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Next-generation sequencing technology will soon allow sequencing the whole genome of large groups of individuals, and
thus will make directly testing rare variants possible. Currently, most of existing methods for rare variant association studies
are essentially testing the effect of a weighted combination of variants with different weighting schemes. Performance of
these methods depends on the weights being used and no optimal weights are available. By putting large weights on rare
variants and small weights on common variants, these methods target at rare variants only, although increasing evidence
shows that complex diseases are caused by both common and rare variants. In this paper, we analytically derive optimal
weights under a certain criterion. Based on the optimal weights, we propose a Variable Weight Test for testing the effect of an
Optimally Weighted combination of variants (VW-TOW). VW-TOW aims to test the effects of both rare and common variants.
VW-TOW is applicable to both quantitative and qualitative traits, allows covariates, can control for population stratification,
and is robust to directions of effects of causal variants. Extensive simulation studies and application to the Genetic Analysis
Workshop 17 (GAW17) data show that VW-TOW is more powerful than existing ones either for testing effects of both rare and
common variants or for testing effects of rare variants only. Genet. Epidemiol. 36:561–571, 2012. C© 2012 Wiley Periodicals, Inc.
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INTRODUCTION

There is increasing evidence showing that complex dis-
eases are caused by both common and rare variants [Bodmer
and Bonilla, 2008; Ng et al., 2009; Pritchard, 2001; Pritchard
and Cox, 2002; Stratton and Rahman, 2008; Teer and
Mullikin, 2010; Walsh and King, 2007]. The purpose of cur-
rent genome-wide association studies (GWAS) is to identify
common variants that are associated with complex traits.
To date, a large number of common variants underlying
complex diseases have been identified by GWAS [Heid
et al., 2010; Lango Allen et al., 2010; Plenge et al., 2007; Sax-
ena et al., 2007; Thomson et al., 2007; Zeggini et al., 2007].
However, the identified variants account for only a small
fraction of disease heritability [Bansal et al., 2010; McCarthy
et al., 2008; Schork et al., 2009]. One of potential sources
of missing heritability is the contribution of rare variants
[Cohen et al., 2006; Ji et al., 2008; Manolio et al., 2009; Marini
et al., 2008; Nejentsev et al., 2009; Zhu et al., 2010]. To
map common variants, we can use indirect mapping meth-
ods based on tagging single-nucleotide polymorphisms
(SNPs). However, for rare variant association studies, we
need to directly test all rare variants because they are
essentially independent of other variants. Next-generation
sequencing technology allows sequencing of parts of the
genome—or, in the future, the whole genome—of large

groups of individuals [Hodges et al., 2007], and thus
makes directly testing rare variants feasible [Andre’s et al.,
2007].

Although statistical methods to detect common variants
have been well developed, these methods may not be opti-
mal for detecting rare variants due to allelic heterogeneity
as well as the extreme rarity of individual variants [Li and
Leal, 2008]. Recently, several statistical methods for detect-
ing associations of rare variants have been developed, in-
cluding the cohort allelic sums test (CAST) [Morgenthaler
and Thilly, 2007], the combined multivariate and collaps-
ing (CMC) method [Li and Leal, 2008], the weighted sum
statistic (WSS) [Madsen and Browning, 2009], the variable
minor allele frequency (MAF) threshold method [Price et al.,
2010], the cumulative minor-allele test (CMAT) [Zawis-
TOWski et al., 2010], the adaptive sum test (aSum) [Han
and Pan, 2010], and the step-up method [Hoffmann et al.,
2010] among others. Let xim denote the genotype (number
of minor alleles) of the ith individual at the mth variant. The
aforementioned methods for rare variant association studies
are essentially testing the effect of a weighted combination
of variants,

∑
m wmxim, or its function with different ways

to model the weights wm. All of the CAST, CMC method,
variable MAF threshold method, and CMAT set wm = 1.
The CMAT tests the effect of

∑
m wmxim, while the CAST,

CMC method, and variable MAF threshold method test the
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effect of I{∑
m wmxim≥1}, where I{·} is the indicator function.

The WSS tests the effect of
∑

m wmxim with wm to be the in-
verse square root of the expected variance based on allele
frequencies. The aSum sets wm = sign(�̂m), where �̂m is an
estimated value of the coefficient of the mth variant based
on the marginal logistic linear model. The step-up method
models wm = amsmvm, where am is a continuous weight (e.g.,
to incorporate allele frequencies), sm determines the direc-
tion of the variant effect (deleterious or protective), and vm
is an indicator variable determining whether the variant
belongs to the model.

In this paper, we propose a novel Test for testing the
effect of an Optimally Weighted combination of variants
(TOW). The optimal weights are analytically derived and
can be calculated from sampled genotypes and phenotypes.
Based on the optimal weights wo

m, the TOW tests the effect
of

∑
m wo

mxim. Furthermore, based on the TOW, we propose
a Variable Weight TOW (VW-TOW) to test the effects of
both rare and common variants. Both TOW and VW-TOW
are applicable to quantitative and qualitative traits, allow
covariates, and are robust to directions of effects of causal
variants. Extensive simulation studies and applications to
the Genetic Analysis Workshop 17 (GAW17) data are used
to compare the performance of the two proposed meth-
ods with that of three existing methods (CMC, WSS, and
SKAT). Results show that VW-TOW demonstrates better
performance across a wide range of scenarios. TOW per-
forms better than existing methods when all causal variants
are rare.

