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ABSTRACT

When a user interface, information visualisation or graphic designer is con-
ceiving and creating design mockups how does the designer know whether
the intended audience is able to perceive the design? When a designer does
know how well an intended audience can or cannot see, such as with a design
targeted at an aging audience, how does that knowledge influence the visual
layout of the design?

There are rules of thumb about font size, contrast, and the interaction between
unused space that are learnt and handed down as design lore. If a designer fol-
lows good use of font size, with good contrast then a proposed design should
be readable as long as its not too cluttered. Unfortunately “good usage”, “good
contrast” and “not too cluttered” are subjective measures. What one designer
defines as good another could find distinctly lacking, though experience and
training do help a designer acquire knowledge of what visually works.

This thesis is concerned with examining and showing how the experience
of seeing a design can be non-subjectively quantified. Then it demonstrates
how the quantifications tied together with individual differences in the Hu-
man Visual System (HVS) can be used to evaluate and adapt the designs, such
that they are customised to individual eye sight.

In order to non-subjectively quantify the experience of seeing a design we in-
troduce, evaluate and demonstate two measures of perceptual stability. Per-
ceptual stability is defined by us as a measure of how stable or unstable a
visual design or image is due to differences in a perceiver’s perception. The
first measure PERSva evaluates how easy or difficult it is for people to see
visual detail in a design. While the second measure PERScp evaluates how
different forms of colour perception effect the legibility of a visual design.

Objective quantifications which are capable of modelling individual differ-
ences are useful for automating design judgements, i.e. automatically compare
a range of potential interface designs and make a decision about which is best
for a specific user. Demonstrated in this work are automatic evaluations of text
and font styles, network graph designs and layouts, and the pseudocolouring
of scientific visualisations. In the longer term, as we move into a world where
Mass Customisation and Product Personalisation become common place, ob-
jective design quantifications are useful for adapting and customising designs
to suit individual physiologies, capabilities and preferences.
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CHAPTER

ONE

Introduction

1.1 Motivation & Purpose

When a user interface, information visualisation, or graphic designer is con-

ceiving and creating design mockups how does the designer know whether

the intended audience is able to perceive the design? When a designer does

know how well an intended audience can or cannot see, such as with a design

targeted at an aging audience, how does that knowledge influence the visual

layout of the design?

For example, often conference presentations are difficult to see and read, due

to an interplay of the visual design of the presentation, the size of the present-

ation display, the viewer’s position and how good the viewer’s visual acuity

is (see Figure 1.1).

There are rules of thumb about font size, contrast, and the interaction between

unused space that are learnt and handed down as design lore. If a designer fol-

lows good use of font size, with good contrast then a proposed design should

be readable as long as its not too cluttered. Unfortunately ”good usage”, ”good

contrast” and ”not too cluttered” are subjective measures. What one designer

defines as good another could find distinctly lacking, though experience and
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Figure 1.1: An example of how conference presentations are often difficult to
see, due to the visual design of the presentation and the viewer’s position.

training do help a designer acquire knowledge of what visually works.

Focusing in on new media graphic design, specifically the areas around the

visual design of information visualisations and user interfaces, we face the

same questions. How do we know what people can see when they look at a

complex information visualisation, user interface or any kind of computation-

ally driven design? How do we know what impacts differences in how people

can see has upon the experience of seeing visual designs?

These questions are made more complex because the graphical designs are

not static pictures printed with ink on paper. These dynamic visual designs

change in response to many factors, including changes in the underlying data

used to generate the visual designs, such as a graph or treemap generated by

changing stock prices.

This thesis is concerned with examining and showing how the experience of

seeing a design can be non-subjectively quantified. Then it demonstrates how

the quantifications tied together with individual differences in the Human
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Figure 1.2: An example of colour used to create three groups of dots (green,
black, blue). Blue is also used to create a visual pop out effect.

Visual System (HVS) can be used to evaluate and adapt the designs - thereby

improving human performance.

The experience of seeing is multifaceted with multiple interactions between

sensation, perception and awareness [63]. To make the question approachable

it is limited to two facets of seeing. Firstly, the effect of colour perception on

graphical designs, and secondly, the effect of visual acuity (spatial perception)

on our ability to see a design.

Colour is widely used in graphical designs [90], often to denote categorical dis-

tinctions and groupings within data, e.g. green signifies a node representing

a male, black signifies a node representing a female (see Figure 1.2). Colour is

also a fundamental building block of more complex visual components, such

as textures. By focusing on colour perception we are examining the effects of a

very important low level unit of composition in graphical interfaces and visual

designs.

Visual acuity dictates our ability to see detail. Spatial visual acuity is the smallest

spatial detail that can be visually detected, discriminated, or identified [61]. If objects

are too small or too cluttered we cannot properly see them in a design. Often

when designing a visualisation or interface there is a trade off between the

amount of information we have to communicate versus the amount of display
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real-estate we have to communicate with. By focusing on visual acuity we are

examining the interplay of the size of graphical objects used in designs and

our experience of seeing them, also known as spatial perception.

For example if we have a massive network graph consisting of thousands of

nodes and edges it may be impossible to display that graph in a meaningful

manner on a small screen. This can be impossible because all the nodes and

edges would form a visually indistinct cluster on-screen with nodes and edges

layered on top of each other and obscuring each other.

In the rest of this chapter the motivation for the research is established, while

also tying together the various fields of knowledge and perspectives that in-

formed our approach to quantifying the experience of seeing and then using

the quantifications to adapt designs to individual eye function. The core con-

tributions of and motivations for this research are:

• modelling the human visual system (spatial perception and colour per-

ception) (see Chapter 3),

• using the models to make feature independent predictions about the ex-

periences of seeing designs (see Chapter 4 and Chapter 6),

• then using the predictions to adapt graphical designs to suit individual

eye function (see Chapter 8).

The techniques introduced and evaluated in this thesis are useful for auto-

mating design judgements, i.e. automatically compare a range of potential

interface designs and make a decision about which is best for a specific user.

Demonstrated in this work are automatic evaluations of text and font styles,

network graph designs and layouts, and the pseudocolouring of scientific

visualisations. In the longer term, as we move into a world where Mass

Customisation and Product Personalisation become common place, objective
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Figure 1.3: Different stages light-waves undergo processing that alters how
they are perceived.

design quantifications are useful for adapting and customising designs to suit

individual physiologies, capabilities and preferences.

1.2 Mass Customisation & Personalisation

By focusing on the role of the perceiver’s visual system we are faced with the

fact that visual systems differ between individuals. Individual differences in

eye function have been well established for a considerable period of time going

back centuries.

1.2.1 Adapting At Source

We are all familiar with corrective eye glasses that bring a person’s eye sight

within normal ranges. Eye glasses do not fix flawed eye sight, though ad-

vanced eye surgery can now often adjust the physiology of the eye to correct

for flaws, e.g. LASIK eye surgery [48]. See Chapter 3 and Chapter 2 for more

details on individual eye function and related physiological structures.

Eye glasses can be thought of as simple information processing systems that

carry out transformative functions on the paths light-waves take. Eye glasses
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carry out information processing while sitting between a light emitting or re-

flecting source and the perceiver’s visual system (see Figure 1.3, External Op-

tical System). Eye surgery adjusts the perceiver’s visual system and by doing

so adjusts the information processing of light-waves in the eye (see Figure 1.3,

Perceiver’s Visual System).

With computational driven designs and displays we have the opportunity to

adapt light emitting or reflecting surfaces to individual eye function. That

is, we have the opportunity to correct for limits, differences and flaws in hu-

man vision at the point light-waves are emitted (see Figure 1.3, Light Emitting

Source).

As with eye glasses we also have the opportunity to adapt the emission and

reflection of light-waves to individual eye function when we have measures of

individual eye function. Such measures are often carried out by optometrists

using various standardised eye charts and tests. See Chapter 4 for more details.

1.2.2 What Adapts

A question we can then ask is what should adapt to users? Since this work is

focused on visual perception that which adapts has to be visible, whether this

is through it emitting or reflecting light-waves.

In the immediate term we know that we can adapt what appears on existing

displays, particularly displays involving graphical designs. To constrain the

broadness of the research question we limit the application of the research to

graphical designs within the domain of Human-Computer Interaction, pre-

dominately to Information Visualisations.

In the longer term as emerging research in technology, materials, robotics and

nanotechnology indicate we can expect a future where the physical world can

become real-time adaptable. That is, light sources and reflective surfaces won’t
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only be traditional computer displays, whether large wall sized or small hand-

held displays. Exactly how and whether these technologies will work raises

many wide open research questions [69]. For instance there are now confer-

ences focused on Mass Customisation and Product Personalisation [46]. There

are also research tools enabling researchers to experiment with algorithms to

control programmable matter composed of virtual miniature robotic swarms

[98, 49] and catoms [67]. Sample experiments include experimental techniques

for enabling the swarms to self-organise into virtual physical objects such as

cups and saucers.

As people become more technologically literate we can expect them to try to

do more with technology (technology as an enabler), e.g. many people create

websites with tools that simplify the problem of creating websites. As more

people begin to design complex interactive interfaces and information visu-

alisations [26, 86] we need to help them design the ”best” visualisations pos-

sible. The techniques developed during the course of this research can be used

as part of automated techniques for aiding designers in adapting and improv-

ing their visual Human-Computer Interaction and Information Visualisation

design work.

1.3 Application & Design Scenarios

By having predictors of the effects of spatial perception and colour perception

we can begin thinking about and creating the following new applications and

interaction innovations.
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1.3.1 Self-Adapting Signage

Possible design scenarios include signage that automatically adapts what is

shown on the display depending on the location of the signage. For example

place a self-adapting sign in a hospital corridor, then input average length of

corridor and input average age profile of the people who would be looking at

the sign. Then send the sign a design to display and let the sign determine the

appropriate size and contrast to display the design at.

The design sent to the sign could be loosely defined so the self-adapting sign

could determine the optimal layout for the design. Rather than explicitly stat-

ing that the text font needs to be 50px high and a picture needs to be 1000 by

500px the design could have guidelines such as ”Text message A is most im-

portant and must be shown, picture B is reasonably important and if shown

needs to maintain a size relationship of 1:0.75 to the size of text A”.

1.3.2 Visual Popout Paint For Car Safety

A more futuristic design scenario is where the paint on cars automatically ad-

apts to improve drivers ability to see the cars. Imagine cars coordinate an

ad-hoc dynamic self-organising network where they swap information about

drivers visual acuity and colour perception. As a driver moves behind a dif-

ferent car the car in front has a model of the following driver’s visual acuity

and colour perception. Then the leading car has its paint job shift colour and

texture to make it easier for the following driver to spot and make judgements

about the distance between the cars.

These self-repainting cars could also have other smart algorithms where when

they pass a school for young children they further adapt their paint jobs so

the cars visually pop out for the school children. Ideally improving road and

traffic safety around the school.
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Figure 1.4: An example of an audience aware self-adapting advert from Am-
nesty International. The couple in the advert appear happy when directly
looked at, but appear to engage in violence when not directly looked at.

1.3.3 Audience Aware Presentations

More mundane but a potentially very useful immediate application of the

research is mentioned in Section 1.4.3. Tools that help people improve the

legibility of slideshows and conference presentations. We have all experi-

enced presentations that are difficult to see and read. Presentations could be

measured and adapted to suit average attendee age, display size and expected

range of viewer distances.

Shown in Figure 1.4 is an example of an audience aware self-adapting advert

from Amnesty International. When the advert is directly looked at the couple

in the advert appear happy, but when not directly looked at the couple appear

to engage in violence.
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1.4 Approach: Model, Predict & Adapt

Succinctly put the approach taken is to model, predict and adapt. To achieve

our aim of non-subjectively evaluating an interface or visualisation we require

metrics capable of making predictions about how easy or difficult designs are

to see.

These metrics must consistently agree with human judgements. That is, they

should be capable of saying which of two designs are easier to see, or because

of individual differences in colour perception the metrics should tell us to what

degree colour confusions could arise. For example, this can indicate whether a

colourful interface appears perceptual different between perceivers who have

some form of colour blindness.

1.4.1 Model

In order to develop the metrics we model the perception of colour and the

perception of visual detail. The HVS is a highly complex structure about which

many ambiguities remain; so in creating our models we have to decide what

is feasible to model (see Section 2.3). To this end we create models focused

on low-level vision. Low-level vision occurs in the early stage of the HVS,

predominately due to the physiological structure of the eye. What we model

and how we model is covered in-depth in Chapter 3.

1.4.2 Predict

Once we have models we can use them to make predictions about visual inter-

faces and designs. We look at two kinds of predictions. The first kind of pre-

diction is a measurement of the degree of change in a design due to changes

in spatial acuity perception and colour perception. We are referring to this
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measure as perceptual stability and defining it as a measure of how stable or un-

stable a visual design or image is due to differences in a perceiver’s (spatial or colour)

perception.

The perceptual stability measure enables us to do a number of interrelated

things. Firstly, compare the perceptual stability of a range of potential designs

and make a decision about which is best, i.e. most perceptually stable.

Secondly, predict the impact of changes in perceivers eye function on how

easy or difficult something is to see. An example of this is where normal age

related differences in visual acuity, or the effect of variations in viewer distance

on visual acuity, lead to differences in the experience of seeing a design. The

further away the viewer is the less visual detail seen, and the older the viewer

is typically less visual detail is seen.

Building on our first predictor, perceptual stability, we then develop a second

metric that is designed to identify the location of changes. This helps us under-

stand what parts of a design are most or least perceptually stable. By know-

ing this a designer or automated graphical layout technique can decide to put

lower priority information in locations that may be more difficult to see. An-

other benefit is that by testing the perceptual stability of each sub-part of a

design we can ensure that all parts of the design meet certain minimum per-

ceptual stabilities. Taking a single measure of perceptual stability for a whole

design is informative but it may miss local minimas and maximas.

For the purposes of this thesis the second predictor is referred to as Location of

Perceptual Stability (LocPERS), and the first predictor is referred to as Perceptual

Stability (PERS). The predictors and how they function is elaborated upon in

Chapter 4 and Chapter 6.
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1.4.3 Adapt

Working predictors can be used in automated graphical design techniques to

generate improved designs. These adaptions can be carried out to cater for

individual differences in eye function, or different contexts of use for informa-

tion visualisations and interfaces.

For example one could imagine the adaption techniques built into a slide show

presentation tool, such as PowerPoint or KeyNote. The adaptions that occur

can be based on the audience’s average age, from which we know the expected

normal age-related visual acuity. By knowing normal visual acuity we can

used the predictors to test variations of a set of slides and then make graphical

alteration suggestions based on how the predictors rate the slides.

Within this work we demonstrate evaluations and adaptions of text and fonts

styles (see Section 8.3.1), network graphs (see Section 8.3.2), and pseudocol-

ouring of scientific visualisations (see Section 8.4.1). Refer to Chapter 8 for

more details on the adaptions.

1.5 Hypothesis

The core hypothesis of this thesis is that models of human vision integrated

with image quality predictors are able to simulate and agree with human

judgements about the legibility of visual designs. Legibility is a measure of

how easy or hard a design is to see.

In order to test the hypothesis a number of assumptions and constraints are

made. Listed in Table 1.1 in the Refinements column are the top level con-

traints, while the nature of and basis for the constraints are discussed in

Chapter 2 and Chapter 3.

The following top level assumptions are made:
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Table 1.1: Refinements of the question ”What do people see in a design?”

Facet Refinement

What Computationally driven visual designs.

People Individual differences in low-level vision.

See Spatial Perception (primarily spatial visual acuity),
Colour Perception.

Design HCI focused on Information Visualisations.

• the current state of the art techniques from vision science and colour the-

ory are sufficiently developed for application to HCI research problems,

• we do not require semantic knowledge about the analysed images (see

Section 3.4.2), i.e. we do not have to recognise and compare shapes or

features in an analysed image to develop techniques that agree with hu-

man judgements of legibility,

• point / pixel based measures of image quality are effective as a basis for

techniques to measure a visual design’s legibility (see Section 3.6.6 and

Section 3.4).

1.6 Contributions

In the previous the sections our motivating question is ”What do people see in

a design?”. Further refinements are outlined in Table 1.1. The core contribu-

tions of this thesis are techniques for modelling and evaluating the effects of

spatial and colour perception on computationally driven designs, along with

demonstrations of how the predictors can be used to adapt designs to suit in-

dividual eye function.

13



1.6.1 Simplified Models Of Physiological Eye Function For

HCI

The first core contribution of the work are simplified models of eye function for

HCI. Rather than attempting to develop or utilise research-in-progress models

with high biologically fidelity [27] we constructed and tested simplified math-

ematical models. Unlike research in Vision Science here we focus in on the

effects of seeing designs, rather than the process of seeing itself.

1.6.2 Degree And Location Of Perceptual Stability Due To

Spatial Perception

In Section 1.4.2 we introduced our definition of Perceptual Stability, and in

Section 2.1 we refine what is meant by stable and unstable. Another core con-

tribution of this work is the development of metrics based on the criteria of the

Perceptual Stability definition.

For Spatial Perception we developed metrics for measuring Perceptual Sta-

bility. These metrics consist of a measure of the degree of change a design

perceptually undergoes when subject to varying amounts of normal optical

aberrations.

1.6.3 Degree And Location Of Perceptual Stability Due To

Colour Perception

Similarly with colour perception we create metrics that can measure the degree

of perceptual change a design undergoes when viewed by an individual with

varying colour perception. A related contribution is a technique for helping

identify the locations in a design that are subject to perceptual change.
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1.6.4 Optometry Models Of Individual Eye Function Integ-

rated With Perception

When creating the models and predictors of eye function we design the models

such that they can be adapted to model differences in physiological function.

The approaches taken are informed by knowledge of optometry and eye func-

tion, specifically wavefront models for modelling optical aberrations in the

human eye.

An unexpected optometry contribution from this work is presented in Section

5.5.5.1, where we experimental show how PERSva may have found a bias in

the Pelli-Robson eye chart. Within optometry a considerable amount of re-

search is focused on detecting and removing biases in eye charts.

1.6.5 Demonstrated Predictors Used To Adapt Information

Visualisations & Interfaces To Individual Eye Function

Further we demonstrate how the models and predictors we constructed can be

applied to improving the designs of interfaces and information visualisations.

Finally the predictions are shown to be useful for aiding the automatic adap-

tion of designs, so the designs are improved for spatial and colour perception.

1.7 Summary

In the following Chapters the question ”What can people see in a design?” is

examined in multiple related steps. Firstly, we develop models of eye function

for analysing visual designs. The models are then refined to cater for differ-

ences in individual eye function. Then the models are integrated with pre-

dictors to provide feedback on the perceptual stability of designs. After which
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the predictors are validated by testing them on a range of eye charts, and are

further examined by testing them on a range of information visualisations and

font styles. Then the predictors are used to adapt designs to individual eye

function, and the resulting adaptions are presented.

16



CHAPTER

TWO

Background

This chapter provides background discussion on techniques, research ques-

tions and approaches that are relevant to this thesis. We motivate the work

by discussing the relevancy of physiology for design, then relate that to an

individual differences approach to Human-Computer Interaction.

Following this is background material providing a brief introduction to mod-

elling and simulating facets of human vision, spatial perception and colour

perception, optical aberrations, wavefronts and using Zernike Polynomials to

model early stage human vision.

2.1 Physiology As A Design Context & Constraint

In the Chapter 1 it is observed that the dynamic nature of computation-

ally driven visual designs can make designing more challenging, but it also

presents a significant opportunity. We can adapt the designs to context.

One context we are already familiar with is the technical capabilities of dis-

plays, which place limits such as the maximum display resolution and present-

ation size on our designs. Other less well defined contexts include the envir-

onment the display is placed in, ambient lighting conditions and perceiver’s
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perceptual capabilities.

By better understanding and defining the contexts we can better under-

stand the potential design space from which we can create designs. Design-

ers already implicitly take contextual information into consideration when

designing. For example they do not design visualisations that use infra-red as

a colour. Not because infrared cannot be used to encode meaning but because

unaided human vision does not convert the infrared wavelengths of light into

a colour percept.

The central question of ”What do people see in a design?” has various con-

texts. Environmental factors and physical display contexts are essential but of

particular interest to us is the human context. What impact does human per-

ception have on the effectiveness and experience of seeing visual designs and

patterns? This is a very broad question that has been indirectly and directly

empirically examined numerous ways over the centuries; ranging from spe-

cific work on issues such as representational determinism [101, 100] to broader

studies of visual function [61] and vision science [63, 16].

There are many possible ways of looking at the human context in perception

of designs, for example taking a high level approach and starting at conscious

visual awareness. Rather than assuming that one aspect of the human visual

system is more important than another we ask the question: At what point

does the human perception become a relevant context? Or putting it another

way: When and at what point does the act of seeing first potentially alter a

design?

It is easy to think of a design as a finished thing, created by a designer and

broadcast to an audience. This is overly simplistic and implicitly uses the

physical world and original designer as the frame of reference for a design,

i.e. the units of measurement used to dictate the size of the fonts, the range of

light-waves reflected by different surfaces of the design, the limits and capab-
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ilities of the original designer’s visual system. A design has at least two frames

of reference. The second frame of reference is the perceiver and the biases they

introduce to the design. Bias can arise from many phenomena including but

not limited to cultural background, cognitive structures, relevant education

and prior expectations.

By asking at what point does the act of seeing first potentially alter a design

we are asking about biases introduced in perception due to the physiological

function of the human eye. How the eye transduces light-waves from stim-

ulus into sensation introduces biases. The physiological structure of the eye

determines eye function which leads to biases in perceptions, i.e. variations

on the norm of eye function can lead to differences in interpretation due to

differences in what is or is not seen in a design.

For example human eyes have peak sensitivities to different ranges of light-

waves. Light-waves that fall outside these ranges are ignored, therefore they

never become percepts. Furthermore within expected ranges different hu-

man eyes have somewhat varying peak sensitivities. These individual vari-

ations lead to differences in perceptions. A prime illustration of this is colour

blindness, which is most often caused by signification variations in light-wave

photoreceptor function and reduced photoreceptor sensitivities. Since spe-

cific ranges of light-waves become percepts those light-waves which cannot

be transduced cannot be used when creating designs.

Expanding on the introduction of perceptual stability in Section 1.4.2 we can

now refine what we mean by stable and unstable. A stable percept is one which

is subject to the least amount of perceived change in a design - due to how

the physiological structure and function of the eye and optical system biases

the perception. An unstable percept is one where the design is significantly

affected by how the low-level physiology and function of the eye biases the

perceptions.
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2.2 Human-Computer Interaction & Interaction

Design

Human-Computer Interaction (HCI), or Interaction Design for those coming

from a predominately design background, is the art and science of design-

ing technological artifacts for enhancing people’s abilities and enriching their

lives, both as individuals and as social creatures. HCI is a very diverse field

requiring experts from Art & Design, Cognitive & Vision Science, Materials

Science, Psychology, Physiology, Enthnography, Social Science, Artificial In-

telligence, Computer Science, Engineering, Mathematics and many other do-

mains. This diversity of knowledge and perspectives makes it simultaneously

challenging and deeply interesting.

There are many approaches to HCI [21, 68, 31] ranging from less empirical

design and art inspired creators to experimentalists who seek a science of HCI.

Whether the field of HCI has a scientific basis and what value there is in giving

it one remains an open question. Is it possible to develop a ”science” of HCI /

Interaction Design? Or is our scientific understanding of humans and human

groups still too under-developed?

The reality is that there is no choice about waiting for a science of HCI to fully

emerge and be developed. Society currently demands artifacts that enhance

human abilities - the need is there, it must be filled, and later on maybe under-

stood and refined. From this perspective aspects of designing may be viewed

as a heuristic first approximation of a science of HCI. What design does, how it

does it and what its limits are can inform us about design approaches that are

worth researching to establish whether they can be given a useful empirical

grounding.

Measurements and models of eye function give us empirical stepping stones
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to quantifying the impact of seeing on designs. For that reason in order to

answer the central question ”What do people see in a design?” we sought to

acquire and apply knowledge about human visual function from optometry

[61], ophthalmology [48, 52], optics [40] and vision science [63, 57].

2.2.1 Information Visualisation

Information Visualisation is concerned with the effective representation of

data in a visual form [20, 85]. Effective means the representation aids problem

solving and provides insights. In theory there are an infinite set of mappings

between data and what visual representation could be created, though a good

representation should not mislead.

