DESIGNING FOR ADVANCED FUNCTIONAL SAFETY REQUIREMENTS

MATHIEU BLAZY-WINNING FUNCTIONAL SAFETY MANAGER

AMF-AUT-T2805 | AUGUST 2017

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V. PUBLIC

AGENDA

- Overview of ISO 26262 Standard
- NXP Approach to ISO 26262
- Conclusion

FROM AUTOMOTIVE ... TO SAFE & SECURE MOBILITY

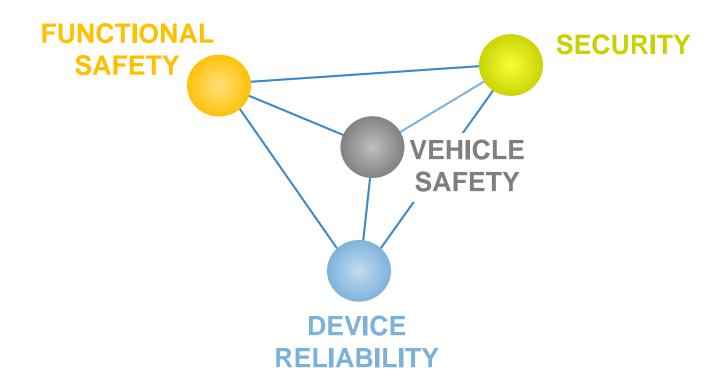
Enjoying Life. One hour per day in the car Saving Lives. 1.3M Road Fatalities Every Year Reducing CO2. EU mandates 20% reduction by 2020

ROAD TRAFFIC ACCIDENTS THE CAUSES

Critical	Number	%
Reasons		
Driver	2,046,000	94%
Vehicles	44,000	2%
Environment	52,000	2%
Unknown	47,000	2%
Total	2,189,000	100%
Data source: NMVCC	CS	

Every year!

~1.3 m fatalities >50 m people seriously injured >\$3 trillion cost of road accidents >90% caused by human mistakes

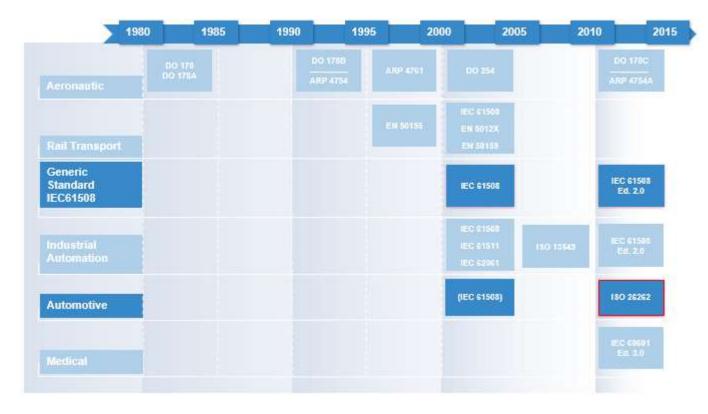


We need to get the Human Factor out of the equation!

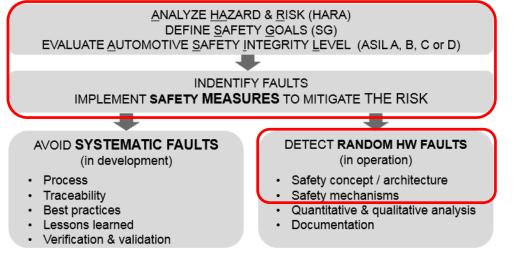
Elements of a Safe System

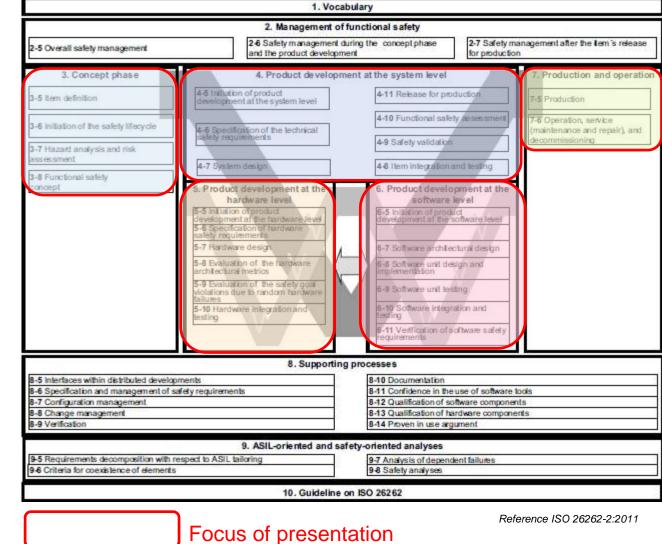
VEHICLE SAFETY: SECURITY: FUNCTIONAL SAFETY: DEVICE RELIABILITY: Zero accidents by human error (ADAS & SOTIF) Zero accidents by system hacks Zero accidents by system failures (ISO 26262) Zero components failures (robust product)

SOTIF: Safety of the intended functionality


Overview of ISO 26262 Standard

Functional Safety Standards


- ISO 26262 is the adaptation of IEC 61508 to comply with needs specific to electrical and/or electronic (E/E) systems within road vehicles.
- ISO 26262 addresses possible hazards caused by malfunctioning behavior of E/E safetyrelated systems.
- Addresses risks from systematic failures and random hardware failures.
- System safety is achieved through a number of **safety measures**.
- ISO 26262 provides an automotive-specific risk-based approach to determine integrity levels [Automotive Safety Integrity Levels (ASIL)].
- ISO 26262 uses ASILs to specify applicable requirements of ISO 26262 so as to avoid unreasonable residual risk.



ISO 26262 Product Development

 ISO 26262 compliance is achieved between vehicle manufacturers, Automotive suppliers (Tier 1), semiconductor suppliers and IP providers

Q: But who does what?

PUBLIC 7

Part 3 Concept

Determining ASIL

Hazard Analysis and Risk Assessment (HARA)

- Identify and categorize the hazards that can be triggered by malfunctions in the system
- The Risk Assessment is carried out using three criteria
 - Severity how much harm is done?

Class	S0	S1	S2	S3
Description	No injuries	Light and moderate injuries	_	Life-threatening injuries (survival uncertain), fatal injuries

- **Exposure** – how often is it likely to happen?

Class	E0	E1	E2	E3	E4
Description	Incredible	Very low probability	Low probability	Medium probability	High probability

- **Controllability** – can the hazard be controlled?

Class	C0	C1	C2	C3
Description	Controllable in general	Simply controllable	Normally controllable	Difficult to control or uncontrollable

Reference ISO 26262-3:2011

Determination of ASIL and Safety Goals

Q: So which ASIL

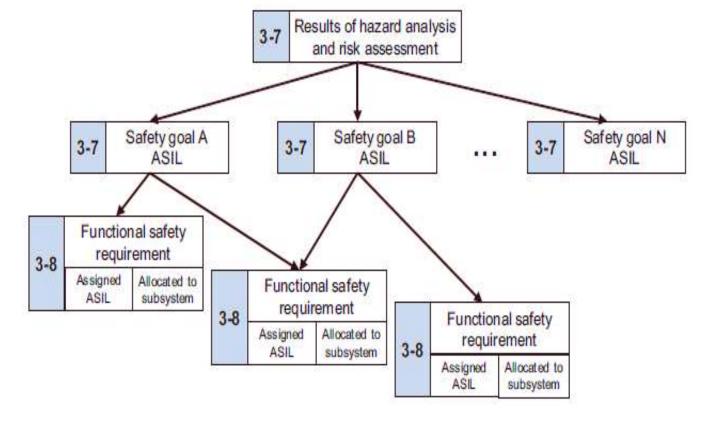
should I target in

my IC or IP?

