
ANOVAs
and

Generalized 
Linear Models

ANOVAs
T-tests
Binomial Test
Chi-Square Test

All can be done as GLMs



Response = predictor variables + stochastic component

Common statistical tests are linear models
Last updated: 28 June, 2019.Also check out the Python version!
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y is independent of x
P: One-sample t-test

N: Wilcoxon signed-rank

 
t.test(y)

wilcox.test(y)

 
lm(y ~ 1)

lm(signed_rank(y) ~ 1)

 

✓

for N >  14  

 
One number (intercept, i.e., the mean) predicts y.

 - (Same, but it predicts the signed rank of y.)

P: Paired-sample t-test

N: Wilcoxon matched pairs

t.test(y1, y2, paired=TRUE)

wilcox.test(y1, y2, paired=TRUE)

lm(y2 - y1 ~ 1)

lm(signed_rank(y2 - y1) ~ 1)

✓

for N >14

One intercept predicts the pairwise y2-y1 differences.

 - (Same, but it predicts the signed rank of y2-y1.)

y ~ continuous x
P: Pearson correlation

N: Spearman correlation

 
cor.test(x, y, method=’Pearson’)

cor.test(x, y, method=’Spearman’)

 
lm(y ~ 1 + x)

lm(rank(y) ~ 1 + rank(x))

✓

for N >10

One intercept plus x multiplied by a number (slope) predicts y.

 - (Same, but with ranked x and y)

y ~ discrete x
P: Two-sample t-test

P: Welch’s t-test

N: Mann-Whitney U

 
t.test(y1, y2, var.equal=TRUE)

t.test(y1, y2, var.equal=FALSE)

wilcox.test(y1, y2)

 
lm(y ~ 1 + G2)

A

gls(y ~ 1 + G2, weights=…B)A

lm(signed_rank(y) ~ 1 + G2)
A

 
✓

✓

for N >11

 
An intercept for group 1 (plus a difference if group 2) predicts y.

 - (Same, but with one variance per group instead of one common.)

 - (Same, but it predicts the signed rank of y.)
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P: One-way ANOVA

N: Kruskal-Wallis

aov(y ~ group)

kruskal.test(y ~ group)

lm(y ~ 1 + G2 + G3 +…+ GN)A

lm(rank(y) ~ 1 + G2 + G3 +…+ GN)A

✓

for N >11

An intercept for group 1 (plus a difference if group ≠ 1) predicts y.

 - (Same, but it predicts the rank of y.)

P: One-way ANCOVA aov(y ~ group + x) lm(y ~ 1 + G2 + G3 +…+ GN + x)A
✓

- (Same, but plus a slope on x.)

    Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.

P: Two-way ANOVA aov(y ~ group * sex) lm(y ~ 1 + G2 + G3 +…+ GN +

    S2 + S3 +…+ SK +

    G2*S2 + G3*S3 + … + GN*SK)

✓ Interaction term: changing sex changes the y ~ group parameters.

Note: G2 to N is an indicator (0 or 1) for each non-intercept levels of the group variable. 
Similarly for S2 to K for sex. The first line (with Gi) is main effect of group, the second (with 
Si) for sex and the third is the group × sex interaction. For two levels (e.g. male/female), 
line 2 would just be “S2” and line 3 would be S2 multiplied with each Gi.

[Coming]

Counts ~ discrete x
N: Chi-square test

 
chisq.test(groupXsex_table)

Equivalent log-linear model
glm(y ~ 1 + G2 + G3 + … + GN +

    S2 + S3+ … + SK +

    G2*S2 + G3*S3 +…+ GN*SK, family=…)A

 
✓

Interaction term: (Same as Two-way ANOVA.)

Note: Run glm using the following arguments: glm(model, family=poisson())

As linear-model, the Chi-square test is log(yi) = log(N) + log(αi) + log(βj) + log(αiβj) where αi 
and βj are proportions. See more info in the   accompanying     notebook  .

Same as
Two-way
ANOVA

N: Goodness of fit  chisq.test(y) glm(y ~ 1 + G2 + G3 +…+ GN, family=…)A
✓ (Same as One-way ANOVA and see Chi-Square note.) 1W-ANOVA

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation y ~ 1 + x is R shorthand for y = 1·b + a·x which most of us learned in school. Models in similar colors are highly similar, but 

really, notice how similar they all are across colors! For non-parametric models, the linear models are reasonable approximations for non-small sample sizes (see “Exact” column and click links to see simulations). Other less 

accurate approximations exist, e.g., Wilcoxon for the sign test and Goodness-of-fit for the binomial test. The signed rank function is signed_rank = function(x) sign(x) * rank(abs(x)). The variables Gi and Si are “dummy

coded” ind  i  cator variables   (either 0 or 1) exploiting the fact that when Δx = 1 between categories the difference equals the slope. Subscripts (e.g., G2 or y1) indicate different columns in data. lm requires long-format data for all 

non-continuous models. All of this is exposed in greater detail and worked examples at https://lindeloev.github.io/tests-as-linear.