A large body of information visualisation research exists that is concerned with

innovative graphical representations. Novel visual representations, or signi-

ficant variations on existing visualisations, are a staple source for conference

and journal publications. As research in the area has progressed there has

been a growing awareness and appreciation [22] for the need to understand

what does and does not make one visualisation more effective than another.

Cleveland’s [24] work on statistical graphs is one of the earlier examples of

examining what makes an information visualisation perceptually effective or

not. More recently Colin Ware has brought together and synopsized a range

of work from perceptually psychology and vision science that informs readers

about perception for the design of information visualisations [90].

Within vision science there is a pre-existing and growing body of work on how

the human visual system functions. By acquiring and using an understanding

of the vision science literature and related domains we may be able to place

aspects of Information Visualisation and HCI on a beneficial empirical basis.

By focusing in on Information Visualisations we can further refine what we
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are asking in this thesis. When we ask the question ”What do people see in

a design?” we are specifically asking it about Information Visualisations dis-

played on computationally driven displays.

2.2.2 Individual Differences Applied To HCI

Within HCI and Information Visualisation there has been an intermittently on-

going debate about the benefit or negative aspects of automatic interface ad-

aptions, interface consistency and catering to individual differences. In this

work we have taken it as a given that adaption to individual differences in

physiological function is an advantageous requirement for interfaces and visu-

alisations. By completely ignoring individual differences we would be overly

simplifying the problem of creating effective visual designs.

Elsewhere another danger in ignoring individual differences has been recog-

nised [20]. As information visualisations become more prevalent then more

people may be regularly and consistently mistakenly mislead due to percep-

tual differences. Consistently misleading people would mean that differences

between perceivers potentially turn from an inconvenience into a disability.

In 1996 Dillion and Watson [28] observed parallels between the development

of two branches of psychology going back 100+ years and the development

of HCI as a field. The two branches of psychology they wrote about were ex-

perimental psychology and differential psychology. Differential psychology is

concerned with the importance of differences between people, and does not ig-

nore outliers as anomalies or errors in experiments. Experimental psychology

is focused on the median.

They observed that HCI has tended to only focus on one branch, that of exper-

imental psychology. Individual differences and differential psychology was

not receiving the attention it deserved, especially where approximately 25%
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variation in task performance could be accounted for due to individual differ-

ences [28].

For this work moving away from a one sized fits all approach and accounting

for individual differences increases the complexity of knowing what users see

in designs. Any predictor of what users can see must be capable of modelling

different ways of seeing.

Modelling different ways of seeing ”at the point at which seeing first poten-

tially alters a design” (see Section 2.1) implies that individual physiological

differences in eye function need to be taken into consideration when building

our models and predictors. Fortunately, as initially discussed in Section 1.2

and covered in more depth in Chapter 3, Chapter 5 and Chapter 7, the meth-

odology for measuring and predicting the effects of individual differences in

eye function has been extensively studied in optometry and ophthalmology

research [4, 34, 29, 66, 92, 36, 37, 70, 61].

2.3 Individual Differences In Eye Function

People’s visual system vary in capabilities. In some cases these differences are

due to normal age related changes, such as decreasing visual acuity because of

lens within the eye becoming less flexible with age [48, 61]. Other times these

differences are brought on because of medical issues like diabetic retinopathy,

or age related macular degeneration [61, 63]. Variations may also be due to

genetic differences, for example colour blindness is most often due to genetic

mutations carried by X chromosomes in females [59].

Individual differences are not necessarily negative, for example increased cone

density and photoreceptor distribution may lead to better spatial visual acuity

[25]. There are specific norms of performance that we can expect people to

have but these norms are guidelines. For example standard observer human
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visual acuity is commonly rated as 20/20, which is the ability to accurately

read an eye chart with standardised size fonts and layout at 20 feet. It is not

unusual for people to have vision rated above 20/20, i.e. 25/20 where they can

accurately read the standised eye chart from 25 feet rather than the normal 20

feet.

There are numerous other ways individual differences in eye structure can lead

to performance differences in people’s ability to see, e.g. differences in flicker

sensitivities, differences in rates of light and dark adaption.

Since seeing is a complicated process the question ”What do people see in

a design?” is made more challenging when thinking about individual differ-

ences. For example when looking at a dynamic visualisation rapidly changing

in time how do we know the minimum time a block of colour must be dis-

played for our eyes to pickup that colour before we can change it to a separate

colour? Answering that question fully implies accounting for the effects and

interplay of stimulus size, perceptual distance between colours, intensity of

light, allowing for effects of nearby colours, super-acuities, and other factors.

In order to make the question ”What do people see in a design?” approachable

we have to place limits on what aspect of seeing we ask the question about.

Also desirable is that the parts of seeing we focus on are those that have large

impacts upon the perception of designs. For instance the effect of individual

differences in pupil size and pupil accommodation could have been examined

but we would not necessarily expect these differences to have significant im-

pacts on how people perceive designs.

As is briefly mentioned in Section 1.4.1 we focus on the effects of colour per-

ception and the effects of spatial perception on the perception of information

visualisations. Differences in colour perception are worth exploring because

colour is a basic building block of graphical designs, often denoting separa-

tion and grouping (see Figure 1.2). Spatial perception is also worth exploring
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Figure 2.1: Three examples of how people with different spatial visual acuities
could see the same eye test chart.

because the ability to see detail is a basic building block in graphical designs.

Previously others have examined aspects of colour perception on information

visualisation and user interfaces [58, 87, 89, 47, 42, 90], but the effect of visual

acuity has not received a great deal of attention [1].

Focusing on both spatial perception and colour perception enables us to seek

more general models and predictors of the effects of seeing on designs. Find-

ing commonalities between these two different facets of seeing could provide

a framework and insights into accounting for the impact of other aspects of

seeing upon designs.

2.3.1 Differences In Spatial Perception

For spatial perception we are concentrating on the effects of differences in

people’s ability to see detail in designs. Specifically on the effects of defocus

on the designs (see Figure 2.1). Defocus can be introduced by the following

interrelated variables:

• Person’s spatial visual acuity and spatial vision

• Distance person is perceiving stimuli from

Spatial perception is the term used to describe our ability to see details clearly,

consistently and accurately. Spatial perception differs between individuals
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depending on the interplay of a range of factors (see Figure 2.1). Contrib-

uting factors include the types and degrees of optical aberrations, refractive

errors experienced by light-waves as they traverse the eye’s optical system,

luminance of the stimuli, exposure duration and retinal location of receiving

photoreceptors [61].

Spatial visual acuity is the smallest spatial detail that can be visually detected, dis-

criminated, or identified [61]. Generally it is recognised that there are four kinds

of spatial visual acuity, i.e. Detection, Localisation, Resolution and Identific-

ation Acuities. In this work we are focused on Identification Acuity, as that

is widely used by optometrist and clinicians as a measure of individual dif-

ferences in spatial visual acuity [4, 34]. Identification acuity is also known to

be a good predictor of real world visual acuity and performance at life tasks

[62, 92].

Spatial vision is another important aspect of spatial perception, and it is well

established that it strongly influences the ability to see clearly [66, 62, 36]. Spa-

tial vision is the contrast sensitivity of the perceiver’s visual system. Contrast

sensitivity is the ability to distinguish between the relative luminance of stim-

uli. For example if there are two greyscale lines drawn side by side: What is

the minimum grey colour difference between the two lines for the lines to be

perceived as different shades of grey?

A person’s spatial visual acuity and spatial vision are reasonably stable though

they are known to change, usually decreasing, with age. Within an individual

spatial perception can differ significantly between each eye [71]. Measures

of spatial visual acuity do not necessarily correlate with measures of spatial

vision [39].

Significant differences in the ability to see detail can often be due to the per-

ceiver’s position relative to what they are looking at. That is, the visual angle

of the target visual stimulus varies as a function of distance, i.e. objects in the
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Figure 2.2: Examples of how different forms of colour blindness effect per-
ceived colours in a photograph. First image full colour original. Second
(protanope), third (deuteranope) and fourth (tritanope) images were gener-
ated with the Vischeck colour blindness simulator.

world are perceptually reduced in size as the viewer moves away from them.

Spatial visual acuity is covered in more depth in Section 2.4, while Section 3.5

of Chapter 3 provides more details about spatial vision modelling.

2.3.2 Differences In Color Perception

Colour perception and colour theory is a deeply studied field [59, 43]. Fun-

damental questions remain about how colour perception functions. Question

include how many colour categories exist between cultures [12, 50]? Why do

these categories exist [7, 97]? How are differences between colours calculated

[54, 76, 96]? What, if its even possible to create, is the optimal perceptually

uniform colour space [32, 53]?

In this work we are focusing on the effects of differences in colour perception.

Colour deficient vision (dyschromatopsia), or colour blindness as it is more

colloquially known, affects approximately 8 to 10% of males and 0.4% of fe-

males [43, 45]. Recent research indicates that a mild form of colour blindness

may occur in heterozygous females [13], i.e. mothers carry and pass colour

blindness on to their children, but it was thought they did not experience any

form of colour blindness.
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A common misconception about people with colour deficient vision (CDV)

[59] is that they only see in shades of gray, as though continuously seeing the

world as a black-and-white photograph. This is not the case, the vast majority

of people with CDV perceive a range of colours (see Figure 2.2).

The human eye consists of approximately 6 to 7 million cones and 120 million

rods [16, 63]. There are known to be three classes of cones, each of which

has a peak sensitivity to a different wavelength of light. One way of thinking

of these classes of cones is that they classify light into three frequency ranges

which correspond to the colours perceived as red, green and blue. Rods enable

humans to see at night and contribute little to colour vision. Rods are a lot

more sensitive to light and are somewhat overwhelmed in normal daylight.

Thus cones enable photopic (colour) vision and rods enable scotopic (low light)

vision.

Colour vision deficiencies are the result of a reduced light sensitivity of the

cones or a complete lack of one or more classes of the cones. When there is

a reduced sensitivity in one class of cones a person is said to have anomal-

ous trichromatic colour vision. When one class of cone is completely missing,

or non-functioning, a person has dichromatic vision. Cone monochromacy is

when only one class of cones are functioning, and if no cones are functioning

or present a person has achromatic vision.

Inherited variations in colour vision cannot currently be ‘fixed’. These vari-

ations have a physiological basis, which is most often associated with X chro-

mosome genes. Colour vision deficiencies can be acquired due to the normal

aging process and may also develop due to a range of illnesses, such as catar-

acts, diabetes and age-related macular degeneration.

Colour perception, colour spaces and colour deficient vision are covered in

more depth in Section 2.4.5 and Section 3.6 of Chapter 3.
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incoming light wave

outgoing light waves

Lens

Figure 2.3: Example of how a single point of light can deviate as it traverses an
optical system (lens).

2.4 Modelling Human Vision

This section provides a brief introduction to modelling and simulating facets

of human vision, spatial perception and colour perception, optical aberrations,

wavefronts and using Zernike Polynomials to model early stage human vision.

Many of the details here are elaborated upon and built upon in Chapter 3.

2.4.1 Optical Aberrations & Refractive Errors

In order to model individual differences in visual acuity, we model and sim-

ulate optical aberrations and refractive errors in individual human eyes (see

Section 3.5.1 and Section 3.7.1).

Optical aberrations occur due to light waves traversing the human eye un-

dergoing numerous alterations in paths taken; often deviating from an ideal

path only realisable in a perfect optical system (see Figure 2.3). These optical

aberrations and refractive errors occur in many sub-parts of the human eye.

Optical aberrations and refractive errors occur due to optical deflection, scat-

ter, interference, absorption, refraction, diffraction [52, 40]. For example the

cornea partially absorbs wavelengths of light commonly perceived as yellow,

while the lens and cornea take advantage of differences in optical densities to

create refractive indexes that focus incoming light waves.

Optical aberrations and refractive errors in one part of the eye may cancel or
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increase the affect of an aberration in another part of the eye. The sum total

of errors and aberrations affects the final light wavefront reaching the light re-

ceptors in back of the eye. Ideally the light waves are perfectly focused on the

fovea thereby forming a clear retinal image. Variations in fovea receptor func-

tions lead to variations in colour perception, which we take into consideration

later when modelling colour perception (see Section 3.6).

Differences in spatial visual acuity can be modelled as optical aberrations and

refractive errors in the optical system of the eye. One approach to simulating

differences in spatial visual acuity involves creating a high fidelity model of

each of the optical sub-systems of the human eye and then simulating light

waves traversing each optical sub-system in turn [6, 65, 57]. For example

CWhatUC simulates visual acuity with a high fidelity model of early stage

optical and biological processing of light waves in the cornea [35]. High fidel-

ity modelling of the human eye is a complex multi-stage process, which is an

open research area and computationally expensive [27, 1].

2.4.2 Point Spread Functions

In this work we use Point Spread Functions (PSF) extensively when modelling

spatial human vision, as detailed in Section 3.5.2 and Section 3.5.

First conceived and used at the turn of the last century to test the optical qual-

ity of lens used in telescopes. PSFs have since proven to be invaluable as

a measurement and descriptor of optical aberrations in the human eye and

other optical systems. In the mid-60s Shack-Hartmann developed the Shack-

Hartmann Wavefront Sensor which enabled the accurate measurement of the

PSF of a living human eye. This aberrometer technology, and more recent ad-

vances, are widely used by ophthalmologists when planning corneal ablations,

e.g. LASIK for corrective eye surgery [48].
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Figure 2.4: Example of ideal and aberrated wavefronts generated by light rays
traversing an optical system.

2.4.3 Wavefronts

As described in Section 2.4.1, modelling the human eye requires techniques

that describe how optical aberrations effect light travelling through individual

human eyes. Within Optometry and Ophthalmology wavefronts are used to

describe how light travelling through an optical system (the eye) is affected

by optical aberrations. Wavefronts encode the effects of optical aberrations on

light waves passing through an optical system.

Wavefronts can be considered as perpendicular to the direction light rays

travel in (see [48], Chapter 2). A wavefront effectively describes the proper-

ities of multiple rays of light at a point along the rays of light, as shown in

Figure 2.4.

For optical systems there is a perfect wavefront, that which occurs when no op-

tical aberrations are present. When optical aberrations are present the wave-

front is said to be aberrated. The Shack-Hartmann Wavefront Sensor men-

tioned in Section 2.4.2 records the wavefront aberrations of human eyes.

Wave aberration is defined as the difference between the actual aberrated wavefront

and the ideal or intended wavefront [48]. In order to mathematically describe

wavefront aberrations a set of basis functions called Zernike Polynomials are
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Figure 2.5: Pyramid of Zernike modes where each mode is an aberration (from
[72]).

employed. The basis functions are referred to as Zernike modes (see Section

2.4.4).

Zernike Polynomials mathematically describe the difference between a perfect

wavefront and an aberrated wavefront, as depicted in Figure 2.4.

2.4.4 Zernike Polynomials Overview

Optometrists and Ophthalmologists have adopted Zernike Polynomials to de-

scribe the aberrations of a wavefront [80, 81, 99, 48].

Zernike Polynomials resemble Fourier Transforms in that a complex wavefront

can be decomposed into a set of component Zernike modes, just as a Fourier

Transform can decompose a complex wave into a simplified set of sine and

cosine waves.

The wave aberration function Weye (Equation 2.1) can be decomposed into

Zernike modes Z
m
n (Equation 2.2). Each mode describes a specific optical ab-
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Equation 2.1: Wavefront aberration function as weighted sum of Zernike
Polynomials [82].

Weye(p, θ) =
�

n,m

C
m
n Z

m
n (p, θ) (2.1)

where

C
m
n is Zernike coefficient in microns µm

Z
m
n is double indexed Zernike mode (Equation 2.2)

and

p is normalized pupil radius
θ is azimuthal component from 0 to 2π radians

erration, such as the second-order modes defocus (Z0
2 ) and astigmatism (Z−2

2 ,

Z
2
2 ), which are shown in Figure 2.5. Third-order modes and up describe higher

order aberrations (HOA), also shown in Figure 2.5.

To obtain Weye an aberrometer measures the wavefront of an eye, alternatively

Weye can be created by summing multiple Zernike modes (Zm
n ) weighed with

Zernike coefficients (Cm
n ), as shown in Equation 2.1.

Zernike coefficients control how much each Zernike mode contributes to the

total wavefront aberration (Equation 2.3). Equal value Zernike coefficents do

not mean Zernike modes contribute equally to the degree of perceptual ab-

erration experienced, i.e. C
0
2 = 0.5 has more effect on the degree of optical

aberrrations in an eye than C
−5
5 = 0.5. Thibos et al., have demonstrated that

the “magnitude of aberration coefficients in any given individual tends to be smaller

for higher order modes than for lower order modes” [82], while also showing for a

sample of two hundred normal eyes that the “average wavefront variance falls

exponentially with radial order n” [84]. Order n is as shown in Figure 2.5.

Total aberration in a wavefront is described with the total wavefront RMS

(Root Mean Squared), as listed in Equation 2.3. When reading research in-

volving Zernike coefficients it is important to note that the terms RMS and
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Equation 2.2: Zernike Polynomial as defined in [81] with a double indexing
scheme. Generates Zernike modes as illustrated in Figure 2.5.

Z
m
n (p, θ) =






N
m
n R

|m|
n (p) cos mθ m ≥ 0

−N
m
n R

|m|
n (p) sin mθ m < 0

(2.2)

where

R
|m|
n (p) =

(n−|m|)/2�

s=0

(−1)s(n− s)!

s![0.5(n + |m| − s]![0.5(n− |m| − s)]!
p

n−2s

N
m
n =

�
2(n + 1)

1 + δm0

m = 0 then δm0 = 1
m �= 0 then δm0 = 0

and

p is normalized pupil radius
θ is azimuthal component from 0 to 2π radians

Equation 2.3: Total wavefront RMS (root mean squared).

RMS =

��

n,m

Cm
n

2
(2.3)

where

C
m
n is Zernike coefficient in microns µm
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the Zernike coefficient are sometimes used interchangeably, which can lead to

confusion.

2.4.4.1 Visual Acuity As A Function Of Zernike Coefficients

It has been demonstrated that visual acuity decreases as the value of RMS

(Equation 2.3) increases [84], that is as RMS increases our ability to see de-

creases. This correspondance between visual acuity and RMS also applies to

individual Zernike coefficients. That is, within a single Zernike mode increases

in the Zernike coefficient correspond to a decrease in visual acuity.

Optometrist commonly measure the visual acuity of a human perceiver using

a range of psychophysical tests, such as ETDRS eye charts (see Figure 3.5). The

tests generate LogMAR measures of a person’s visual acuity.

Drawing a relationship between LogMAR and amount of aberrations in a

wavefront is an ongoing focus of research [91, 83, 38, 23, 48]. For this thesis

the implications are that a LogMAR measure of visual acuity, which is easily

obtained with an eye chart, is not yet sufficient to re-create a simulated wave-

front aberration corresponding to a specific individual’s eye function. This has

implications for the capabilities of the visual acuity predictor, which is dis-

cussed in Chapter 4. Additionally it also impacts the experimentally design

for testing how well the predictor correlates with human judgements about

perceptual stability (see Chapter 5).

2.4.5 Modelling Colour Deficient Vision (CDV)

In the human eye the Long-, Medium- and Short-wave (LMS) colour recept-

ors create a three dimensional colour space. Variations in the senstivity and

presence of the colour receptors change the shape of each perceiver’s colour

space.
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Relating a normal observer’s LMS colour space to CDV reduced LMS colour

spaces was achieved by finding and measuring unilateral CDV perceiver’s col-

our experiences [15]. Unilateral colour perceivers are individuals with one eye

exhibiting normal trichromatic colour perception, and the other eye a variant

of CDV. By having unilateral observers identify perceptually equivalent col-

ours between each eye colour transforms could be created for converting from

a standard three dimensional colour space into CDV colour spaces.

For modelling CDV we use the simulation technique outlined in [87, 15] and

implemented in Vischeck [30], as this is one of the established approaches for

simulating CDV. Recent research based on molecular genetic analysis in con-

junction with colour identification testing suggests that the perception of col-

our during CDV is a more complex and dynamic process than captured in

existing models [88, 13].

2.5 Sensation & Perception In Vision

As has been presented in the previous sections the simple question ”What do

people see in a design?” involves many complex facets. One final facet which

is worth emphasising is that working with low-level vision requires dealing

with crossing the boundary between sensation and perception. A dictionary

definition of Sensation and Perception tells us:

• Sensation is a physical stimulation that occurs when something happens

to or comes in contact with the body.

• Perception is the conversion of a stimulus into that which an organism

becomes aware of.

The sensation and perception boundary makes many aspects of understand-

ing what people see in a design as an ”experience” a challenging question. It
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is an issue the constantly raises its head during analysis. Understanding what

we are analysing and what the underlying data means in both sensation and

perception terms is critical. Especially because of the non-linearities inherent

in sensation and perception, e.g. Steven’s Law and the relationship between

luminance (cd/m2) and perceived intensity, visual acuity decreasing as per-

ceiver approaches stimuli [41].

Colour is a prime example of a perceptual quality. It does not occur in the

physical world, wavelengths of light do. Our brain and visual system maps

different wavelengths of light into different colours. In theory there is a purely

arbitary relationship between the wavelengths of light and the colour precept.

Modelling the relationships between perceptions and sensations is particularly

relevant when dealing with colour. Perceptually acceptable colourspaces are

required for analysing the colour used in designs; whether colour is used to

generate details and textures or colour is used to denote categories. The en-

coding and colourspaces used for images stored on computers do not easily

translate to colour percepts. For instance when working with a triple RGB

(Red, Green, Blue) value for a pixel how do we know what colour percept

corresponds to a triple [50, 74, 7, 97, 12]?

2.6 Summary

In this Chapter the implications of a relationship between design, physiology

and individual differences is presented. The history of individual differences

in HCI and how its relates to research in psychology is touched upon.

Further details were then provided on the physiological aspects of individual

differences in visual function, with an elaboration on differences in spatial and

colour perception.
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CHAPTER

THREE

Modelling & Simulating Human

Vision

This chapter presents two models of eye function for generating simulated

retinal images. The models are used to simulate the effects of individual dif-

ferences in spatial and colour perception on visual designs.

How the models operate and the underlying basis for the models is elaborated

upon. With models and simulations of eye function we are able to simulate

how different eyes see a design.

3.1 Introduction

With models of visual function a visual design can be evaluated to establish

what parts of a design are easy or difficult to see, see Figure 3.1. For example

when viewing a visual logo from a long distance away, how small must the

visual features of the logo be before they are impossible to clearly and easily

see and interpret?

The Human Visual System (HVS) is a highly complex structure about which

many ambiguities remain; so in creating our models we had to decide what is
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Figure 3.1: To adapt a visual design models of visual function are employed.
The models integrate with predictors, which feed into adaption techniques for
improving the layout and presentation of visual designs.
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feasible to model. To this end we create models focused on low-level vision.

Low-level vision occurs in the early stage of the HVS, predominately due to

the physiological structure of the eye.

Also desirable is that the parts of seeing we focus on are those that have large

impacts upon the perception of designs. For instance the effect of individual

differences in pupil size and pupil accommodation could be examined but we

would not necessarily expect these differences to have significant impacts on

how people perceive designs.

As is briefly mentioned in Section 1.4.1 and discussed Section 2.3 we focus

on the effects of colour perception and the effects of spatial perception on the

perception of information visualisations. Differences in colour perception are

worth exploring because colour is a basic building block of graphical designs,

often denoting separation and grouping (see Figure 1.2). Spatial perception is

also worth exploring because the ability to see detail is a basic building block

in graphical designs.

3.2 Human Visual System Models

The aim here is to construct usable models that can be applied to simulating

low-level early stage vision. Such models are primarily concerned with the ef-

fects of optics and photoreceptors in the human eye. However, more complex

models that simulate aspects of vision such as neural defocus were outside the

scope of this thesis.

The decision to limit the scope allows for a tractable approach to the question

”What do people see in a design?”. While there is a large body of knowledge

about human vision there remains many unanswered questions and issues [63,

91, 3].
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In other domains such as research into video codecs there are numerous Hu-

man Visual System (HVS) metrics for automatically measuring the perceived

quality of video streams [95, 94]. Applications of metrics include improving

video encoding to remove visual features that are less important for human

vision.

The central approach in this thesis is that the same applied vision science ap-

proach can be taken to quantifying the perceived quality of interfaces and

information visualisations. Models based on knowledge of vision science

present a stepping stone to empirical quantifications of the experience of see-

ing designs.