- For each Hazardous event, determine the ASIL based on Severity, Exposure & Controllability
- Then formulate safety goals to prevent or mitigate each event, to avoid unreasonable risk

Soverity alace	Probability class		Controllability class	
Severity class	Probability class	C1	C2	C3
	E1	QM	QM	QM
S1	E2	QM	QM	QM
51	E3	QM	QM	А
	E4	QM	А	В
	E1	QM	QM	QM
S2	E2	QM	QM	А
52	E3	QM	А	В
	E4	A	В	С
	E1	QM	QM	А
S3	E2	QM	A	В
55	E3	A	В	С
	E4	В	С	D

Table 4 — ASIL determination


Reference ISO 26262-3:2011

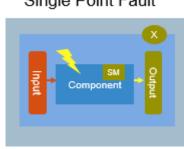
Functional Safety Concept

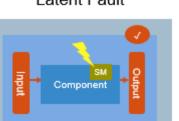
- The functional safety concept addresses:
 - Fault detection and failure mitigation
 - Safe State transitioning
 - Fault tolerance mechanisms
 - Driver warning

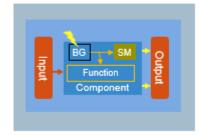
Q: This is a top down approach, typically components & IP developed as Safety Element out of Context (SEooC), how to make assumptions?

Note: An SEooC is a safety-related element which is **not developed for a specific item**. This means it is **not developed in the context of a particular vehicle**.

Reference ISO 26262-3:2011




Part 4 System


Safety Mechanisms & Faults

- System
- A safety mechanism is a technical solution implemented by E/E functions or elements, or by other ٠ technologies, to detect faults or control failures in order to achieve or maintain a safe state
- Safety mechanisms are implemented to prevent faults from leading to single-point failures or to ٠ reduce residual failures and to prevent faults from being latent
 - multiple-point fault is a individual fault that, in combination with other independent faults, leads to a multiplepoint failure. Single Point Fault Latent Fault

Common Cause Fault

- Safety Mechanisms can take effect during •
 - Power up (pre-drive checks)
 - During operation
 - During power-down (post-drive checks)
 - Part of maintenance.

Q: How to decide where to implement safety mechanisms? ... in HW or SW, in system or component or IP...

executions of online diagnostic tests Fault F

Fault Detection & Reaction Times

Fault reaction time

٠

- time-span from the detection of a fault to reaching the safe state
- Fault tolerant time interval

Diagnostic test interval

- amount of time between the

- time-span in which a fault or faults can be present in a system before a hazardous event occurs
- Multiple-point fault detection interval
 - time span to detect multiple-point fault before it can contribute to a multiple-point failure

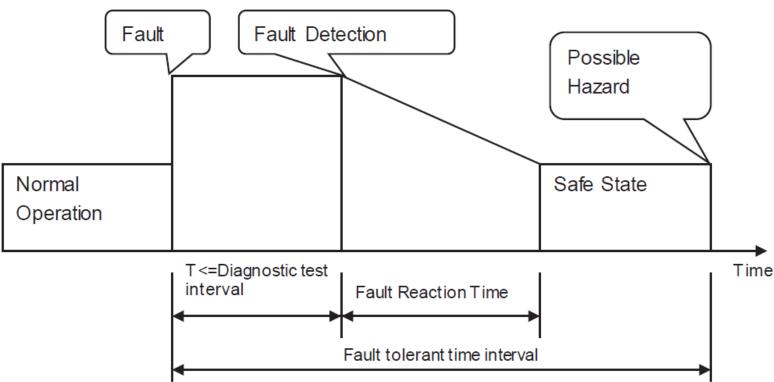


Figure 4 — Fault reaction time and fault tolerant time interval

Reference ISO 26262-1:2011

System

Q: How to know which times to use? 1ms, 10ms, 100ms, 1sec, 1hr, several hours etc

Part 5 Hardware

Target Metrics for ASIL

- Associate the following target metrics to each safety goal
 - Single-point fault metric (SPFM)

Table 4 — Possible source for the derivation of the target "single-point fault metric" value

	ASIL B	ASIL C	ASIL D
Single-point fault metric	≥90 %	≥97 %	≥99 %

-Latent-fault metric (LFM)

Table 5 — Possible source for the derivation of the target "latent-fault metric" value

	ASIL B	ASIL C	ASIL D
Latent-fault metric	≥60 %	≥80 %	≥90 %

Q: Which faults to consider? How to justify diagnostic coverage? ... Some guidance in Part 5 Annex D...

- Probabilistic Metric for random Hardware Failures (PMHF)

Table 6 — Possible source for the derivation of the random hardware failure target values

ASIL	Random hardware failure target values
D	<10 ⁻⁸ h ⁻¹
С	<10 ⁻⁷ h ⁻¹
В	<10 ⁻⁷ h ⁻¹

Q: Which portion of PMHF can an IC or IP use?

Reference ISO 26262-5:2011

Hardware Integration & Testing

Table 11 — Hardware integration tests to verify the completeness and correctness of the safety mechanisms implementation with respect to the hardware safety requirements

	Methods		ASIL			
			В	С	D	
1	Functional testing ^a	++	++	++	++	
2	Fault injection testing ^b	+	+	++	++	
3	Electrical testing ^c	++	++	++	++	

Table 12 — Hardware integration tests to verify robustness and operation under external stresses

	Methods		ASIL			
	Methods	Α	в	С	D	
1a	Environmental testing with basic functional verification ^a	++	++	++	++	
1b	Expanded functional test ^b	0	+	+	++	
1c	Statistical test ^c	0	0	+	++	
1 d	Worst case test ^d	0	0	0	+	
1e	Over limit teste	+	+	+	+	
1f	Mechanical test ^f	++	++	++	++	
1g	Accelerated life test ^g	+	+	++	++	
1h	Mechanical Endurance test ^h	++	++	++	++	
1i	EMC and ESD test ⁱ	++	++	++	++	
1j	Chemical test ^j	++	++	++	++	

Q: Fairly standards tests, except for fault injection?

Reference ISO 26262-5:2011

PUBLIC

Part 6 Software

SW Safety Mechanisms

Table 4 — Mechanisms for error detection at the software architectural level

Methods		ASIL			
Methods	Α	В	С	D	
Range checks of input and output data	++	++	++	++	
Plausibility check ^a	+	+	+	++	
Detection of data errors ^b	+	+	+	+	
External monitoring facility ^c	0	+	+	++	
Control flow monitoring	0	+	++	++	
Diverse software design	0	0	+	++	
	Plausibility check ^a Detection of data errors ^b External monitoring facility ^c Control flow monitoring	Range checks of input and output data ++ Plausibility check ^a + Detection of data errors ^b + External monitoring facility ^c o Control flow monitoring o	Methods A B Range checks of input and output data ++ ++ Plausibility check ^a + + Detection of data errors ^b + + External monitoring facility ^c o + Control flow monitoring o +	Methods A B C Range checks of input and output data ++ ++ ++ Plausibility check ^a + + + Detection of data errors ^b + + + External monitoring facility ^c o + + Control flow monitoring o + ++	

^a Plausibility checks can include using a reference model of the desired behaviour, assertion checks, or comparing signals from different sources.