METHOD

Consider a sample of n individuals. Each individual has
been genotyped at M variants in a genomic region (a gene
or a pathway). Denote yi as the trait value of the ith individ-
ual for either a quantitative trait or a qualitative trait (1 for
cases and 0 for controls for a qualitative trait) and denote
Xi = (xi1, . . . , xi M)T as genotypic score of the ith individ-
ual, where xim ∈ {0, 1, 2} is the number of minor alleles the
ith individual has at the mth variant. We first describe our
methods without considering covariates and then extend
our methods to incorporate covariates.

WITHOUT COVARIATES
We use the generalized linear model [Nelder and

Wedderburn, 1972]

g(E(yi |Xi )) = �0 + �1xi1 + · · · + �Mxi M (1)

to model the relationship between trait values and geno-
types, where g(·) is a monotone ‘‘link’’ function and
�0, . . . , �M are parameters. Two commonly used models un-
der the generalized linear model framework are the linear
model with the identity link for continuous or quantitative
traits, and the logistic regression model with the Logit link
for a binary trait. Under the generalized linear model, the
score test statistic to test the null hypothesis H0 : � = 0 is
given by [Sha et al., 2011]

S = UT V−1U, (2)

where U = ∑n
i=1 (yi − ȳ)(Xi − X̄) and V = 1

n

∑n
i=1 (yi − ȳ)2∑n

i=1 (Xi − X̄)(Xi − X̄)T . The statistic S asymptotically fol-
lows a chi-square distribution with k = rank(V) degrees of
freedom (df). As shown by Sha et al. [2011], the score test
includes many commonly used association tests such as
the Cochran-Armitage trend test [Armitage, 1955; Cochran,
1954; Zheng et al., 2006], the genotypic chi-square test, the
allelic chi-square test [Chapman and Wijsman, 1998], the
multimarker genotypic chi-square test, and the haplotypic
chi-square test as its special case. For rare variants, however,
the score test may lose power due to the sparse data and a
large df k.

As discussed in the Introduction, a large portion of re-
cently developed methods for rare variant association stud-
ies are essentially testing the effect of a weighted combi-
nation of variants,

∑M
m=1 wmxim. To test the effect of the

weighted combination of variants, xi = ∑M
m=1 wmxim, the

score test statistic becomes

S(w1, . . . , wM) = n

(
n∑

i=1

(yi − ȳ)(xi − x̄)

)2

n∑
i=1

(yi − ȳ)2
n∑

i=1

(xi − x̄)2

= n

(
M∑

m=1

wm

n∑
i=1

(yi − ȳ)(xim − x̄m)

)2

n∑
i=1

(yi − ȳ)2
n∑

i=1

(xi − x̄)2

.

Because rare variants are essentially independent, we
have

n∑
i=1

(xi − x̄)2 =
M∑

m=1

M∑
l=1

wmwl

n∑
i=1

(xim − x̄m)(xil − x̄l )

≈
M∑

m=1

w2
m

n∑
i=1

(xim − x̄m)2.

Let

am =

n∑
i=1

(yi − ȳ)(xim − x̄m)

√√√√ n∑
i=1

(xim − x̄m)2

and

um = wm

√√√√ n∑
i=1

(xim − x̄m)2.

Then, the score test statistic is approximately equal to

S0(w1, . . . , wM) = n

(
M∑

m=1

amum

)2

n∑
i=1

(yi − ȳ)2
M∑

m=1

u2
m

. (3)
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As a function of (u1, . . . , uM), S0(w1, . . . , wM) reaches its
maximum when um = am or wm = ∑n

i=1 (yi − ȳ)(xim − x̄m)/∑n
i=1 (xim − x̄m)2(m = 1, . . . , M). Thus, the optimal weights,

denoted by wO
m , are given by wO

m = ∑n
i=1 (yi − ȳ)(xim − x̄m)/∑n

i=1 (xim − x̄m)2.
Let xo

i = ∑M
m=1 wo

mxim. Then,

S0(wo
1, . . . , w

o
M) = n

n∑
i=1

(yi − ȳ)(xo
i − x̄o)

/ n∑
i=1

(yi − ȳ)2.

We define the statistic to Test the effect of the Optimally
Weighted combination (TOW) of variants,

∑M
m=1 wo

mxim, as

TT =
n∑

i=1

(yi − ȳ)(xo
i − x̄o).

Because we use a permutation test to evaluate P-values,
we can consider

∑n
i=1 (yi − ȳ)2 as a constant and thus, TT is

equivalent to S0(wo
1, . . . , w

o
M).