3.2.1 Model Requirements

The required outcome for the models developed here are that they can be built

upon to create general purpose predictors of the perceptual stability of visual

interfaces and designs. Recall, Section 1.4.2 defines perceptual stability as:

A measure of how stable or unstable a visual design or image is due to

differences in a perceiver’s (spatial or colour) perception.

We define stable and unstable as:

A stable percept is one which is subject to the least amount of perceived

change in a design - due to how the physiological structure and function

of the eye and optical system biases the perception.

An unstable percept is one where the design is significantly affected by

how the low-level physiology and function of the eye biases the perception.

An example of a stable percept is the word ”Human” on the left hand side of

Figure 3.2; the right hand side shows an unstable percept. In Figure 3.2 the
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Figure 3.2: An example of a stable and unstable percept. From top to bottom
optical blur increases. The large version of Human is more perceptually stable
than the small version.

amount of optical blur increases from the top of the figure to the bottom of the

figure. As the amount of blur increases, the large version of the word ”Hu-

man” remains legible while the small version of ”Human” quickly becomes

impossible to read. As people with varying levels of visual acuity view the

large word the legibility of text is more stable between viewers. Differences in

normal visual acuity will not lead to significant differences in the perception of

the large text. When people view the small text the small differences in visual

acuity have a significant effect on the perception of the word.
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A further requirement of the models is that they correlate with human exper-

ience while also being usable for critiquing the perceptually induced changes

in designs.

However a high biological fidelity from the models is not a requirement. For

examples of research into high biologically models, CWhatUC [35] is an ex-

ample of simulating corneal visual acuity, while elsewhere researchers have

taken the approach of creating a photo accurate model of the human eye [27].

The purpose of our models is to help understand the effects of individual dif-

ferences in perception on designs, rather than help understand the interplay

of individual differences in vision.

Models that are constructed here should not be brittle, such that advances in

vision science do not quickly render them inapplicable. Vision science know-

ledge is imperfect hence attempting to construct and apply models that are

highly dependent on specific aspects of current known visual function could

quickly render such models unusable. To achieve models capable of remain-

ing applicable with advances in vision science the models are developed with

a modular multi-stage compartmentalised structure, as shown in Figure 3.8

and Figure 3.11.

A final essential requirement is that the models can be built upon to create

predictors capable of providing metrics of both degree of perceptual change

and location of perceptual change.

In summary our requirements for the models are that they:

• are capable of being built upon to generate perceptual stability predictors

• are usable for critiquing the perceptually induced changes in designs

• help understand the effects of individual differences in visual function

• are modular and so capable of adapting to increasing knowledge in vis-
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ion science

• integrate with predictors to provide degree and location measures of per-

ceptual change.

3.3 What Was Modeled

As was previously discussed in Section 2.3 the two aspects of vision that are

modeled in this thesis are individual differences in colour perception and spa-

tial perception, primarily spatial visual acuity.

3.3.1 Differences in Spatial Visual Acuity

If objects are too small or too cluttered they cannot properly be seen in a design.

Often when designing a visualisation or interface there is a trade off between

the amount of information we have to communicate versus the amount of dis-

play real-estate we have to communicate with.

By modelling spatial visual acuity and spatial perception we are enabling the

examination of the interplay of the size of graphical objects used in designs

and our experience of seeing them. For more background see Section 2.3.1.

3.3.2 Differences in Colour Perception

Colour is widely used in graphical designs [90], often to denote categorical dis-

tinctions and groupings within data, e.g. green signifies a node representing

a male, black signifies a node representing a female (see Figure 1.2). Colour is

also a fundamental building block of more complex visual components, such

as textures.

By modelling colour perception we are enabling the examination of the effects
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of a crucial low level unit of composition in graphical interfaces and visual

designs. For more background see Section 2.3.2.

3.4 How Did We Model

Our models are constructed to be feature independent and use by reference

analysis. Feature independent means the analysis techniques do not analyse

and require specific visual features in order to function correctly. This contrib-

utes to creating general purpose predictors, which are capable of analysing a

wide range of visual designs. While by reference analysis contributes to mak-

ing tractable the problem of measuring visual information loss due to optical

defocus. Further details are provided in Section 3.4.1 and Section 3.4.2.

3.4.1 Feature Independent

A model which is feature independent does not rely on complex visual features

for its analysis. For example the spread of a line has been used as a feature for

metrics to analyse, e.g. zero-crossings [57] (see Figure 3.3). Line spread is a

measure of how a visual line changes under visual transforms. In perceptual

video metrics it was used as an early measure of video quality.

3.4.1.1 Issues

Problems arise with line spread as a general purpose measure as it relies on the

visual features of the design. If a design does not consist of readily identifiable

lines then the line spread cannot be easily calculated.

Another more serious complication is that a metric such as line spread is too

simplistic. In this particular case the simplicity arises because multi-channel

theories of human vision suggest that there are different feature detectors de-
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Figure 3.3: Example of side by side feature dependent analysis of potential
designs for Information Visualisations. With a line spread metric it is possible
to analyse the design on the left but not the design on the right.

pendent on attributes including line rotation and line scale. A response by one

feature detector can be tuned to a line orientation of 60 degrees and may ig-

nore a line rotated at 50 degrees [63]. Questions then arise about whether line

spread matters more or less at different orientations and at varying scales in

human vision.

Feature dependent metrics can be fundamentally incorrect in unexpected and

potentially misleading ways when the psychophysical function of the HVS is

not adequately taken into consideration.

3.4.1.2 Design Space Constraint

When constructing the model we want a more generic solution that is less de-

pendent on specific features in visual designs. Another important motivation

for this is that the analysis techniques and models should not place constraints

on the design space that potential visual designs can be created from. Con-

straints are placed on the design space because feature based models limit the

side-by-side comparison of designs.

For an example of a potential constraint, attempt to use line spread to compare
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the two potential information visualisation designs as shown in Figure 3.3 -

when the designs are subject to blur. The two information visualisations in

Figure 3.3 cannot be measured and compared by using a line spread metric as

the heatmap based visualisation (right image) cannot be analysed using line

spread. Since they cannot be measured with the same metrics and models

they must be measured with different metrics, which raises further issues and

questions about the equivalence of various metrics and models [57].

3.4.2 By Reference

By reference analysis requires a starting “perfect” image for doing comparis-

ons against. That is, the model has a reference image against which to make

judgements about the effects of perception on designs. A comparison of the

reference image with the changed image occurs when generating the meas-

ures, where the updated image is changed due to differences in perception.

For example, version 1 of the letter chart show in Figure 3.5 is the starting

reference image. Version 2 is the same chart subject to optical blur, and version

3 is the chart subject to a greater degree of optical blur. For the perceptual

stability metric version 2 and version 3 are compared with version 1, and each

other, to quantify the perceptual stability for spatial perception.

3.4.2.1 Spatial Perception

In this work for measuring the effects of differences in spatial perception refer-

ence images are required for the analysis. Without reference images it is chal-

lenging to gauge what parts of an image are susceptible to changes in spatial

visual acuity.

For example consider the case of no-reference analysis of a single image that

has already undergone a significant amount of optical defocus. Without a ref-
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Figure 3.4: Examples of how colour blindness effects the perception of colour
in a photograph. First image full colour original. Second (protanope), third
(deuteranope) and fourth (tritanope) images were generated with the Vischeck
colour blindness simulator [30].

erence image it is difficult to accurately estimate which parts of the image have

experienced significant information loss.

Consider images experiencing blurring due to defocus, where information is

lost from the images. Without a reference image restoring some of the inform-

ation lost is possible but to do so extra information is required, such as the

Point Spread Function (PSF) (see Section 3.5.2) of the blurring operation. With

a PSF available the inverse of the PSF can be used to reconstruct some, though

not all, of the information lost. Adaptive optics employed in telescopes are an

example use of inverse PSFs.

3.4.2.2 Colour Perception

For colour perception a by reference image is required because during colour

perception information is lost from the designs when perceived by individuals

with colour deficient vision (see Section 2.3.2). If there is only an image show-

ing what a colour deficient perceiver would perceive it would be impossible

to re-colour the image back to what people without colour deficient vision see.

For example, Figure 3.4 shows a photograph as seen by normal colour per-

ceivers (the by reference image), also shown are corresponding versions of the
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photograph as perceived by individuals with colour deficient vision. Without

the by reference image we are unable to identify which visual features in the

photograph are effected by colour deficient vision.

Colour deficit vision reduces the dimensionality and shape of colour spaces,

e.g. a non-linear conversion of a 3 dimensional colour space to a 2 dimensional

colour space. Reconstructing the original 3 dimensional colour space, then

assigning pixels to original locations is not feasible without extra information.

Without knowing the colour usage in the original images it is impossible to

measure the degree or location of perceptual changes.

One could consider an alternate approach to by reference, which is the de-

velopment of an abstract representation of normal colour distribution in the

world [79, 7, 97]. In this case significant differences from the normal colour

distributions introduced by colour deficient vision may be detectable. This

theorised approach differs from by reference in that there is an external model

of colour distribution. Though in both cases extra information is present that

can be used to make comparisons and measures of the changed image. De-

veloping empirically valid external models of normal colour distributions is

a significant undertaking in itself, with relevant questions such as ”What are

normal colour distributions in visual designs versus in natural scenes?”

3.5 Modelling Spatial Visual Acuity

Spatial visual acuity is the smallest spatial detail that can be visually detected, discrim-

inated, or identified [61]. Building on the background to visual acuity presented

in Section 2.3.1 of Chapter 2 we now present how human visual acuity is mod-

elled.

To model visual acuity we use a physiologically valid means of deforming the

visual designs, which simulates how differences in visual acuity affect the per-
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Figure 3.5: Three simulated retinal image examples of how people with differ-
ent visual acuities could see the same eye chart.

ception of the designs (see Section 3.5.1). Physiologically validity is achieved

through using Zernike Polynomials that encode optical aberrations in the hu-

man eye (see Section 3.5.3.1). Point Spread Functions (PSF) are generated with

the Zernike Polynomials (see Section 3.5.2), then the PSFs are used as convo-

lution kernels to deform the visual designs and interfaces into how people see

the visual designs (see Section 3.5.4).

The spatial visual acuity model enables the creation of simulated retinal im-

ages, which depict how different perceivers see the same visual design. For

example Figure 3.5 shows a simulated retinal image of how three different

perceivers could see the same eye chart.

Figure 3.8 shows a flowchart depicting how the Zernike Polynomials and PSFs

integrate to generate the simulated retinal images.

3.5.1 Optical Aberrations & Refractive Errors

The approach we have adopted for modelling optical aberrations is to use ab-

erration maps of the optical system in the eye [48] (see Section 2.4.1). Ab-

erration maps describe how a wavefront of light deviates from an intended

wavefront. For example when measuring the optical quality of a lens we can

examine and record details about the physical material of the lens, alternat-

ively we can use an aberration map which records details about the effect the
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incoming light wave

outgoing light waves

Lens

Figure 3.6: Example of the point spread of a single point light source as it
travels through an optical system.

material of the lens has on how light travels through the lens.

Aberration maps offer the advantage of rapid computation, and within Oph-

thalmology and Optometry aberrations maps are a well established tool for

modelling and the focus of continuing research [48], e.g. used for LASIK pre-

operative surgery planning.

A significant advantage of aberration maps is that they enable modelling of

individual eye function, because aberrations maps can be generated by dir-

ectly measuring an individual’s eyes. We take advantage of individual maps

when modelling the effects of individual differences in spatial visual acuity

(see Section 2.4.4.1).

3.5.2 Aberration Maps As Point Spread Functions

Point Spread Functions (PSF) are a description of the point spread of a point

source of light after it travels through an optical system (see Figure 3.6). PSFs

describe the impluse response of an optical system, see Section 2.4.2 for back-

ground on PSFs.

Simulated retinal images are needed for the perceptual stability metric, i.e.

to compare the original visual design with the visual design as it would be

perceived by different viewers. A PSF can be used as a convolution kernel for

transforming an image, i.e. the style of transform applied to the original image
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Figure 3.7: Example of the effects of three different Zernike Mode PSFs applied
as convolution filters to a photograph of shoes on grass. First photograph is
the original version.

is encoded by the PSF (see Figure 3.7). PSFs that encode aberration maps of a

human eye enable the creation of simulated retinal images.

A 2D Gaussian can be used to create a blurring kernel PSF, where increases

in the Gaussian σ increases the amount of image blur. Some of our early re-

search used a 2D Gaussian to generate the image blurs [10], but in terms of eye

function the biological fidelity of the 2D Gaussian for simulating visual acuity

defocus is unknown.

A further limitation with using a 2D Gaussian is that it approximates only one

kind of optical aberration commonly found in human eyes, i.e. defocus. There

are other common optical aberrations such as Coma and Spherical Aberration,

which must be simulated otherwise the PSFs lack biologically validity. A lack

of biological validity limits the correctness of the simulated retinal images.

3.5.3 Biological Fidelity With Zernike Polynomials

To create biologically valid PSFs we use Zernike Polynomials to generate

wavefront aberration maps. Zernike wavefronts are then transformed into

PSFs. Converting a wavefront to a PSF is a standard technique in Ophthal-

mology and Optics, details of which can be found elsewhere [48].

Show in Figure 3.7 are three biologically valid simulated retinal images. Each

of the images shows how a photograph of shoes on grass (column 1) is visu-

ally transformed due to the optical aberrations of Coma (column 2), Spherical
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Aberration (column 3) and Quadrafoil (column 4).

3.5.3.1 Zernike Polynomials, Zernike Coefficients & RMS

Background on Zernike Polynomials, Zernike Coefficients and RMS with rel-

evant definitions and equations is provided in Section 2.4.4 and Section 2.4.3

of Chapter 2.

Using Zernike Polynomials to simulate human vision offers the ability to sim-

ulate different pupil sizes. For this thesis we standardise on a pupil dilation of

6 mm with monochromatic light at 555 nm wavelength, the approximate peak

of photopic sensitivity. Smaller pupil dilation sizes such as 3 mm in diameter

are less susceptible to HOA, while larger pupil sizes like 8 mm incur greater

effects from HOA. Transforming wavefronts measured at one pupil size and

wavelength to another pupil size and wavelength is possible [73, 18], which is

useful when performing comparative analysis of multiple eyes.

3.5.4 Simulating Retinal Images: Visual Acuity

With the Zernike Polynomials and PSFs we can create simulated retinal im-

ages, which take into consideration the effects of differences in visual acuity.

As shown in Figure 3.8, with examples in Figure 3.9, the retinal image simula-

tion technique works as follows:

1. Visual design is captured as a grayscale image. At this stage a colour

image is not used as simulating chromatic aberrations introduces another

level of complexity.

2. Zernike coefficients are set to create different types of wavefronts, which

simulate different types of visual aberrations. Multiple Zernike wave-

fronts Weye of aberrations in an eye may be generated.
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Capture visual as
a grayscale image

Set Zernike
coefficients

Generate combined
Zernike wavefront

Convert wavefront
to PSF

pupil radius = 6 mm
wavelength = 555 nm

Convolve PSF with
starting image

Simulated
Retinal Image

1.

2.

3.

4.

5.

Figure 3.8: Steps in algorithm for simulating visual acuity to generate a retinal
image of a visual design. See Section 3.5.3.1 for more details. Examples of
simulated retinal images are shown in Figure 3.9.
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Original Image Grayscale Version Of Image

Examples Of Simulated Retinal Images

Figure 3.9: Examples of visual acuity simulated retinal images generated from
a photograph of red shoes on green grass. Simulated retinal images are
within normal random visual acuity distribution (see Section 3.7.1). Differ-
ences between the simulated retinal images are often subtle.
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3. Combined wavefront Wtotal is generated, which is wavefront due to each

of the eye aberrations Weye.

4. The wavefront is converted to a PSF via a transform, which includes a

Fourier Transform [48].

5. PSF is used as a convolution kernel to transform input image into a sim-

ulated retinal image.

The simulated retinal image is used when generating the perceptual stability

measure for visual acuities. Within Ophthalmology and Optometry this is an

established approach for generating simulated retinal images [48, 6, 38, 23, 2,

91, 84]. Chapter 4 presents how the simulated retinal images are analysed to

establish the perceptual stability of the visual designs.

3.6 Modelling Colour Perception

In Section 2.3.2 of Chapter 2 we provide background on colour perception.

Building on that knowledge we now look at how colour perception is modeled

for this work.

Colour can be easily thought of as absolute, that is it exists independent of ob-

servers. This is not the case because colour is a perceptual quality; a mapping

of lightwaves from sensation to colour percepts (see Chapter 2).

When modelling colour perception in computing terms we need to under-

stand who or what is doing the observing, i.e. what creates the mapping

between a numerical description of a colour and a colour percept (see Sec-

tion 3.6.1)? Once this is clarified we can begin treating differences in colour

perception as differences in colour spaces (see Section 3.7.2). Understanding

what changes and what is perceptually equivalent between two or more N-
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dimensional colour spaces enables the creation of perceptual colour stability

metrics (see Chapter 7).

Colour deficient vision is an example of the effects of individual differences

in colour perception. With a model and simulations of colour perception we

evaluate the impact of individual differences in colour perception (see Section

3.6.7 and Chapter 6).

3.6.1 N-Dimensional Colour Spaces

When considering images in computing terms the values of image pixels in-

dicate the colour of a pixel. These pixel colour values are references within

N-dimensional colour spaces (see Figure 3.10). Locations within a particular

colour space dictate the colour of a pixel.

If the N-dimensional colour space is translated, transformed or altered then

the colour of a pixel typically changes. Pixels thereby ”look-up” colours in

colour spaces. Without a reference colour space, pixel values have no inherent

colour.

For example with a RGB triplet [136, 45, 213], where each triplet entry has a

range between 0 and 255. What colour does RGB[136, 45, 213] refer to? In

the case of the standard computer based RGB colour space: Purple. There is

no mathematical function that can generate correct colour descriptions from a

tristimulus without a reference colour space.

In this work we want to understand the effects of perceptual differences in

colour perception on graphical designs. Framing that based on the previous

paragraphs it is clear that we are asking about the effects of altered colour

spaces. Specifically we are asking whether pixel values still reference the same

perceptual colours, when colour spaces are altered due to differences in per-

ceiver’s visual systems.
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Figure 3.10: CIELAB 1976 L a* b* is a widely used and validated [32] percep-
tually uniform colour space. From [55].

3.6.2 Colour Appearance Models

Mark Fairchild in ”Color Appearance Models: CIECAM02 and Beyond” [33]

page 21 wrote a “Color Appearance Model provides mathematical formulae to trans-

form physical measurements of the stimulus and viewing environment into correlates

of perceptual attributes of colour (e.g., lightness, chroma, hue, etc.)”.

When testing whether colour tristimuli are perceptually equivalent or different

we required a colour appearance model which provides a colour space that:

• is perceptually uniform

• accounts for colour appearance phenomena.

3.6.3 Perceptually Uniform Colour Spaces

Perceptually uniform colour spaces are colour spaces where the distance

between colours is equivalent and linear. With this property we can use colour

difference measures of distance between two points to establish whether two
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or more colour tristimuli are perceptually close or distant. Section 3.6.5 covers

the ∆E colour difference measurements we use.

Perceptually uniformity can be achieved through mathematical techniques

that perform perceptually valid non-linear transforms of colour spaces before

measuring colour differences. Alternatively pre-created colours spaces that

are designed to exhibit perceptual uniformity may be used.

For this thesis the perceptually uniform colour space CIELAB 1976 was se-

lected and used (see Figure 3.10). This colour space is widely deployed in

research and commercial applications. CIELAB 1976 has been proven to per-

form well in daylight and near-daylight, even when compared with recently

developed colour spaces [32, 53].

CIELAB 1976 is designed to take into consideration chromatic adaption, which

is the automatic change in sensitivity of the LMS cones in the eye. CIELAB

1976 also models some of the non-linear multi-dimensional variability in the

eye in response to stimuli, such as is due to Steven’s Law (see Section 2.5) or

the Hunt Effect, e.g. perceived colourfulness is a non-linear function of lumin-

ance. Furthermore CIELAB 1976 is designed to account for the interdependen-

cies between lightness, chroma and hue, while also providing a simple colour

difference measure [33, 32, 44, 96].

The weak points of CIELAB 1976 include that its colour adaption transform

is overly simplistic, e.g. it does not account for temporal adaption for longer

exposure time to stimuli. Nor does it consider stimuli context, i.e. background

and surround effects. There is also no accounting for Luminance (L∗ is Light-

ness) and related effects, nor are Brightness and Colourfulness variables of the

CIELAB 1976 equations (see Equation 3.1).
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Equation 3.1: CIELAB 1976 equation for converting from CIE XYZ.
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ω > 0.008856

and

X , Y and Z are CIE XYZ tristimulus values
Xn, Yn and Zn are CIE XYZ tristimulus values of reference illuminant
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3.6.4 Colour-Appearance Phenomena

As has been noted CIELAB 1976 accounts for aspects of chromatic adaption,

which can lead to different percepts for the same LMS tristimuli. Significant

causes of variation in the perception of colour can be due to contextual effects,

such as environmental lighting. Often when the viewing conditions differ two

or more stimuli can have different colour-appearances, though the tristumli

are equivalent. The opposite is also true, tristimuli which are not metamers

can appear perceptually equivalent.

Chromatic adaption is one example of a colour-appearance phenomena. Nu-

merous other colour-appearance phenomena exist, such as Simultaneous Con-

trast, Colour Constancy and Hue Shift [63, 59, 90].

For this work we limit ourselves to CIELAB 1976 for taking account of colour-

appearance phenomena. This choice came from the realisation that some of the

more recent models, such as the more sophisticated CIECAM02, require the

use of manually set variables for calculation, i.e. viewing context, background

luminance, surrounding luminance, degree of adaption based on whether self-

luminous or illuminated object [33, 32]. Measuring these variables for inter-

faces and visual designs is not clear cut, and without rigorous validation for

HCI could introduce inconsistencies and incorrect results when measuring col-

our differences.

As it is CIELAB 1976, like most colour-appearance models, was created based

on a standard set of stimuli sizes, viewing conditions and standard observers.

The implications of this is that more complex stimuli, such as visual designs,

are on the edge of what CIELAB and CIECAM were originally designed for, i.e.

aiding the measurement of colour differences between large uniform blocks of

colour.

When using CIELAB 1976 we set Xn, Yn and Zn to the D60 reference illumin-
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Table 3.1: Tristimulus values for standard illuminants and observers. Used
in Equation 3.1 to account for the colour of light in the environment (Illumin-
ant) and the stimulus size (visual angle) of the area the colour light waves are
reflected or emitted from.

Illuminant Observer Xn Yn Zn

D60 2 ◦ 96.422 100.0 82.521

D60 10 ◦ 96.720 100.0 81.427

D65 2 ◦ 95.047 100.0 108.883

D65 10 ◦ 94.811 100.0 107.304

ant (see Table 3.1) for a stimulus size of 2 degrees (see Equation 3.1). A 2 de-

gree stimuli implies we expect visual objects to subtend a visual angle of less

than 2 degrees. For complex interfaces and visual designs this is a reasonable

assumption, as viewing distance from computer displays tends to be greater

than 1 foot. At this distance a 12pt letter on a 15 inch screen subtends less than

0.5 degrees.

3.6.5 Measuring Colour Differences

When distinguishing colours we implicitly make colour difference judge-

ments; whether two colours are the same, how they match and how they dif-

fer. Over the years a significant focus of empirical research in colour theory

has been on developing perceptually valid colour difference measures, such

as CIE Delta E 1976 [96] and CIEDE 2000 [54, 76].

Colour spaces and colour difference measures are often inter-related, that is a

colour difference measure is designed to work for a particular colour space and

the unique properties of that colour space. For example after the CIELAB 1976

colour space was designed, follow on research revealed that the region around

the colour blue is especially non-uniform [54], thereby making the Euclidean

CIE Delta E 1976 (∆E
∗
ab) measure less accurate when making colour difference
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measurements about blue and related colours.

For this work we use the CIEDE2000 Delta E (∆E
∗
00) colour difference measure

[54, 76, 53]. ∆E
∗
00 is a follow on to ∆E

∗
CMC (Color Measurement Committee

for the English Society of Dyers and Colourists) and CIE Delta E 1994 (∆E
∗
94).