Types of methods that may be used to detect data errors include error detecting codes and multiple data storage.

An external monitoring facility can be, for example, an ASIC or another software element performing a watchdog function.

Table 5 — Mechanisms for error handling at the software architectural level

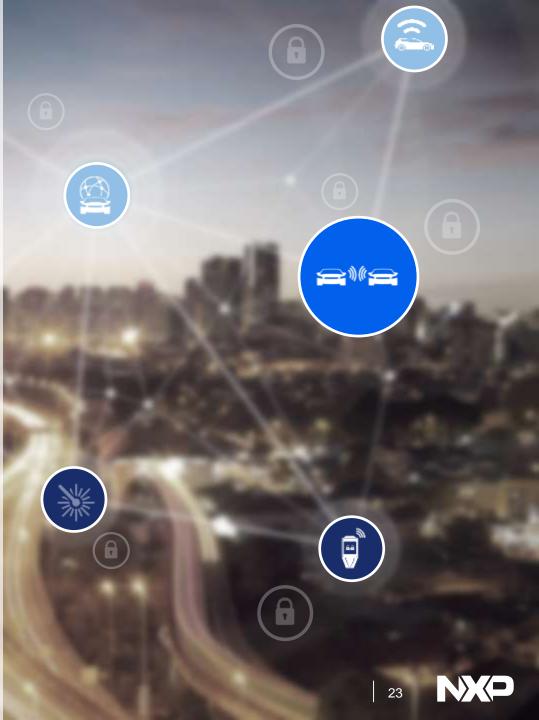
	Methods		ASIL			
			в	С	D	
1a	Static recovery mechanism ^a	+	+	+	+	
1b	Graceful degradation ^b	+	+	++	++	
1c	Independent parallel redundancy ^c	0	o	+	++	
1d	Correcting codes for data	+	+	+	+	

^a Static recovery mechanisms can include the use of recovery blocks, backward recovery, forward recovery and recovery through repetition.

^b Graceful degradation at the software level refers to prioritizing functions to minimize the adverse effects of potential failures on functional safety.

Independent parallel redundancy can be realized as dissimilar software in each parallel path.

Part 7 Production



Part 7 Production

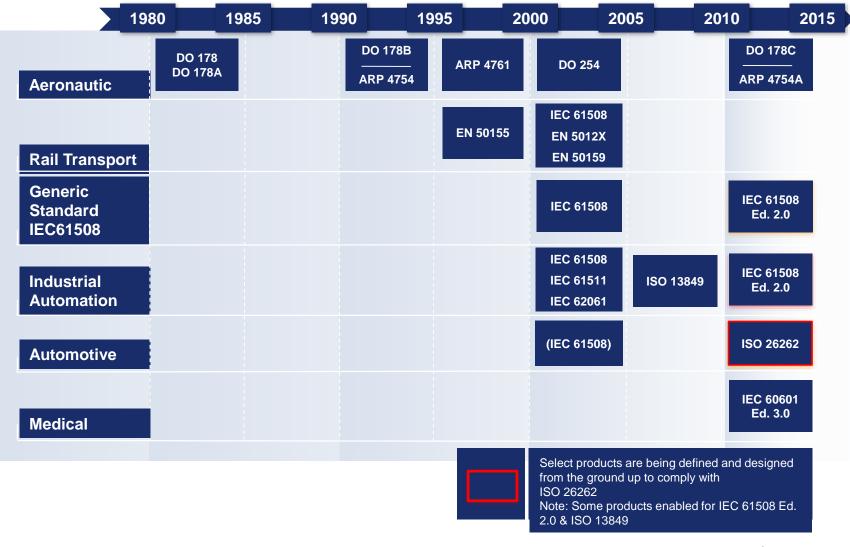
- Develop and maintain a production process for safety-related elements or items that are intended to be installed in road vehicles.
 - Typically existing production processes aligned with ISO TS 16949 are also well aligned with ISO 26262 requirements
- In addition, the compliance with **safety-related special characteristics** may be required
 - Examples of such safety-related special characteristics are
 - specific process parameters (e.g. temperature range or fastening torque)
 - material characteristics
 - production tolerance
 - Configuration
- Also, safety impact analysis of changes or field returns is required during production -> augmenting standard processes to comply.

ISO 26262 2nd Edition

ISO 26262 2nd Edition

• The 2nd edition of ISO 26262 is planned for release in 2018.

Most notable changes


- Scope now for series production road vehicles, except mopeds.
- Specific content added for Trucks, Buses, Trailers, Semitrailers and motorcycles (although very minimal)
- Part 11 guideline added for Semiconductors
- Part 12 added for motorcycles (mapping of MSIL to ASIL)
- Interaction between safety and security organizations mentioned (no specifics)
- Method for **dependent failure analysis** provided in multiple examples
- Guidance for fault tolerance
- Part 8.13 Hardware Qualification reworked to focus on non ISO 26262 developed hardware
- Overall improvements to clarify understanding
- Limited new content towards fail operational / autonomous vehicles indicating not yet mature enough in industry to standardize

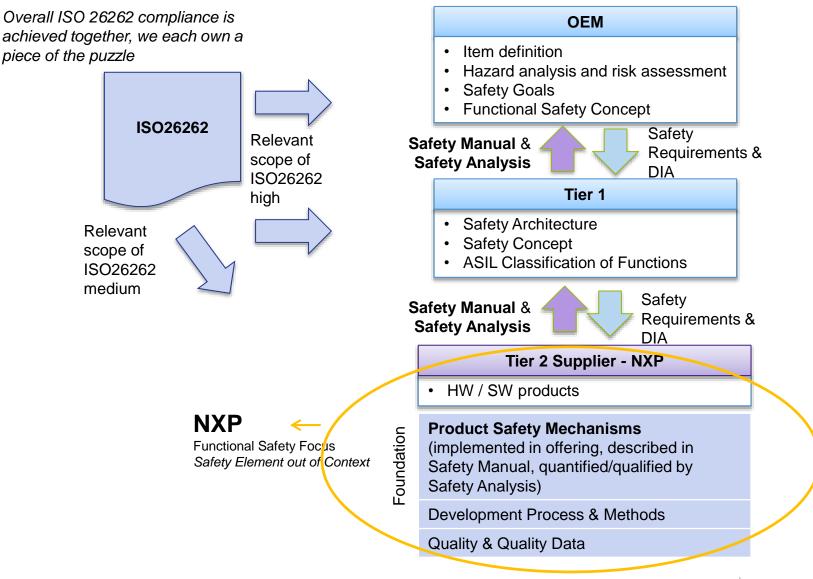
Disclaimer: Above notes from DIS version, may change in final release

