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Appendix A: Assessments of alternative hierarchy metrics and algorithms 

 

Besides the hierarchy metric introduced in the main paper, we also explored other possible 

metrics that aim to quantify the degree to which the system architecture follows a flow hierarchy. 

The metrics are compared and it is shown that the one proposed in the paper (main text) has 

advantages over the others in accuracy and ease of use.  

 

A.1 Alternative Metric Base upon Cycle Identification 
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The first alternative hierarchy algorithm/metric to examine is to count the portion of nodes 

(instead of links) which are not included in any cycle over the total nodes. Proceeding in a way 

similar to the approach in the text of the main paper, we construct the node adjacency matrix 

first, and then raise the power of matrices to derive the node distance matrix. With the node 

distance matrix, we can check whether a node is involved in any cycle. One obvious 

disadvantage, compared to the one proposed in the paper is that, it neglects the layered hierarchy 

in its relative metric system. For example, in the example layered hierarchy network in Figure 2, 

using this algorithm, all the 6 nodes are included in at least one cycle, so the hierarchy degree is 

zero. However, there is obviously an existing layered hierarchy. Instead, the hierarchy metric 

which we propose in the main text and count links appropriately can identify the hierarchical link 

d in Figure 5 of the main text. 

 

A.2 Alternative Metrics Based upon Level Identification 
 

Both of the two approaches discussed above do not require ranking the nodes, but search for 

cyclic phenomena embedded in directed networks. Now, we examine the feasibility of other 

alternative ways to measure hierarchy, which are based on identifying the nonhierarchical links 

when a specific logic of ordering for the hierarchy is specified. The logic of ordering can be 

based on network structure or domain-specific characteristics.  

 

When nodes are pre-assigned level ranks, the links from a predefined lower level to its adjacent 

higher level are regarded as hierarchical. Moreover, the links that skip levels and the links 

between nodes on the same level can also be accepted as hierarchical. However, when a link 

connects from a pre-indentified higher level backward to a lower one, it violates the fundamental 
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assumption that, in a pure flow hierarchy all flows/links follow one general direction, so it is 

non-hierarchical.  

 

Nonetheless, the identification of such link types is somewhat arbitrary because it depends on the 

pre-assigned level ranks to nodes, which are often ambiguous. In many cases, there is no 

objective and definitive criterion according to which a node must be on a specific level, though 

experts with domain knowledge can give a level rank to a node based on their domain knowledge 

and subjective judgment. Such rank-assigning work based on domain knowledge is a usual 

practice in food web research [S1] and industrial system research [S2]. Measures based upon 

such assignments of ranks thus have a partially arbitrary character. 

 

In order to avoid arbitrary ranking, we explore several practical ways of assigning level ranks to 

each node in a directed network, using differently the information of the network positions of 

nodes in a directed network. Then, we assess their feasibility and accuracy for indentifying flow 

hierarchies. Our ranking algorithms first identify the sinks, which
 
have no outgoing links but 

only incoming links, and then use the path lengths from the other nodes to sinks as the basis of 

assigning a level rank. Here, path length means the number of intermediate links on a path
 
from a 

node to a sink of interest (A path is a walk in which all nodes and all lines are distinct; a walk is 

a sequence of nodes and lines, starting and ending with nodes, in which each node is incident 

with the lines following and preceding it in the sequence [S3]). 

 

In this way the sinks are used as the benchmarking boundary. Alternatively, the sources, which 

have no incoming links but only outgoing links, can also be used as the benchmarking boundary. 
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In the following section, we will only show the use of sinks as the benchmarking boundary as the 

analysis of sources is directly analogous. Because there is usually more than one path from nodes 

to a sink, and there are usually more than one sink on the top bound of the industry, five different 

algorithms are discussed. These algorithms are abstracted to different aspects of the relative 

network positions of nodes. 

  

1) Min [Shortest]: A node’s level rank is given as the shortest one among its all shortest paths to 

all the sinks. 

min (min ( )) [ ], [ ]i ij
j

LR D i nodes j sinks= ∈ ∈                                  [S1] 

i
LR : the level rank of node i; 

ij
D : the set of lengths of the paths from node i to sink j. 

2) Max [Shortest]:  A node’s level rank is given as the longest one among its all shortest paths 

to all the sinks. 

max (min ( )) [ ], [sinks]
i ij

j
LR D i nodes j= ∈ ∈                                  [S2] 

 

3) Min [Longest]: A node’s level rank is given as the shortest one among its all longest paths to 

all the sinks. 

min (max ( )) [ ], [ ]
i ij

j

LR D i nodes j sinks= ∈ ∈                                 [S3] 

4) Max [Longest]: A node’s level rank is given as the longest one among its all longest paths to 

all the sinks. 

max (max ( )) [ ], [ ]
i ij

j

LR D i nodes j sinks= ∈ ∈                                 [S4] 

5) Continuous Level Rank (Average) 



 5 

( ) [ ], [sinks]
i ij

j

LR average D i nodes j= ∈ ∈                                    [S5] 

Note: when there is only a single sink in the network, Max [Shortest] and Min [Shortest] become 

the same, and Max [Longest] and Min [Longest] become the same. 

