				ecture-wise Brea	^			~ .	
Course Code 19M2		19M21PH2	11	Semester: Eve	en	Semester: III Session 2020 -2021			
					Month from: July to December				
Course Na	Course Name Nuclear and Pa			Physics					
Credits			4		Contact I	Hours			3+1
Faculty (N	ames)	Coordinator		Manoj Tripathi	i				
		Teacher		Manoj Tripathi	i				
COURSE	OUTCO	OMES						COGNI	TIVE LEVELS
CO1	Reca physi	ll the basic nucl	lear pr	operties and lav	vs of nucle	ar and pa	rticle	Rememb	pering (C1)
CO2	Unde	erstand different cle physics along	-		1	f nuclear	and	Understa	anding (C2)
CO3	Appl	y the concept an particle physics.	é.			ated to nu	clear	Applying	g (C3)
CO4	Anal	yze and examin cle physics using			•		r and	Analyzir	ng (C4)
Module No.	Title Mod	of the ule	Topics in the Module				No. of Lectures for the module		
1.	and	Nucleus properties and nuclear modelsBasic nuclear properties – size, shape and charge distribution, nuclear energy levels, nuclear angular momentum, parity, isospin, statistics, and nuclear magnetic dipole moment. Binding energy, semi- empirical formula, Liquid drop model, Magic Numbers, Shell model and collective nuclear model.			8				
2.		ear decay and ear reaction	decay and Alpha decay, Gamow's theory of alpha decay, Beta			8			
3.	Nucl	ear forces	Classification of fundamental forces, Nature of nuclear force, form of nucleon-nucleon potential, charge independence and charge-symmetry of nuclear forces. Deuteron problem – properties of deuteron, ground state of deuteron, excited state, magnetic quadrupole moment of deuteron.				9		
4. Elementary Class particles and number relativistic Gellic kinematics Class mass			numb Gellr Class mass	15 ssification of elementary particles and their quantum abers (charge, spin, parity, isospin, strangeness, etc.), Imann-Nishijima formula, Lepton & Hadrons, ssification of Hadron in baryons and mesons, Okubo ss formula for octet and decaplet Hadrons, Quark del,. C, P, and T invariance. Elementary particle				15	

		symmetries, SU(2) and SU(3) groups, Their representations. Application of symmetry arguments to particle reactions. Parity non-conservation in weak interaction.	40			
		Total number of Lectures	40			
Eval	uation Criteria					
Com	ponents	Maximum Marks				
T1		20				
T2		20				
	Semester Examination	35	_			
TA		25 [2 Quiz (7 M), Attendance (7 M) and A mini-project and	class			
m (performance (6 M) and class performance (5M)]				
Tota	ll	100				
		ial: Author(s), Title, Edition, Publisher, Year of Publication etc orts, Websites etc. in the IEEE format)	. (Text books,			
1.	K. S. Krane, Introducing n	nuclear physics, Wieley India (2008).				
2.	D. C. Tayal, Nuclear Physics. Himalya Publication House, Bombay (2015).					
3.	Irving Kaplan, Nuclear Physics, Narosa Publication (2002).					
4.	D. Griffiths, Introduction to elementary particles, 2 nd Ed, Academic Press (2008).					
5.	S. N. Ghoshal, Nuclear an	d Particle Physics, S. Chand Limited (2008).				

			Le	cture-wise Brea					
Course Code19M21PH212		19M21PH212		Semester: Odd	ł	Semester: 3 rd Session 2020-21			
			Ν		Month from: July to December			ember	
Course Na	ame	Advanced Quar	ntum	Mechanics					
Credits			4		Contact I	Hours		3L+	-1T
Faculty (N	Faculty (Names) Coordinator			S P Purohit					
Teacher				S P Purohit					
COURSE	OUTCO	OMES						COGNIT	IVE LEVELS
CO1	Recall	basic ideas of adv	ance	d quantum mech	anics			Remembe	ring (C1)
CO2	-	n various physical advanced quantum	-		an be expla	ined only		Understan	ding (C2)
CO3	Apply time-independent perturbation methods, time-dependent perturbation methods, quantum collision theory, quantum statistics and relativistic quantum mechanics for quantum mechanical systems.Applying (C3)				(C3)				
CO4	Analyz	ze advanced quant	ntum mechanical problems. Analyzing (C4)				(C4)		
Module No.	Title o	f the Module	Тор	pics in the Modu	ıle				No. of Lectures for the module
1.	metho	ximation ds for time- dent problems	Time-dependent perturbation theory, General features, Fermi's golden rule, periodic perturbation, the adiabatic approximation and application to some atomic systems.				8		
2.	Quant theory						8		
3.	Quant	um statistics	The density matrix, the density matrix for a spin-1/2 system, polarisation, the equation of motion of the density matrix, quantum mechanical ensembeles, applications to single-particle systems, systems of non-interacting particles, consequences of particle statistics, ideal quantum gases, Bose-Einstein condensation in atomic gases.					6	
4.	Relativ mecha	vistic quantum nics	imp of t	Klein-Gordon e lementation and he Dirac theory ation.	applicatio	ons, covar	iant fo	ormulation	6