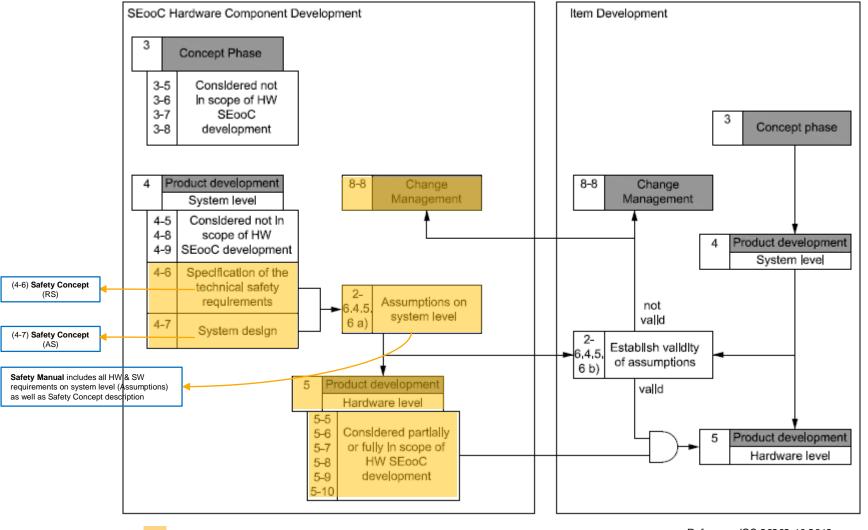
NXP Approach to ISO 26262

Functional Safety Standards

NXP's Safe Assure Program

- Launched <u>SafeAssure</u> initiative in September 2011 focusing on NXP's functional safety solutions
- **NXP Development Processes** are aligned with ISO 26262 since 2013 across product lines
 - BCaM7 deployment will align at BU Auto level
- 100+ Products being developed to target ISO 26262:
 - Aug 2012 AMP HW Leopard (MPC564xL) 32-bit MCU <u>Certified</u> by Exida
 - 2013 AMP SW First release of Safety MCAL (sMCAL)
 - 2014 AAA HW Analog PowerSBC
 - Many more products are in the development pipeline and will come to completion in the years to come

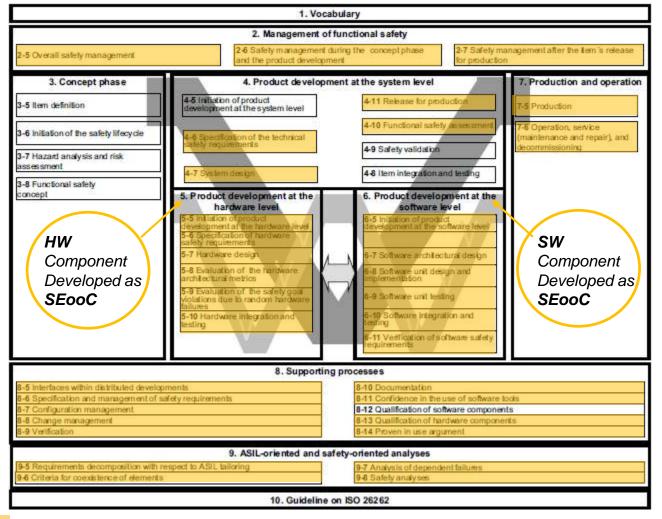




Example Interaction Between Car OEM, Tier 1 & Tier 2 (NXP)

NP

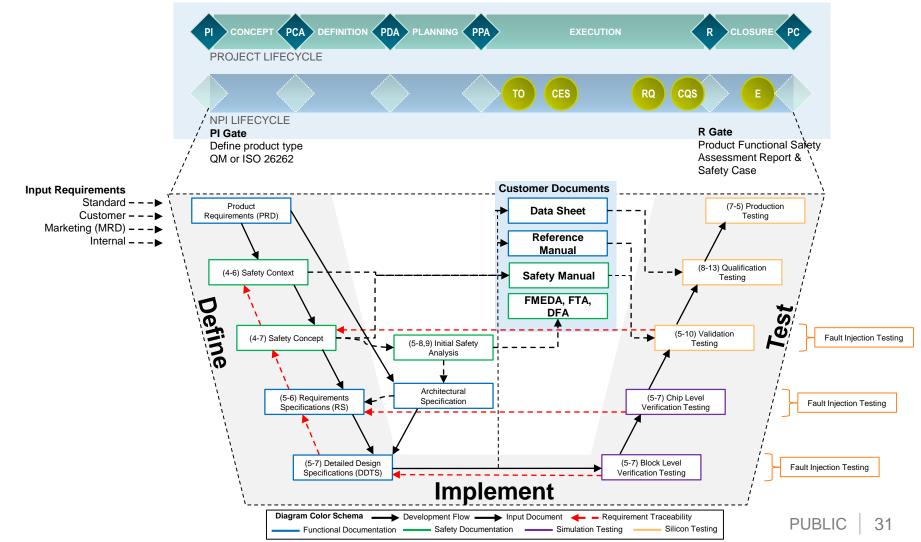
HW & SW Components developed as SEooC



Applicable to HW Component developed as SEooC

Reference ISO 26262-10:2012

Tailoring of ISO26262 to Component developed as Safety Element out of Context (SEooC)


Applicable to Component developed as SEooC

Reference ISO 26262-10:2012

ISO 26262 Product Development - BCaM7

 ISO 26262 compliance is achieved between vehicle manufacturers, Automotive suppliers (Tier 1), semiconductor suppliers and IP providers

NXP Processes aligned with ISO 26262

• NXP ISO 26262 process complies with **all** applicable ISO 26262 **ASIL D** requirements for HW or SW SEooC development

ISO 26262	NXP Process	ASIL A	ASIL B	ASIL C	ASIL D	
Part 2 Management	Safety Plan, Safety Case, Confirmation Measures	Yes				
Part 3 Concept	OEM / Tier 1 responsibility	NA				
Part 4 System	System assumptions & Safety Requirements – HW/SW	Yes, only partially applicable				
Part 5 Hardware	HW – Safety requirements traced to implementation and testing	Yes				
Part 6 Software	SW – Safety requirements traced to implementation and testing	Yes				
Part 7 Production	Standard processes, aligned with ISO 26262	Yes				
Part 8 Processes	Standard processes, aligned with ISO 26262	Yes				
Part 9 Analysis	FMEDA, FTA & DFA	Yes				
Part 10 Guideline	SEooC Development & application of ISO 26262 to components	Yes, SEooC development				

- One process for all products, regardless of safety architecture ASIL target
- Only **difference** is for Confirmation Measures which are tailored to ASIL target

NXP ISO 26262 Confirmation Measures

NXP performs ISO 26262 Confirmation Reviews (CR), Audit and Assessment as required by ISO 26262 for SEooC development

Confirmation Measures	ASIL A	ASIL B	ASIL C	ASIL D
CR Safety Analysis	Yes	Yes	Yes	Yes
CR Safety Plan		Yes	Yes	Yes
CR Safety Case		Yes	Yes	Yes
CR Software Tools			Yes	Yes
Audit			Yes	Yes
Assessment			Yes	Yes

Note: The following confirmation reviews are not applicable: hazard analysis and risk assessment, item integration and testing, validation plan & proven in use argument

- Confirmation Measures (CM) performed depending on ASIL
 - All checks executed with **independence level 13** by NXP Quality organization
 - NXP Assessors **certified** by SGS-TÜV Saar as Automotive Functional Safety Professional (AFSP)
 - NXP CM process **certified** by SGS-TÜV Saar as ISO 26262 ASIL D