 

The first four algorithms above tend to group the nodes into discrete levels. The fifth algorithm is 

different because it assigns continuous level ranks. Figure S1 shows the example of the network 

of Toyota Motor Company’s suppliers before (left) and after (right) being grouped into levels 

according to the Max [Shortest] algorithm. The nodes (i.e. companies) are arranged in space 

(using UCINET [S4]) to illustrate the underlying flow hierarchy. This network exhibits strong 

hierarchy, found by the visualization based upon the arbitrary ranking/grouping result. 

        

                       A) Before grouping                                                                B) After grouping 

Figure S1. Networks of Toyota’s suppliers (A) before grouping and (B) after grouping based upon the 

Max [Shortest] algorithm. The network contains the Japanese suppliers either directly or indirectly 

connected to Toyota Motor Company by the flows of transacted components and parts. The network is 

extracted from the data book [S5] used for the calculation of Japanese automotive production network in 

Table 2 of the main text. The network here includes 372 nodes (i.e., manufacturing firms) and 591 links 
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(i.e. supplier-customer transactional relationships). For instance, if company A sells a product to company 

B, there is an arrow from A to B in the network. 

 

Regardless of which method is used and whether it is arbitrary, after each node is assigned a 

unique level rank, i.e. grouped into a specific level, we can identify if a local flow/link is from a 

lower level to a higher or the same level (hierarchical) or from a higher level to a lower level 

(non-hierarchical). More specifically, we differentiate all the links of a network into four 

different types (also demonstrated in the examples in Figure S2): 

1) Regular: the link connects from a node on a pre-defined lower level (i) to a node on its 

adjacent higher level (i-1); 

2) Level-Skipping: the link connects from a node on a pre-defined lower level (i) to a node on a 

level (j) higher than its adjacent higher level (i-1), i.e. j < i-1;  

3) In-Layer: the link connects between nodes on the same level (i); 

4) Backward: the link connects from a node on a predefined high level (i) to a node on a lower 

level (j), i.e. i < j. 

i

i+1

i-1

i-2

2

1 3

4

1) Regular
2) Level-Skipping

3) Same-Layer

4) Backward

Legend

 

Figure S2. Examples for four types of links identified according to levels 

 

As a matter of fact, in discussing the network examples in Figure 2 of the main text, we have 

noted the regular, in-layer, level-skipping, and backward links, with implicitly pre-assumed 
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levels. In general, the first three types are accepted as hierarchical links, although intuitively 

there is an order for the hierarchy degree they represent, which is:  

Regular > Level-Skipping > In-Layer 

The fourth type, i.e. backward link, clearly violates the fundamental assumption that, in a pure 

flow hierarchy all flows/links follow one general direction, so it is non-hierarchical. Now we 

may count the ratio of hierarchical types of links over total links as a potential hierarchy metric, 

1

m

i

i

m e

h
m

=

−

=

∑
                         (S6) 

where m is the number of links in the network and ei=1 if link i is a backward link (0 otherwise). 

However, because the “backward” vs. “forward” directions are relative, whether a link is 

backward or forward depends on the direction assumed. To make it simple, we assume that 

backward links are inconsistent to a system’s dominant orientation, and are minor ones. Thus, at 

maximum only half of the links can be “backward”, and the ratio calculated from formula S6 

will always range between 0 and 0.5. To improve this potential metric to range between 0 and 1, 

we normalize it to the range of [0, 1] by multiplying 2 in equation S6 to the term which counts 

the backward links. Furthermore, when the same numbers of forward and backward links exist in 

a network, a reasonable hierarchy metric should be zero. However, in-layer links might exist so 

hierarchy degree is still larger than zero. To correct this and make the hierarchy degree zero 

when the forward and backward links are equal regardless of the in-layer links, I propose an 

improved formula from S7, 

1

2
m

i

i

m e

h
m

=

− ×

=

∑
                                           (S7) 
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where m is the total number of links. ei=1 if link i is a backward link, ei=0.5 if link i is a in-layer 

link, and ei=0 if link i is either a regular or level-skipping link. 