5.	Quantization of Wave Fields	the field, time derivatives, classical Lagrangian and Hamiltonian equations, quantum equations for the field, fields with more than one components, quantisation of the non-relativistic Schrodinger equation, creation, destruction and number operators, anticommutation relations and operators, electromagnetic field in vacuum, interaction between charged particles and electromagnetic field.	8			
6.	Some applications of quantum mechanics (only qualitative discussion)	The van der Waals interaction, electrons in solids, the decay of K-mesons, semiconductor quantum devices, quantum communication	4			
		Total number of Lectures	40			
Eval	uation Criteria					
T1 T2	T220End Semester Examination35TA25 [2 Quiz (7 M), Attendance (7 M) and A mini-project and class performance (6 M) and class performance (5M)]					
		00 Author(s), Title, Edition, Publisher, Year of Publication etc.	(Text books,			
	8	Websites etc. in the IEEE format)	· · · · · · · · · · · · · · · · · · ·			
1.	Leonard I. Schiff, Quantum Mechanics, McGraw-Hill, Singapore, 1985					
2.	B. H. Bransden and C. J. Joach	nain, Quantum Mechanics, Pearson Education Ltd., 2000				
3.	J. J. Sakurai, Advanced Quantu	um Mechanics				
4.	J. D. Bjorken & S. D. Drell, Relativistic Quantum Fields					

Course Code	19M21PH213	Semester: Odd		Semeste	er: III Session 2020 -2021	
				Month	from: July-December	
Course Name	Numerical Techniques and Computer Programming					
Credits	03		Contact H	Iours	03	

Faculty (Names)	Coordinator(s)	A P S Chauhan
	Teacher(s) (Alphabetically)	A P S Chauhan

COURS	EOUTCOMES	COGNITIVE LEVELS
CO1	Define key concepts used in programming, data structures, Numerical methods.	Remember Level (C1)
CO2	Explain basics of programming, data structures, numerical analysis, parallel programming.	Understand Level (C2)
CO3	Create programs using C to implement various problems in numerical analysis.	Apply Level (C3)
CO4	Create programs using Mathematica and Matlab to solve various problems in numerical physics.	Apply level (C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Programming	Fundamentals of Programming, high/low level languages, compilation and linking, Basic data types, Arithmetic operators, Elementary introduction to header files, print f, scan f and control functions of Turbo C/C++, Looping	10
2.	Data Structures	One and two dimensional arrays of various data types, Operations involving matrices and vectors, String of characters and related library functions, Functions and arrays, Structures, array of structures, unions and enumerations, Command line arguments. Dynamical memory allocation, Plotting simple geometric figures	15
3.	Numerical	Simple C programs covering some elementary topics in	10

	Techniques	numerical analysis such as root finding, interpolation, numerical differentiation and integration, numerical linear algebra, Euler and Runga-Kutta methods.	
4.	Approximation methods	Basic ideas of parallel computing and introduction to the software popularly used in Physics such as Mathematica and Matlab	05
		Total number of Lectures	40
Evaluation	n Criteria		
Componei	. 4		
Componer	115	Maximum Marks	
T1	115	20	
-	115		
T1 T2	ter Examination	20	
T1 T2		20 20	lass

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books	cs,
Reference Books, Journals, Reports, Websites etc. in the IEEE format)	

1.	Greg Perry and Dean Miller, C Programming Absolute Beginner's Guide, Paperback, 2013.
2	Bjarne Stroustrup, C++ Programming Language, Paperback, 2013.
3	K. E. Atkinson, Numerical Analysis, John Wiley (Asia), 2004.
4	S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, Tata McGraw Hill, 2002.
5	Stephen Wolfram ,The Mathematica Book, Fifth Edition , Wolfram Media, Inc., 2012.
6	A. Gilat, MATLAB An Introduction With Applications 4th Edition, John Wiley, 2013.