CAR Secure Connected, Self-Driving Cars will Save >1,3M Road fatalities globally Surround View Blind Spot Detection Cross **Traffic Sign** Traffic Recognition Alert **Emergency Braking** ark Assis Park Assistance Adaptive Rear Pedestrian Detection Surround View Cruise Control Collision **Collision Avoidance** Warning Lane Departure 3 Warning Surround View NXP Offers Complete Safe & ...including Big Data Secure ADAS System Infrastructure Ģ \cap **رب**ا + **BIG DATA** THINK ACT SENSE Secure Secure Network Network Radar **Digital Networking** Processing Powertrain Sensor Fusion Infrastructure Vision Chassis Secure V2X Security Braking Security

TOMORROW: ENABLING THE SAFE & SECURE CONNECTED

Where the Failures Come From

- Typically, dangerous failures in a safety system come from a combination of the following
 - Development bugs Software or hardware
 - Insufficient system safety architecture
 - Transient failures in semiconductors, primarily SRAM very high rate of occurrence
 - Permanent failures in hardware

					<u>Residual</u> Failure rate	
Failure Type	per hour	FIT	%		1.00E-05	MCU Raw
MCU SRAM Transient Failure rate	7.00E-07	700	70.00%		1.00E-06	
MCU FF Transient Failure rate	2.00E-07	200	20.00%		1.00E-07	
MCU Package Permanent Failure rate	8.00E-08	80	8.00%		1.00E-08	MCU ASIL B 🖌
MCU Die Permanent Failure rate	2.00E-08	20	2.00%		1.00E-09	MCU ASIL D
MCU Total Failure rate	1.00E-06	1000	100%		1.00E-10	

Note: Assumption - MCU is allocated only 10% of System ASIL target

MCU Safety Context

- Applications have different safety requirements driven by different safety contexts, but the need for safe SW execution is common across all
- The objective is to make SW execution safe to achieve ASIL B or ASIL D depending on target market

		ASIL B	ASIL D	
Detect	Fault Detection Time Interval	10) ms	Residual Failure rate
incorrect operation during	Diagnostic Coverage (transient & permanent faults)	90%	99%	1.00E-05 1.00E-06 MCU Raw
runtime	Residual Failure rate	1 x 10 ⁻⁸ / h	1 x 10 ⁻⁹ / h	1.00E-07 1.00E-08 MCU ASIL B
Start-up / Shut-down periodic test	Diagnostic Coverage (permanent faults)	60%	90%	1.00E-09 1.00E-10 MCU ASIL D
MCU HW t	o support SW Independence	Μ	IPU]

Note: Assumption - MCU is allocated only 10% of System ASIL target

Defining the Safety Concept

- Objective
 - Define how ASIL targets will be achieved between a mix of on-chip HW safety measures and system level safety measures (HW/SW)
- ISO 26262-5 Annex D Elements related to HW Components
 - Low application dependency: Power, Clock, Flash, SRAM & Processing Unit
 - High application dependency: Digital IO & Analog IO

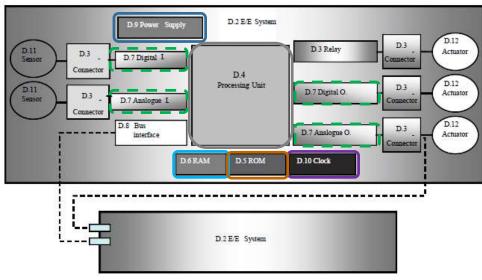
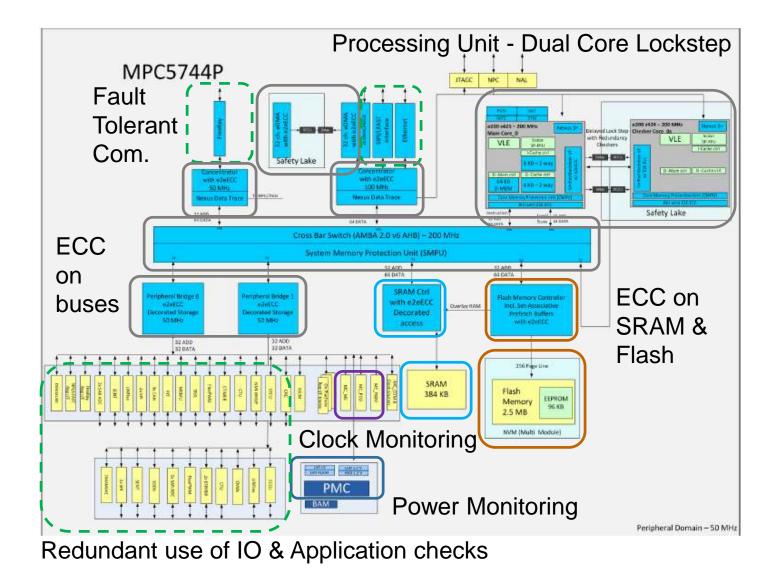
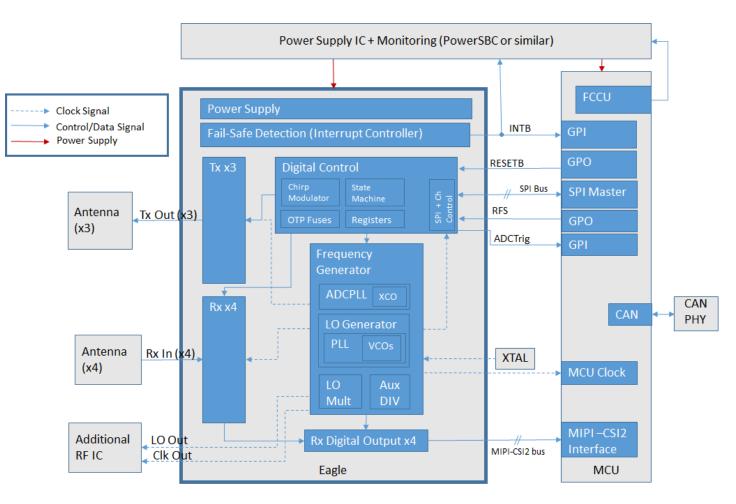