A See the note to the two-way ANOVA for explanation of the notation.
B Same model, but with one variance per group: gls(value ~ 1 + G2, weights = varIdent(form = ~1|group), method="ML").

See worked examples and more details at the accompanying 

notebook: https://lindeloev.github.io/tests-as-linear

Jonas Kristoffer Lindeløv

https://lindeloev.net



Stats and Genetics/Evolution

Fisher 1921



Analysis of Variance
• Used to compare the means among more than two 

groups

• If you are comparing three groups, for instance, you 
cannot just do three pair-wise t-tests – this approach 
would cause too many false positives

• ANOVA takes into account the fact that you are comparing 
multiple groups and controls the false positive rate.
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Analysis of Variance
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Analysis of Variance
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Running ANOVA in R

This significant result tells us that at least one of the groups 
of chickens have significantly different mean weights than at 
least one other groups.  (significant ANOVA result allows us 
to reject the null that they are all the same)

𝑓 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
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Running ANOVA in R



Post-hoc tests

If your ANOVA is significant, you may be interested in discovering which groups are 
different from one another

A variety of post-hoc comparisons of the means can be used

Fisher’s LSD
• Least conservative test, basically uses t-tests to compare the means

Scheffe’s method
• Performs all comparisons simultaneously, but has relatively low power

Tukey-Kramer method
• A pair-wise method, like a t-test, but corrected for multiple comparisons



Post-hoc tests

anova and aov functions will 
both perform an ANOVA but the 
results are stored slightly 
differently.  For this posthoc test 
we want the aov format



Interpreting post-hoc tests
When we examine all the significantly 
different ones we can draw several 
conclusions:
1) Chicks fed casein are significantly 

heavier than those fed horsebean, 
linseed, and soybean.

2) Chicks fed horsebean are significantly 
lighter than those fed meatmeal, 
soybean, and sunflower.

3) Chicks fed sunflower are significantly 
heavier than those fed linseed or 
soybean.



Plotting this kind of data

Our results from the ANOVA and 
Tukey match up pretty well with 
our rules of thumb about 95% CI 
overlaps



Example of code



Assumptions of the ANOVA

• The variable is normally distributed within each group

• The variance is the same in the different groups

• The design is balanced – you have the same sample size for each group

• But… ANOVA is fairly robust to violations of these assumptions



A Non-Parametric Alternative

• Kruskal-Wallis Test
• Based on ranks
• The multiple-group version of the Mann-Whitney U-test

R-implementation:

p-value suggests this 
test has lower power
than ANOVA



A Non-Parametric post-hoc

• Dunn’s test – is the non-parametric 
equivalent of the Tukey

Not in base R need to install:
install.packages(“dunn.test”, dependencies=TRUE)



ANOVA Summary
• ANOVA is the foundation of essentially all tests comparing multiple 

means
• Don’t make it too complicated – the null hypothesis is simple: they are all 

the same.
• Post-hoc tests are important for determining which means are the source 

of a significant ANOVA.
• You can only justify a post-hoc test if the ANOVA is significant in the first 

place.
• Before applying ANOVA, check that your data fit the assumptions 

(consider transforming the data lots of times this will be based on your 
biological knowledge because you will have insufficient data to say much 
about the observed distribution)



ANOVA Practice Problems
• Use the chick weights dataset included in R data("chickwts"). Reduce the 

data down to just soybean and sunflower. Run an ANOVA and determine 
whether these foods lead to significant differences in weight.

• Use the offspring.csv file from the course website and determine 
whether XY and ZW systems have different numbers of male offspring.



Hypothesis testing has limits

Often times we want to say more than something has an effect. We 
want to understand exactly how a predictor variable impacts a 
response variable.

Often times we have complex relationships where several variables 
(continuous and discrete) impact our response variable and we need to 
understand how all of these things work together to determine our 
observations.



The Plan

1. Linear regression
2. Poisson regression
3. Binomial regression
4. GLMs with a mix of variable types
5. Mixed effects models



Regression in R

1) With linear regression we find the 
linear equation that best predicts 
the values of Y based on the values 
of X.

2) 𝑦 = 𝑏𝑥 + 𝑎

3) Least-squares regression minimizes 
the squared deviations of the data 
points from that line.