∆E
∗
00 is designed as an improvement on existing colour difference measure-

ments, especially for dark and near neutral colours while also improving per-

formance for CIELAB blues and grays. Improvements were partially achieved

by introducing variables for lightness, chroma and hue - the ratios of which

can be set to take into consideration the fact that human vision is more sensit-

ive to changes in chroma and less sensitive to changes in lightness.

A ∆E
∗
00 of less than 1 is usually taken as indicating two tristimuli do not exhibit

a perceptual just noticeable difference (∆V ), while a ∆E
∗
00 greater than 6 is

often taken to mean two colours are significantly different.

When considering what colour difference measure to use we also explored us-

ing the ∆E
∗
ab and ∆E

∗
94 colour difference measures. Finally we settled on ∆E

∗
00,

as a result this is our colour difference measure of choice in this thesis. ∆E
∗
00

has been shown to be the most accurate colour difference measure to date [54],

though it is important to note ∆E
∗
00 is considered one of the more complex

colour differences measures to implement correctly [76]. There is also ongoing

debate and research into whether and under what circumstances ∆E
∗
00 per-

forms statistically better than ∆E
∗
94, ∆E

∗
CMC and ∆E

∗
ab.

3.6.6 Point / Pixel Measures

When considering the colour difference ∆E
∗
00 measurement, and techniques

in this thesis which use the measurement (see Chapter 6 and Equation 6.1), it

is important to note that the colour difference measure is point / pixel based.

That is when comparing whether two colour patches are the same or different,
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only point representations of the colour patches are used, which in the case of

computer images correspond to pixels.

Treating colour judgements as point based measures is the standard approach

but it does have inherent limitations. Point based measures do not fully ac-

count for all the facets of human colour perception. For example, it is known

that when one colour fully surrounds another colour, the central colour ap-

pears perceptually different depending on the surrounding colour [63, 59, 90].

With point based colour difference measures no account is taken for the effects

of surrounding and close by pixel colours.

While it would be desirable to use colour spaces and colour difference equa-

tions which are non-point based, the appropriate way of doing so and the

validity of the colour difference measures remains an open vision science and

colour theory question, e.g. CIECAM02 [33, 60] and S-CIELAB [102].

3.6.7 Generating Retinal Images: Colour Perception

Bringing together a perceptually valid colour model with techniques for sim-

ulating colour deficient vision enables the generation of simulated retinal im-

ages, which can be analysed to establish perceptual stability.

Figure 3.11 shows the steps in the algorithm for simulating colour perception

and generating a perceptually valid colour representation of a visual design:

1. An image of the visual design to be analysed is captured. Often these

images are encoded in the RGB colour space.

2. Pick which type of colour deficient vision to simulate, i.e. protanopia or

deuteranopia.

3. Simulate colour deficient vision by performing colour space conversions
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Capture visual design
as an RGB image

Convert image to
CIELAB 1976
colourspace

Set type of colour
deficient vision

Simulate colour
deficient vision

illuminant = D60
stimulus size = 2 degrees

Simulated
Retinal Image

1.

2.

3.

4.

Figure 3.11: Steps in algorithm for simulating colour perception to generate
perceptually valid colour representation of a visual design.
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of the RGB image. Section 3.7.2 covers the colour space conversion pro-

cess for colour deficient vision.

4. Transform the colour deficient image’s colour space from RGB to

CIELAB 1976, with a 2 degree standard observer and the D60 reference

illuminant.

In Chapter 6 measures of perceptual stability for colour perception are presen-

ted, which are based on the simulated retinal image and the CIELAB ∆E
∗
00

colour difference measure.

3.7 Individual Differences

Adapting the spatial visual acuity and colour perception models to individual

differences in eye function is achieved as follows.

For background on individual differences in spatial visual acuity see Section

2.3.1, while for details on individual differences in colour perception see Sec-

tion 2.3.2.

3.7.1 Visual Acuity

For visual acuity the Zernike Polynomial approach taken to modelling optical

aberrations is capable of accounting for individual differences in eye function

and structure.

When simulating individual differences in optical aberrations there is a need

to understand what Zernike modes are more prevalent, and within Zernike

modes what is the standard distribution of Zernike coefficients. By knowing

the prevalence and distribution we can construct Zernike wavefronts that are

physiologically valid for a normal population of human perceivers. That is,
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the constructed wavefronts are not outliers of normal eye function.

With normal eye function, as described in Section 2.4.4.1, it was noted that

visual acuity decreases as RMS increases, with the same inverse relationship

applying to individual Zernike modes. While in Section 2.4.4 it was noted that

Thibos et al., have established that Zernike coefficents tend to be smaller for

higher order modes [82], and wavefront variance falls exponentially with n

[84]. Further, an analysis of 2560 Shack-Hartmann aberrometry measurements

of normal healthy adult eyes, taken at 10 different laboratories [73], found that

Z
0
2 and Z

0
4 spherical aberration tend to be positive. Also especially useful is the

finding that Weye can be modelled as a multivariate, Gaussian, random variable

with known mean, variance and covariance [82]. Bringing these findings together

enables the creation of simulations of normal individual differences in Weye.

Table 3.2 shows the Zernike modes and Zernike coefficients we use and ex-

amine when simulating individual differences in normal visual acuity. As

is demonstrated in Chapter 4 and Chapter 5 the benefit of examing multiple

Zernike modes is that it enables more rigorious testing of the perceptual sta-

bility predictor for visual acuity.

With different Zernike modes we can simulate different types of eyes, with

different levels of visual acuity. This enables measuring how accurately the

visual acuity predictor makes judgements about the legibility of eye charts. By

testing how accurately the visual acuity predictor (see Chapter 4) works on

eye charts we establish whether its judgements are in agreement with human

vision judgements (see Chapter 5).

3.7.2 Colour Deficient Vision

As has been covered in Section 2.3.2 dyschromatopsia, better known as colour

blindness (Colour Deficient Vision - CDV), occurs when a person’s perceptual
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Table 3.2: Zernike coefficients for Zernike modes in normal population of hu-
man observers with 6 mm pupils. Values based on estimates from Figure 1 and
Figure 2 in [82], where Min and Max are within ±2 standard deviations from
the mean (95% probability of aberrations falling within Min and Max). Sigma
estimated with distribution fitting.

Mode Min µm Max µm Mean µ Sigma σ

Z
−1
1 −1.05 1.04 −0.005 0.603

Z
1
1 −0.73 0.81 0.040 0.445

Z
−2
2 −0.43 0.38 −0.025 0.234

Z
0
2 −0.41 1.09 0.340 0.433

Z
2
2 −0.68 0.35 −0.165 0.297

Z
−3
3 −0.25 0.22 −0.015 0.136

Z
−1
3 −0.36 0.30 −0.030 0.191

Z
1
3 −0.21 0.22 0.005 0.124

Z
3
3 −0.18 0.18 0.000 0.104

Z
−4
4 −0.08 0.06 −0.010 0.040

Z
−2
4 −0.05 0.07 0.010 0.035

Z
0
4 −0.10 0.29 0.095 0.113

Z
2
4 −0.11 0.10 −0.005 0.061

Z
4
4 −0.10 0.08 −0.010 0.052

experience of colour is significantly different from the normal.

Framing colour deficient vision in terms of N-dimensional colour spaces (see

Section 3.6.1) we note that differences in colour perception can be treated as

differences in colour spaces. In the case of CDV the CDV observer has a

reduced or altered colour space compared to the standard observer’s colour

space (see Section 2.4.5).

We use the CDV simulation technique outlined in [87, 15] and implemented in

Vischeck [30], as this is one of the established approaches for simulating CDV.

Though recent research based on molecular genetic analysis in conjunction

with colour identification testing suggests that the perception of colour during
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CDV is a more complex and dynamic process than captured in existing models

[88, 13].

With the ability to simulate different types of CDV, we can test the perceptual

stability colour perception measure (see Chapter 6) for a range of different eyes

and related colour spaces. By testing how accurately the colour perception pre-

dictor works for a range of different eyes we establish whether its judgements

are as expected for human vision (see Chapter 7).

3.8 Conclusions

In this chapter we presented models of spatial visual acuity and colour percep-

tion, while discussing how the models can be used for generating simulated

retinal images. Two algorithms were introduced to generate simulated retinal

images for visual acuity and colour perception.

The importance of colour theory and N-dimensional colours spaces for mod-

elling colour perception is highlighted, and the relevance and usefulness of

Zernike Polynomials for modelling visual acuity is emphasised. Individual

differences in visual function and how they are accounted for in the models

when generating the simulated retinal images is also presented.
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CHAPTER

FOUR

Visual Stability Predictor: Visual

Acuity

In this Chapter we introduce the visual acuity perceptual stability measure

PERSva. With PERSva we can evaluate a visual design to establish what parts

of the design are easy or difficult to see.

Also introduced is the STRIVE (SimulaTed Retinal Images with Visual En-

tropy) algorithm. STRIVE generates entropic measures of changes in a visual

design, due to optical aberrations in the eyes perceiving a design. PERSva is

built upon STRIVE.

4.1 Measuring Perceptual Stability

Chapter 3 describes the models developed for generating the simulated retinal

images, which depicit the effects individual differences in spatial visual acuity

and colour perception have on visual designs.

The following sections cover how the simulated retinal images and related

models are used for creating predictors of perceptual stability. Following this

are experiments to test whether the predictors make predictions consistent
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with human performance.

As previously discussed in Section 1.4.2 and Section 3.2.1 the core functionality

requirement for the predictors is that they provide a measure of how stable or

unstable a visual design or image is due to differences in a perceiver’s (spatial

or colour) perception.

We consider two facets of perceptual stability:

• Degree of perceptual change (PERS), i.e. how stable or unstable a visual

design is.

• Location of perceptual change (LocPERS), i.e. what areas in a visual

design are least or most stable.

PERS enables us to measure of number of interrelated things. Firstly, compare

the perceptual stability of a range of potential designs and make a decision

about which is best, i.e. which is most perceptually stable. Secondly, predict

the impact of changes in perceivers eye function on how easy or difficult some-

thing is to see. An example of this is normal age related differences in visual

acuity, which lead to differences in the experience of seeing a design. The fur-

ther away you are the less visual detail seen, and the older you are the less

visual detail seen.

Building on the PERS predictor we develop a second metric to identify the loc-

ation of changes (LocPERS). The goal of this measure is to help us understand

which parts of a design are most or least perceptually stable. By knowing this a

designer or automated graphical layout technique can decide to put lower pri-

ority information in locations that may be harder to see. Another benefit is that

by testing the perceptual stability of each sub-part of a design we can ensure

that all parts of the design maintain or achieve certain minimum perceptual

stabilities. Taking a single measure of perceptual stability for an entire design
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is informative but it may miss variations in the local minima’s and maxima’s

in the perceptual measure.

4.1.1 Predictions As Constraints: How Visually Rich Can A

Design Be?

When displaying a visual design on a graphical display it is trivial to establish

how many physical pixels are available and the range of colours each pixel can

display. This provides the upper bound on how much physical information

can be statically displayed on-screen.

In this instance the use of the term information is referring to the maximum

number of bits displayable on-screen at a single moment of time. This notion

applies equally to data visualisation.

We do not know exactly how small something should be for us to be able to

see it. This perspective is simplified because it is not taking into consideration

the perceptual effects of super-acuities and temporal integration.

In addition it is unknown what is the upper bound on how much information

can be displayed on-screen because of eye function. There is an interplay of

eye function with display device limits to create a different, and potentially

dynamic, upper bound on display ”information” density.

An ability to distinguish between information content on-screen at a purely

numerical level and the information content on-screen due to perceptual ef-

fects can lead to a perceptual information theory for visual displays.

4.1.2 Correlating With Human Performance

A prime requirement of the measures is that they make measurements consist-

ent with humans. For example a person viewing a design with 20/20 (stand-
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Equation 4.1: Non-Normalised Shannon Entropy (NNSE).

H(X)NonNorm = −
n�

i=1

si
2 log si

2 (4.1)

where

si is pixel colour value adjusted to range 0.0 to 1.0

and

0 log 0 = 0

ard) vision is able to state which part of an interface is easier to see than an-

other, and we can expect their observations to be consistent with other normal

observers. For example if the font used for text is smaller in one area than

another the smaller text will be harder to read; presuming text contrast and

colour is equivalent.

Measuring the degree to which one set of visual features is potentially harder

to see than another set is clearly desirable. A magnitude measure enables a

user to develop a sense of how much more difficult one part of a design is to see

than another. In addition it enables an automated layout / design technique

to explore a set of potential designs, and then rank the potential designs along

a scale from easiest to most difficult to see (see Chapter 8).

4.2 Stability Measure Of Spatial Visual Acuity

Spatial visual acuity is the smallest spatial detail that can be visually detected, discrim-

inated, or identified [61]. As differences in the perception of designs occur we

want to establish whether designs are perceptually changed. That is, whether

the visual designs perceptually appear to lose visual detail as visual acuity

decreases.
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Our method for measuring the degree of change in a visual design is based

on Non-Normalised Shannon Entropy (Equation 4.1), which is a measure of

information structure.

4.2.1 Perceptual Measure

When considering the eye and HVS as a communication system we hypothes-

ize that elements of Shannon’s Information Theory [75] can form the basis of a

potential measure.

In related fields, information theory for sensory coding has been researched

and applied to vision modelling and statistical image analysis [3]. We are tak-

ing a similar approach, in addition we wish to avoid approaches that involve

feature specific analysis (see Section 3.4.1). Such approaches have the potential

for undue reliance on image structure, e.g. zero-crossing / edge width of a line

increasing due to increasing optical aberrations (see Figure 4.2).

4.2.2 Perceptual Stability Algorithm: STRIVE

The goal of the STRIVE perceptual stability algorithm is to measure whether

the entropy of information changes, due to optical aberrations. As the aber-

rations increase or decrease in a visual design, due to optical aberrations and

individual differences, we examine whether the entropy of the information

in the images changes in a consistent, predictable and useful manner. Recall

we hypothesize that the entropy of a visual design changes predictably with

changes in optical aberrations. From [5] we find a justification for this assump-

tion, i.e. the continuous entropy of a wavefront PSF increases with increases

in wavefront aberrations.

Depicted in Figure 4.1 is the resultant algorithm for generating the changes in

entropy due to optical aberrations. For the purpose of this thesis the algorithm
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Capture visual design
as a grayscale image

Set initial Zernike
coefficients

Generate Simulated
Retinal Image

Measure entropy
of simulated image

Graph rate of
change of entropy

Increment value
of RMS

RMS < max

RMS = 0.01
increment = 0.01
max = 1.1

Figure 4.1: Steps in STRIVE (SimulaTed Retinal Images with Visual Entropy)
algorithm to generate entropic measure of change due to optical aberrations in
a visual design.

is referred to as STRIVE (SimulaTed Retinal Image with Visual Entropy). The

steps within STRIVE are:

1. Capture grayscale image of visual design to analyse.

2. Initial Zernike coefficients for contributing Zernike modes are set so there

are no optical aberrations. For rest of algorithm we use the RMS (see

Equation 2.3) of the Zernike coefficients.

3. Simulated retinal images are generated, based on algorithm shown in
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Figure 4.2: Simulated retinal images of a vertical bar. 1st row shows the effect
of Z

0
2 from 0.0 to 1.09 RMS, 2nd row shows the effect of Z

−1
3 from 0.0 to 0.36

RMS, and 3rd rows shows the effect of Z
4
4 from 0.0 to 0.11 RMS. Figure 4.5

shows related changes in Non-Normalised Shannon Entropy.

Figure 3.8 and discussed in Section 3.5.4.

4. An entropy measure of the simulated retinal image is made. In Section

4.2.3 the basis for the measure is elaborated upon.

5. To establish perceptual stability the entropy measure as a function of

RMS increasing is graphed and analysed. This is elaborated on in Sec-

tion 4.2.4.

4.2.3 Measuring Visual Change With Shannon Entropy

Our initial measure [10] was based on Shannon’s measure of entropy as given

in Equation 4.2, where the count of occurances of each unique pixel colour is a

discrete symbol xi. The change of entropy as a function of changes in optical
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Equation 4.2: Shannon’s measure of Entropy.

H(X) = −
n�

i=1

p(xi) log p(xi) (4.2)

where

i refers to a pixel
n is total number of pixels
xi is count of occurances of a pixel colour
p is probability of xi occuring out of all pixels n

aberrations was used for analysis, see Equation 4.3.

Using Equation 4.3 to analyse the effects of optical aberrations on natural im-

ages gave what seemed meaningful predictions. However problems arose

when using it to analyse images of interfaces, due to the general structure of

the images. Interfaces are often sparse images, e.g. Figure 4.3 Region 1 Ori-

ginal Image, while natural images tend to be complex, e.g. Figure 4.3 Region

2 Original Image. We refer to images as sparse where the count of unique

colours is low in the image, while complex images are where the number of

unique colours is large.

With complex images the entropy tends to decrease due to increasing optical

aberrations. However, with sparse images the entropy increases as the degree

of aberrations increases. Eventually, the entropy decreases but at a point which

depends on the starting image. Particularly ambiguous are sparse interface

images that are close to complex, as aberrations can quickly turn them into

Equation 4.3: Erroneous entropy predictor of perceptual stability.

PERSerr =
d(H(X))

d(RMS)
(4.3)

where

RMS is root mean squared for Zernike mode
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Original Image

Examples Of Effects Of Increasing Optical Blur

Figure 4.3: Original image is a simplified combined visual acuity eye chart.
On the left is the Sloan letter C, commonly used to measure visual acuity with
optotypes, and on the right is an area from a CSF eye chart. Examples of effects
of increasing optical blur on eye chart are shown, with blur increasing from
upper left to bottom right.
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Figure 4.4: Two graphs showing how increases in RMS for optical aberration
defocus Z

0
2 effect measures of Shannon Entropy and Non-Normalised Shan-

non Entropy. Entropy measures were generated using the algorithm STRIVE
shown in Figure 4.1. RMS went to a maximum of 1.09 for a pupil of 6 mm with
wavelength set to 555 nm. Original Image in Figure 4.3 is used to generate the
simulated retinal images, and is divided in half into left (Region 1) and right
(Region 2) regions.
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complex images. The direction of change of entropy over multiple aberrations

with sparse images is image content specific, which makes it challenging to

use for comparisons of the effect of aberrations on potential interface designs

and information visualisations.

An example of the behaviour of Shannon Entropy with increasing optical aber-

rations can be seen with the combined eye chart shown in Figure 4.3, Original

Image. On the left hand side of the chart is the Sloan font letter C [66], while

on the right is an area from a CSF eye chart [61]. When the eye chart is used

in the STRIVE algorithm with Shannon Entropy we can see how the entropy

changes in the top graph of Figure 4.4. For the letter C the Shannon Entropy

increases, while the Shannon Entropy of the CSF region decreases.

After examining why the Shannon Entropy in sparse images, e.g. letter C,

was increasing we found one of the contributing factors is because there is

an increase in the number of colours. That is, the entropy changes due to a

change in the number of unique colours (xi) in an image as well as a change

in the distribution p(xi) of the colours. For example in Figure 4.2 you can see

a black line that undergoes increasing amounts of optical aberrations from the

left to the right, with a corresponding increase in the number of shades of gray

in the line.

This also applies to complex images, though it is less obvious. The decreased

entropy of complex images is influenced by a reduction in the number of col-

ours as well as the distribution of the colours.

Shannon Entropy is overly sensitive to the change in colours in an image as

optical aberrations increase. When an image has lost a lot of visual detail Shan-

non Entropy measures can still change quickly due to increases or decreases in

the number of colours, even when visual structure is changing slowly.

More details on our initial use of Shannon Entropy, along with a normalised
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Figure 4.5: Shown is the increase in Non-Normalised Shannon Entropy of the
simulated retinal images with increasing RMS values for optical aberrations
Z

0
2 , Z

−1
3 and Z

4
4 . Pre-scaled RMS values were selected from Table 3.2. Simu-

lated retinal images are shown in Figure 4.2.

variant of Shannon Entropy to control for increases or decreases in the number

of colours can be found in [10]. In that earlier work Gaussian 2D functions

were used to generate the aberration PSFs.

4.2.4 Measuring Visual Change With Non-Normalised

Shannon Entropy

Finding that measures of Shannon Entropy as a function of RMS are overly

sensitive to colour occurance lead us to examine other entropy measures,

which could be used as building blocks for the perceptual stability measure.

Equation 4.1 is Non-Normalised Shannon Entropy (NNSE), which is the en-
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Figure 4.6: Each STRIVE curve set of entropy values are independently nor-
malised to range from 0.0 to 1.0. Shown is the increase in Non-Normalised
Shannon Entropy of the simulated retinal images with increasing RMS values
for optical aberrations Z

0
2 , Z

−1
3 and Z

4
4 . Pre-scaled RMS values were selected

from Table 3.2. Simulated retinal images are shown in Figure 4.2.

tropy measure that we found to be effective for the perceptual stability meas-

ure. Shown in the bottom graph of Figure 4.4 is the result when the combined

Sloan C and CSF eye chart (see Figure 4.2) are subjected to the STRIVE al-

gorithm using Non-Normalised Shannon Entropy for step 4. In Figure 4.4 the

bottom graph shows how Region 1 continues to change for longer, that is as the

degree of optical aberration increases the letter C continues to visually change,

while Region 2 initially changes for the first 3rd of increases in RMS and then

changes very little with continued increases in optical aberrations. Clearly, Re-

gion 2 loses a lot of visual detail when subjected to a lower amount of optical

aberrations than Region 1.
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From the graph in Figure 4.5 we see that STRIVE with NNSE can also be used

to make predictions with regards to comparisons between different Zernike

modes. For the simulated retinal images of the vertical bar shown in Figure

4.2 and the maximum RMS values based on Zernike coefficients from Table

3.2; the graph indicates that the vertical bar does sustain continuous change as

the RMS values and related optical aberrations increase to maximum.

Furthermore Zernike mode Z
0
2 has a steeper slope than Z

−1
3 , which has a

steeper slope than Z
4
4 (see Figure 4.6). The steepness of the slopes indicate

the amount of change the vertical bar undergoes with increases in RMS across

different Zernike modes. From the simulated retinal images in Figure 4.2 we

can see that slopes do correspond with degree of visual change.

Features in a visual design are more perceptually stable when the design con-

tinues changing with increasing amounts of aberrations. Looking at Figure 4.6

we see that Z
4
4 changes less than Z

−1
3 , which changes less than Z

0
2 . With these

three Zernike modes the change is continuous but the rate of change distin-

guishes the perceptually stability. Z
4
4 is most perceptually stable, followed by

Z
−1
3 and finally Z

0
2 .

A visual design which is capable of substaining continuous increases in optical

aberrations without losing all visual detail is more perceptually stable, i.e. in-

creases in RMS lead to increases in NNSE when a visual design is perceptually

stable. Framing it slightly differently, a visual design is more robust when it

is capable of experiencing high amounts of optical aberrations without losing

all visual details, where NNSE is functioning as a measure of visual detail. For

example in Figure 4.7 we can see that the STRIVE curve for Region 2 is initially

very steep then flattens, while Region 1 has a continuous change in NNSE over

the full range of RMS. Region 1 is not as perceptually stable as Region 2.

In the experiments in Chapter 5 these observations and initial results are ex-

perimentally tested and validated, by testing the performance of STRIVE with
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Figure 4.7: Simplified combined eye chart (see Figure 4.3) STRIVE curve slopes
independently normalised to range from 0.0 to 1.0. Maximum RMS value is
1.09 for Zernike mode Z

0
2 .

NNSE on a range of eye charts.

4.2.5 Calculating Perceptual Stability: Visual Acuity

The output of the STRIVE algorithm is a series of data points each of which is

an NNSE measurement. Together the data points describe a curve, which is

referred to as the STRIVE curve. Estimating perceptual stability is achieved by

analysing the STRIVE curves.

In this work we analyse the STRIVE curves by measuring the size of the area

under the STRIVE curve. Area under the STRIVE curve is used because of

the interpretations of the shape of the curve as listed in Table 4.1. A number

of these interpretations were identified in Section 4.2.4 and are experimentally
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Table 4.1: STRIVE Curve Interpretations

Slope Interpretation

Steep A steeper sloped STRIVE curve means more visual changes
are occuring due to increased optical aberrations caused by
increments in RMS values.

Flat A flatter STRIVE curve means little to no more significiant
visual changes are occuring.