Figure D.1 — Generic hardware of a system Reference ISO 26262-5:2011


Module Classification - Safety

• Each module on the MCU is classified as Safety Related or Not Safety Related

Elements in ISO 26262-5, Table D.1	MPC5744P FMEDA	MPC5744P Module	Part of Software Execution Function	Safety Mechanism	Comments
Power Supply	Power	Power Management Controller (PMC)	YES		
· oner suppry		Power Control Unit (MC_PCU)	YES		
		Phase Lock Loop (2 x PLL)	YES		
		Clock Monitor Unit (5 x CMU)		YES	
Clock	Clock	Clock Generation Module (MC_CGM)	YES		
		External Oscillator (XOSC)	YES		
		Internal RC Oscillator (IRCOSC)	YES		
Non-Volatile		Embedded Flash Memory (c55fmc)	YES		
Memory	Flash	Flash Memory Controller (PFLASH)	YES		
wiennory		End-to-end Error Correction Code (e2eECC)		YES	
		System SRAM	YES		
Volatile Memory	SRAM	RAM Controller (PRAMC)	YES		
		End-to-end Error Correction Code (e2eECC)		YES	
		Main Core_0 (e200z4251n3)	YES		
		Checker Core_0s (e200z424) (Delayed Lockstep)		YES	
		Crossbar Switch (XBAR)	YES		
		JTAG Controller (JTAGC)			Not Safety Related module - Debug logic
Processing Unit	Core	Nexus debug modules (NXMC, NPC, NAL & NAP)			Not Safety Related module - Debug logic
Processing Unit	Core	Cyclic Redundancy Check (CRC)		YES	
		Fault Collection and Control Unit (FCCU)		YES	
		Memory Error Management Unit (MEMU)		YES	
		Self-Test Control Unit (STCU2) (includes MBIST & LBIST)		YES	
		Register Protection (REG_PROT)		YES	
Communication (External)		CAN (3 x FlexCAN)			Peripheral module - High application dependency (failure rates only)
		Serial Interprocessor Interface (SIPI)			Peripheral module - High application dependency (failure rates only)
		10/100-Mbps Ethernet MAC (ENET)			Peripheral module - High application dependency (failure rates only)
	Peripheral	Peripheral Bridge (2 x PBRIDGE)			Peripheral module - High application dependency (failure rates only)
Analogue I/O and		System Integration Unit Lite2 (SIUL2)			Peripheral module - High application dependency (failure rates only)
Digital I/O		Analog to Digital Converter (4 x ADC)			Peripheral module - High application dependency (failure rates only)
		Wakeup Unit (WKPU)			Peripheral module - High application dependency (failure rates only)



Realizing the MCU Safety Concept - MPC5744P

Defining the Safety Concept – RADAR Example

- Objective
 - Define how ASIL targets will be achieved between a mix of on-chip HW safety measures and system level safety measures (HW/SW)
- ISO 26262-5 Annex D Elements related to HW Components
 - Low application dependency: Power, Clock, Flash, SRAM & Processing Unit
 - High application dependency: RF, Digital & Analog IO

Customer Deliverables

NXP SafeAssure Products

To support the customer to build his safety system, the following deliverables are provided **as standard** for **all** ISO 26262 developed products.

- Public Information available via NXP Website
 - Quality Certificates
 - Safety Manual
 - Reference Manual
 - Data Sheet
- Confidential Information available under NDA
 - Safety Plan
 - ISO 26262 Safety Case
 - Permanent Failure Rate data (Die & Package) IEC/TR 62380 or SN29500
 - Transient Failure Rate data (Die) JEDEC Standard JESD89
 - Safety Analysis (FMEDA, FTA, DFA) & Report
 - PPAP
 - Confirmation Measures Report (summary of all applicable confirmation measures)

Safety Manual

Safety Manual

Objective

- Enables customers to build their safety system using the MCU safety mechanisms and defines system level HW & SW assumptions
- Simplify integration of NXP's safety products into applications
- A comprehensible description of all information relating to FS in a single entity to ensure integrity of information

Content

- MCU Safety Context
- MCU Safety Concept
- System level hardware assumptions
- System level software assumptions
- FMEDA summary
- Dependent Failures Analysis summary

Safety Manual for MCU Solution

Safety Manual: Structure

- MCU Safety Context
 - Safe states, Fault tolerant time interval

MCU Safety Concept

- Describes the safety concept of the device (what is implemented and how does it work)
- System level hardware assumptions
 - Describes the functions required by external hardware to complement the MCU safety concept (Error out monitor)

System level software assumptions

- Description of necessary or recommended sw mechanisms for each module (Initial checks, configuration & runtime checks)

Failure Rates and FMEDA

- Short introduction to FMEDA

Dependent Failure Analysis

- βic IEC 61508 Ed. 2.0 part 2, Annex E: Analysis of dependent failures
- Countermeasures against common cause failures on chip level

Safety Support – System Level Application Notes

Design Guidelines for

- Integration of Microcontroller and Analog & Power Management device
- Explains main individual product Safety features
- Uses a typical Electrical Power steering application to explain product alignment
- Covers the ASIL D safety requirements that are satisfied by using both products:
 - MPC5643L requires external measures to support a system level ASIL D safety level
 - MC33907/08 provides those external measures:
 - External power supply and monitor
 - External watchdog timer
 - Error output monitor

Integrating the MPC5643L and MC33907/08 for ISO26262 ASIL-D Applications

This application note provides design guidelines for integrating the Freescele NPC5643L microcontroller unit (NCU) and Freescale MIC33807/DIS System Basis Chip in automotive electric (electronic systems that target the ISO 25262 functional safety standard. It provides an overview of the MPC5643L and the NC33807/DIS feature set and covers the functional safety requirements that are satisfied in order to achieve 45L D level of safety.

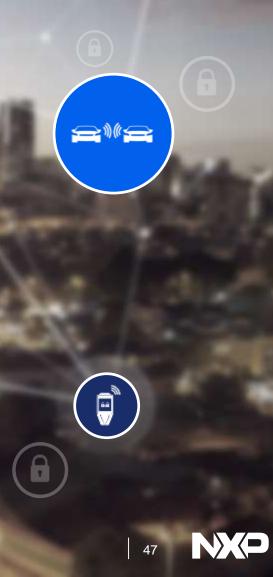
Integrating the VIPC3643L and VIC33907/VIC33908 in a system provides many advantages for the customer. Prescale SISO 25362 solutions, that form part of the Preescale Safe Assure program, help system manufacturers more easily achieve system compliance with functional safety standards by simplifying the system architecture.

I. MPC5643L Overview

This section describes the IVPC5643L features that are of interest when integrating the device with the IVC32907/06.

A. Safety Concept

The MPC3643L is built around a dual e200x4d core Sphere of Replication (SoR) safety platform with a safety concept targeting (SO 25252 45)L 0 integrity level, in order to minimae additional software and module level features to reach this target, on-chipredundancy is offered for the critical components office NCU (CPU core, DMA controller, interrupt controller, prostare tus system, memory protection unit, firsh memory and RAM controllers, peripheral bus bridge, system timers, and watchdog timer). A Redundancy control and checker unit (BCCU) is implemented at each output of this SoR. ECC is available for on-chip RAM and flash memories. The programmable Realt Collection and Control. (PCCU) monitors the integrity status of the device and provides file/levale state control.


B. Power Supply Requirements

The on-chip voltage regulator module provides the following features. Single high supply requires nominal 3.0%. An external balax transistor is used to reduce dissipation capacity at , high temperature but an embedded transistor can be used if power dissipation is maintained within package dissipation capacity (lower frequency of operation). All (Osare at same woltage

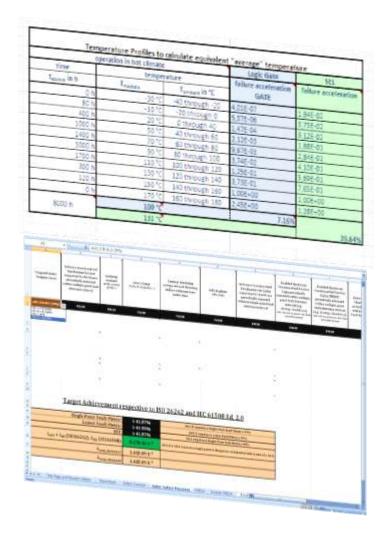
Dynamic FMEDA

*

â

Safety Support – Dynamic FMEDA

Objective


- Tailor FMEDA to match application configuration
- Enables customers, by supporting their system level architectural choices

Content

- FMEDA methods aligned with functional safety standards
 - SPFM & LFM, PMFH ISO 26262
 - SFF & PFH- IEC 61508 Ed. 2.0
 - βic IEC 61508 Ed. 2.0 part 2, Annex E
- Dynamic FMEDA covers elements with low application dependency: Clock, Power Supply, Flash, SRAM, Processing Unit...