The optimal weight wo
m is equivalent to wo∗

m =
� (y, xm)/

√∑n
i=1 (xim − x̄m)2, where � (y, xm) is the correlation

coefficient between y = (y1, . . . , yn) and xm = (x1m, . . . , xnm).
Because wo∗

m is proportional to � (y, xm), wo
m will put big

weights to the variants that have strong associations with
the trait of interests and wo

m will also adjust the di-
rection of the association. Since wo∗

m is proportional to
1/

√∑n
i=1 (xim − x̄m)2, wo

m will put big weights to rare vari-
ants. Like most of the existing methods for rare variant as-
sociation studies, the proposed TOW also targets rare vari-
ants and it will lose power when testing the effects of both
rare and common variants because it puts small weights on
common variants. For testing the effects of both rare and
common variants, we propose the following VW-TOW. We
divide variants into rare (MAF < the rare variant thresh-
old [RVT]) and common (MAF > RVT) and apply TOW
to rare and common variants separately. Let Tr and Tc de-
note the test statistics of TOW for rare and common vari-
ants, respectively. Let T� = � Tr√

var(Tr )
+ (1 − �) Tc√

var(Tc )
and p�

denote the P-value of T�. The test statistic of VW-TOW is
defined as

TVW−T = min
0≤�≤1

p�.

In this study, we use a simple method to evaluate the
minimization. Divide the interval [0, 1] into K subinter-
vals of equal-length. Let �k = k/K for k = 0, 1, . . . , K . Then,
min0≤�≤1 p� = min0≤k≤K p�k .

We use permutation tests to evaluate P-values of both TT
and TVW−T . The standard permutation test can be used to
evaluate the P-value of TT . In the following presentation, we
describe the permutation procedure to evaluate the P-value
of TVW−T . In each permutation, we randomly shuffle the trait
values. Suppose that we perform B times of permutations.
Let T (b)

r and T (b)
c denote the values of Tr and Tc , respectively,

based on the bth permuted data, where b = 0 represents
the original data. Based on T (b)

r and T (b)
c (b = 0, 1, . . . , B),

we can calculate T (b)
�k

for b = 0, 1, . . . , B and k = 0, 1, . . . , K ,

where var(Tr ) and var(Tc) are estimated using T (b)
r and

T (b)
c (b = 1, . . . , B). Then, we transfer T (b)

�k
to p(b)

�k
by

p(b)
�k

= #{T (d)
�k

: T (d)
�k

> T (b)
�k

for d = 0, 1, . . . , B}
B

.

Let p(b) = min0≤k≤K p(b)
�k

. Then, the P-value of TVW−T is
given by

#{p(b) : p(b) < p(0) for b = 1, 2, . . . , B}
B

.

WITH COVARIATES
Suppose that we have p covariates. Let (zi1, . . . , zip)T de-

note covariates of the ith individual. We adjust both trait
value yi and genotypic score xim for the covariates by ap-
plying linear regressions. That is,

yi = �0 + �1zi1 + · · · + �pzip + εi and

xim = �0m + �1mzi1 + · · · + �pmzip + �im. (4)

Let ỹi and x̃im denote the residuals of yi and xim, respec-
tively. With covariates, the statistics of TOW and VW-TOW
are defined as

TT OW = TT |yi =ỹi ,xim=x̃im
and

TVW−T OW = TVW−T |yi =ỹi ,xim=x̃im
,

respectively. Adjusting trait values and genotypic scores
for the covariates by applying linear regressions given by
(4) is equivalent to modeling the relationship between trait
values, covariates, and genotypes by the linear model

yi = �0 + �1zi1 + · · · + �pzip + �1xi1 + · · · + �Mxi M + εi

= �T Zi + �T Xi + εi , (5)

where � = (�0, �1, . . . , �p)T , � = (�1, . . . , �M)T , and Zi =
(1, zi1, . . . , zip)T . In the Appendix, we show that, under lin-
ear model (5), the score test statistic to test the null hypoth-
esis H0 : � = 0 is given by

SC = ŨT Ṽ−1Ũ, (6)

where Ũ = ∑n
i=1 ỹi X̃i , Ṽ = 1

n

∑n
i=1 ỹ2

i

∑n
i=1 X̃i X̃T

i , and X̃i =
(x̃i1, . . . , x̃i M)T . Thus, the score test statistic to test the
effect of the weighted combination of variants, xi =∑M

m=1 wmxim, is given by SC(w1, . . . , wM) = n
(∑n

i=1 ỹi x̃i
)2

/(∑n
i=1 ỹ2

i

∑n
i=1 x̃2

i

)
, where x̃i = ∑M

m=1 wmx̃im. Using the same
argument as that used in the section Without Covariates, we
have that SC(w1, . . . , wM) reaches its maximum when wm =∑n

i=1 ỹi x̃im/
∑n

i=1 x̃2
im and the maximum of SC(w1, . . . , wM)

is equivalent to TT OW.
The R code of the TOW and VW-TOW meth-

ods is available at Shuanglin Zhang’s homepage
http://www.math.mtu.edu/∼shuzhang/software.html.
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Fig. 1. The distributions of MAFs in the 100 variants in the Sgene and in the 24,487 variants in all the 3,205 genes. (A) The histogram of
MAFs in rare variants (MAF < 0.01) in the Sgene and (B) the histogram of MAFs in common variants (MAF > 0.01) in the Sgene. (C)
The histogram of MAFs in rare variants (MAF < 0.01) in all the 3,205 genes and (D) the histogram of MAFs in common variants (MAF >
0.01) in all the 3,205 genes.