Smooth A STRIVE curve which continues smoothly changing over
the full range of RMS values means a design is visually ro-
bust, in the sense that it does not lose all visual features
straight away.

Rough A roughly changing STRIVE curve means a visual design
looses different amounts of visual detail at different rates,
depending on the range of RMS, i.e. as optical aberra-
tions increase the visual design does not lose all visual de-
tail at the same rate. An important caveat is where the
NNSE range is very small, which is dealt with by the Noise
Threshold.

validated in Chapter 5.

Data fitting of the i NNSE data points is used to generate an nth degree poly-

nomial Si, which describes the STRIVE curve. Before data fitting the maximum

value of i is found, if this is less than the Noise Threshold (NT) all the values

of i in NNSE are set to 0. Then the NNSE data points are normalised to range

between 0.0 and 1.0, which makes different STRIVE curves comparable be-

cause often the NNSE minimum and maximum differ between visual designs.

A Noise Threshold is used because NNSE values with a tiny range create mis-

leadingly steep and bumpy STRIVE curves, which do not reflect visual change

due to optical aberrations. An example of when the Noise Threshold is im-

portant is where analysing a very slight visual gradient. Optical aberrations

do cause very slight changes in such a gradient, with resulting NNSE values

that when normalised between 0.0 and 1.0 generated a very rough and bumpy

STRIVE curve, i.e. the STRIVE curve can change radically between RMS in-
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Figure 4.8: PERSva perceptual stability score for Figure 4.3. A lower score
is better. Slopes of STRIVE curves shown in Figure 4.7, and range of NNSE
values graphed in bottom graph of Figure 4.4. Perceptual stability scores nor-
malised to maximum value of 1. Region 1: Letter C is more perceptually stable
than Region 2: CSF, when Z

0
2 is analysed for an RMS of 1.09.

creases because of a tiny range, rather than fundamental visual changes.

An integral of the Si polynomial is used to measure the area under a STRIVE

curve (Equation 4.4). The area under a curve is PERSva, the perceptual stabil-

ity measure for visual acuity measured by normalised area.

For example the bar chart in Figure 4.8 shows the perceptual stability of the

simplified combined visual acuity eye chart shown in Figure 4.3. Region 1:

Letter C is more perceptually stable than Region 2: CSF, that is Region 1 can

undergo more optical aberrations than Region 2.

A benefit of having a polynomial is it enables sensitivity analysis. By using

different RMS ranges with the polynomials the sensitivity of a visual design to
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Equation 4.4: Generate PERSva (perceptual stability for visual acuity) score by
measuring the normalised area under a STRIVE curve.

PERSva =






An max{NNSE
i
0} ≥ NT

0 max{NNSE
i
0} < NT

(4.4)

where

An =

� RMS

0

Si

and

Si is polynomial generated by data fitting i NNSE data points
NNSE data points are normalised to range 0.0 to 1.0
NT is Noise Threshold (see Section 4.2.5)

optical aberrations can be examined in detail, without requiring regeneration

of multiple simulated retinal images and Zernike polynomials.

4.3 Conclusions

In this chapter we have introduced STRIVE and PERSva for measuring the

perceptual stability of visual designs due differences in visual acuity. Also

compared is the use of Non-Normalised Shannon Entropy versus Shannon

Entropy as the basis for measuring visual change.

How these techniques work is demonstrated and explained, while the implic-

ations of and motivations for the Noise Threshold is discussed. With PERSva

we can evaluate a visual design to establish what parts of the design are easy

or difficult to see.
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CHAPTER

FIVE

Experimental Evaluation Of Visual

Acuity Predictor

In this Chapter STRIVE and PERSva are experimentally tested and validated

on eye charts, which demonstrates that they function as an effective predictor

of perceptual stability for visual acuity.

5.1 Experiments: Visual Acuity Stability

The criteria for success of the visual acuity predictions is that they should suc-

cessfully and consistently make predictions that correlate with human per-

formance. As mentioned in Section 4.1 of Chapter 4 the visual acuity predictor

should be capable of making predictions about:

• Degree of perceptual stability (PERS), i.e. how stable or unstable a visual

design is.

• Location of perceptual stability (LocPERS), i.e. what areas in a visual

design are least or most stable.
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When considering what experiments could be created to test the visual acuity

predictor there is the option of creating a range of interfaces and information

visualisations, then testing how well the predictor functions on them. While

this approach may initially seem valid, from a vision science perspective it

would be empirically very weak. Weakness arises because the design of the

information visualisations and interfaces used in an experiment could easily

and non-obviously radically impact the experimental outcomes.

5.2 Eye Charts As A Gold Standard Of Visual

Function

Using information visualisations and interfaces for the experiments would be

valid only where the perceptual characteristics of the visual designs are ex-

tremely well studied and the perceptual interactions of visual components are

clearly understood and established. With eye charts there have been numer-

ous studies of human performance which show subtle but important percep-

tual interactions between optotype layout, style, design, contrast, and other

visual features. These results have lead to a steady evolution of eye charts,

such that modern eye charts are empirically known to provide accurate pre-

dictions of visual acuity and can consistently produce repeatable measures of

eye function.

Within vision science, especially optometry, there is a large body of research

into human performance on eye charts. For the experiments we tested the

performance of the visual acuity predictor on eye charts. By doing so we were

testing whether the visual acuity predictor made predictions consistent with a

large body of well established human performance results.

Studies have also experimentally demonstrated that there is a correspondence
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between measures of a person’s visual acuity and their ability to perform life

tasks [93, 71]. As a person’s visual acuity decreases there is a steady decrease

in their ability to perform everyday tasks [92].

Measurements of spatial contrast sensitivity are also an important predictor of

a person’s ability to see visual detail. Individual differences in spatial contrast

sensitivity have been shown to affect people’s capabilities in everyday tasks,

such as seeing faces, road signs and other commonplace objects [62, 93].

5.3 ETDRS, Pelli-Robson & Campbell-Robson Eye

Charts

Figure 5.1: Example of ETDRS Eye Chart.

In our experiments we used three different kinds of eye charts. The ETDRS

eye chart (see Figure 5.1), the Pelli-Robson eye chart (see Figure 5.3) and the
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Figure 5.2: Example of Campbell-Robson Constrast Sensitivity Eye Chart.

Campbell-Robson Constrast Sensitivity eye chart (see Figure 5.2). All these

charts are used to measure facets of human visual acuity and have been de-

signed and tested by the optometry and vision science research communities

[61, 63].

Each chart has very different visual characteristics. By using such visually dif-

ferent charts we are establishing whether the visual acuity predictor is robust.

Robust in the sense that it is capable of making accurate predictions on differ-

ent kinds of visual designs.

5.3.1 ETDRS Eye Chart

Optometrists commonly measure visual acuity by taking psychophysical

measures of a person’s ability to identify and discriminate optotypes (see Fig-

ure 5.1 and Figure 5.3). Optotypes, such as letters, are presented on eye charts,

such as the Snellen, Landolt C, Bailey-Lovie [4] and ETDRS charts [34]. Op-

totype identification and mis-identification is used as a fundamental measure
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Figure 5.3: Example of Pelli-Robson Constrast Sensitivity Eye Chart [66].

of a person’s ability to visually perceive and recognize letters, shapes, patterns

and much more complex sights in their visual environments.

The suitability of optotype eye charts for measuring and predicting the effects

of visual acuity has been extensively studied with a large body of research lit-

erature dating back more than one hundred years. During that time period

subtle methodological discrepancies with measures obtained using the charts

have been experimentally proven [4] and rectified [34]. Discrepancies demon-

strated include problems with repeatedly obtaining the same visual acuity

measurement when a person’s visual acuity is measured multiple times on

different dates.
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Other problems include unexpectedly strong interactions between optotypes

due to optotype shapes and distances between the optotypes. Optotype in-

teractions can make visual acuity judgement comparisons between optotypes

and lines of optotypes non-linear.

With ETDRS eye charts people’s ability to visually identify optotypes de-

creases from good at the top of the chart to bad at the bottom of the chart,

in increments of rows.

5.3.2 Pelli-Robson Eye Chart

When eye charts are used to test a person’s visual acuity the contrast between

the optotypes and the eye chart background is extreme. Usually optotypes are

black and the background is white. Over the years it has been demonstrated

that contrast sensitivity plays a very important part in people’s abilities to re-

solve visual detail [19, 36].

Contrast sensitivity can be tested and measured by using a Pelli-Robson chart

(see Figure 5.3). In a Pelli-Robson chart [66] the contrast between the optotypes

and the background decreases as a function of optotype distance from the top

left of the chart. Optotypes are in contrast groups of 3, which means in Figure

5.3 the top left letters V R S share the same contrast, followed with a decreased

contrast the next optotype group K D R.

People’s ability to discern detail in the Pelli-Robson chart also functions as dis-

tance from the top left of the chart, with a granularity at the level of individual

optotype groups.
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5.3.3 Campbell-Robson Contrast Sensitivity (CRCS) Eye

Chart

A CRCS chart (see Figure 5.2) consists of a grey scale sinusoidal grating where

the sine wave frequency increases continuously from left to right and the con-

trast increases logarithmically from top to bottom. CRCS charts are used to

measure a person’s Contrast Sensitivity Function (CSF) [19].

In CRCS charts an individual’s visual acuity is plotted as an inverted U. The

area within the inverted U represents what a person can see when viewing the

chart at a fixed distance. The CSF changes position as a person’s visual acuity

changes, that is the inverted U moves to the right as a person’s ability to see

the Campbell-Robson chart decreases and to the left as a person’s ability to see

the chart increases. The area under the CSF curve represents the area of the

image a person can see reasonably clearly. For further details on CSFs consult

Norton et al [61].

5.4 Virtual Eyes

To test STRIVE and the related PERSva the Zernike coefficients in Table 3.2 are

used to generate 3700 random normal virtual eyes. Each of the virtual eyes is

then applied in step 2 of the STRIVE algorithm.

For the virtual eyes the Zernike coefficients are kept within 2 standard devi-

ations of the mean for a Gaussian distribution. There are indications that the

values of certain Zernike coefficients correlate [84]. Inter-Zernike mode correl-

ations are not maintained for the virtual eye generator as the underlying data

used to generate the correlations was unavailable.

The Zernike coefficients listed in Table 3.2 are based on an analysis of 200

normal eyes. The virtual eyes generated are of pupils dilated to 6 mm, for
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monochromatic light at 555 nm. As more research emerges on normal Zernikes

coefficients for different pupil sizes over different age groups the Zernike coef-

ficients in the virtual eye generator can be refined [73, 77, 17].

Between virtual eyes the RMS values differ based on the underlying Zernike

coefficients. One virtual eye can have a low RMS, while another virtual eye

can have a large RMS.

5.5 Experiments

The purpose of the experiments is to test whether PERSva with STRIVE gen-

erates results in agreement with human judgements for eye charts.

Here we describe four experiments broken into twelve sub-experiments where

the STRIVE algorithm and PERSva are tested on a range of visually distinct

and perceptually different eye charts. The experiments establish that STRIVE

and PERSva successfully measures the degree of perceptual change (PERS),

while also identifying the locations of perceptual change (LocPERS).

5.5.1 Overall Approach & Details

5.5.1.1 Approach

The overall structure of the experiments uses multiple virtual eyes to generate

multiple simulated retinal images. Next the STRIVE algorithm and PERSva

evaluate the perceptual stability of each simulated retinal image. Finally the

summed results of PERSva for all virtual eyes are compared with the expected

outcome for each eye chart.
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Figure 5.4: Orientation of Campbell-Robson eye chart during experiments.
The chart is shrunk for the figure, with the result that detail at the top of the
chart cannot be seen.

5.5.1.2 Details

Each of the three eye charts used are shown in Figure 5.1, Figure 5.2 and Figure

5.3, though Figure 5.2 had a different orientation. Eight bit TIFF grayscale

images of the charts are tested. The ETDRS chart is 433 by 388 pixels, and the

Pelli-Robson chart is 461 by 461 pixels. The Campbell-Robson chart is 612 by

792 orientated with the high frequency components at the top and intensity

increasing from left to right, as shown in Figure 5.4.

All the eye charts are processed with the STRIVE algorithm, and the resulting

STRIVE curves are measured with PERSva. Multiple virtual eyes are gener-

ated and used in step 2 of the STRIVE algorithm. The starting value of RMS

is set to 0.0. With each increment in RMS the underlying Zernike coefficients

are increased in fixed increments until the maximum value of RMS for each

virtual eye is reached. There are 20 increments between starting RMS value

and the maximum RMS for each virtual eye.
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Experiments are developed in and run with Matlab. Matlab code generates the

Zernike polynomials with Zernike coefficients. Then we convert the Zernike

wavefront to a PSF, after which the PSF is used as an image convolution kernel

on the eye charts. The PSF is encoded in a 40 by 40 matrix, within which the

minimum size of an optical aberration generated by a 0 µm Zernike coefficient

is 6 by 6.

As is standard with image convolutions the border of the images getting

covolved must be managed. For the experiments Figure 5.1 and Figure 5.3

have a white border half the width of the PSF matrix added, which stops the

eye charts becoming cropped during the convolution. With the Figure 5.2

Campbell-Robson eye chart the area analysed in the experiments is the area

that remains after the chart is cropped by a 20 pixel border.

5.5.2 Hypothesis

Both hypothesis are linked, the second hypothesis relies on the first. Identify-

ing the location of perceptual stability requires that the degree of perceptual

stability measure is accurate and reliable.

For Hypothesis 2 the accurate ranking of PERSva (Step 10 in Section 5.5.3) will

be correct when Hypothesis 1 holds true.

5.5.2.1 Hypothesis 1: Degree of Perceptual Stability (PER)

The first hypothesis is that the STRIVE algorithm with PERSva successfully

generates meaningful PERSva scores. Meaningful is defined as agreeing with

human judgements. Human judgements are known for eye charts, therefore

the PERSva scores should correctly score the perceptual stability of eye charts.
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5.5.2.2 Hypothesis 2: Location of Perceptual Stability (LocPER)

The second hypothesis is linked to the first, in that the STRIVE algorithm with

PERSva will successfully make predictions about the location of perceptual

stability on eye charts. Success is where the predictions are consistent with hu-

man judgements, that is regions of eye charts which people find perceptually

unstable would be the same as what STRIVE with PERSva finds perceptually

unstable.

5.5.3 Experiment Design

To test Hypothesis 2, and indirectly validate Hypothesis 1, the experiments are

structured as follows:

1. eye charts are used as stimuli

2. eye charts are divided into multiple regions

3. regions are equally sized within an eye chart

4. thousands of normal virtual eyes are randomly generated

5. each virtual eye is considered a subject of the experiment

6. every virtual eye is used to generate simulated retinal images

7. NNSE for each region in the simulated retinal images is measured

8. all the NNSE measures are used to generate STRIVE curves

9. each STRIVE curve is used to generate a perceptual stability score

PERSva

10. for each virtual eye the PERSva score for each region is ranked
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11. ranking starts at 1 for the most stable region in a stimuli, and increases in

units of 1 as instability increases

12. total rankings across all eyes is calculated for each stimuli, i.e. establish

what are the dominant region rankings are for each visual design

13. dominant region rankings are compared with human rankings to estab-

lish whether they concur.

5.5.3.1 Details

Each eye chart is independently used as a stimulus, and each eye chart is di-

vided into a range of regions depending on how the eye chart is used to test

human vision. Table 5.1 lists how each chart is broken into regions, along with

how human perceivers actually perceive each chart.

Three hundred independent virtual eyes are created for each part of each ex-

periment, i.e. 300 virtual eyes are created for the 2 by 2 region analysis of the

ETDRS chart and another 300 virtual eyes are created for the 2 by 1 region

analysis of the ETDRS chart. Pupil size is fixed at 6 mm.

It is important to note that the same 300 eyes are not used for each experiment

sub-part as using a wider range of virtual eyes means STRIVE and PERSva

are more robustly tested. In total 3600 virtual eyes are tested across the four

experiments.

Each virtual eye is exposed to the stimuli in multiple steps from 0 RMS to the

maximum RMS, with RMS increasing to the maximum in 20 equal increments.

At each exposure a simulated retinal image is generated, which represents how

a real eye with equivalent Zernike coefficients to the virtual eye will see the eye

chart.

Every simulated retinal image has its NNSE measured and all the NNSE meas-
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Table 5.1: List of experiments arranged by eye charts and region divisions
along with standard human visual acuity judgements. Human visual acuity
column lists the established human judgements of the eye charts, where ”Top
to bottom” means the perceptual stability of the eye chart decreases from the
top to the bottom of the chart.

Experiment Eye Chart Regions Human visual acuity

Exp 1, part 1 ETDRS 1 by 2 Top to bottom

Exp 1, part 2 ETDRS 1 by 3 Top to bottom

Exp 1, part 3 ETDRS 1 by 4 Top to bottom

Exp 2, part 1 Pelli-Robson 2 by 1 Left to right

Exp 2, part 2 Pelli-Robson 2 by 2 Left to right downwards

Exp 2, part 3 Pelli-Robson 2 by 3 Left to right downwards

Exp 3, part 1 Campbell-Robson 1 by 2 Bottom to top

Exp 3, part 2 Campbell-Robson 1 by 3 Bottom to top

Exp 3, part 3 Campbell-Robson 1 by 4 Bottom to top

Exp 4, part 1 Campbell-Robson 2 by 2 CSF curve on right

Exp 4, part 2 Campbell-Robson 3 by 3 CSF curve on right

Exp 4, part 3 Campbell-Robson 4 by 4 CSF curve on right
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ures are recorded as floating point numbers. The NNSE measures are used to

generate STRIVE curves, then the STRIVE curves are used to generate PERSva

measures.

Multiple STRIVE curves are generated for each virtual eye as each stimuli is

divided into regions. Dividing a stimuli into regions is undertaken to enable

comparison of the PERSva values of the regions. For example the ETDRS eye

chart are divided into 2 equal sized regions, which divides the chart into a top

half and a bottom half.

5.5.3.2 Expected Outcomes

If Hypothesis 2 and Hypotheis 1 prove true then the region rankings for each

stimuli should agree with the region rankings of human observers (see Table

5.1, Human visual acuity). We are not asking human subjects to generate re-

gions rankings, as this has already been extensively established in previous

literature [66, 19, 34, 61].

5.5.4 Experiment 1: PER & LocPER of ETDRS Eye Chart

The ETDRS eye chart is tested by dividing it into 1 by 2 regions, 1 by 3 regions

and 1 by 4 regions as shown in Figure 5.5.

Table 5.2 presents the results of the sub-parts of the experiment. PERSva ac-

curately predicts that the top of the eye chart is more perceptually stable due to

different visual acuities than the bottom, and correctly ranks the regions when

the chart is divided into a finer number of regions.

Figure 5.6, Figure 5.7 and Figure 5.8 show the results in visual form using

heatmaps. For illustrative purposes, the heatmaps overlay the eye charts - due

to scaling and cropping the alignment between the heatmaps and eye charts

does not exactly match that which occurred in the experiments. Equal col-
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Region D

Figure 5.5: Depiction showing how the ETDRS and Campbell-Robson eye
charts were divided into 1 by 2, 1 by 3 and 1 by 4 regions.

Table 5.2: Results of analysing the ETDRS eye chart for LocPER. A, B in Rank
means Region A is more perceptually stable than Region B (see Figure 5.6). %
Agreement is the percentage of simulated eyes per experiment that give the
same ranking.

Experiment Regions Rank: Most to Least Stable % Agreement

Exp 1, part 1 1 by 2 A, B 100

Exp 1, part 2 1 by 3 A, B, C 100

Exp 1, part 3 1 by 4 A, B, C, D 100

oured areas of the heatmap correspond to the regions the ETDRS eye chart are

divided into. The red text is the PERSva score for each region, which success-

fully enables the correct ranking of the regions.

Region division is not by optotype line, rather the eye chart is divided into

equal sized regions. When the eye chart is divided into 5 or more regions

the ranking for the regions change. This is to be expected as the content of

the regions can then include regions that are mostly white space and cropped

optotypes.
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Figure 5.6: Heatmap of ETDRS eye chart when divided into 1 by 2 regions.
Red text shows normalised PERSva scores.

Figure 5.7: Heatmap of ETDRS eye chart when divided into 1 by 3 regions.
Red text shows normalised PERSva scores.
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Figure 5.8: Heatmap of ETDRS eye chart when divided into 1 by 4 regions.
Red text shows normalised PERSva scores.

Region A Region B

Region A Region C

Region B Region D

Region A

Region B

Region C

Region D

Region E

Region F

Figure 5.9: 2 by 1, 2 by 2 and 2 by 3 regions the Pelli-Robson chart is divided
into to test for LocPER contrast sensitivity.
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Table 5.3: Averaged result of analysing the Pelli-Robson eye chart for LocPER.
When rankings are not separated by commas they are of equal rank. Rank-
ing is carried out based on average PERSva scores for each region. Average
PERSva scores are generated from PERSva region scores for each virtual eye.
Ranking for 2 by 1 regions had 100% agreement. Percentage agreement break-
down for 2 by 2 regions in Table 5.4, and 2 by 3 regions in Table 5.5.

Experiment Regions Rank: Most to Least Stable

Exp 2, part 1 2 by 1 A, B

Exp 2, part 2 2 by 2 A, C, B, D

Exp 2, part 3 2 by 3 A, D, E, B, C, F

5.5.5 Experiment 2: PER & LocPER of Pelli-Robson Eye Chart

As shown in Figure 5.9 the Pelli-Robson chart is tested by dividing it into 2 by

1, 2 by 2 and 2 by 3 regions. 2 regions across are used as there are 6 optotypes

per line, which are designed to test human vision by grouping optotypes into

sets of 3 optotypes sharing the same contrast [66].

Table 5.3 shows the results, with the corresponding heatmaps shown in Figure

5.10, Figure 5.11 and Figure 5.12. When the Campbell-Robson eye chart is di-

vided into 2 by 1 and 2 by 2 regions the results are as expected, i.e. perceptually

stability decreases from left to right going downwards.

When the eye chart is divided into 2 by 3 regions the results are correct going

from the top to the bottom of the chart, that is perceptual stability decreases

from the top to the bottom of the columns. When going from the left to the

right of the chart region A, D, C and F are correct, but regions E and B are

ranked in reverse order to the expected order. From the breakdown in Table

5.5 we can see that the correct ordering occurred 13% of the time, even though

the averaged result are reasonably accurate.

As the number of regions increases above 2 by 3 the rankings continue becom-

ing less ordered and conform less to human judgements. For 2 by 1 and 2 by
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Figure 5.10: Heatmap of Pelli-Robson eye chart when divided into 2 by 1 re-
gions. Red text shows normalised PERSva scores.

Figure 5.11: Heatmap of Pelli-Robson eye chart when divided into 2 by 2 re-
gions. Red text shows normalised PERSva scores.
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Figure 5.12: Heatmap of Pelli-Robson eye chart when divided into 2 by 3 re-
gions. Red text shows normalised PERSva scores.

Table 5.4: Breakdown of results of analysing the Pelli-Robson eye chart for
LocPER. Chart divided into 2 by 2 regions. 300 virtual eyes used. Rank number
ranges from 1 to 4 and regions A to D. When multiple regions share the same
rank they have the same rank value. A higher rank means a region is more
perceptually stable.

% Agreement A B C D

61 1 3 2 4

22 1 4 2 3

8 1 2 3 4

4 1 4 3 2

4 2 1 3 4

1 3 1 4 2
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Table 5.5: Breakdown of results of analysing the Pelli-Robson eye chart for
LocPER. Chart divided into 2 by 3 regions. 300 virtual eyes used. Rank number
ranges from 1 to 6 and regions A to F. When multiple regions share the same
rank they have the same rank value. A higher rank means a region is more
perceptually stable.

% Agreement A B C D E F

31 1 4 5 2 3 6

8 1 4 5 3 2 6

2 1 5 6 3 2 4

1 2 4 6 3 5 1

3 1 4 6 3 2 5

14 1 4 6 2 3 5

6 1 3 6 2 4 5

3 2 5 6 3 4 1

1 1 4 3 2 5 6

13 1 3 5 2 4 6

1 1 5 4 3 2 6

1 2 5 3 4 6 1

1 2 5 6 3 1 4

1 1 5 6 3 4 2

2 1 5 4 2 3 6

2 1 5 3 2 4 6

1 2 6 5 3 4 1

2 2 5 6 4 3 1

1 1 4 6 2 5 3

1 2 4 6 3 1 5

1 1 5 6 2 3 4

1 3 4 2 5 6 1

1 2 6 3 4 5 1

1 1 5 6 4 3 2

1 2 3 6 4 5 1
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2 regions the results are correct and the column ordering for 2 by 3 is correct.