Work flow and result

- Customer specifies the failure model (dependent on Safety Integrity Level) required by their application, and then confirms the Safety Measures that will be used or not be used
- A tailored FMEDA is then supplied to customer's for their specific application

ISO 26262-5 (Elements and Failure Models)

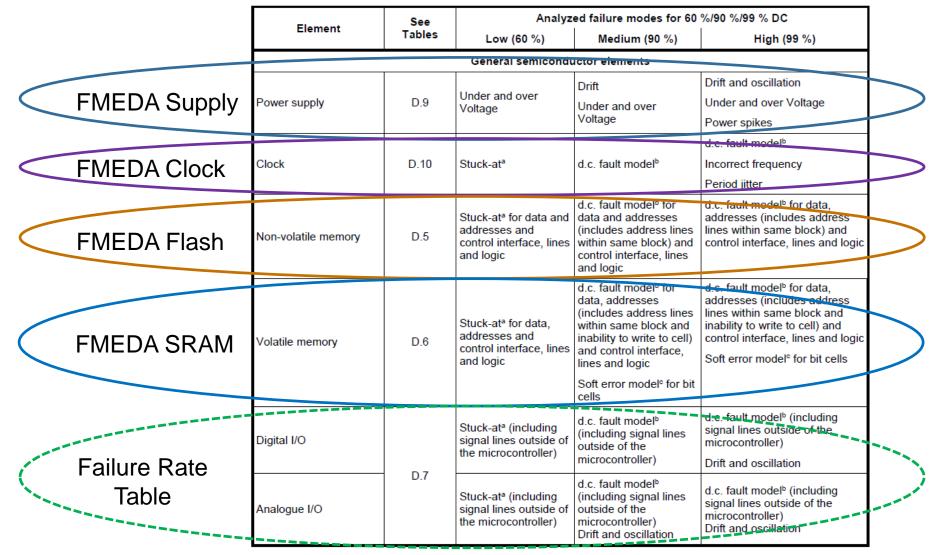
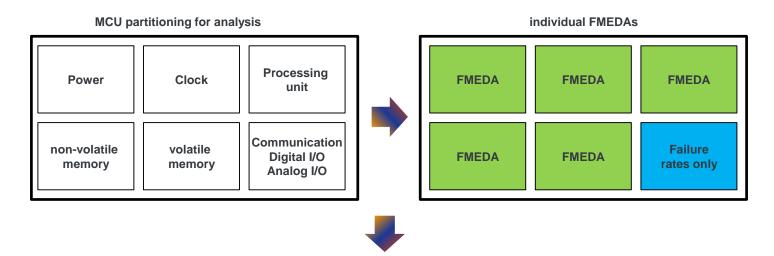


Table D.1 — Analyzed faults or failures modes in the derivation of diagnostic coverage

Reference ISO 26262-5:2011

ISO 26262-5 (Elements and Failure Models)

Table D.1 — Analyzed faults or failures modes in the derivation of diagnostic coverage


	Element		See	Analyzed failure modes for 60 %/90 %/99 % DC					
		Element	Tables	Low (60 %)	Medium (90 %)	High (99 %)			
	÷								
	Re pu ba re					d.c. fault model ^b			
		ALU - Data Path	D.4/D.13	Stuck-at ^a	Stuck-at ^a at gate level	Soft error model ^e (for sequential parts)			
		Registers (general purpose registers bank, DMA transfer registers), internal RAM	D.4	Stuck-at ^a	Stuck-at ^a at gate level Soft error model ^o	d.c. fault model ^b including no, wrong or multiple addressing of registers Soft error model ^e			
		Address calculation (Load/Store Unit, DMA addressing	D.4/D.5/D.6	Stuck-at ^a	Stuck-at ^a at gate level Soft error model ^o (for sequential parts)	d.c. fault model ^b including no, wrong or multiple addressing			
	Processing units	logic, memory and bus interfaces)	0.50.0	Stuck-at		Soft error model ^c (for sequential parts)			
FMEDA			terrupt bandling [1] //[) 10	Omission of or continuous interrupts	Omission of or continuous interrupts Incorrect interrupt executed	Omission of or continuous interrupts			
Processing		Interrupt handling				Incorrect interrupt executed			
Unit						Wrong priority			
						Slow or interfered interrupt handling causing missed or delayed interrupts service			
		Control logic (Sequencer, coding and execution logic including flag registers and stack control)D.4/D.10Configuration RegistersD.4	No code execution	Wrong coding or no execution	Wrong coding, wrong or no execution				
				Execution too slow	Execution too slow	Execution out of order			
				Stack overflow/underflow —	Stack overflow/underflow Stuck-at ^a wrong value	Execution too fast or too slow			
						Stack overflow/underflow			
						Corruption of registers (soft errors)			
						Stuck-at ^a fault model			
		Other sub-elements				d.c. fault model ^b			
		not belonging to previous classes	D.4/D.13	Stuck-at ^a	Stuck-at ^a at gate level	Soft error model ^c (for sequential part)			

Reference ISO 26262-5:2011

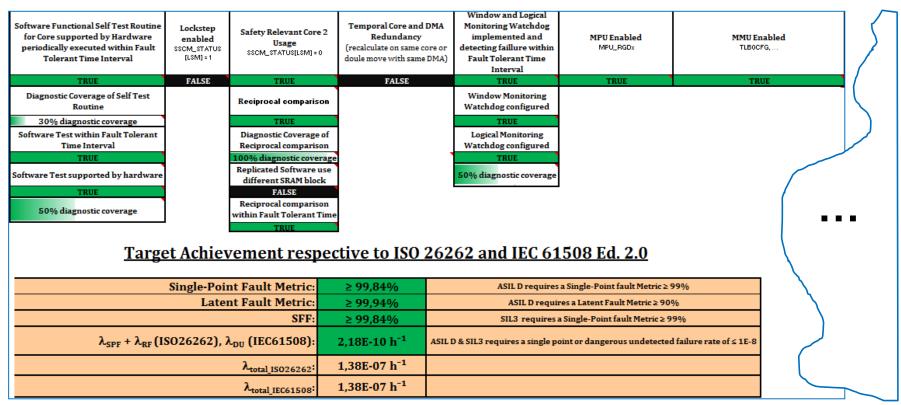
PUBLIC 50

Dynamic FMEDA Metrics

- FMEDAs must individually fulfill the target relative metrics (SPFM, LFM)
- **Sum** of individual PMHF must fulfill the absolute target

SPFM	SPFM	SPFM
LFM	LFM	LFM
PMHF	PMHF	PMHF
SPFM LFM PMHF	SPFM LFM PMHF	Failure rates only

