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DETECTING DECEPTION	



Background	

•  Language use varies:	
– By location	
•  soda vs. pop vs. coke	

•  “koo” vs. “coo” (Eisenstein et al., 2010; 2011)	

•  Also Johnstone (2010), Mei et al. (2006; 2007), Labov et al. 
(2006), Tagliamonte (2006), …	



Background	

•  Language use varies:	
– By genre	
• British National Corpus: Koppel et al. (2002), Rayson et 

al. (2001), Biber et al. (1999), …	
• Web: Mehler et al. (2010), Rehm et al. (2008), …	

•  Twitter: Westman and Freund (2010), …	



Background	

•  Language use varies:	
– By the author’s gender	
• British National Corpus: Koppel et al. (2002), …	

• Blogs: Mukherjee and Liu (2010), …	

•  Twitter: Burger et al. (2011), …	

•  Cross-topic/domain: Sarawgi et al. (2011)	



Background	

•  Language use varies:	
– By the author’s beliefs, feelings, opinions	
• Opinion mining and sentiment analysis: 

Pang and Lee (2008), …	
• Belief annotation and tagging: 

Prabhakaran et al. (2010), Diab et al. (2009), …	
• Detecting hedges: CoNLL 2010 Shared Task, …	



Background	

•  Language use varies:	
– By whether the author is being truthful or deceptive	
– Studies have considered deception involving:	

•  Emotional states: Ekman and Friesen (1969), …	

•  Views on social issues, e.g., death penalty: 
Newman et al. (2003), Mihalcea and Strapparava (2009), …	

• Online dating pro#les: Hancock et al. (2007), …	

• Online product reviews: Ott et al. (2011; 2012), …	

•  …	



Outline	

•  Brie$y go over a few important studies and meta-
analyses of deception:	
– Bond and DePaulo (2006)	

– Newman et al. (2003)	
– Vrij (2008)	

•  Case study on detecting deceptive online reviews of 
hotels: Ott et al. (2011)	



Bond and DePaulo (2006)	

•  Meta-analysis of over 200 studies of deception	
•  Finds that human judges are relatively bad at detecting 

deception, with an average accuracy of just 54%	
•  Poor performance due in part to truth-bias	
– Human judges are more likely to erroneously judge 

something as truthful than erroneous judge something 
as deceptive	



Newman et al. (2003)	

•  Hundreds of true and false verbal and written 
samples from undergraduates across three 
subjects: stance on abortion, feelings about 
friends, and a mock crime	

•  Language analyzed using the Linguistic Inquiry and 
Word Count (LIWC) software, developed by James 
Pennebaker (a co-author of the study)	



Newman et al. (2003)	

•  LIWC	
– Counts instances of ~4,500 keywords	
• Regular expressions, actually	

– Keywords are divided into 80 
psycholinguistically-motivated dimensions 
across 4 broad groups	
– Reports means and standard deviations	



Newman et al. (2003)	

•  LIWC	
– Linguistic processes	
•  e.g., average number of words per sentence	

– Psychological processes	
•  e.g., talk, happy, know, feeling, eat	

– Personal concerns	
•  e.g., job, cook, family	

– Spoken categories	
•  e.g., yes, umm, blah	
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Newman et al. (2003)	

•  Results showed that deceptive samples have:	
– Reduced #rst-person singular (psychological distancing)	
•  Liars avoid taking ownership of their lies, either to 

“dissociate” or due to a lack of personal experience	
–  Increased negative emotion words	
•  Possibly due to discomfort and guilt about lying	

– Reduced complexity and less exclusive language	
•  Possibly due to increased cognitive load	



Vrij (2008)	

•  Comprehensive review of the current state of 
deception detection research	

•  In addition to the previous #ndings:	
– Meta-analysis of 30 studies shows that deceivers have 

di%culty encoding spatial and temporal information 
into their deceptions	



Outline	

•  Brie$y go over a few important studies and meta-
analyses of deception:	
– Bond and DePaulo (2006)	

– Newman et al. (2003)	
– Vrij (2008)	

•  Case study on detecting deceptive online reviews of 
hotels: Ott et al. (2011)	
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Motivation	

•  Consumers increasingly 
rate, review and research 
products online	

•  Potential for opinion spam	
–  Disruptive opinion spam	
–  Deceptive opinion spam	
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Motivation	

Answer:	

Finding Deceptive Opinion Spam by Any Stretch 
of the Imagination	

Which of these two hotel reviews is deceptive opinion 
spam?	