Course Code	19M21PH214	Semester: Odd	emester: Odd		Semester: III Session 2020 -2021		
				Month from: July-December			
Course Name	Advanced Condensed Matter Physics-1						
Credits	03		Contact H	Iours	03		
Faculty (Names)	Coordinator(s)		Prof. R.K. Dwivedi				
	Teacher(s) (Alphabetically)		NA				

COURSE OUTCOMES CO		COGNIT	IVE LEVELS	
CO1	Recall basic concept phase transition and	s related to magnetism, transport phenomena, super conductivity	Remembe	r Level (C1)
CO2		nce and value of condensed matter physics, both the wider community	Understan	d Level (C2)
СОЗ		of conception or notion involved in various studied in this course	Apply Lev	vel (C3)
CO4	Make use of various theories.	methods and solve problems related to studied	Apply leve	el (C3)
Module No.	Title of the Module	1		No. of Lectures for the module
1.	Dielectrics and Ferroelectrics	Dielectrics, Maxwell Boltzmann equations, Polariz macroscopic electric field, Local electric field of Lorentz field, Polarizability, Classius-Mossoti relat of polarization and polarizabilities, Frequency de of polarizabilities. Ferroelectric crystals and phase transitions, Order-disorder phase Displacive and soft mode transition, LST relation Theory of Phase transition, First order and sec phase transition, Anti-ferroelectricity, Ferroelectric (90° and 180°), Piezoelectricity and piezoelectric	f an atom, tion, Type ependence structural transition, n, Landau ond order c domains	12
2.	Magnetism	Magnetiztion and magnetic susceptibilty, Langev of diamagnetism and Van Vleck paramagnetism, theory of Paramagnetism, Curie Brillouin law. Cu ferromagnets, Magnons, Curie temperatu susceptibility of Ferrimagnets, Néel temperature ferromagnetic order, Brags-Willium theory, H model, Ising model; Elements of magnetic pro metals, Landau diamagnetism, Pauli paramagnetis	Quantum urie-Weiss ure and and Anti- leisenberg operties of	12

Total		100	
ТА		25 [2 Quiz (7 M), Attendance (7 M) and A mini-project and cl performance (6 M) and class performance (5M)]	ass
End Semester Examination		35	
T2		20	
T1		20	
Componer	nts	Maximum Marks	
Evaluation	n Criteria		
		Total number of Lectures	40
4.	Superconductivity	Flux quantization; Supercurrent tunneling; DC and AC Josephson effects; High-Tc superconductors.	6
		Cooper pairing and BCS theory; Ginzburg Landau theory;	
3.	Transport Properties	Boltzmann equation; Relaxation time approximation; General transport coefficients; Electronic conduction in metals; Thermoelectric effects; Transport phenomena in magnetic field; Magnetoresistance; Hall effect and Quantum Hall effect.	10
		ferromagnetism; Magnetic resonance; NMR and EPR.	

	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Kittel C, "Introduction to Solid State Physics", 8th Ed. Wiley eastern Ltd
2	Ashcroft N W and Mermin N D, "Solid State Physics", Holt-Saunders
3	Chaikin P M and Lubensky T C, "Principles of Condensed Matter Physics", Cambridge University Press
4	Harrison P, "Quantum Wells, Wires and Dots", Wiley & Sons Ltd.
5	B. D. Cullity and C. D. Graham, "Introduction to magnetic materials" John Wily & Sons, Inc, 2011
6	K. H. J. Buschow and F. R. de Boer, "Physics of Magnetism and Magnetic Materials" Kluwer Academic Publishers, 2003
7	Stephen Blundell, "Magnetism in Condensed Matter" Oxford University Press (2001)
8	M. Tinkham, "Introduction to superconductivity" McGrawHill, New York. (1996); Dover Books (2004)
9	P. G. de Gennes, "Superconductivity of metals and alloys" W. A. Benjamin, New York (1966); Perseus Books (1999)
10	A. A. Abrikosov, "Fundamentals of the theory of metals" North Holland, Amsterdam (1998)