Dynamic FMEDA


- Failure Mode, Effect and Diagnostic Analysis
- A systematic way to identify and evaluate failure modes, effects and diagnostic techniques, and to document the system.
- FMEDA can be tailored to application use-case:
 - FMEDA allows adaptation of temperature profile and ASIL level
 - FMEDA allows selection of package used
 - FMEDA allows selection / de-selection of modules
 - FMEDA allows selection / de-selection of diagnostic measures
 - FMEDA allows to change particular DCs

Called "Dynamic FMEDA"

- FMEDA can generate a specific (static) "customer FMEDA"

Dynamic FMEDA

Additionally - FMEDA Report

• Summarizing the assumptions and the method of the inductive functional safety analysis activities based on the FMEDA carried out for the MCU

Safety Plan, Safety Case & Confirmation Measures

Safety Plan

- Describes the overall approach to functional safety management during the development of the hardware or software components in accordance with ISO 26262 requirements.
- The Safety Plan is based on ISO 26262:2011
- The Safety Plan follows the standard NXP BCaM7 Process, which defines the overall product lifecycle.
- The MCU safety activities are planned and tracked in the as part of standard project plans:
 - The safety deliverables are identified by "fs:"
 - Key safety activities addressed, including
 - safety requirements definition and review
 - safety analysis and review
 - design implementation and associated testing in verification simulation, silicon validation and qualification
 - key safety management activities of confirmation reviews, audit activities and assessment.

Key Roles and Responsibilities for ISO 26262

Functional Safety Architect

- Specification of Functional Safety requirements and performing Functional Safety analysis

Project Functional Safety Manager

 Project specific set up and maintenance of Functional Safety activities according to organizational Functional Safety standards and product requirements

Functional Safety Assessor

 Planning and execution of functional safety assessments according to ISO26262 standard and the NXP Functional Safety process

Organisation Functional Safety Manager

- Implementation of ISO 26262 standard including training into the organization

ISO 26262 Safety Case

- Lists the ISO 26262 Work Products applicable to the development, as well as
 progressively compiles the deliverables generated during the safety lifecycle which form
 the safety case along with the safety argument.
- The complete list of information exchanged between NXP (MCU Supplier) and the customer (System developer) is detailed in the ISO 26262 Safety Case, including how the information is exchanged:
 - Public Information available via the NXP Website
 - Confidential Information available under NDA
 - Internal Information available during onsite Audit
- In case NXP enters into a Customer Development Interface Agreement (Customer DIA) for a system, then the Customer DIA takes precedence over the ISO 26262 Safety Case.

ISO26262-10 Table A.8 Checklist

- ISO 26262-10 Annex A.3.7 deals with techniques or measures to detect or avoid systematic failures during MCU design
- It proposes a checklist according to table A.8 to provide evidence that sufficient measures for avoidance of systematic failures are taken during MCU design

Design phase	Design owner for:		ISO 26262-5 requirement	ISO 26262-10 Table A.8 Checklist Conform	
besign phase	ARM IP	FSL IP	130 20202-5 requirement	ARM IP	FSL IP
	ARM (IP-level)	FSL	7.4.1.6 Modular design properties		FSL: YES
Design entry			7.4.2.4 Robust design principles	ARM: YES	
			7.4.4 Verification of HW design (IP-level)		
	FSL (SoC-level)		7.4.4 Verification of HW design (SoC-level)	FSL: YES	
	FSL	FSL	7.4.4 Verification of HW design		FSL: YES
Synthesis			7.4.1.6 Modular design properties	FSL: YES	
			7.4.2.4 Robust design principles		
Test insertion and test pattern generation	FSL	FSL	7.4.1.6 Modular design properties (testability)	FSL: YES	FSL: YES
Test insertion and test pattern generation			7.4.4 Verification of HW design	FSL. TES	
Placement, routing, layout generation	FSL	FSL	7.4.4 Verification of HW design	FSL: YES	FSL: YES
Chip production	FSL FSL 7.4.4 Verification of HW design		FSL: YES	FSL: YES	
Qualification of HW component	FSL	FSL	7.4.4 Verification of HW design	FSL: YES	FSL: YES

Checklist summary

- Checklist complied with for each NXP design.
- When integrating 3rd party IP, for example from ARM, then major design steps to integrate the 3rd party IP like synthesis, test
 insertion, backend etc. is in NXP's responsibility and NXP provides the data for the checklist.
- 3rd party IP providers give the data for the IP-design part to enable NXP to fill in the checklist

NXP ISO 26262 Confirmation Measures

NXP performs ISO 26262 Confirmation Reviews (CR), Audit and Assessment as required by ISO 26262 for SEooC development

Confirmation Measures	ASIL A	ASIL B	ASIL C	ASIL D
CR Safety Analysis	Yes	Yes	Yes	Yes
CR Safety Plan		Yes	Yes	Yes
CR Safety Case		Yes	Yes	Yes
CR Software Tools			Yes	Yes
Audit			Yes	Yes
Assessment			Yes	Yes

Note: The following confirmation reviews are not applicable: hazard analysis and risk assessment, item integration and testing, validation plan & proven in use argument

- Confirmation Measures (CM) performed depending on ASIL
 - All checks executed with **independence level 13** by NXP Quality organization
 - NXP Assessors certified by SGS-TÜV Saar as Automotive Functional Safety Professional (AFSP)
 - NXP CM process **certified** by SGS-TÜV Saar as ISO 26262 ASIL D

Autonomous driving leading to Fail-operational systems

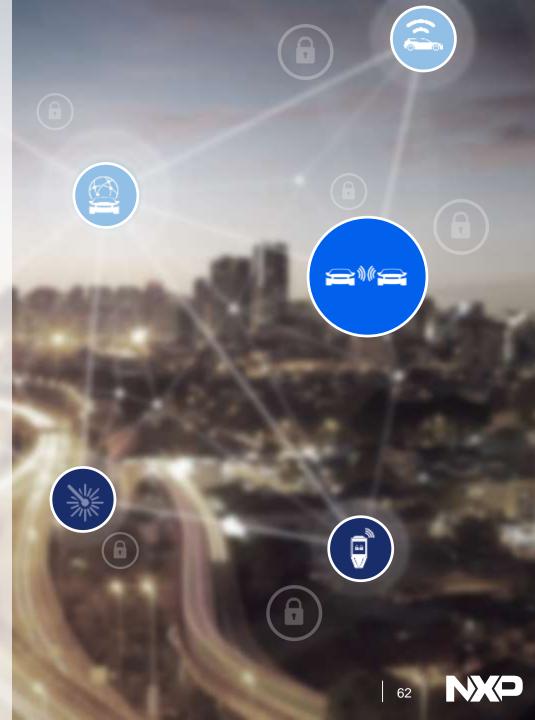

a

Functional Safety Autonomous Driving – SAE Levels

SYSTEM CONTROL

 SYSTEM AVAILABILITY

 FAIL-SAFE
 DEGRADED MODE
 FAIL-OPERATIONAL


 PUBLIC
 61

Conclusion

- ISO 26262 addresses functional safety in automotive
- \bigcirc
- NXP applies ISO 26262 across Automotive developments
- Faults & Safety Mechanisms are determined for HW
 & SW components, NXP safety concepts enable
 customers to design their safety systems

ISO 26262 evolving to address the requirements for safe autonomous vehicle

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.