Overview	

•  Motivation	
•  Gathering Data	
•  Human Performance	
•  Classi#er Performance	
•  Conclusion	
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Gathering Data	

•  Label existing reviews	
– Can’t manually do this	
– Duplicate detection (Jindal and Liu, 2008)	

•  Create new reviews	
– Mechanical Turk	
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Gathering Data	

•  Mechanical Turk	
–  20 hotels	
–  20 reviews / hotel	
–  O"er $1 / review	
–  400 reviews	

•  Average time spent: 
> 8 minutes	

•  Average length: 
> 115 words	
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Gathering Data	

•  400 truthful reviews	
– TripAdvisor.com	
– Lengths distributed similarly to deceptive reviews	

Finding Deceptive Opinion Spam by Any Stretch 
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Overview	

•  Motivation	
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•  Human Performance	
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•  Conclusion	
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Human Performance	

•  Why bother?	
– Validates deceptive opinions	
– Baseline to compare other approaches	
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Human Performance	

Finding Deceptive Opinion Spam by Any Stretch 
of the Imagination	

•  80 truthful and 80 deceptive reviews	
•  3 undergraduate judges	
– Truth bias	

•  2 meta-judges	

Performed at chance	

(p-value = 0.1)	


Performed at chance	

(p-value = 0.5)	
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•  80 truthful and 80 deceptive reviews	
•  3 undergraduate judges	
– Truth bias	

•  2 meta-judges	

Classified fewer than 12% 
of opinions as deceptive!	
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Human Performance	

Finding Deceptive Opinion Spam by Any Stretch 
of the Imagination	

•  80 truthful and 80 deceptive reviews	
•  3 undergraduate judges	
– Truth bias	

•  2 meta-judges	

No more truth bias!	




Overview	

•  Motivation	
•  Gathering Data	
•  Human Performance	
•  Classi#er Performance	
•  Conclusion	

Finding Deceptive Opinion Spam by Any Stretch 
of the Imagination	



Classi#er Performance	

•  Three feature sets	
– Genre identi#cation	
– Psycholinguistic deception detection	

– Text categorization	

•  Linear SVM	
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Classi#er Performance	

•  Genre identi#cation	
– 48 part-of-speech (PoS) features	
– Baseline automated approach	

•  Expectations	
– Truth similar to informative writing	
– Deception similar to imaginative writing	
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Outperforms human judges!	

(p-values = {0.06, 0.01, 0.001})	


Classi#er Performance	
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•  Rayson et. al. (2001)	
–  Informative on left, imaginative on right	

e.g., best, finest	


e.g., most	




Classi#er Performance	

•  Linguistic Inquire and Word Count (Pennebaker et 
al., 2001; 2007)	
– Counts instances of ~4,500 keywords	

• Regular expressions, actually	
– Keywords are divided into 80 dimensions across 4 broad 

groups	
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Outperforms PoS!	

(p-value = 0.02)	


Classi#er Performance	
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Classi#er Performance	

•  Text categorization (n-grams)	
– Unigrams	
– Bigrams+	

•  Includes unigrams	
– Trigrams+	
•  Includes unigrams and bigrams	
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Finding Deceptive Opinion Spam by Any Stretch 
of the Imagination	

Outperforms all 
other methods!	




Classi#er Performance	

•  Spatial di%culties 
(Vrij et al., 2009)	

•  Psychological distancing 
(Newman et al., 2003)	
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Conclusion	

•  Language use varies depending on features of the 
text and the author	

•  It seems likely that whether the author is being 
truthful or deceptive in$uences their language use	

•  Research into detecting deception has interesting 
real-life applications, e.g., detecting fake reviews	

•  Standard n-gram text categorization can 
outperform human performance on this task	
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