These results, coupled with the bias found below, tell us that PERSva does

take contrast into consideration but is more sensitive to optotype shape rather

than optotype contrast.

5.5.5.1 Bias leading to 2 by 3 region E, B order

In order to establish why the results are not completely as expected for 2 by 3

regions let us examine the contribution of the optotype shape to the PERSva

scores. With the Pelli-Robson chart the optotype shape and contrast is var-

ied, though the design of the chart is meant to balance and thereby remove

the variation between optotypes groups due to optotype shapes, i.e. optotype

contrast should effect subject’s visual acuity judgments rather than shape.

To examine the contribution of optotype shape we set the contrast of all the

optotypes to be equal, then obtain a ranking for 100 virtual eyes of the first

four lines of the Pelli-Robson chart. Once this is complete we compute the

mean rank and standard deviation of the rank for each region.

Figure 5.13 shows the results, where we see region C and region G have ranks

that are separated by a value of 3.44 with low standard deviations. Making

them the widest separated regions.

These results tell us that independent of contrast the shape of the optotypes

are biasing the ranking towards region C having a lower ranking than region

G, which for the 2 by 3 region Pelli-Robson chart means region E is biased to

have a better ranking than region B.

One very interesting implication of the shape bias is whether the bias is due to

the nature of how STRIVE and PERSva work (possible), or whether there is a

bias in the Pelli-Robson chart itself? Unfortunately establishing whether there

is a bias in the chart is well outside the scope of this thesis.
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Region A

Region B

Region C

Region D

Region E

Region F

Region G

Region H

m: 6.83
std: 1.694

m: 3.34
std: 2.1092

m: 5.87
std: 1.3077

m: 3.1
std: 2.5839

m: 4.66
std: 1.1825

m: 5.86
std: 1.907

m: 2.43
std: 1.3428

m: 3.91
std: 1.6087

Figure 5.13: Results of first four lines of Pelli-Robson contrast chart, when di-
vided into 2 by 4 regions to test effect of optotype shape without contrast. M
is mean rank and std is the standard deviation.

5.5.6 Experiment 3: Row Regions PER & LocPER of

Campbell-Robson Eye Chart

For Experiment 3 the Campbell-Robson eye chart is orientated as shown in

Figure 5.4. Slight gradients are present in the Campbell-Robson eye chart so

the Noise Threshold is set to 10 (see Section 4.2.5). The chart is divided into

row regions as shown in Figure 5.5.

Table 5.7 lists the results, with heatmaps for the results in shown in Figure 5.14,

Figure 5.15 and Figure 5.16.

As can be seen in the heatmaps for regions 1 by 2 and 1 by 3 the results are as

expected, with the perceptual stability decreasing from the bottom to the top

of the chart. For regions 1 by 4 the results are correct for the top three rows,

but the fourth row (region D) has a higher PERSva value 0.553 than the third

row (region C) 0.503. This is in reverse order to the expected order.

When more than 4 rows are used the results do continue as expected for the

upper part of the chart, with CSF curves forming. As the number of rows

increase the size of each region decreases, with the effect that regions towards
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the bottom of the chart become composed of continuous gradients. The result

is that the region ranking for the bottom of the chart is dependent on the NT

for accurate ranking.

These results tell us that PERSva does make predictions as expected when

there are visual details, but it is open to improvement for continuous gradients.

5.5.6.1 Noise Threshold sensitivity of Region D gradient

Upon investigating the reason for the reverse ordering we found that the Noise

Threshold is very important for the correct classification of the bottom regions

in the Campbell-Robson eye chart.

This is because region D is predominately composed of a continuous gradient,

rather than multiple visual details. As the Noise Threshold value is increased

in increments the results converge on the expected, until they are ordered cor-

rectly when the Noise Threshold is set to 20. Listed in Table 5.6 are the changes

in PERSva values with increases in the Noise Threshold.

Region D exhibits the most sensitivity to NT changes due to the continuous

gradient. A continuous gradient leads to sudden changes in the underlying

PERSva NNSE values when the NNSE minimum and maximum cover a small

range. More details on NT are in Section 4.2.5.

One possible solution to this issue is to improve the STRIVE algorithm, such

that it detects when the rate of change of the STRIVE curve is due to a small

NNSE minimum and maximum range. If it is due to a small NNSE range then

automatically set an appropriate NT value.
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Table 5.6: Effect of increases in Noise Threshold on PERSva values for
Campbell-Robson eye chart divided into 1 by 4 regions. Once NT hits 20 the
results are as expected.

Noise Threshold Region A Region B Region C Region D

0 0.9992 0.746 0.5031 0.5804

10 0.9996 0.7463 0.5033 0.5535

20 0.9996 0.7463 0.5033 0.4998

30 0.9996 0.7463 0.4999 0.4535

40 0.9996 0.7463 0.4944 0.4145

50 0.9996 0.7463 0.4944 0.36

Table 5.7: Averaged result of analysing the Campbell-Robson eye chart for
LocPER when the eye chart is divided into rows. When rankings are not sep-
arated by commas they are of equal rank. Ranking is carried out based on
average PERSva scores for each region. Average PERSva scores are generated
from PERSva region scores for each virtual eye.

Experiment Regions Rank: Most to Least Stable Agreement

Exp 3, part 1 1 by 2 B, A 100%

Exp 3, part 2 1 by 3 C, B, A in Table 5.8

Exp 3, part 3 1 by 4 C, D, B, A in Table 5.9

Table 5.8: Breakdown of results of analysing the Campbell-Robson eye chart
for LocPER. Chart divided into 1 by 3 regions. 300 virtual eyes used. Rank
number ranges from 1 to 3 and regions A to C. When multiple regions share
the same rank they have the same rank value. A higher rank means a region is
more perceptually stable.

% Agreement A B C

18.333 3 1 2

81.000 3 2 1

0.667 2 1 3
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Figure 5.14: Heatmap of Campbell-Robson eye chart when divided into 1 by 2
regions. Red text shows normalised PERSva scores.

Figure 5.15: Heatmap of Campbell-Robson eye chart when divided into 1 by 3
regions. Red text shows normalised PERSva scores.
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Figure 5.16: Heatmap of Campbell-Robson eye chart when divided into 1 by 4
regions. Red text shows normalised PERSva scores.

Table 5.9: Breakdown of results of analysing the Campbell-Robson eye chart
for LocPER. Chart divided into 1 by 4 regions. 300 virtual eyes used. Rank
number ranges from 1 to 4 and regions A to D. When multiple regions share
the same rank they have the same rank value. A higher rank means a region is
more perceptually stable.

% Agreement A B C D

34.000 4 3 2 1

46.000 4 3 1 2

19.333 4 2 1 3

0.667 3 2 1 4
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Figure 5.17: 3 by 3 and 4 by 4 regions the Campbell-Robson chart is divided
into to test for the CSF curve.

5.5.7 Experiment 4: Grid Regions PER & LocPER of

Campbell-Robson Eye Chart

By dividing the chart into 2 by 2, 3 by 3 and 4 by 4 regions as shown in Figure

5.9 and Figure 5.17 we seek to establish whether PERSva enables the ranking

of regions into the area under a CSF curve.

Table 5.10 has the resultant ranking when the PERSva scored for each region

is averaged over 300 virtual eyes. The average rankings do agree with human

vision by producing areas under the CSF curves where the least stable regions

are at the top and to the right of the chart.

The effects of individual variability in eye function are more obvious with the

Campbell-Robson eye chart. In Table 5.11 the breakdown of the ranks is shown

for 2 by 2 regions, with the related heatmap in Figure 5.18. Not all virtual eyes

gave the same region ranking with the Campbell-Robson chart. Clusters of

ranks emerge, with 94.333% of the virtual eyes in agreement about the ranking

of the regions.

For the 3 by 3 grid the area under the CSF curve is a little easier to discern in

Figure 5.19, with the corresponding breakdown in Table 5.12. As the number of

regions increases in the grid the diversity of rankings increases. Even though

115



Table 5.10: Averaged result of analysing the Campbell-Robson eye chart for
LocPER, when chart divided into grids. When rankings are not separated
by commas they are of equal rank. Ranking is carried out based on average
PERSva scores for each region. Average PERSva scores are generated from
PERSva region scores for each virtual eye.

Experiment Regions Rank: Most to Least Stable Agreement

Exp 4, part 1 2 by 2 B, D, A, C in Table 5.11

Exp 4, part 2 3 by 3 A B C F, I, E, H, D, G in Table 5.12

Exp 4, part 3 4 by 4 A B C D E G H, L, K, F, O, P, J, N, M, I 115 groups

76.33% of the virtual eyes produce the same ranking, clusters of rankings begin

to emerge with 8% and 7% of eyes in agreement.

When the number of regions is increased to 4 by 4 the resulting area form-

ing the CSF curve becomes clearer in the heatmap shown in Figure 5.20. Fur-

thermore 115 different clusters of ranking occur, with no clear dominant rank-

ing emerging - though the averaged result does correctly form a CSF curve.

The variety and diversity of individual rankings is not unexpected, as the

Campbell-Robson eye chart is commonly used for research purposes due to its

heighted sensitivity to individual eye function. With the effect that individual

variability in eye function is more readily detected with the Campbell-Robson

eye chart, leading to more varied rankings.

Region P does have an unexpectedly high value 0.537, which leads to it having

an incorrect ranking. As with region D in Exp 3 Part 3 this is an artifact of the

low value of the Noise Threshold, since region P is predominately a gradient.

When the NT value is increased the region ranking for region P is correct.
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Figure 5.18: Heatmap of Campbell-Robson eye chart when divided into 2 by 2
regions. Red text shows normalised PERSva scores.

Figure 5.19: Heatmap of Campbell-Robson eye chart when divided into 3 by 3
regions. Red text shows normalised PERSva scores.
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Figure 5.20: Heatmap of Campbell-Robson eye chart when divided into 4 by 4
regions. Red text shows normalised PERSva scores.

Table 5.11: Breakdown of results of analysing the Campbell-Robson eye chart
for LocPER. Chart divided into 2 by 2 regions. 300 virtual eyes used. Rank
number ranges from 1 to 4 and regions A to D. When multiple regions share
the same rank they have the same rank value. A higher rank means a region is
more perceptually stable.

% Agreement A B C D

94.333 3 1 4 2

4.333 4 1 3 2

0.334 1 1 3 4

1.000 1 1 4 3
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Table 5.12: Breakdown of results of analysing the Campbell-Robson eye chart
for LocPER. Chart divided into 3 by 3 regions. 300 virtual eyes used. Rank
number ranges from 1 to 9 and regions A to I. When multiple regions share
the same rank they have the same rank value. A higher rank means a region is
more perceptually stable.

% Agreement A B C D E F G H I

76.330 1 1 1 8 6 1 9 7 5

8.000 1 1 1 8 5 1 9 6 7

7.000 1 1 1 8 6 1 9 5 7

1.000 1 1 1 8 7 1 9 5 6

2.330 1 1 1 8 7 1 9 6 1

0.670 1 1 1 7 6 1 8 5 9

0.670 1 1 1 9 5 1 8 6 7

2.000 1 1 1 8 7 1 9 6 5

0.033 1 1 1 9 6 1 8 5 7

0.033 1 1 1 8 6 1 9 7 1

1.000 1 1 1 9 6 1 8 7 5

0.033 1 1 1 8 5 1 9 7 6
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5.6 Conclusion

When STRIVE with PERSva are used to evaluate eye charts they perform well

at measuring the perceptual stability of a range of different visual stimuli (Hy-

pothesis 1). In most cases the averaged results are in agreement with human

judgements about eye charts (Hypothesis 2).

Areas for further improvement have been shown. Sensitivity to contrast

versus shape can be improved, and the approach to Noise Thresholding can

be improved for gradients. Region size is also found to have an effect on the

accuracy of ranking, with increasingly smaller regions leading to less accurate

rankings.

An unexpected optometry contribution from this work was presented in Sec-

tion 5.5.5.1, where we experimental show how PERSva may have found a bias

in the Pelli-Robson eye chart. Within optometry a considerable amount of re-

search is focused on detecting and removing biases in eye charts.

120



CHAPTER

SIX

Visual Stability Predictor: Colour

Perception

In this chapter STRICODI (SimulaTed Retinal Images with COlour DIstances)

for measuring the effects of differences in colour perception on the perception

of visual designs is presented. Also introduced is PERScp, which generates a

score of the perceptual stability due to differences in colour perception.

With PERScp information visualisations and interfaces can be automatically

evaluated to test how differently they appear to individuals with variants of

colour deficient vision.

6.1 Predicting Colour Stability

In Section 4.1 of Chapter 4 our approach to predicting perceptual stability for

visual acuity is introduced. As with that predictor, here a predictor of colour

stability is required to make predictions about:

• Degree of perceptual change (PERS)

• Location of perceptual change (LocPERS)
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A predictor of colour stability should help identify how visually unstable a

design may be when viewed by an individual with colour deficient vision

(CDV), i.e. what areas of a visual design exhibit weakness’ due to differences

in colour perception? Weakness’ arise because a visual design may appear un-

expectedly different when viewed with reduced colour spaces. Such as how

the red shoes in Figure 6.2 are less obvious in the simulated retinal image.

By measuring the perceptual stability due to colour perception the perceptual

effects of individual differences in visual function contribute to establishing

the upper bound on display ”information” density (see Section 4.1).

As outlined in Section 4.1.2 any predictor needs to correlate with human per-

formance. To establish whether the predictor of colour stability achieves this

here it is tested on Ishihara eye charts [61], which are used to detect and clas-

sify the extent to which an individual does or does not have colour blindness.

6.2 Measuring Colour Perception Visual Stability

Colour stability is measured by establishing whether the colours in a visual

design change significantly when viewed by eyes with different colour spaces

(see Section 2.3.2 and Section 3.6).

In this thesis the colour difference measure ∆E
∗
00, which is discussed in Section

3.6 of Chapter 3 is built upon to create the perceptual stability measure.

6.2.1 Perceptual Measure

In manufacturing, art and other areas various ∆E measures have been used

to measure and maintain colour accuracy. Often these measures are used to

detect whether a colour stays within particular a range. That is, the ∆E toler-

ance is set to an acceptable upper bound, and anything which is not within the
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bound is an unacceptable colour match.

For example, during the manufacturing of many household goods and clothes,

the manufactured household goods are regularly automatically checked to

make sure colour flaws are not occuring, e.g. make sure white dinner plates

are actually white.

6.2.2 Perceptual Stability Algorithm: STRICODI

As individual differences in colour perception occur we examine whether col-

our differences, as measured with ∆E
∗
00, can be used to predict which sections

of a visual design appear perceptually different.

Shown in Figure 6.1 is our STRICODI (SimulaTed Retinal Images with COlour

DIstances) algorithm for quantifying the effect of colour differences on visual

designs. The steps in the algorithm are as follows:

1. Visual design is captured as an RGB image, e.g. Figure 6.2(a).

2. A reference image is created by converting an RGB image to CIELAB

1976 colour space, with a 2 degree standard observer and D60 reference

illuminant (see Section 3.6.4).

3. A particular type of colour deficit vision to simulate is set, i.e. protanopia

or deuteranopia.

4. A simulated retinal image is generated, based on the algorithm presented

in Section 3.6.7 and depicited in Figure 3.11 and Figure 6.2(b).

5. For each pixel, colour differences between reference image and simulated

image are measured with ∆E
∗
00 (see Section 3.6.5).

6. ∆E
∗
00 measures for all pixels are stored in a perceptual stability change

map C, i.e. 2D matrix where each matrix coordinate corresponds to a
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an RGB image
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to simulate

Generate Simulated
Retinal Image

Measure Delta E 
colour differences

Store differences
as change map

1.

2.

3.

4.

5.

6.

Figure 6.1: Steps in STRICODI (SimulaTed Retinal Images with COlour DIf-
ferences) algorithm to generate measure of change due to different colour per-
ceptions of a visual design.
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pixel location in the reference image, as shown in Figure 6.2(c).

Shown in Figure 6.2 is an example of the algorithm analysing a photograph of

red shoes on greeen grass.

6.2.3 Calculating Perceptual Stability: Colour Perception

STRICODI generates a 2D matrix C containing the ∆E
∗
00 colour difference

score for each pixel. The raw colour difference measures are not sufficient

for accurately calculating the perceptual stability (see Section 6.2.3.1).

Equation 6.1 shows the calculation for PERScp. Matrix C generated by

STRICODI is used to generate the PERScp score. As part of calculating

PERScp minimum and maximum ∆E
∗
00 thresholding is applied to the percep-

tual stability change map values. More details on why thresholding is applied

is available in Section 6.2.3.1.

As with the PERSva visual acuity predictor, the perceptual stability predictor

for colour PERScp can be applied to regions in a visual design, as well as

whole designs.

Figure 6.2 shows an example of STRICODI and PERScp analysing a photo-

graph of a red shoe on green grass. Image 6.2(a) is the photograph which is

analysed for perceptual colour stability. Image 6.2(b) is the simulated retinal

image of Image 6.2(a), where CDV protanopia is simulated. Image 6.2(a) and

Image 6.2(b) are then used to generate the colour differences perceptual stabil-

ity change map, which is shown in Image 6.2(c). Image 6.2(c) is a representa-

tion of the 2D change matrix C, when the raw values in C have been scaled to

range between 0 and 255 with a grayscale palette. Image 6.2(d) is the matrix C

after it has been thresholded where TMIN is 10 and TMAX is 20, after which

it is adjusted to range between 0 and 255 with a grayscale palette. In Image

6.2(d) it is clear that the red shoes that undergo the most perceptual change
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a. b.

c.
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Simulate
Retinal Image

Generate Change Map

Apply    Thresholds

Figure 6.2: Example of STRICODI with PERScp thresholding an image. Image
6.2(a) is the original image, and shows red shoes on green and yellow grass.
Image 6.2(b) is the protanope version of Image A. Image 6.2(c) is the perceptual
stability change map C generated by STRICODI. Image 6.2(d) is the threshol-
ded version of Image 6.2(c) - where white means more change and black means
no change. The values in matrix C were scaled to make Image 6.2(c) and Im-
age 6.2(d) easier to see. Thresholding is applied where TMIN is 10 and TMAX
is 20 (see Equation 6.1).
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Equation 6.1: Generate PERScp (perceptual stability for colour perception)
score by measuring the thresholded area of the colour difference perceptual
stability change map C.

PERScp =

�n,m
i,j Ci,j

n ∗m

(6.1)

where

Ci,j =






Ci,j TMIN ≤ Ci,j ≤ TMAX

TMAX Ci,j > TMAX

0 Ci,j < TMIN

and

n is the count of the pixels across
m is the count of the pixels down

TMAX is maximum ∆E
∗
00 threshold (see Section 6.2.3.1)

TMIN is minimum ∆E
∗
00 threshold (see Section 6.2.3.1)

have the highest change value, i.e. white is most change, black is no change.

The PERScp score for Image 6.2(a) is 9.4105, while the heatmap in Figure 6.3

shows the PERScp scores when Image 6.2(a) is broken into 3 by 3 equal sized

regions. As expected, the regions in the middle of the heatmap are more per-

ceptually unstable, i.e. the location of the red shoes in Image 6.2(a). The re-

gions at the top of the heatmap are more perceptually unstable than regions at

the bottom of the heatmap, which corresponds with the colour of the grass in

Image 6.2(a), i.e. at the bottom of Image 6.2(a) the grass is green with yellow,

while towards the top of the image the grass is more consistently green.

6.2.3.1 Thresholding

Raw ∆E
∗
00 measures are not sufficient for calculating the perceptual stability

because the ∆E
∗
00 measure signifies whether two colours differ, but large val-

ues of ∆E
∗
00 do not meaningfully indicate how different the colours are.
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Figure 6.3: Heatmap of Image 6.2(a) (see Figure 6.2) when it is divided into 3
by 3 equal sized regions. Heatmap values are PERScp scores. Higher score
means less perceptually stable, while lower score means more perceptually
stable.

For example if there are four colours A, B, C and D - where A (RGB: 255, 0,

0) and B (RGB: 255, 53, 48) are different shades of red, C (RGB: 27, 81, 255) is

blue and D (RGB: 62, 192, 41) is green. The ∆E
∗
00 measure between A and B is

5.5038, which indicates that the colours are perceptually close but not exactly

the same. For A and C the ∆E
∗
00 measure is higher at 53.2992, while for A and

D the ∆E
∗
00 score is higher again at 74.3559.

A measure of 74.3550 ∆E
∗
00 between A and D does not mean that A and D are

more perceptually different than A and C. Large ∆E
∗
00 scores do not clearly

indicate the perceptual relationship between colours, while small ∆E
∗
00 scores

do indicate how perceptually close two colours are. A large value does mean

the colours are significantly different, but the degree of difference between the

colours is not captured in a large ∆E
∗
00 score.
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For this work the implications are that large ∆E
∗
00 scores in the STRICODI per-

ceptual stability change map need to be accounted for indirectly in the PERScp

measure. Thresholding is used to account for the effects of large ∆E
∗
00 meas-

ures. In Equation 6.1 the thresholding ∆E
∗
00 range is set with the TMIN and

TMAX values. TMIN should be set to a value which captures the required

minimum ∆E
∗
00 difference between two colours, while TMAX should be set to

the maximum meaningful ∆E
∗
00 difference. ∆E

∗
00 values above TMAX are no

longer meaningful in the sense that higher values do not provide more inform-

ation about the degree of colour difference.

6.3 Conclusion

In this Chapter STRICODI with PERScp are introduced for measuring the per-

ceptual stability of visual designs due to differences in perceiver’s colour per-

ception. An example of the techniques analysing a photograph is given, along

with justications for thresholding.

In the following Chapter PERScp is evaluated on a range of eye charts, to test

whether it agrees with human judgements.

129



CHAPTER

SEVEN

Experimental Evaluation of Colour

Stability Predictor

STRICODI and PERScp are experimentally tested and validated on Ishihara

eye charts, which shows they are effective predictors of perceptual stability for

colour perception.

Ishihara eye chart plates are used as a diagnostic tool to establish whether an

individual has colour deficient vision and if so what kind of colour deficient

vision they experience.

By establishing that PERScp make predictions consistent with human vision,

we know that it can be applied to evaluating the effects of colour blindness

on the perception of information visualisations and user interface designs (see

Chapter 8).

7.1 Experiments: Colour Perception Stability

In Chapter 5 a number of criteria are identified, which the visual acuity pre-

dictor has to fulfill. Many of these criteria also apply to the colour perception

stability predictor, that is the predictor should consistently correlate with hu-
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man performance while enabling measures of:

• Degree of perceptual stability (PERS)

• Location of perceptual stability (LocPERS)

As with the visual acuity predictor (see Section 5.2), eye charts are used as

the gold standard for testing whether the colour perceptual metric performs

as hypothesised. That is, will the colour perceptual measure make colour pre-

dictions consistent with human judgements, i.e. parts of an eye chart that are

perceptually different due to protanopia should be scored as perceptually dif-

ferent by the perceptual metric.

7.2 Ishihara Eye Charts

There is a large body of research into modelling and measuring colour percep-

tion differences [96, 14, 78, 58, 89, 87, 42]. One early research outcome were

Ishihara plates, which are used to detect and identify differences in colour per-

ception. Ishihara plates are used as a diagnostic tool to establish whether an

individual has colour deficient vision and if so what kind of colour deficient

vision they experience.

Figure 7.1 shows two Ishihara plates, along with versions of the plates as seen

by protanopes. Each plate consists of a large circle made up of many small

coloured dots. The dots are varied in colour and are surrounded by varying

amounts of white space. Dots are coloured to form identifiable visual objects,

such as numbers and lines. In most cases the visual objects are optotypes,

while a few of the plates have visual objects that are curving lines formed by

equivalently coloured dots.