COMPARISON OF TESTS
We compare the performance of the two proposed tests

with that of the WSS [Madsen and Browning, 2009], the
CMC method [Li and Leal, 2008], and the sequence kernel
association test (SKAT) [Wu et al., 2011]. The rank sum test
used by WSS and the T2 test used by CMC are replaced with
the score test based on residuals ỹi and x̃im.

SIMULATION
The empirical Mini-Exome genotype data provided by

the GAW17 is used for simulation studies. This dataset con-
tains genotypes of 697 unrelated individuals on 3,205 genes.
We choose four genes: ELAVL4 (gene1), MSH4 (gene2),
PDE4B (gene3), and ADAMTS4 (gene4) with 10, 20, 30, and
40 variants, respectively. We merge the four genes to form
a super gene (Sgene) with 100 variants. The distributions
of MAFs in the 100 variants in the Sgene and in the 24,487
variants in all the 3,205 genes are given in Figure 1. From
this figure, we can see that the distribution of MAFs in the
Sgene can represent the distribution of MAFs in all the 3,205
genes. In our simulation studies, we generate genotypes
based on the genotypes of 697 individuals in the Sgene.
The genotypes are extracted from the sequence alignment
files provided by the 1,000 Genomes Project for their pilot3
study (http://www.1000genomes.org). We use the program
fastPHASE [Scheet and Stephens, 2006] to infer haplotypic
phase for the 697 individuals and calculate haplotype fre-
quencies. To generate the genotype of an individual, we
generate two haplotypes according to the haplotype fre-
quencies. To generate a qualitative disease affection status,
we use a liability threshold model based on a continuous
phenotype (quantitative trait). An individual is defined to
be affected if the individual’s phenotype is at least one stan-

dard deviation larger than the phenotypic mean. This yields
a prevalence of 16% for the simulated disease in the general
population. In the following, we describe how to generate
a quantitative trait.

To evaluate type I error, we generate trait values indepen-
dent of genotypes by using the model:

y = 0.5X1 + 0.5X2 + ε, (7)

where X1 is a continuous covariate generated from a stan-
dard normal distribution, X2 is a binary covariate taking
values 0 and 1 with a probability of 0.5, and ε follows a
standard normal distribution.

To evaluate power, we consider two cases: (1) rare causal
variants in which causal variants are all rare (MAF < RVT)
and (2) both causal variants in which causal variants contain
both rare and common variants. In the case of rare causal
variants, we randomly choose nc rare variants as causal
variants, where nc is determined by the percentage of causal
variants among rare variants. In the case of both causal vari-
ants, we randomly select nc rare and one common variant
(MAF > RVT) as causal variants. For power comparison, we
consider three different values of RVT (0.005, 0.01, and 0.03).
Denote nr and np as the number of risk rare variants and
protective rare variants, respectively, where nr + np = nc .
For an individual, let xr

i , x p
j , and xc denote the genotypic

scores of the ith risk rare variant, the j th protective rare
variant, and the common causal variant, respectively. We
assume that all the nc rare causal variants have the same
heritability such that rarer variants have larger effects. Un-
der this assumption, disease model is given by

y = 0.5X1 + 0.5X2 +
nr∑

i=1

�r
i xr

i −
np∑
j=1

�
p
j x p

j + �c xc + ε,
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TABLE I. The estimated type I error rates of the two proposed tests

� = 0.05 � = 0.01 � = 0.001

Trait Gene Sample size TOW VW-TOW TOW VW-TOW TOW VW-TOW

Quan 4 1,000 0.0496 0.0507 0.0110 0.0110 0.0008 0.0014
2,000 0.0486 0.0483 0.0101 0.0098 0.0008 0.0012
3,000 0.0489 0.0475 0.0106 0.0105 0.0015 0.0010

Sgene 1,000 0.0513 0.0509 0.0104 0.0092 0.0011 0.0013
2,000 0.0472 0.0483 0.0112 0.0097 0.0008 0.0012
3,000 0.0485 0.0497 0.0097 0.0080 0.0016 0.0009

Qual 4 1,000 0.0490 0.0497 0.0108 0.0110 0.0011 0.0013
2,000 0.0482 0.0492 0.0106 0.0108 0.0013 0.0011
3,000 0.0496 0.0506 0.0109 0.0103 0.0015 0.0016

Sgene 1,000 0.0502 0.0496 0.0101 0.0081 0.0011 0.0011
2,000 0.0492 0.0476 0.0114 0.0103 0.0013 0.0011
3,000 0.0465 0.0462 0.0102 0.0094 0.0014 0.0008

Note: Quan represents quantitative traits; Qual represents qualitative traits.

where X1, X2, and ε are the same as those in Equation (7); �r
i ,

�
p
j , and �c are constants and their values depend on the total

heritability and the ratio of the heritability of rare causal
variants to the heritability of the common causal variant. In
the case of rare causal variants, �c = 0.