Course Code	19M21PH215	Semester: Ode	d		r: III Session 2020 -2021 from: July to December
Course Name	Optoelectronics				
Credits	3		Contact I	Hours	3
Faculty (Names)	Coordinator	Navneet K Sharma			
	Teacher	Navneet K Sha	ırma		

COURSE OUTCOMES		COGNITIVE LEVELS
CO1	Recall the fundamentals of semiconductor physics, LEDs, Injection Laser diodes	Remembering (C1)
CO2	Explain basic principle of Optoelectronic detection: photodiodes, photoconducting detectors; Modulators	Understanding (C2)
CO3	Apply concepts of fibers: step index, graded index, Numerical aperture; Modes: single mode and multimode; V Parameter; evanescent modes; losses in fibers; dispersion in fibers	Applying (C3)
CO4	Analyze semiconductor optical amplifiers; Erbium-doped fiber amplifiers; Fiber Raman amplifiers	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Optoelectronic Sources	Fundamental aspects of semiconductor physics: p-n junction, Heterojunction; LEDs; Types of LEDs: surface and edge emitting; Injection Laser diodes.	8
2.	Optoelectronic Detectors	Basic principle of Optoelectronic detection: Types of photodiodes; Photoconducting detectors.	6
3.	Optoelectronic Modulators	Review of basic principles of modulators; Electro-optic, Acousto-optic, Magneto-optic modulators.	8
4.	Optical Fiber- Theory	Classification of fibers: step index and graded index; numerical aperture; modes in optical fiber: single mode and multimode; V parameter; evanescent modes; losses in fibers: bending and coupling; dispersion in fibers: dispersion compensated, dispersion flattened and dispersion shifted; Fiber bragg grating.	12
5.	Optical Amplifiers	Semiconductor optical amplifiers; Erbium-doped fiber amplifiers; Fiber Raman amplifiers.	6
		Total number of Lectures	40
Evaluatio	n Criteria		

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25 [2 Quiz (7 M), Attendance (7 M) and A mini-project and class
	performance (6 M) and class performance (5M)]
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)	
1.	Fundamentals of Photonics – B. E. A. Saleh and M. C. Teich, wiley, 2nd edition.	
2.	Principles of Optics - M. Born and E. Wolf, Cambridge university press, 7th edition.	
3.	Optical Electronics - A.Ghatak and K.Thyagarajan, Cambridge university press.	
4.	Optical Fiber communications: principles and practice – John M.Senior, Pearson Education, 3rd edition.	

Course Code	19M25PH211	Semester: Odd		Semeste	er: III Session 2020 -2021
		I		Month f	from: Jan to June (Deferred)
Course Name	Laboratory-3 (Solid S	State Physics)			
Credits 04			Contact Hours		08

Faculty (Names)		Coordinator(s)	
		Teacher(s) (Alphabetically)	
COURSE OUTCOMES		DMES	COGNITIVE LEVELS
CO1	Explain	n the principal and working of experimental setup.	Understand Level (C2)
CO2	Plan th	e experiment and take measurements.	Apply Level (C3)
CO3	Analyz	the data obtained and calculate the error.	Analyze level (C4)
CO4	Interpr	et and justify the results.	Evaluate Level (C5)

Module No.	Title of the Module	Topics in the Module	СО
1.	Structural characterization	 Structural determination of given samples (BaTiO₃, CoFe₂O₄, ZnO etc) by X-ray diffraction technique. Determination of structural parameters (lattice parameters, crystallite size etc) of given samples from XRD data. 	2, 3, 4, 5
2.	Dielectric measurements	 Temperature dependent dielectric measurements of given sample and their analysis. Frequency dependent dielectric measurements of given sample and their analysis. To measure the coercive field (Ec), Remanent Polarization (Pr), and Spontaneous Polarization (Ps) of Barium Titanate (BaTiO3) sample. 	2, 3, 4, 5
3.	Spectroscopic measurements	 6. Determination of optical band gap of prepared given sample by UV-Vis spectroscopy, 7. Analysis of various bonding in given samples by Infrared spectroscopy. 	2, 3, 4, 5
4.	Transport Properties	 8. To study the temperature dependence of Hall coefficient of N and P type semiconductors. 9. Electrical resistivity of high resistive material as a function of temperature using DC four probe method. 10. Determination of co-efficient of linear thermal expansion of polymer as a function of temperature. 11. To study C-V characteristics of various solid state 	2, 3, 4, 5

	devices & materials. (like p-n junctions and ferroelectric capacitors)
Evaluation Criteria	
Components	Maximum Marks
Mid Term Viva	20
End Term Viva	20
Day To Day Evaluation	60
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)								
1.	Melissinos Physics", Acad	A.C. demic Press	and	Napolitano	J,	"Experiments	in	Modern	