Example of regression
𝒚 = 𝒃𝒙 + 𝒂

𝑡 =
𝛽!
𝑆𝐸"



Example of regression
𝒚 = 𝒃𝒙 + 𝒂

𝑡 =
𝛽!
𝑆𝐸"



Example of regression
This can help to justify the biological importance 
assuming you have a regression that is significant.
It is the proportion of total variance explained by 
the regression.



Multiple vs Adjusted R-squared

Adjusted R-squared penalizes for additional parameters



Linear regression uses

• Depict the relationship between two variables in an eye-catching fashion

• Test the null hypothesis of no association between two variables
• The test is whether or not the slope is zero

• Predict the average value of variable Y for a group of individuals with a given 
value of variable X
• variation around the line can make it very difficult to predict a value for a given 

individual with much confidence
• Predictions outside of the range of observed data is generally discouraged

• Used both for experimental and observational studies



What are Residuals

In general, the residual is the individual’s departure from the value predicted by 
the model

In this case the model is simple – the linear regression – but residuals also exist 
for more complex models

For a model that fits better, the residuals will be smaller on average

Residuals can be of interest in their own right, because they represent values 
that have been corrected for relationships that might be obscuring a pattern.



What are Residuals

Horn Size

Body Size



Making that plot



Strong Inference for Observational Studies
• Noticing a pattern in the data and reporting it represents a post hoc 

analysis
• This is not hypothesis testing
• The results, while potentially important, must be interpreted cautiously

What can be done?
• Based on a post-hoc observational study, construct a new hypothesis for a 

novel group or system that has not yet been studied



Example

1) We already knew that the P53 
network is important in guarding 
against cancer in long lived species. 

2) We also knew that primates and 
elephants show rather little change 
in this network when compared to 
rodents.

3) Collect data on many more species 
and test apriori hypothesis that 
there will be a significant and 
negative regression coefficient.



Assumptions of Linear Regression

• The true relationship must be linear

• At each value of X, the distribution of Y is normal (i.e., the residuals are 

normal)

• The variance in Y is independent of the value of X

• Note that there are no assumptions about the distribution of X



Common Problems

• Outliers
• Regression is extremely sensitive to outliers
• The line will be drawn to outliers, especially along the x-axis
• Consider performing the regression with and without outliers

• Non-linearity
• Best way to notice is by visually inspecting the plot and the line fit
• Try a transformation to get linearity [often a log transformation]

• Non-normality of residuals
• Can be detected from a residual plot
• Possibly solved with a transformation

• Unequal variance
• Usually visible from a scatterplot or from a residual plot



Outliers
Leverage and cooks distance

Theil–Sen estimator



Homework

• Homework 3

• Use the betta fish data from week 5 and determine whether sex and color 
have an impact on the price of fish. If color is significant then do a posthoc
test to determine which colors are significantly different.

• Use the betta fish data from week 5 and perform a linear regression of price 
on size. Is the regression significant? What is the Adjusted R-Squared?

• What is the core limitation of the methods that we are using to look at the 
betta fish data?



Moving past simple models

• The reason ANOVA is so widely used is that it provides a framework to 
simultaneously test the effects of multiple factors

• ANOVA also makes it possible to detect interactions among the factors

• ANOVA is a special case of a general linear model

• Linear regression is a special case of a general linear model



GLM and LM function in R

• The GLM and LM function in R takes equations that can be described with 
the following operators

+ +X include this variable 
: X:Z include the interaction between these variables 
∗ X∗Y include these variables and the interactions between them 
^ (X + Z + W)^3 include these variables and all interactions up to three way 



R versus the math implied

𝑦! = 𝛽" + 𝛽#𝑋! + 𝛽$𝑊! + 𝜖!

𝑦! = 𝛽" + 𝛽#𝑋! + 𝛽$𝑊! + 𝛽%𝑋!𝑊! + 𝜖!



R versus the math oak example

𝑦! = 𝛽" + 𝛽#𝑡𝑒𝑚𝑝! + 𝛽$𝑐𝑖𝑟𝑐! + 𝛽%𝑡𝑒𝑚𝑝!𝑐𝑖𝑟𝑐!



When the response variable isn’t normal



Other kinds of regression

Logistic regression allows us to fit a binary response variable (absent/present; 
alive/dead) with one or more categorical or continuous predictor variables.

Poisson regression allows us to fit a response variable that is Poisson distributed 
(number of extinctions in a unit of time, number of colonies per plate, (number of 
occurrences for rare events)) with one or more categorical or continuous predictor 
variables.