SIMULATION RESULTS
For type I error evaluation, we consider different kinds of

traits, different sample sizes, different haplotype structures
(different genes), and different significance levels. In each
simulation scenario, P-values are estimated by 10,000 per-
mutations and type I error rates are evaluated using 10,000
replicated samples. For 10,000 replicated samples, the 95%
confidence intervals (CIs) for type I error rates of nominal
levels 0.05, 0.01, and 0.001 are (0.046, 0.054), (0.008, 0.012),
and (0.0004, 0.0016), respectively. The estimated type I error
rates of the two proposed tests are summarized in Table I.
From this table, we can see that all the estimated type I er-
ror rates are within the 95% CIs, which indicates that the
estimated type I error rates are not significantly different
from the nominal levels. Thus, the two proposed tests are
all valid tests.

For power comparisons, we consider two different cases:
(1) rare causal variants in which all causal variants are rare
(MAF < RVT) and (2) both causal variants in which causal
variants contain both rare and common (one common vari-
ant) and the heritability of the common variant is as big as
twice of the heritability of all the rare causal variants. The
distributions of MAFs in rare causal variants and in com-
mon causal variants for different values of RVT are given
in Figure 2. In each of the two cases, we consider differ-
ent values of heritability, different values of RVT, different
kinds of traits, different percentages of protective variants,
and different percentages of neutral variants. In each of the
simulation scenarios, P-values are estimated using 10,000
permutations and power is evaluated using 200 replicated
samples at a significance level of 0.001. In all cases, we use
RVT = 0.01 in VW-TOW and CMC, although different val-
ues of RVT are used to generate data.

Power comparisons of the five tests (VW-TOW, TOW,
CMC, SKAT, and WSS) for different values of heritabil-
ity based on a quantitative trait are given in Figure 3. As

shown in Figure 3, in the case of both causal variants, VW-
TOW and CMC have similar power and are more power-
ful than the other three tests. Among the other three tests
(TOW, SKAT, and WSS), WSS is the least powerful one.
TOW and SKAT have similar power when RVT ≤ 0.01 and
TOW is much more powerful than SKAT when RVT = 0.03.
WSS loses power because it gives common variants very
small weights. CMC has high power because it gives com-
mon variants big weights (as big as that for rare variants).
Comparing to the case of RVT ≤ 0.01, SKAT loses power
when RVT = 0.03. The reason is that when RVT ≤ 0.01,
MAFs of a large portion of common causal variants are
within interval (0.01, 0.05) (Figure 2) and SKAT puts decent
nonzero weights for variants with MAF in (0.01, 0.05); when
RVT = 0.03, MAFs of a large portion of common causal
variants are ≥ 0.15 (Figure 2) and SKAT puts almost zero
weights for variants with MAF ≥ 0.15. In the case of rare
causal variants, VW-TOW and TOW have similar power
and are more powerful than the other three tests. Among
the other three tests (CMC, SKAT, and WSS), WSS is more
powerful than SKAT and SKAT is more powerful than CMC.
CMC loses power also because it gives common variants big
weights and thus, common neutral variants will introduce
large noises.

Power comparisons of the five tests for different values
of heritability based on a qualitative trait are given in Fig-
ure 4. By comparing Figure 3 with Figure 4, we can see
that patterns of power comparisons based on a qualitative
trait are very similar to that based on a quantitative trait.
However, the power improvement of CMC and VW-TOW
over the other three tests in the case of both causal variants
and the power improvement of TOW and VW-TOW over
the other three tests in the case of rare causal variants are
smaller based on a qualitative trait than that based on a
quantitative trait.

Comparisons of power as a function of percentage of pro-
tective variants are given in Figure 5. This figure shows that,
for a quantitative trait, TOW and VW-TOW are much more
powerful than other three tests. TOW, VW-TOW, and SKAT
are robust to the percentage of protective variants, whereas
CMC and WSS suffer substantial loss of power when both
risk and protective variants are present. Power comparisons
based on a qualitative trait have similar patterns to those

Genet. Epidemiol.
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Fig. 2. Distributions of MAFs in causal variants. The figure is based on 1,000 replications. In each replication, the percentage of causal
variants among rare variants is 20%. The top channel gives the histograms of MAFs in common (MAF > RVT) causal variants and the
bottom channel gives the histograms of MAFs in rare (MAF < RVT) causal variants. RVT represents the rare variant threshold.