Course Co	odo	19M25PH21		Semester: Od		Someete	2rd	Sociar 1	020 21	
		19101251 1121	2	Semester: Ou	u	Semester: 3 rd Session 2020-21 Month from: Jan to June (Deferred)				
Course Na	ame	Laboratory-	3 (Applied Optics)					in. Jan to June (Deferred)		
Credits	Credits			4 Contact Hours				30	3	
Faculty (N	James)	Coordinato	r							
Faculty (1	Teacher									
	<u>orma</u>									
COURSE	OUTCO	DMES						COGNIT	IVE LEVELS	
CO1 Recall the principles of Op optoelectronics and Lasers						ers,		Remember	ring (C1)	
CO2	Explai	n the experime	ental setu	ip and the princi		ed behind	the	Understan	ding (C2)	
CO3		ments performed ne experiment a		he apparatus and	l take meas	urements.		Applying ((C3)	
CO4	Analyz	ze the data obta	ained an	d calculate the e	rror.			Analyzing	(C4)	
CO5	Interpr	et and justify t	he resul	ts.				Evaluating	g (C5)	
Module No.	Title o Modu		Topics	s in the Module					СО	
1.	Optica Spectr	d oscopy	 acopy 1.Determination of size of Nano materials by uv-vis absorption spectrophotometer. 2. Determination of optical band gap (Δε) of materials by uv-vis emission spectrophotometer. 3. Determination of optical band gap (Δε) of materials by uv-vis absorption spectrophotometer. 4. Determination of various nonlinear optical coefficients (first and second order hyperpolarizabilities) by FTIR 				1-5			
2.	Optica	ll Fibers	 spectrometry. 5.To measure the power loss at a splice between two multimode fibers and study the variation of splice loss with transverse and longitudinal offsets. 6.To couple the light from an optical source into the optical fiber and to measure its Numerical aperture (NA). 7.To determine the mode field diameter (MFD) of the fundamental mode in given single mode fiber (SMF) by a measurement of its far field. 				1-5			
3.	Applications9.DeteApplications10. Bcharacter			surement of la rmination of ination of refrac asing characteri terization um Analyzer.	optical abs	sorption of the liqu	coeffic ids usi	cient and ing He-Ne	1-5	
Evaluation	n Criter	ia <u> </u>								
Compone	nts		Maxim	um Marks						

Mid	Term Viva (V1)	20	
End	Term Viva (V2)	20	
D2D		60	
Tota	1	100	
101a	1	100	
Reco	ommended Reading materi	al: Author(s), Title, Edition, Publisher, Year of Public rts, Websites etc. in the IEEE format)	ation etc. (Text books,

Course Code	20M22PH213	Semester: OI		Semester: 3rd Session 2020 -2021 Month from July to December		
Course Name	Semiconductor and Electronic Devices:					
Credits	3		Contact Hours		3	

Faculty (Names)	Coordinator(s)	Dinesh Tripathi
	Teacher(s) (Alphabetically)	Dinesh Tripathi

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Define terminology and concepts of semiconductors in correlation with semiconductor related electronic devices	Remember Level (Level 1)
CO2	Explain optical thermal and electronic properties of semiconductor and devices in equilibrium and steady state conditions	Understand Level (Level 2)
CO3	Apply mathematical equations and laws of semiconductor physics to solve related problems.	Apply Level (Level 3)
CO4	Analyze and compare different semiconductor and electronic devices for understanding their performances	Analyze Level (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module		
1.	Energy bands, direct and indirect semiconductors, charge carriers, mobility, drift of carriers in field, bonds and bands in semiconductors, intrinsic and extrinsic semiconductors, law of mass action, Hall effect and cyclotron resonance in semiconductors.				
2.	Optical Injection	Carrier life time, direct and indirect recombination of electron and holes, steady state carrier generation, diffusion and drift of carriers, the continuity equation, steady state carrier injection, The Haynes-Shockley experiment.	8		
3.	Junctions	Metal-Semiconductor contact: under equilibrium, and non- equilibrium conditions, the junction diode theory, tunnel diode, photodiode, LED, solar cell, Hetro-junctions and Laser diode.	10		
4.	Devices	Bipolar Junction Transistors: Charge transport and amplification, minority carrier distribution and terminal currents switching behavior in bipolar transistor, FET and	10		