Identification, mis-identification and alternative identification of optotypes

131



Figure 7.1: Examples of Ishihara colour plates. Number 12 in plate on the top
left can be seen no matter what kind of colour blindness, while the number 8
on the plate on the top right may not be seen by individuals with protanopia
and deuteranopia. Bottom left shows how the number 12 appears to individu-
als with protanopia, while the bottom right plate shows how the number 8
appears as number 3 to individuals with protanopia.

forms the diagnostic basis for the Ishihara plates. Optotype identification oc-

curs when an individual either can or cannot see an optotype. Alternative

identification occurs when an individual with colour deficit vision sees a visu-

ally different optotype than a typical observer. For example alternative identi-

fication occurs in Figure 7.1 when the number 8 optotype is seen as a number

3 by a protanope.

7.3 Experiments

What follows are two experiments where the STRICODI with PERScp is tested

on 24 standard Ishihara eye chart plates. The experiments establish that
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STRICODI with PERScp do measure the degree of perceptual stability, along

with location of perceptual stability.

7.3.1 Overall Approach & Details

7.3.1.1 Approach

Virtual eyes simulating different types of colour deficient vision are used to

generate simulated retinal images of the Ishihara plates, then STRICODI with

PERScp is used to evalute the perceptual stability of the eye charts. After

which the expected outcome for each eye chart is compared with the outcome

from the perceptual stability measure.

7.3.1.2 Details

Shown in Figure 7.2 are the 24 Ishihara plates used in each experiment. Each

plate is a TIFF RGB 8 bit per channel image. Plate sizes ranged about 280 by

275 pixels.

Each eye chart is processed with STRICODI, then each PERScp is measured.

Two types of colour deficient vision are simulated, protanopia and deuter-

nopia (see Section 2.3.2 and Section 3.6 for more details).

The experiments are developed for and run in Matlab. Matlab code converts

the Ishihara plates to the CIELAB colour space. We then convert the Ishihara

plates to colour deficient versions. Then we measure and store the ∆E
∗
00 colour

differences in the perceptual stability change map.
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Figure 7.2: Ishihara 24 colour plates. x indicates start and end points of lines
that observers may or may not trace depending on their visual function.
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7.3.2 Hypothesis

As with the hypothesis for the visual acuity predictor (see Section 5.5.2) both

colour stability hypothesis are linked, such that proving the second hypothesis

proves the first. Identifying the location of perceptual stability requires that the

degree of perceptual stability measure is effective.

7.3.2.1 Hypothesis 1: Degree of Perceptual Stability (PER)

The first hypothesis is that the STRICODI algorithm with PERScp successfully

generates meaningful PERScp scores. Meaningful is defined as agreeing with

human judgements. Human judgements are known for Ishihara eye charts,

therefore the PERScp scores should correctly score the perceptual stability of

eye charts.

7.3.2.2 Hypothesis 2: Location of Perceptual Stability (LocPER)

The second hypothesis is linked to the first, in that the STRICODI algorithm

with PERScp will successfully make predictions about the location of percep-

tual stability on eye charts. Success is where the predictions are consistent with

human judgements, that is regions of eye charts which people find perceptu-

ally unstable are the same as what STRICODI with PERScp finds perceptually

unstable.

7.3.3 Experiment Design

To test Hypothesis 2, and indirectly validate Hypothesis 1, the experiments are

structured as follows:

1. eye charts are used as stimuli
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2. eye charts are divided into multiple regions

3. regions are equally sized within an eye chart

4. two types of colour deficient vision are simulated, i.e. protanopia and

deuteranopia

5. each virtual eye is a subject in the experiment

6. every virtual eye generates simulated retinal images

7. ∆E
∗
00 for each region in the simulated retinal images is measured

8. all the ∆E
∗
00 measures are used to determine perceptual stability change

maps

9. each perceptual stability change map is used to generate a perceptual

stability score PERScp

10. for each virtual eye the PERScp score for each region is calculated

11. region PERScp scores are compared with human rankings to establish

whether they concur.

7.3.3.1 Details

Each eye chart is independently used as a stimulus, and each eye chart is di-

vided into an equal range of regions. Table 7.1 lists how the optotypes and

lines in each chart are seen by human perceivers with normal, protanope and

deuternope colour perception.
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Table 7.1: How optotypes and lines on Ishihara eye

charts are seen by protanopes and deuternopes.

Ishihara Plate Eye Chart Normal Protanope Deuternope

Plate 1 12 12 12

Plate 2 8 3 3

Plate 3 29 70 70

Plate 4 5 2 2

Plate 5 3 5 5

Plate 6 15 17 17

Plate 7 74 21 21

Plate 8 6 Nothing Nothing

Plate 9 45 Nothing Nothing

Plate 10 5 Nothing Nothing

Plate 11 7 Nothing Nothing

Continued on Next Page. . .
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Table 7.1 – Continued

Experiment Eye Chart Normal Protanope Deuternope

Plate 12 16 Nothing Nothing

Plate 13 73 Nothing Nothing

Plate 14 Nothing 5 5

Plate 15 Nothing 45 45

Plate 16 26 6 2

Plate 17 42 2 4

Plate 18 Both Lines
Bottom

Line
Top Line

Plate 19 Nothing Line Line

Plate 20 Line Nothing Nothing

Plate 21 Line Nothing Nothing

Continued on Next Page. . .
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Table 7.1 – Continued

Experiment Eye Chart Normal Protanope Deuternope

Plate 22

Yellow-

Green

/ Blue-

Green

Line

Blue-

Green
Blue-Green

Plate 23

Purple /

Orange

Line

Purple

/ Blue-

Green

Line

Purple /

Blue-Green

Line

Plate 24 Line Line Line

7.3.3.2 Expected Outcome

If Hypothesis 2 and Hypothesis 1 are true then the regions that undergo the

most perceptual change correspond to areas occupied by the optotypes and

lines in the eye charts. That is, regions which appear perceptually differ-

ent between normal and colour deficient perceivers should have the highest

PERScp scores.

7.3.4 Experiment 5: Protanopia

In the first experiment protanopia is simulated, and the Ishihara plates are

divided into 20 by 20 regions. Figure 7.3 shows the 24 Ishihara plates as seen

by protanopes, and Figure 7.5 shows the resulting visual heatmaps generated
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Figure 7.3: Ishihara 24 colour plates as seen with protanopia.
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Figure 7.4: Ishihara 24 colour plates with percetually unstable regions for
protanopia highlighted. Highlighted regions have ∆E range between 10 and
20. Change map values were adjusted to range between 0 and 255 for visual
clarity.
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Figure 7.5: Heatmaps showing perceptual stability of Ishihara 24 colour plates
when viewed by protanopes. Plates are divided into 20 by 20 regions. White
means region has lowest PERScp score, while black means region has highest
PERScp score.
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by the PERScp scores for each Ishihara plate.

As can be seen by the Figure 7.3 plates not all visual features expected for

protanopes appear, i.e. the optotypes on plates 14, 15 and 19 are not appearing

as expected for protanopia. This tells us that the simulation of colour deficit

vision is imperfect, though it functions adequately as the optotypes on many

of the other plates appear as expected.

The next step in the experiment compares the colour differences between the

original Ishihara plates and the protanopia versions. Figure 7.4 shows the per-

ceptual change maps generated by this step.

Next the PERScp score for each region of each Ishihara plate is used to gener-

ate heatmaps, which are shown in Figure 7.5. A black region is perceptually

unstable, while a white region is perceptually stable.

From Figure 7.5 we see that colour perceptual stability occurs in three classes

for the Ishihara plates. The first class consists of plates 1, 2, 3, 8, 9, 16, 17, 18,

21, 23 and 24. The second class consists of plates 4, 5, 6, 7, 10, 11, 12, 13, 20, 22

and the third class is comprised of plates 14, 15, 19.

Plates in the third class rely on visual features appearing to colour deficient

observers which normal observers cannot see (see Table 7.1). As can be seen

in both Figure 7.4 and Figure 7.5 visual features which can only seen by those

with colour deficient vision are not detected. This suggests that a limitation

of our STRICODI with PERScp measures are that they cannot detect when

visual features will be seen only by colour deficient observers versus normal

observers.

Many of the plates in Table 7.1 have alternative choice optotypes (see Section

7.1) where for example optotypes appear as a 3 for a normal observer and

as a 5 for a colour deficient observer. As with the third class of plates only

perceptual changes from what a normal observer would see are detected in
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alternative choice optotypes. Features which appear only to colour deficient

observers are not detected with STRICODI and PERScp.

For the first class of plates the optotypes are perceptually unstable as they

change colour when viewed with colour deficient vision, while for the second

class of plates that which surrounds the optotypes changes colour but the op-

totypes themselves do not significantly change colour. Therefore due to a fore-

ground colour change the first class is perceptually unstable, while the second

class is perceptually unstable due to a background colour change.

The heatmaps in Figure 7.5 show that STRICODI with PERScp successfully

identifies the regions that are perceptually unstable in the first and second class

of Ishihara plates. As with the third class of plates and the alternative choice

optotypes we find that STRICODI with PERScp does not identify perceptual

instabilities caused by visual features only appearing to colour deficient ob-

servers.

7.3.4.1 Foreground versus background optotypes

The foreground versus background colour changes in the first and second class

of plates raise interesting questions and possibilities for future work.

Currently STRICODI with PERScp ranks the plates which experience back-

ground change as more perceptually unstable, as more of the colours in the

plate change for colour deficient vision.

For example, consider the experience of comparing plate 4 of the normal (see

Figure 7.2) and colour deficient plates (see Figure 7.3). In plate 4 the back-

ground colour changes and the 5 optotype disappears because it now shares

the same colour as the background. From a human perspective the 5 optotype

seems to disappear, that is the visually salient feature is the 5 optotype rather

than the background colour.
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Figure 7.6: Ishihara 24 colour plates as seen with deuteranopia.
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Figure 7.7: Ishihara 24 colour plates with perceptually unstable regions for
deuteranopia highlighted. Highlighted regions have ∆E range between 10
and 20. Change maps values were adjusted to range between 0 and 255 for
visual clarity.
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Figure 7.8: Heatmaps showing perceptual stability of Ishihara 24 colour plates
when viewed by deuteranopes. Plates are divided into 20 by 20 regions. White
means region has lowest PERScp score, while black means region has highest
PERScp score.
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7.3.5 Experiment 6: Deuteranopia

In the second experiment deuteranopia is simulated, and the Ishihara plates

are divided into 20 by 20 regions.

Figure 7.6 shows the 24 Ishihara plates as seen by deuteranopes, and Figure

7.8 shows the resulting heatmaps generated by the PERScp scores for each

Ishihara plate. Figure 7.7 shows the perceptual change maps.

The analysis and results for Experiment 6 are exactly the same as Experiment

5 (see Section 7.3.4). That is, STRICODI with PERScp does detect perceptual

stability changes caused by colour deficient reductions in colour spaces.

An additional finding is that for all the plates we found that STRICODI with

PERScp showed there are few perceptual differences between the plates when

compared between protanopes and deuteranopes, i.e. the protanope heatmaps

in Figure 7.5 closely resemble the deuteranope heatmaps in Figure 7.8. This

result agrees with the diagnostic use of the plates. Many of the optotypes and

lines on the plates are perceived equivalently across protanopes and deuteran-

opes (see Table 7.1).

As with Experiment 5 we find that STRICODI with PERScp does not detect

perceptual instabilities caused by visual features that can be seen by colour

deficient observers but not by normal observers. An implication of this is that

PERScp cannot distinguish between protanopia and deuteranopia on the 24

Ishihara plate test. This is because plates 16, 17 and 18 which diagnostically

distinguish between protanopia and deuteranopia, rely on features that only

colour deficient observers can see.
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7.4 Conclusion

The experiments in this Chapter have shown that STRICODI with PERScp suc-

cessfully agrees with human judgements for most of the Ishihara eye charts.

PERScp scores are as expected (Hypothesis 1) across the range of varied col-

oured Ishihara eye charts. In most cases the region PERScp are in agreement

with human judgments (Hypothesis 2).

Areas that emerge as weak are the inability to detect perceptual stabilities due

to features only seen by colour deficient observers.

Further improvements may be possible by attempting to take visual sali-

ency into consideration, to detect perceptual instabilites caused by foreground

versus background colour changes.
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CHAPTER

EIGHT

Adapting Visual Designs To

Individual Differences

This chapter demonstrates how our visual acuity measure and colour percep-

tion measure can be used to evaluate and adapt designs to suit individual’s

eye function.

These adaptions show the strengths and weaknesses of the predictors, along

with how they can be used in visual design tools and automated layout tech-

niques for interfaces and information visualisations.

Demonstrated in this Chapter are automatic evaluations of text and font styles,

network graph designs and layouts, and the pseudocolouring of scientific

visualisations.

8.1 Adaptions Demonstrated

A range of adaptions are presented that demonstrate the diversity of uses for

the perceptual stability metrics. By focusing on a diverse range of interface

and information visualisation adaptions the effectiveness and strengths of the

metrics become clear.
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The following adaptions are demonstrated:

• Font text adaptions for visual acuity (see Section 8.3.1)

• Network graph adaptions for visual acuity (see Section 8.3.2)

• Map colour scale adaptions for colour perception (see Section 8.4.1)

Text blocks and font styles are an important basic building block in nearly all

interfaces and many visual designs. By demonstrating that PERSva is applic-

able to anlaysing text styles we show it can be widely used to analyse the text

displayed in interfaces and information visualisations.

Legibility and asthetics are an important criteria when designing effective

network graph visualisations. Many of the existing techniques for laying

out network graphs rely on counting and minimizing edge crossing, while

maintaining distances between network graph components. In this thesis we

demonstrate a complementary approach for analysing and improving net-

work graph layouts, which is based on physiological models of visual function

(see Chapter 3).

Maps and many information visualisations rely on colour to create visually

distinct groups and categories. A continuous colour gradient scale is com-

monly used to pseudocolour maps. In this Chapter we demonstrate how the

colour stability measure can aid in selecting colour sequences that are effective

for those with colour deficient vision.

8.2 Physiological Versus Semantic Adaptions

Particular relevant for the effective use of the metrics is that they evaluate

designs from a physiological rather than a semantic perspective. For example

consider two vertical side by side black lines, as shown in Figure 8.1. An auto-
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Figure 8.1: Example of how the PERSva score is a physiological rather than
semantic metric. Each Group of vertical bars is separately analysed to cal-
culate PERSva. PERSva scores from Group 1 to Group 4 are 0.9225, 0.9251,
0.9903 and 0.9337; averaged over 20 randomly generated virtual eyes. The two
vertical bars on the left hand side, Group 1, are the most perceptually stable
with the lowest PERSva score, while Group 4 on the right has the third lowest
PERSva score. Making Group 4 more perceptually stable than Group 3.

mated layout technique which uses PERSva as a metric would find that when

the two lines move very close together, as in Group 4 Figure 8.1, the PERSva

score improves (lower = more perceptually stable).

As the two lines move closer together the PERSva perceptual stability score

changes, with the perceptual stability decreasing from Group 1 (PERSva

0.9225) to Group 2 (PERSva 0.9251) to Group 3 (PERSva 0.9903). In Group

4 (PERSva 0.9337) the lines are the closest of all the Groups yet the PERSva

score is considerably better than for Group 3. Since the lines in Group 4 are so

close it is reasonable to assume the lines are the least perceptually stable of all

Groups, yet that is not the result PERSva gives.

The reason is that PERSva evaluates whether a visual feature is more percep-

tually stable than another. In the case of Group 4, when the two lines undergo a

small amount of optical aberrations they form a single visual feature, while in

the other Groups the two lines maintain their existance as two separate visual

features (see Figure 8.2) when subject to more optical aberation.

Figure 8.2 visually demonstrates how quickly the two lines in Group 4 form a

single larger line, when subject to a small amount of optical aberrations. Op-

tical aberrations were simulated with Zernike mode Z
0
2 , and the Zernike coef-
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Figure 8.2: Effect of Z
0
2 optical aberration on vertical bars set at different dis-

tances from each other. Vertical bars in Group 4 (see Figure 8.1) quickly form a
single visual feature when subject to a low amount of optical aberrations. Each
row corresponds to a 0.02 increase in the Zernike coefficient. Initial Zernike
coefficient is 0.
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ficient ranged between 0.0 and 0.10. Each row in Figure 8.2 represents a 0.02

increase in the Zernike coefficient.

From a semantic perspective we know there are two lines in Group 4, yet from

an aberrant optical system perspective the two lines become one when under-

going small amounts of optical aberrations. Therefore for Group 4 PERSva is

effectively evaluating one line, which is seen as double the width of the other

single lines. While this behaviour of PERSva is non-obvious and somewhat

counter-intuitive it is to be optically expected [51], i.e. when visual features

in close proximity undergo optical aberrations they form larger less detailed

visual features.

An awareness of how visual features behave when subject to optical aber-

rations is important for realising the appropriate use and interpretation of

PERSva, especially due to PERSva functioning at a physiological low-level

in vision rather than at a semantic level of visual feature recognition.

8.3 Visual Acuity Adaptions

When a designer is laying out interfaces and text they implicitly make

tradeoffs about font size, layout and colouring to optimise for clarity, legib-

ility and audience attention.

In the following Sections we demonstrate how the perceptually stability meas-

ures are used to automate design decisions. Designs are adapted for perceptu-

ally stability, with the benefit of improving the designs for differences in visual

acuity and colour perception, i.e. should font A or font B be used for a block

of text, or what graph design node is easier to see?
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8.3.1 Text & Font Style

Below are two demonstrations where two different fonts at three sizes are

tested to establish which font is more perceptually stable for visual acuity.

The Times-Roman and Courier-Bold fonts are compared. Times-Roman is a

proportional font, while Courier-Bold is a fixed width font.

Elsewhere [56] the fonts have been empirically measured to test which of the

fonts is more legible, for both normal and low-vision observers. These find-

ings indicate that Courier-Bold is easier to see for both normal and low-vision

observers, though in certain cases reading speed of normal observers is higher

for Times-Roman. PERSva cannot make predictions about reading speed, but

its predictions do agree with ranking Courier-Bold as more legible than Times-

Roman.

Shown in Figure 8.3 and Figure 8.7 are the two blocks of text, which PERSva

evaluates to establish which font style is more perceptually stable.

8.3.1.1 English Lower-Case Alphabet

The first text block consists of the lower-case letters from the English alphabet

ordered in a row, with each letter separated by a single space (see Figure 8.3).

Rows 1 to 3 are in Courier-Bold font, and Rows 4 to 6 are in Times-Roman font.

Rows 1 and 4 have a font size of 11 pt, Rows 2 and 5 are 16 pt and Rows 3 and

6 are 21 pt.

To analyse the rows 20 normal virtual eyes are randomly created, and each

virtual eye is used in STRICODI for examing each row (see Section 5.4). For

each virtual eye the Zernike coefficients are incremented in 20 steps from 0 to

maximum RMS. Results of the analysis are plotted and graphed in Figure 8.4,

Figure 8.5 and Figure 8.6.
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Figure 8.3: Image showing the English alphabet lower-case letters that are
compared with PERSva. In the analysed image there is more white space
between rows, to prevent interaction between rows undergoing optical aber-
rations. Rows 1 to 3 are in the Courier-Bold font, and Rows 4 to 6 are in the
Times-Roman font. Rows 1 and 4 have a font size of 11 pt, Rows 2 and 5 are 16
pt and Rows 3 and 6 are 21 pt.

Plotted in Figure 8.4 is the mean and standard deviation of the normalised

PERSva scores for all 20 virtual eyes. For the Courier-Bold font the mean

PERSva is consistently lower across all three font sizes than for Times-Roman.

This tells us that the Courier-Bold font is rated as more perceptually stable

than the Times-Roman font, which agrees with the findings in [56].

Shown in the scatter plot in Figure 8.5 is the distribution of the Courier-Bold

versus Times-Roman PERSva scores. From the scatter plot it can be seen that

Courier-Bold is consistently ranked as more perceptually stable than Times-

Roman across all 20 virtual eyes.

When the standard deviation in Figure 8.4 is coupled with the scatter plot dis-

tribution in Figure 8.5 we find that individual differences in optical aberrations

lead to a wider range of PERSva scores for the Courier-Bold font, than for the

Times-Roman font.

As is expected, the scatter plot shows that due to individual differences in eye

function there is a cross-over between the perceptual stability of font sizes, i.e.

some eyes are worse at seeing font size 21 pt than other eyes are at seeing font
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Figure 8.4: Mean and standard deviation of PERSva scores, when analysing
the rows of Courier-Bold and Times-Roman text as shown in Figure 8.3.
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Figure 8.6: Distribution of PERSva score for each virtual eye for each font
style and font size, when analysing alphabet text. CB is Courier-Bold and TR
is Times-Roman.

size 16 pt.

This demonstration illustrates that PERSva is a capable predictive measure

when adapting rows of equal sized text, such that the text is optimised for

legibility.

8.3.1.2 Text Paragraph

Analysed in Figure 8.7 is the text paragraph from an earlier work on the inter-

section of graphical design and perception [24], which reads as follows ”The

subject of graphical methods for data analysis and for data presentation needs a sci-

entific foundation. In this article we take a few steps in the direction of establishing

such a foundation. Our approach is based on graphical perception - the visual decoding

of information encoded on graphs - and it includes both theory and experimentation to

test the theory. The theory deals with a small but important piece of the whole process
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of graphical perception”.

Each paragraph is treated as a separate Region. The distances between the

Regions are greater in the analysed image - to prevent optical interactions

between the Region contents. Regions 1 to 3 are Courier-Bold font, and Re-

gions 4 to 6 are Times-Roman. Regions 1 and 3 are 11 pt, Regions 2 and 5 are

16 pt and Regions 3 and 6 are 21 pt.

For the analysis 20 normal virtual eyes are randomly created, which are dif-

ferent to the 20 virtual eyes created in the previous demonstration. Zernike

coefficients are incremented in 20 steps to the maximum RMS for each eye.

Results from the analysis are graphed and plotted in Figure 8.8, Figure 8.9 and

Figure 8.10.

The results of this demonstration concur with the results of the previous

demonstration, that is Courier-Bold is more perceptually stable than Times-

Roman across a range of font sizes.

Differences in the results are that the standard deviations in Figure 8.8 are

smaller for Courier-Bold and larger for Times-Roman. From the scatter plot in

Figure 8.9 it can be seen that Courier-Bold is consistently ranked as more per-

ceptually stable than Times-Roman across all 20 virtual eyes, across all three

font sizes.

Interestingly it can be seen that the effects of individual differences in eye func-

tion are more pronounced for the Times-Roman text paragraph (see Figure 8.9

and standard deviations of Region 4 to Region 6 in Figure 8.8) than for the

Times-Roman alphabet (see Figure 8.5 and the standard deviations of Row 4

to Row 6 in Figure 8.4). This suggests that using Times-Roman to display text,

which will be read by an audience with diverse age range and in a diverse

range of viewing conditions, may result in widely varied viewing experiences

due a wide range of age related optical aberrations.
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Figure 8.7: Image showing the paragraphs of text that were compared with
PERSva. In the analysed image there is more white space separating Regions.
Rows 1 to 3 are in the Courier-Bold font, and Rows 4 to 6 are in the Times-
Roman font. Rows 1 and 4 have a font size of 11 pt, Rows 2 and 5 are 16 pt and
Rows 3 and 6 are 21 pt.
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Figure 8.8: Mean and standard deviation of PERSva scores, when analysing
the Regions of Courier-Bold and Times-Roman text as shown in Figure 8.7.
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Figure 8.10: Distribution of PERSva score for each virtual eye for each font
style and font size, when analysing paragraph text. CB is Courier-Bold and TR
is Times-Roman.

As with the previous demonstration, this demonstration shows that PERSva

is usable as a design aid when deciding what adaptions to make to font styles.

8.3.1.3 Comparing Across Font Sizes And Font Styles

One issue that does arise from these demonstrations is whether PERSva is

suitable for making comparisions when font size and font style vary. For ex-

ample when displaying a paragraph of text which is better, a Times-Roman 21

pt font or a Courier-Bold 11 pt font?

Base on Figure 8.9 the ranking from best to worst for displaying a paragraph

of text is Courier-Bold 21 pt, Courier-Bold 16 pt, Times-Roman 21 pt, Courier-

Bold 11 pt, Times-Roman 16 pt and then Times-Roman 11 pt.

The differences in score between Courier-Bold 11 pt and Times-Roman 16 pt

are tiny at ≈0.01 PERSva, making it unclear whether Courier-Bold 11 pt is in
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Table 8.1: List of network graph design adaptions evaluated with PERSva.

