

Design Analysis Technology Advancement (D.A.T.A) Laboratory

DETC2013-12587

Product Resynthesis as a Reverse Logistics Strategy for an Optimal Closedloop Supply Chain 8/05/2013

Chinmay Sane, Conrad S. Tucker {cgs5142,ctucker4}@psu.edu

Introduction

Research Motivation

- Research Objectives
- Literature Review
- Methodology
- Results
- Path Forward

Research Motivation

- Over 2 million tons of electronic devices were discarded in the U.S in 2009 (also a global problem)
- Only 15-20% of electronic component based waste is treated with EOL decision-making, with the remainder of these electronics going directly to landfills and incinerators

Research Motivation

PENNSTATE

pennState

Forward Logistics Methodologies

PENNSTATE

Reverse Logistics Methodologies

PENNSTATE

Challenges of Existing Methodologies

Original Equipment Manufacturer (OEM)

PENNSTATE

Low Economic Incentives for the OEM

•Cannibalization of existing products

PENNSIAL

•Do not fully explore the value of EOL product assemblies/subassemblies

Literature Review

Research Objectives

•Discover latent, previously unknown relationships between End of Life (EOL) assemblies/subassemblies by quantifying their form/function similarities

•Determine candidate End of Life (EOL) assemblies/subassemblies that are suitable for *Product Resynthesis*

•Establish *Product Resynthesis* as a viable EOL strategy for Closed-loop supply chains

PENNSTATE

Research Methodology

Research Methodology

Proposed Methodology

Original Equipment Manufacturer

PENNSTATE

What is *Resynthesis*?

Synthesis : The systematic combination of otherwise different elements to form a coherent whole

Resynthesis: The systematic <u>recombination</u> of otherwise different elements to form a coherent whole

Resynthesis as an EOL Strategy

11

Research Methodology

PENNSTATE

PENN<u>State</u>

Resynthesis as an EOL Strategy

	Decision							
Operation	Dispose	Reuse	Remanufacture	Recycle	Resynthesize			
Collection	X	Х	Х	X	Х			
Transportation to disposal centers	Х							
Dismantling	X		Х	X	X			
Refining	X			Х	Х			
Machining			Х		X			
Disposal of waste	X							
Assembling					X			

PENNSTATE

Examples of Product Resynthesis

PENNSTATE

A

14

Research Methodology

PENN<u>State</u>

Data Acquisition

Disassembly Sequence Planning

Quantify Form-Function Similarity

 \rightarrow

Determine Optimal Resynthesis Candidate

	Manufacture	Display Size	Talk Time	Connectivity	Processor	 	 	 	 	Price
	Apple	3.5 inches	8 hours	Bluetooth, Wi-Fi, 3G+	1 GHz	 	 	 	 	\$649
	Samsung	4.5 inches	8.5 hours	Bluetooth, Wi-Fi, 3/4G	1.2 GHz	 	 	 	 	\$445
THE R	Microsoft/Nokia	3.7 inches	9.5 hours	Bluetooth, Wi-Fi, 3G+	1.4 GHz	 	 	 	 	\$364

Research Methodology

Data C Acquisition Sequ	Disassembly Lience Planning	Quantify I Function Si	Form- milarity →	Detern Resynthe	nine Optimal esis Candidate
	Produ	ct Dat	abase	9	
Object	Image	e	3D Cad (<i>Form</i>	lmage data)	Function data
Screwdriver	Office				Screw, shank, handle, rotate, pry lever
Calculator		-			Mathematical computation, add, subtract, multiply, divide, numbers

Research Methodology

PENN<u>STATE</u>

http://www.engr.psu.edu/datalab/

16

Data <u>Disassembly</u> Acquisition Sequence Planning

Determine Optimal Resynthesis Candidate

Selective disassembly

Research Methodology

PENN<u>State</u>

Data		Disasser	nbly 📘	Quantify I	orm-	Dete	ermine Op	timal			
Acquisiti	on	Sequence P	lanning	Function Sir	nilarity ブ	Resynthesis Ca		didate			
	Domain 1: Design Artifact (j)										
Design	Mar	nufacturer	Display Size	Talk Time	Connectiv	vity Pro	ocessor	Price			
	Арр	le	3.5 inch	8 hours	Wifi	16	δHz	\$649			

"Bisociative Design" – "Design knowledge discovery across seemingly unrelated domains based on machine learning and natural language processing techniques" Tucker and Kang (ASME IDETC, 2012)