	MOSFET: Ideal MOS capacitor, effect of work function and interface charge on threshold voltage.	
	Total number of Lectures	40
Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
ТА	25 [2 Quiz (7 M), Attendance (7 M) and A mini-project and c performance (6 M) and class performance (5M)]	lass
Total	100	

Reco	Recommended Reading material:							
1.	Donald A Neamen & Dhrubes Biswas, Semiconductor Physics and Devices, McGraw Hill Education							
2.	S. M. Sze, Physics of Semiconductor devices, Wiley-Interscience							
3.	Streetman and Banerjee, Solid State Electronic devices, PHI							
4.	Umesh Mishra and Jasprit Singh, Semiconductor Device Physics and Design,							

Course Co	ode	20M22PH21		Semester: Od		Semeste	er: 3rd	Session	2020-21
						Month from: July to De			ember
Course Na	ame	Quantum Op	tics	cs					
Credits		3		Contact I	Hours		3		
Faculty (Names) Coordinato		r	Anirban Pathal	x					
Teacher				Anirban Pathal	ζ.				
COURSE	OUTCO	OMES						COGNIT	IVE LEVELS
CO1	Recall	basics of field	quantiza	ation				Remember	ring (C1)
CO2	^	n various phys m optics	ical phe	nomena which fa	all under th	e domain	of	Understan	ding (C2)
CO3			-	um ness of light classical propert		•		Applying	(C3)
CO4	Analyze complex problems related to matter field interaction using quantum treatment Analyzing						(C4)		
Module No.	ule Title of the Module		Topics	s in the Module					No. of Lectures for the module
1.		luction to um optics	quantu the u quantiz	ication of opti m optics; establ inderstanding zation of electros l ordering and fie	ish the nee of variou magnetic fi	d of field is optications optications	quant al pl	isation for nenomena;	5
2.	Coherent state and the notion of nonclassicalityCoherent state as an eigenket of annihilation operator and other definitions of coherent state; properties of coherent state; notion of pure and mixed state; Glauber-Sudarshan P- representation and the nontion of nonclassical states.			5					
3.	Quantum (nonclassical)Notion of squeezed state, antibunchied state, entangled states of light their properties, witnesses and nonclassicality inducing operationsNotion of squeezed state, antibunchied state, entangled states with sub-Poissonian photon statistics, etc, and their properties; Displacement operator, squeezing operator, and photon addition and subtraction operators, their roles in inducing nonclassicality. Operational criteria for witnessing nonclassicality with emphasis on correlation functions and quasi probability distributions like Wigner function and Q				8				
4.	Gener evolut			s physical pro assical) light e.g		0		-	14

r								
	detection of	processes; mathematical methods and models used in						
	quantum	quantum optics: Jayne-Cummings model, Rabi models,						
	(nonlcassical) state	rotating wave approximation, Fokker-Planck equation and						
	of light	elementary idea of Master equation and open quantum						
		system; Detection of quantum light by coincidence-						
		counting and methods of phase-sensitive detection;						
	Landmark experiments in quantum optics.							
5.	Applications of	Precise measurement (with example of LIGO), laser	8					
	Quantum Optics	cooling	0					
	Quantum Optics	and BEC, ion trapping, CPT, EIT, slow light, applications						
		in quantum communication, quantum computation and in						
		quantum metrology with specific mention of quantum						
		radar.						
			40					
		Total number of Lectures	40					
Eval	uation Criteria							
Com	ponents	Maximum Marks						
T1	F	20						
T2		20						
End S	Semester Examination	35						
TA		25 [2 Quiz (7 M), Attendance (7 M) and A mini-project and class						
		performance (6 M) and class performance (5M)]						
Tota	Total 100							
Reco	mmended Reading materia	l: Author(s) Title Edition Publisher Vear of Publication etc.	(Text books					
	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)							
1.	M Fox, Quantum optics: An introduction, Oxford University Press, Oxford 2006							
2.	Z Ficek and M R Wahiddin, Quantum Optics for Beginners , CRC Press, London2014							
3.	G S Agarwal, Quantum Op	tics, Cambridge University Press, Cambridge, 2012						