using to look at the
betta fish data?



Moving past simple models

The reason ANOVA is so widely used is that it provides a framework to
simultaneously test the effects of multiple factors

ANOVA also makes it possible to detect interactions among the factors
ANOVA is a special case of a general linear model

Linear regression is a special case of a general linear model



GLM and LM function in R

* The GLM and LM function in R takes equations that can be described with
the following operators

+ +X include this variable
: X:Z include the interaction between these variables
* X*xY include these variables and the interactions between them

A (X + Z + W)"3 include these variables and all interactions up to three way



R versus the math implied

glmCty ~ X + W Vi = Bo + B1X; + B W; + €

glmty ~ X * W Vi = Bo + B1X; + BoW; + B3 X;W; + €



R versus the math oak example

Call: ) i A
glm(formula = specialist ~ temp * circ, data = oak) circ Sy precip specialist
592.0 15.8 257 3
Deviance Residuals:
Min 1Q Median 30 Max 680.0 14.7 455 1
-4.2804 -1.1295 -0.2256 ©0.9952 5.6787
340.0 14.5 458 1
Coefficients:
Estimate Std. Error t value Pr(>Itl) SUuL e L 4
(Intercept) | 9.7621149 3.8327598 2.547 0.0114 260.0 14.5 458 p)
temp -0.5574479 0.2527323 -2.200 0.0282
circ -0.0661544 0.0120692 -5.481 9.40e-08

temp:circ 0.0045895 0.0007887 5.819 1.0le-08

y; = Po + pitemp; + [,circ; + fatemp;circ;



When the response variable isn’t normal




Other kinds of regression

Logistic regression allows us to fit a binary response variable (absent/present;
alive/dead) with one or more categorical or continuous predictor variables.

Poisson regression allows us to fit a response variable that is Poisson distributed

(number of extinctions in a unit of time, number of colonies per plate, (number of
occurrences for rare events)) with one or more categorical or continuous predictor

variables.

fit.log1i glm(Cobs ~ pred2 , family="binomial"

fit.pois glm(Cobs ~ pred2, family="poisson"