Fig. 3. Power comparisons of five tests for different values of heritability based on a quantitative trait. RVT represents the rare variants
threshold. Rare means that all causal variants are rare (MAF < RVT). Both means that causal variants contain both rare and common
(one common variant) and the heritability of the common variant is as big as twice the heritability of all the rare causal variants. x-axis
represents the total heritability of all causal variants. Sample size is 1,000. In this set of simulations, all causal variants are risk variants
and 20% of rare variants are causal.

based on a quantitative trait. However, the power of TOW,
VW-TOW, and SKAT decreases with the increase of the per-
centage of protective variants, although decreases not as
fast as that of WSS and CMC. As pointed out by Wu et al.
[2011], decrease in power of TOW, VW-TOW, and SKAT in
the presence of both risk and protective variants is due to
the fact that protective variants lower MAFs in cases and

thus make observing rare variants in cases more difficult.
The larger decrease in power of WSS and CMC is addi-
tionally driven by sensitivity to direction of effect due to
aggregation of genotypes.

Comparisons of power as a function of percentage of neu-
tral variants are given in Figure 6. As shown by this figure,
patterns of power comparisons based on a quantitative trait
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Fig. 4. Power comparisons of five tests for different values of heritability based on a qualitative trait. RVT represents the rare variants
threshold. Rare means that all causal variants are rare (MAF < RVT). Both means that causal variants contain both rare and common
(one common variant) and the heritability of the common variant is as big as twice the heritability of all the rare causal variants. x-axis
represents the total heritability of all causal variants. Sample size is 1,000. In this set of simulations, all causal variants are risk variants
and 20% of rare variants are causal.

Fig. 5. Power comparisons of five tests for different percentages of protective variants. RVT represents the rare variants threshold. x-axis
represents the percentage of protective variants. Sample size is 1,000. In this set of simulations, all causal variants are rare variants, 20%
of rare variants are causal, and heritability of all the causal variants is 0.07.

are similar to those based on a qualitative trait. The power
of TOW, VW-TOW, and SKAT is relatively robust to the
increase of neutral variants, while the power of WSS and
CMC decreases rapidly with the increase of neutral vari-
ants. TOW and VW-TOW have similar power in all the
cases. TOW and VW-TOW are more powerful than the other
three tests when the percentage of neutral variants is large

(>50%∼70%), while WSS is the most powerful one when
the percentage of neutral variants is small (<50%∼70%).

In summary, except the case that the percentage of neutral
variants is small and all causal variants are risk variants,
VW-TOW is either the most powerful test or has similar
power to the most powerful test in the case of either rare
or both causal variants and TOW is the most powerful test
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Fig. 6. Power comparisons of five tests for different percentages of neutral variants among all rare variants. RVT represents the rare
variants threshold. x-axis represents the percentage of neutral variants among all rare variants. Sample size is 1,000. In this set of
simulations, all causal variants are rare variants, all causal variants are risk variants, and heritability of all the causal variants is 0.07.

in the case of rare causal variants. The power of TOW and
VW-TOW is robust to the increase of protective variants and
is also relatively robust to the increase of neutral variants.
Power simulation results based on other genes (gene3 and
gene4) yield the same conclusions (Figures S1–S8 in the
Supporting Information).

ANALYSIS OF THE GAW17 DATASET
The GAW17 dataset consists of a collection of 697 un-

related individuals and their genotypes and phenotypes.
SNP genotypes of the 697 individuals are obtained from the
sequence alignment files provided by the 1,000 Genomes
Project for their pilot3 study. There is a total of 24,487 SNPs
in 3,205 genes. The genotypes are held fixed for all 200 sim-
ulation replicates. A total of 200 replicates of three quantita-
tive traits Q1, Q2, and Q4 are simulated. Covariates include
age, sex, and smoking status. Q4 has a heritability of 0.70,
but none of this genetic component is due to genes in this
dataset. Thus, we do not consider Q4 for the purpose of
power comparisons.

We perform power comparisons using quantitative traits
Q1 and Q2. All powers are estimated at a significance level
of 0.001 and every two replicates are merged to increase the
sample size. Q1 is influenced by nine genes, whereas Q2
is influenced by 13 genes. There are 1–13 causal variants
per gene and MAFs in causal variants range from 0.07%
to 17.1%. In all cases, the minor allele is associated with
higher means of the two quantitative traits, which means
that there are no protective variants. For the purpose of
power comparison, we omit causal genes that have one
variant, causal genes in which all of the five tests have 100%
power, and causal genes in which all of the five tests have a
power less than 10%.

Powers of the five tests to detect association between each
of the five remaining causal genes and Q1 and between each
of the seven remaining causal genes and Q2 are given in Ta-

ble II. As shown in Table II, VW-TOW, TOW, CMC, SKAT,
and WSS are the most powerful test in 5, 2, 2, 2, and 1 of
12 genes, respectively. Causal variants in the five genes in
which VW-TOW is the most powerful test are in a wide
range of MAF (0.07%–1.22%). Causal variants in the genes
in which either TOW or WSS is the most powerful test are
all rare (MAF < 0.3%). Each of the two genes in which
SKAT is the most powerful test contains causal variants
with MAF in (0.01, 0.05). Each of the two genes in which
CMC is the most powerful test contains common causal
variants with MAF > 0.09. Results from analysis of the
GAW17 dataset are consistent with those from simulation
studies.