Name Graph Adaption

Graph Set 1 Figure 8.11 Black node size increases

Graph Set 2 Figure 8.12 Edge width increases

Graph Set 3 Figure 8.13 Hollow node size increases

Graph Set 4 Figure 8.14 Hollow node border width increases

Graph Set 5 Figure 8.23 Maximum variations of Graph Sets 1 to 4

any way significantly more perceptually stable than Times-Roman 16 pt.

As with the two vertical bars in Figure 8.2 (Group 4) the difference in scores

between Courier-Bold 11 pt and Times-Roman 16 pt may be due to Courier-

Bold 11 pt having lost more detail but forming a large less detailed visual fea-

ture. Whether this is the case or not remains an open question for future work.

8.3.2 Network Graphs

For the network graph demonstration five sets of nodes are analysed, the lay-

outs of which are shown in Figure 8.11, Figure 8.12, Figure 8.13, Figure 8.14

and Figure 8.23.

During the multiple analyses a five node circular network graph is measured,

to establish which design permutations of the graphs are the most perceptually

stable. Listed in Table 8.1 are the set of adaptions of the circular five node

network.

For every Graph Set twenty random normal virtual eyes were independently

generated. Zernike coefficients went from 0 to maximum RMS, in forty incre-

ments.
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Figure 8.11: Graph Set 1 - Node size increases from left (Region 1) to right
(Region 3).

Figure 8.12: Graph Set 2 - Edge width increases from left (Region 1) to right
(Region 3).

Figure 8.13: Graph Set 3 - Hollow node size increases from left (Region 1) to
right (Region 3).

Figure 8.14: Graph Set 4 - Hollow node border width increases from left (Re-
gion 1) to right (Region 3).
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8.3.2.1 One Dimensional Adaptions

The first four Graph Sets vary by changing one visual property within each set.

Each of the Graph Sets 1 to 4 is divided in three regions. Regions are equal in

size, independent, and each region covers the area occupied by a single graph

network. These regions are numbered from 1 to 3, going from the left to the

right.

In Graph Set 1 (see Figure 8.11) the node size increases, the node colour and

edge widths stay the same. For Graph Set 2 (see Figure 8.12) the width of the

edges increase and the node sizes are constant. With Graph Set 3 (see Figure

8.13) the nodes are made hollow and increase in size, with a border width

equal to the edge width. In Graph Set 4 the nodes are hollow while the node

border widths increase.

The results for Graph Set 1 are plotted in Figure 8.15, which shows the mean

and standard deviation of PERSva for each region. Based on these results

Region 3 is the most perceptually stable, with Region 2 ranked next and Region

1 the least perceptually stable. Differences in PERSva scores for each of the 20

virtual eyes for each of the Regions is in Figure 8.16. These results indicate that

bigger nodes sizes are better.

For Graph Set 2 the mean and standard deviation is plotted in Figure 8.17. Yet

again Region 3 is the most perceptually stable, followed by Region 2 and then

Region 1. Figure 8.18 shows the individual variability of the PERSva scores

for each virtual eye. From these results we learn that a wider edge is better

than a thinner edge.

The PERSva mean and standard deviation for Graph Set 3 is shown in Figure

8.19. There is a tiny 0.0031 difference in mean PERSva scores between the

Regions, along with very small standard deviations. Figure 8.20 shows the

individual varability of PERSva for each virtual eye. From these results it
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Figure 8.15: Graph Set 1 - PERSva mean and standard deviation.
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Figure 8.16: Graph Set 1 - Distribution of PERSva for each virtual eye for each
region.
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Figure 8.17: Graph Set 2 - PERSva mean and standard deviation.
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Figure 8.18: Graph Set 2 - Distribution of PERSva for each virtual eye for each
region.

167



Region 1 Region 2 Region 3
0.9

0.92

0.94

0.96

0.98

1

1.02

P
E

R
S

v
a
 P

e
rc

e
p

tu
a

l 
S

ta
b

ili
ty

Set 3 Graphs: PERS
va

 Mean & Standard Deviation

Figure 8.19: Graph Set 3 - PERSva mean and standard deviation.
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Figure 8.20: Graph Set 3 - Distribution of PERSva for each virtual eye for each
region.
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Figure 8.21: Graph Set 4 - PERSva mean and standard deviation.
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Figure 8.22: Graph Set 4 - Distribution of PERSva for each virtual eye for each
region.
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is unclear whether a larger hollow node is more perceptually stable than a

smaller hollow node.

The result in Graph Set 3 is not inaccurate, as the graphs in Graph Set 3 are

too small for the differences in node size to have an effect on perceptual sta-

bility. That is, the virtual eyes are effectively looking at the graphs from a long

distance. From a long distance small increases in optical aberrations lead to

large changes in how the graphs are perceived. This has the effect that when a

small amount of optical aberrations occur the node and edge line widths are so

thin that they quickly visually disappear. Then as optical aberration continue

increasing the image of the graph is effectively blank. Therefore Graph Set 3

is initially very perceptually unstable, but over a full range of normal optical

aberrations it is very stable.

Another perspective is if a person with normal optical aberrations looks at

Graph Set 3 from far enough away, then the Graph Set cannot be seen. They

will only see Graph Set 3 when much closer, or when the Graph Set is made

much bigger.

The mean and standard deviation results for Graph Set 4 are shown in Figure

8.21. Region 3 is the most perceptually stable, followed by Region 2 and then

Region 1. Individual variability in PERSva scores is plotted in Figure 8.22.

These results establish that a thicker node border is better than a thinner node

border.

The demonstrations and results for one dimensional adaption show how

PERSva can be successfully used to adapt a design, or choose from a set of

designs, to improve perceptual stability. While the results for Graph Set 3 fur-

ther indicate the importance of recognising that PERSva is physiological based

rather than semantic based measure (see Section 8.2).
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8.3.2.2 Multi-Dimensional Adaptions

Unlike the first four Graph Sets the four graphs in Graph Set 5 are visually

distinct from each other along a range of visual dimensions. Each of the graphs

in Graph Set 5 is from the previous four Graph Sets, where the right most

graph in Graph Set 1 to Graph Set 4 is used.

Graph Set 5 is divided into four equal sized Regions, the layout of which is

shown at the bottom of Figure 8.23. Each Region covers the area occupied by

a single graph, including when the graph undergoes optical aberrations.

Results of using PERSva to analyse the perceptual stability of Graph Set 5 are

shown in Figure 8.24 and Figure 8.25. Based on the mean PERSva Region 3 is

ranked as the most perceptually stable, very closed followed by Region 1, then

Region 2 and finally Region 4.

These results tell us that the wider edge width (Region 3) is the best design

adaption choice. Though the difference between the PERSva scores for node

size (Region 1) and the winning Region 3 is a small 0.0235 PERSva.

Furthermore, based on the standard deviations we note that the perceptual sta-

bility of Region 1 fluctuates considerably more than any other Region, making

Region 1 a potentially bad choice when perceived by multiple viewers simul-

taneously. It is not consistently perceived between multiple perceivers.

Interestingly the variability of individual PERSva scores for each eye (see Fig-

ure 8.24) shows that six of the twenty eyes ranked Region 1 as more percep-

tually stable than Region 3. This result informs us that Graph Set 5 can be be-

neficially displayed in either of two ways - where the choice of which design

to display is based on individual physiological visual function, i.e. if there is a

measurement of a perceiver’s individual aberration wavefront we can choose

which design is better to display.
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Region 1 Region 3

Region 2 Region 4

Figure 8.23: Top shows four network graphs that vary along multiple visual
dimensions, which are compared with each other to establish which is most
perceptually stable. Bottom shows how top is broken into four Regions.
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Figure 8.24: Graph Set 5 - PERSva mean and standard deviation.
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Figure 8.25: Graph Set 5 - Distribution of PERSva for each virtual eye for each
region.
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8.3.2.3 Graph Layout Adaptions: Future Directions

A core focus of research around graphs is how to lay them out to make them

less cluttered, and enhance the graph aesthetics. Many approaches measure

line crossing explicitly and attempt to maximum the distance between nodes,

such as with force directed layout algorithms.

Figure 8.26 shows a potential new approach to laying out graphs, which is

based on low-level vision rather than counting edge crossings or explicitly

maintaining distances between edges and nodes. Section 9.3.2.2 provides more

examples and detail.

Depicited in Figure 8.26 are multiple seven node seven edge graphs laid out

based on PERSva, where no edge crossings are explicitly counted. From left

to right and top to bottom the fitness of the graph layout improves, when a

variation of PERSva is part of the fitness function in a genetic algorithm.

Whether this perceptual graph layout technique generalises is an interesting

future research direction. If so it has the potential such that PERSva could

be enhanced, to make more complex predictions without requiring semantic

knowledge about the analysed designs and interfaces.

8.4 Colour Perception Adaptions

Demonstrated in the following Section is the perceptual stability measure of

colour, where it is used to decide what colouring to apply to a design to op-

timise for perceptually stability.

As with the visual acuity predictor the colour predictor serves as an aid in

helping a designer, or automated layout technique, establish how differently

designs are perceived due to differences in colour perception.
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Figure 8.26: Perceptual graph layout - Example of a seven node seven edge
graph. Nodes were not drawn during analysis, as PERSva maximization
based on edges.
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8.4.1 Maps

What follows are demonstrations showing PERScp evaluating the effects of

colour blindness on the pseudocolouring of maps. Pseudocolouring is widely

used in many scientific visualisations [90] to highlight and associate values

with locations and objects in visualisations, e.g. a low area in the map is col-

oured blue, or an area of abnormal weather activity is coloured red.

Pseudocolouring can be confusing for individuals with colour blindness, as

they will not see the full range of colours used in the pseudocolouring, which

means they can mistakenly interpret the colour encoding.

In the demonstrations PERScp establishes which pseudocolouring is the most

stable between normal and colour deficient observers, i.e. PERScp evaluates

which choice of pseudocolouring differs least between different observers.

Shown in Figure 8.27 are twelve variations of the same map, where the maps

differ only by the pseudocolouring used. Going from left to right and top

to bottom the pseudocolourings are named in Matlab as Jet, HSV, Hot, Cool,

Spring, Summer, Autumn, Winter, Gray, Bone, Copper and Pink.

Two different types of colour blindness are simulated, deuteranopia and

protanopia. Figure 8.28 shows the maps as seen by individuals with deuteran-

opia, and Figure 8.29 shows the maps as seen by individuals with protanopia.

Both the deuteranope and protanope versions of the maps bear a close resemb-

lance to each other.

Shown in Figure 8.30 are the thresholded perceptual stability change maps for

the deuteranope versions of the maps, while Figure 8.31 shows the protan-

ope thresholded perceptual stability change maps. Highlighted pixels in the

perceptual stability change maps have a ∆E range between 10 and 20. The

perceptual change map values were normalised to range between 0 and 255

for visual clarity.
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Figure 8.27: Pseudocoloured satellite maps showing NOAA/NASA AVHRR
SST for November 1999. Maps were generated with M Map [64] and pub-
licly available data from NASA. Going from left to right and top to bottom
the pseudocolourings are Jet, HSV, Hot, Cool, Spring, Autumn, Gray, Bone,
Copper and Pink.
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Figure 8.28: Deuteranope versions of maps.
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Figure 8.29: Protanope versions of maps.
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Figure 8.30: Thresholded perceptual change map for deuteranope versions of
maps. ∆E ranged between 10 and 20.
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Figure 8.31: Thresholded perceptual change map for protanope versions of
maps. ∆E ranged between 10 and 20.

181



Table 8.2: PERScp scores for each version of each deuteranope map. Location
in table corresponds to locations of maps in Figure 8.30.

3.5782 (Jet) 3.8161 (HSV) 2.1619 (Hot)

3.9318 (Cool) 3.5021 (Spring) 1.9739 (Summer)

3.3832 (Autumn) 3.5985 (Winter) 0 (Gray)

0.9626 (Bone) 4.2713 (Copper) 1.8503 (Pink)

Table 8.3: PERScp scores for each version of each protanope map. Location in
table corresponds to locations of maps in Figure 8.31.

3.55 (Jet) 3.8124 (HSV) 2.1536 (Hot)

3.9678 (Cool) 3.5026 (Spring) 2.0165 (Summer)

3.3862 (Autumn) 3.5152 (Winter) 0 (Gray)

0.6652 (Bone) 4.2343 (Copper) 1.7968 (Pink)

To calculate the PERScp score each map is treated as a single region, i.e. n and

m in Equation 6.1 are image width and height. Table 8.2 and Table 8.3 are the

resulting PERScp scores for each map variation.

For deuteranopes the ranking of the pseudocolouring from most perceptually

stable to least perceptually stable is Gray, Bone, Pink, Summer, Hot, Autumn,

Spring, Winter, Jet, HSV, Cool, Copper. Interestingly the ranking is the same

for protanopes. There is a slight differences in the PERScp scores between

protanopes and deuteranopes but in general the results were in close agree-

ment.

As is expected the Gray pseudocolouring is the most perceptually stable,

which makes sense considering most types of colour deficient vision do not

affect the perception of pure grays.
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8.5 Conclusions

In this Chapter the effectiveness and application of PERSva and PERScp has

been demonstrated; for helping to decide between a range of potential designs.

Successfully demonstrated in this Chapter are the automatic evaluations of

text and font styles, network graph designs and layouts, and the pseudocol-

ouring of scientific visualisations.

Interestingly we found that PERSva can help evaluate the impact of individual

differences in eye function, such that it highlights that certain designs lead to

more varability in how people see a design, e.g. the greater variability in how

people will see the Times-Roman text paragraph (see Section 8.3.1.1).

Of note is that PERSva is a measure of low-level vision, rather than a semantic

measure. Some initial insights on future work show that PERSva may be ap-

plied to laying out graphs.
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CHAPTER

NINE

Conclusions & Future Work

At the core this thesis addressed the question ”What do people see in a

design?”, which is motivated by considering at what point in the experience

of designs do individual differences first matter?

This Chapter outlines the contributions of this thesis, while examining future

research possibilities.

9.1 When Individual Differences First Matter

Our approach examines the earliest point at which individual differences in

vision matter for the experience of seeing the designs (see Table 9.1). The earli-

est intersection between a design and the experience of a design is the point

at which the design is communicated to our bodies and minds. This act of

communication from an external occurance to an internal occurance alters the

design experience (see Section 1.2.1).

Effectively we sought to examine the effect of low-level physiology on design

experience, which has many applications when designing artefacts and exper-

iences for everyday users.

Rich models and predictors of the effects of individual differences in low-level

184



Table 9.1: Refinements of the question ”What do people see in a design?”

Facet Refinement

What Computationally driven visual designs.

People Individual differences in low-level vision.

See Spatial Perception (primarily spatial visual acuity),
Colour Perception.

Design HCI focused on Information Visualisations.

physiology, enable the creation of rewarding user experiences that are cap-

able of adapting to individual physiological functions. Especially in a future

where malleabilitity is a standard property of materials and artefacts (see Sec-

tion 1.2.2).

Furthermore, examing differences in low-level physiology contributes to

providing an empirical basis for current design questions, i.e. How do people

see and experience a design at different distances, on different sized displays,

in different lighting conditions, with different kinds of eye sight?

9.2 Contributions

Multiple inter-related contributions are present in this work, with the main

contributions being:

• simplified models of physiological eye function for HCI

• degree and location of perceptual stability due to spatial perception

• degree and location of perceptual stability due to colour perception

• optometry models of individual eye function integrated with perception

• demonstrations of predictions used to make design adaption decisions

185



9.2.1 Simplifed Models Of Physiological Eye Function For

HCI

9.2.1.1 STRIVE Algorithm

A contribution for modelling eye function is the STRIVE algorithm, introduced

in Section 4.2.2. STRIVE generates simulated retinal images, which model the

effects of differences in eye function on the visual entropy of a design.

Zernike Polynomials, which model the wavefront in individual eyes, are an

integral aspect of the spatial acuity model (see Section 3.5.3.1). Building

upon Zernike Polynomials enables the modelling of individual differences in

physiological function, making it possible to measure the effects of individual

differences in eye function upon the perception of designs, e.g. larger or smal-

ler standard deviations of PERSva scores for graph adaptions in Chapter 8.

9.2.1.2 STRICODI Algorithm

STRICODI, introduced in Section 6.2.2, is the contribution that enables model-

ling the effects of differences in colour perception.

By building on ∆E
∗
00 (see Section 3.6.5) and previous work for simulating col-

our deficient vision STRICODI allows the modelling of differences of colour

perception due to differences in eye receptor function.
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9.2.2 Degree And Location Of Perceptual Stability Due To

Spatial Perception

9.2.2.1 PERSva Perceptual Stability For Spatial Vision

PERSva is the contribution that creates the relationship between STRIVE and

the effect differences in spatial acuity have on seeing designs (see Section 4.2.4).

With PERSva the visual change due to optical aberrations is given a meaning-

ful and usable score. The output of STRIVE is a series of data point, as a func-

tion of increasing optical aberrations. Analysing the data points is achieved

with PERSva.

9.2.2.2 Experimental Groundtruth

In Chapter 5 PERSva is validated by testing it on a range of eye charts; where

human function is well established. This established that PERSva perform-

ances as expected in most cases, and is capable of making degree and location

of perceptual stability measures.

9.2.3 Degree And Location Of Perceptual Stability Due To

Colour Perception

9.2.3.1 PERScp Perceptual Stability For Colour Perception

For colour perception PERScp provides a measure of the impact different

types of colour defective vision have on the perception of designs (see Section

6.2.3).

PERScp builds upon STRICODI to create a relationship between different

models of colour perception, and how the resulting colour spaces impact upon
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the experience of seeing designs (see Section 3.6).

9.2.3.2 Experimental Groundtruth

Chapter 7 presents the experimental testing and validation of PERScp on

eye charts, which shows that PERScp concurs with many human judgements

about the degree and location of perceptual stabilities due to differences in

colour perception.

9.2.4 Optometry Models Of Individual Eye Function Integ-

rated With Perception

PERSva and PERScp, along with STRIVE and STRICODI, create relationships

between low-level models of human vision and the experience of seeing the

designs.

A resulting contribution is that both models cater to individual differences in

physiological eye function, along with the impact differences have on percep-

tion.

With PERSva different Zernike coefficients can be used to create individual

wavefronts (see Section 2.4.4), which encode optical aberrations found in indi-

vidual eyes. While PERScp can use different models of colour defective vis-

ion, and is designed such that other colour spaces may be used to model other

types of colour receptor function.
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9.2.5 Demonstrations Of Predictions Used To Make Design

Adaption Decisions

The final significant contributions are the design adaption demonstrations in

Chapter 8. These adaptions show the strengths and weaknesses of the predict-

ors, along with how they can be used in visual design tools and automated

layout techniques for interfaces and information visualisations.

Demonstrated in Section 8.3 is PERSva deciding between the spatial percep-

tion perceptual stability of font styles and graph designs. While in Section

8.4 PERScp helps automatically choose between different pseudocolouring of

maps, to make them clear for individuals with colour blindness.

9.3 Future Directions

There are many possible directions for further research, some in the direction

of HCI, while others are within the realm of vision science. In the following

sections related research possibilities are presented, followed by some oppor-

tunities for directly building upon the findings and techniques presented in

this thesis.

9.3.1 Related Possibilities

9.3.1.1 Vision Science Opportunity For HCI

Vision science is a rich and diverse field, with many findings that the HCI

community can adopt and apply to understanding, evaluating and improving

the presentation of information and interfaces.

Others, such as Ware [90], have recognised the possibilities offered by vision

science for HCI. Applying vision science to HCI is challenging, because vis-
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ion science is a large and technical field with many specialised sub-fields. Es-

tablishing ongoing dialogues and more collaborations with the vision science

community would enrich the HCI research community.

9.3.1.2 Other Types Of Perceptual Stability

Though perceptual stability is defined in this thesis only for colour per-

ception and spatial perception, the underlying idea of how differences in

physiology mediate design experiences can be generalised to other aspects of

our physiology.

For example in vision what are the implications for design experiences due

to differences in super-acuties, critical flicker-frequency, and temporal integra-

tion?

In a broader scenario, how do individual differences in smell, taste, hearing,

touch sensitivity, and balance affect our experiences of designed experiences,

e.g. measure taste blindness and adapt a cook book for individual taste re-

ceptor function?

Measuring other types of perceptual stabilities will enhance what can be

achieved with Mass Customisation and Product Personalisation (see Section

1.2.2).

9.3.2 Building Upon Thesis Findings

9.3.2.1 Colour Perception

Improving PERScp Measure With Surround

PERScp currently measures the degree to which each pixel independently

changes colour. This could be improved by taking into consideration whether

a pixel changes colour, such that it becomes closer in colour to the surrounding
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colours.

To move away from point / pixel based colour measures and take percep-

tual interactions between surrounding colours into consideration, other exper-

imental colour models and colour difference measures such as CIECAM02 or

S-CIELAB may be of use (see Section 3.6.6).

By taking surrounding pixels into consideration an improved PERScp would

help establish whether colour changing pixels still stand out from their sur-

round, or blend into the surrounding colour.

Individualised Colour Spaces

Differences in colour receptor function exist between everyone, not just for

individuals with colour blindness. Techniques for measuring and modelling

individual colour spaces could enable the optimisation of colour spaces to suit

individual eye function. Though it is questionable whether the differences are

significant enough to be of use.

9.3.2.2 Spatial Perception

Automatic Noise Thresholding

Noise Thresholding is introduced in Section 4.2.5 to handle the misleading

effects of gradients on calculating PERSva.

Are other approaches possible such that NT is not required? One possibility

lies in that the amount of change in NNSE entropy a region experiences is ig-

nored (normalised away) between regions, instead the rate of change is used.

Instead of normalising away the amount of change, the amount of change

could be analysed in conjunction with the rate of change.
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Sensitivity Analysis To Preseve Physiological With Semantic Details

As is discussed in Section 8.2 PERScp is a physiological measure, not a se-

mantic measure. The effect of this is that it can treat a group of visual features

as a single visual feature, because the multiple visual features are so close they

optically form a single visual feature - when subject to a small amount of op-

tical aberrations.

How PERSva is used can be adapted, such that it can also analyse a visual

design to see how sensitive the design is to a small degrees of optical aberra-

tions. A design which is very sensitivity to small amounts of optical aberration

is detailed. The correspondance between amount of detail and sensitivity to

optical aberrations provides a form of sensitivity analysis, which may be use-

ful. For example, a core focus of research around graphs is how to lay them out

to make the less cluttered. Many approaches measure line crossing explicitly

and attempt to maximum the distance between nodes.

Sensitivity analysis may enable a new approach to automatically laying out

graphs, based on low-level vision rather than counting edge crossings or ex-

plicitly maintaining distances between edges and nodes.

When laying out a graph detail preservation is important. By testing whether

a graph loses detail quickly when subject to optical aberrations, we potentially

are able to learn whether the graph is laid out such that visual features are easy

or difficult to see.

Depicited in Figure 9.1 are multiple six node three edge graphs laid out based

on PERSva with sensitivity analysis, where no edge crossings are explicitly

counted. From left to right and top to bottom the fitness of the graph layout

improves, when PERSva with sensitivity analysis is part of the fitness func-

tion in a genetic algorithm. Figure 9.2 shows a five node five edge circular

graph, and Figure 9.3 shows a seven node seven edge graph, both laid out
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using PERSva with sensitivity analysis.

Whether PERSva with sensitivity analysis generalises as a perceptual graph

layout technique is an interesting future research direction. If so it has the po-

tential such that PERSva could be enhanced, to make more complex predic-

tions without requiring semantic knowledge about the analysed designs and

interfaces.

9.4 Summary

This thesis has introduced and evaluated objective quantifications of ”What do

people see in a design?”. The techniques for generating the quantifications are

capable of modelling individual differences, which is useful for automating

design judgements, i.e. automatically compare a range of potential interface

designs and make a decision about which is best for a specific user.

In the longer term, as we move into a world where Mass Customisation

and Product Personalisation become common place, objective design quan-

tifications are useful for adapting and customising designs to suit individual

physiologies, capabilities and preferences.
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Figure 9.1: Perceptual graph layout - Example of a six node three edge graph.
Nodes were not drawn during analysis, as PERSva maximization based on
edges.
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Figure 9.2: Perceptual graph layout - Example of a five node five edge circu-
lar graph. Nodes were not drawn during analysis, as PERSva maximization
based on edges.
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Figure 9.3: Perceptual graph layout - Example of a seven node seven edge
graph. Nodes were not drawn during analysis, as PERSva maximization
based on edges.
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