Design	Manufacturer	MPG	Horsepower	Connectivity	Price
	Ford	50	200 HP	Bluetooth	\$20, 000
penn <u>State</u>	Domain	2: De	sign Artifac	t (k)	
	Research Methodolog	SY .	http://www.engr.psu.edu	18 A	

Quantifying Form Similarity

Reeb Graphs: The degree of similarity is a direct correlation to ۲

Quantify Form-

the level of similarity between the two 3D models

-Doraiswamy et al (2009)

Research Methodology

		Level set dat	a	Sample of
	Saddle	Maxima	Minima	generated ^{3 D Model} Corresponding Reeb Graph
	1	0	0	data.
	2	0	2	Saddle
	3	6	5	Reeb graph critical points
				comparison – z
	1543	1554	1023	visualization.
PENN	STATE			v
	1 8 5 5	Research	Methodo	http://www.engr.psu.edu/datalab/

Quantifying Function Similarity

Quantify Form-

Function Similarity

 \rightarrow

PENN<u>State</u>

Data

Acquisition

Disassembly

Sequence Planning

Determine Optimal

Resynthesis Candidate

* David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March 2003.

21

PENNSTATE

Quantify Form-Function Similarity

Determine Optimal Resynthesis Candidate

Quadrant 4: *Form* (high), *Function* (high): Not a high valued candidate for Product Resynthesis

High Form and Low Function

Similarity

Quantify Form-

Function Similarity

Subassembly combinations with Highform and Low-function similarity are economically optimal and hence candidates for resynthesis

Data

Acquisition

Disassembly

Sequence Planning

Research Methodology

Determine Optimal

Resynthesis Candidate

$$\pi_{M} = \left\{\sum_{i=1}^{N} D(p_{i}) \times (w_{i} - c_{i})\right\} + \left\{\sum_{i=1}^{N} \lambda_{i} \times \mu_{i} \times D(p_{i}) \times (z_{i} - v_{i})\right\} + \left\{\left(\sum_{i \in I} w_{i} - s - c_{i}\right) * D(new)\right\}$$

PENNSIALE

$\pi_{R} = \{\sum_{i=1}^{N} D(p_{i}) \times (p_{i} - w_{i})\} + \{\sum_{i=1}^{N} \lambda_{i} \times D(p_{i}) \times (r_{i} - a_{i})\}$

29

Research Methodology

Case Study

PENN<u>State</u>

Model Assumptions

- Assemblies/subassemblies have similar reliabilities
- OEMs used in the case study were assumed to manufacture a single product

PENNSTATE

PENNSTATE

Candidate Subassemblies for Resynthesis

PENNSTATE

2	Component		Eraser casing - B'	Eraser head - A'	A'B'
	Mouse top	form	0.282	0.074	0.300
	Mouse top - A	function	0.480	0.060	0.270
	Microchin B	form	0.130	0.129	0.130
	Milei demp - B	function	0.020	0.010	0.000
	Mougo bogo C	form	0.159	0.452	0.156
	wouse base - C	function	0.320	0.230	0.350
	AD	form	0.282	0.074	0.300
	AD	function	0.060	0.020	0.040
		form	0.301	0.452	0.377
	AC	function	0.350	0.230	0.360
	BC	form	0.159	0.449	0.163
nnStat	E DC	function	0.170	0.140	0.200
2.1					

http://www.engr.psu.edu/datalab/

Case Study

TA

35

Case Study

PENN<u>State</u>

Results and Discussion

With Resynthesis

Results

PENN<u>State</u>

Conclusion & Future work

- The new EOL option, *Resynthesis* is introduced
- Resynthesis has the potential to add to the profit that the corresponding OEM and other players make
- A 3rd party firm is not only capable of handling the reverse logistics but also post recovery alternatives

PENNSTATE

pennState

Acknowledgement & References

Contributors:

PENNSTATE

PENNSTATE

• D.A.T.A. Lab: Chinmay Sane, Conrad S.Tucker

References

[1] Arthur Koestler. The Act of Creation. Penguin (Non-Classics), June 1990

[2] H. Bashir and V. Thomson. Estimating design complexity. Journal of Engineering Design, 10(3):247–257, 1999.

[3] O. Benami and Y. Jin. Creative simulation in conceptual design. In Proceedings of ASME Design Engineering Technical Conferences and Computer and Information in EngineeringConference DTM 34023. ASME, 2002.

[4] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii. Topology matching for fully automatic similarity estimation of 3d shapes. In SIGGRAPH '01 Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 44–47, 267, Aug 2001
[5] S. K. Moon, S. R. T. Kumara, and T. W. Simpson. Data mining and fuzzy clustering to support product family design. In Proceedings of DETC 06, 2006 ASME

References

Questions