DISCUSSION

Most of the recently developed methods for rare vari-
ant association studies are essentially testing the effect of
a weighted combination of variants. Thus, choosing ap-
propriate weights is critical to the performance of these
methods. In this paper, we analytically derived the opti-
mal weights. Based on the optimal weights, we proposed
TOW that tests the effect of the optimally weighted combi-
nation of variants. We further developed VW-TOW to test
the effects of both rare and common variants. We used ex-
tensive simulation studies and application to the GAW17
dataset to compare the performance of TOW and VW-TOW
with that of the existing methods. Our results show that, in
most cases, TOW is the most powerful test for testing rare
variants. VW-TOW is the most powerful test or has similar
power with the most powerful test in either testing effects
of both rare and common variants or testing effects of rare
variants only.

For testing rare variants, most of the recently devel-
oped methods put large weights on rare variants and small
weights on common variants. By putting small weights on
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TABLE II. Power of the five tests to test the association between each of the five causal genes and quantitative trait Q1
and between each of the seven causal genes and quantitative trait Q2

No. of variants, no. Min, max,
Traits Gene name of causal variants mean MAF WSS CMC TOW VW-TOW SKAT

Q1 ARNT 18, 5 0.07, 1.15, 0.33 0.18 0.98 0.68 0.96 0.99
ELAVL4 10, 2 0.07, 0.07, 0.07 0.03 0.28 0.26 0.31 0.00
FLT4 10, 2 0.07, 0.14, 0.11 0.49 0.28 0.25 0.28 0.13
HIF1A 8, 4 0.07, 1.22, 0.39 0.09 0.59 0.22 0.63 0.60
VEGFA 6, 1 0.22, 0.22, 0.22 0.12 0.12 0.22 0.24 0.1

Q2 BCHE 29, 13 0.07, 0.29, 0.10 0.19 0.18 0.35 0.26 0.11
LPL 20, 3 0.07, 1.58, 0.60 0.01 0.22 0.17 0.27 0.39
PDGFD 11, 4 0.07, 0.86, 0.29 0.07 0.20 0.22 0.29 0.15
SIRT1 24, 9 0.07, 0.22, 0.12 0.51 0.30 0.64 0.63 0.57
SREBF1 24, 10 0.07, 0.43, 0.22 0.25 0.30 0.19 0.33 0.07
VNN1 7, 2 0.57, 17.1, 8.82 0.06 0.93 0.67 0.90 0.02
VNN3 15, 7 0.07, 9.83, 2.06 0.33 0.84 0.57 0.51 0.41

Note: Min, max, mean MAF: the minimum, maximum, and mean MAF (in percentage) at causal variants. In each row, the boldfaced number
represents the highest power in the row.

common variants, these methods will lose power when test-
ing the effects of both rare and common variants. To test
the effects of both rare and common variants, CMC puts
same weights on rare and common variants. By putting
large weights on common variants, CMC loses power when
testing rare variants only because putting large weights on
common neutral variants will introduce large noises. Our
proposed VW-TOW, by choosing weights adaptively, has
good performance in testing the effects of both rare and
common variants and in testing the effects of rare variants
only.

In case-control studies, it has been long recognized
that population stratification can confound association
results. In association studies of common variants, several
methods have been developed to control for population
stratification by using a set of unlinked genetic markers
genotyped in the same samples [Devlin and Roeder, 1999;
Price et al., 2006; Pritchard et al., 2000; Zhang et al., 2003].
Theoretically, our proposed methods can be easily modified
to be robust to population stratification through principal
component (PC) approach [Price et al., 2006; Zhang et al.,
2003]. Let Ti = (ti1, ti2, . . . , ti K )T denote the first K PCs
of genotypes at genomic markers of the ith individual.
We can put Ti as covariates in our proposed methods to
adjust for population effects, which is equivalent to the
method of Price et al. [2006] to adjust both the trait yi and
genotypic score xim for the first K PCs, Ti , by applying a
linear regression. Although the PC approach performs well
in association studies of common variants, its performance
in association studies of rare variants may need more
investigation.

Our proposed TOW is related to SKAT. Using the nota-
tions given in the Method section, when there are no covari-
ates, the test statistics of both TOW and SKAT can be writ-
ten as T = ∑M

m=1
U2

m
Vm

, where Um = ∑n
i=1(yi − ȳ)(xim − x̄m).

In TOW, Vm = ∑n
i=1(xim − x̄m)2, while in SKAT,

√
1

Vm
=

Beta(MAFm; a1, a2), the beta distribution density function
with prespecified parameters a1 and a2 evaluated at the
sample MAF for the mth variant in the data. When there
are covariates, TOW and SKAT use different methods to ad-

just for the effects of covariates. TOW adjusts both trait
value yi and genotypic score xim for the covariates by
applying linear regressions given by (4). SKAT adjusts
only trait value yi (not genotypic score xim) for the co-
variates by applying a linear regression for a quantitative
trait and applying a logistic regression for a qualitative
trait.

TOW is derived for independent variants. Since common
variants within a gene are usually correlated, we may won-
der how the performance of TOW for common variants is.
We may learn the performance of TOW for common vari-
ants from the relationship between TOW and some exist-
ing methods for common variants. TOW is related to the
weighted sum of squared score (SSUw) proposed by Pan
[2009]. In fact, when there are no covariates, TOW and SSUw
are the same. Pan [2009] has shown that, to test association
between multiple correlated common variants and the trait
of interests, SSUw is more powerful than existing standard
methods such as the score test given by Equation (2) in
most cases. Thus, our proposed TOW, though derived for
independent rare variants, has the good performance for
correlated common variants.
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WEB RESOURCES

The R code of the TOW and VW-TOW methods is avail-
able at Shuanglin Zhang’s homepage http://www.math.
mtu.edu/∼shuzhang/software.html.

REFERENCES

Andre’s A, Clark A, Shimmin L, Boerwinkle E, Sing C, Hixson J. 2007.
Understanding the accuracy of statistical haplotype inference with
sequence data of known phase. Genet Epidemiol 31:659–671.

Armitage P. 1955. Tests for linear trends in proportions and frequencies.
Biometrics 11:375–386.

Bansal V, Libiger O, Torkamani A, Schork NJ. 2010. Statistical analysis
strategies for association studies involving rare variants. Nat Rev
Genet 11:773–785.

Bodmer W, Bonilla, C. 2008. Common and rare variants in multifactorial
susceptibility to common diseases. Nat Genet 40(6):695–701.

Chapman NH, Wijsman EM. 1998. Genome screens using linkage dise-
quilibrium tests: optimal marker characteristics and feasibility. Am
J Hum Genet 63:1872–1885.

Cochran WG. 1954. Some methods for strengthening the common x2
tests. Biometrics 10:417–451.

Cohen JC, Pertsemlidis A, Fahmi S, Esmail S, Vega GL, Grundy SM,
Hobbs HH. 2006. Multiple rare variants in NPC1L1 associated with
reduced sterol absorption and plasma low density lipoprotein levels.
Proc Natl Acad Sci USA 103:1810–1815.

Devlin B, Roeder K. 1999. Genomic control for association studies. Bio-
metrics 55:997–1004.

Han F, Pan W. 2010. A data-adaptive sum test for disease association
with multiple common or rare variants. Hum Hered 70:42–54.

Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V,
Thorleifsson G, Zillikens MC, Speliotes EK, Magi R, Workalemahu
T, White C, Bouatia-Naji N, Harris T, Berndt S, Ingelsson E, Willer
C, Weedon M, Luan J, Vedantam S, Esko T, Kilpeläinen T, Kutalik Z,
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APPENDIX

Use the notation in the Method section. Let X =
(X1, . . . , Xn)T , Z = (Z1, . . . , Zn)T , and Y = (y1, . . . , yn)T . Un-
der the linear model

yi = �T Zi + �T Xi + εi ,

where ε1, . . . , εn are independent and εi ∼ N(0, �2), the log-
likelihood (up to a constant) is given by

log l = −n
2

log(�2) − 1
2�2

(Y − Z� − X�)T (Y − Z� − X�).

Then,

∂ log l
∂�

= 1
�2

(Y − Z� − X�)T X,

∂ log l
∂�

= 1
�2

(Y − Z� − X�)T Z

∂2 log l
∂��T = − 1

�2
XT X,

∂2 log l
∂��T

= − 1
�2

ZT Z, and

∂2 log l
∂��T = − 1

�2
ZT X.

Let �̂ and �̂2 denote the maximum likelihood esti-
mates of � and �2 under null hypothesis H0 : � = 0. Then,
�̂ = (ZT Z)−1 ZT Y and �̂2 = 1

n YT (I − P)Y = 1
n ỸT Ỹ, where

P = Z(ZT Z)−1 ZT , Ỹ = (ỹ1, . . . , ỹn)T , and ỹi is the residual
of yi under the linear regression yi = �T Zi + εi . Let � =
(�T , �T )T . The score and information matrix are

S = ∂ log l
∂� |�=�̂,�=0

= 1
�̂2

(0, UT )T and

I = −E
∂2 log l
∂��T |�=�̂,�=0

= 1
�̂2

(
ZT Z ZT X

XT Z XT X

)
,

where U = ỸT X. Note that (I − P)2 = I − P . We have U =
ỸT X = YT (I − P)X = ỸT X̃ and XT (I − P)X = X̃T X̃, where
X̃ = (x̃im) and x̃im is the residual of xim under the linear
regression (4). The score test statistic is given by

Tlinear = 1
�̂2

UT V−1U,

where U = ỸT X̃ = ∑n
i=1 ỹi X̃i and V = X̃T X̃ = ∑n

i=1 X̃i X̃T
i .
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