 

In the Toyota network shown in Figure S1, grouping by the Max [Short] algorithm determines 

the ratio for each type of links: 425 links are regular links; 159 links are in-layer links; no level-

skipping links; 7 links are backward links. Thus, the hierarchy degree is  

591 2 (159 0.5 7 1)
0.7073

591

       − × × + ×
=  

However, such an approach may over count non-hierarchical links. Here we use a simple 

example network (Figure S3) of five nodes to examine the feasibility for identifying non-

hierarchical links (vs. hierarchical links) based on the level ranks obtained from the five extreme 

algorithms introduced above. Nodes are placed on their corresponding levels given by different 

algorithms. 
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Figure S3. Identifying nonhierarchical links based on five different level ranking algorithms. Non-

hierarchical backward links are dashed. 

 

In this network, there is one source node, 5, and two sink nodes, 1 and 2. Obviously, we can 

observe directly that all the links in this small network do follow a holistic direction from bottom 

to top, so are hierarchical (h =1 using the method in our paper). However, according to the Min 
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[Shortest] and Max [Shortest] ranking algorithms based on counting the shortest paths, node 5 

belongs to level 1, and node 4 belongs to level 2, then the link from node 5 to node 4 is a 

backward and nonhierarchical link. According to Min [Longest] algorithm that counts longest 

paths, because node 5 has its longest path to node 2 in the length of 1, it is still placed on level 1, 

and its link to node 4 is still a nonhierarchical one. The fifth algorithm uses the average path 

length to sinks as a node’s level rank, then node 5 has three paths to the sinks and the average 

path length is 1.66. Node 4 has one path of length 2 to the sinks, so its level rank is 2. So, the link 

from node 5 to node 4 is again identified as a nonhierarchical one.  

 

Only the Max [Longest] algorithm does not over count non-hierarchical links. As a matter of 

fact, this algorithm theoretically equates finding the layout of the dependency matrix of the 

directed network which minimizes the number of links above the diagonal, if we place the sinks 

at the left upper corner of the adjacency matrix. The other algorithms more or less ignore part of 

the global path information while Max [Longest] considers all the path information when it 

operates. In contrast, the Max [Longest] algorithm works appropriately because it has traced 

complete path information from the nodes to the sinks in the effort of assigning level ranks.  

 

A.3 Hierarchy Metric based upon Max [Longest] Level Identification Algorithm 

 

Therefore, we propose a second hierarchy metric based on counting the non-hierarchical links 

identified by the Max [Longest] level-ranking algorithm. Calculating this hierarchy metric 

consists of the following steps:  
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Step 1) Identify the sinks of the network as the benchmark. Alternatively, we can also use 

sources of the network as the benchmark. 

Step 2) Calculate the lengths of the longest paths from each node to all the sinks, and use the 

longest one of these lengths as the node’s level rank.  

Step 3) Count the total number of the backward links. Any link, which goes from a node with 

higher level rank to a node with a lower level rank, is identified as a nonhierarchical 

link. The rest of the links are hierarchical. 

Step 4) With the known information on the levels and link types, compute the hierarchical 

degree using formula S7. 

 

Figure S4 lists the hierarchy degrees of several example networks based on this approach. A pure 

hierarchical structure, such as a tree (e.g. Figure S4A), has a hierarchy degree 1. For a pure 

directed cycle (e.g. Figure S4E), this approach does not give an answer because there is neither a 

sink nor a source node to be used as a benchmark. 
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Figure S4. Hierarchy degrees of example networks based on the Max [Longest] ranking algorithm. Non-

hierarchical backward links are dashed. 
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Similar to the hierarchy metric proposed in the paper that counts links on cycles, this alternative 

hierarchy metric also examines how much the intermediate or local links coherently follow a 

holistic direction in the directed network. However, compared with the hierarchical metric in the 

paper, the second metric has two disadvantages in practice. First, it requires extra steps to 

identify the sources or sinks. In some systems where neither sources nor sinks exist 

mathematically, the algorithm does not apply without arbitrarily picking the benchmark nodes. 

The second disadvantage is that, it is computationally hard to find the longest paths between 

nodes in a large network. Such calculation requires exhaustive search of paths of all possible 

lengths. It is doable if the network size is small enough. However, when the system size becomes 

big, it may take “forever” to calculate the level ranks. 

 

Therefore, among these two hierarchy metrics and algorithms, we prefer the first hierarchy 

metric simply because of its ease of computation, although the second metric is also meaningful 

in computable cases.  

 

Appendix B: Descriptive statistics and hierarchy degrees of historical Linux kernels 

 

Linux kernel source codes are obtained from the official online archive of Linux Kernel 

Organization, Inc http://www.kernel.org/.  

Table S1. Descriptive statistics and calculated results for the used data points 

Version 
Release 

Date 
N L K hreal hrand rand

σ  z-score 
Modularity 
(directed) 

Modularity 
(undirected) 

0.01 17-Sep-91 35 97 2.771 0.7010 0.1332 0.0768 7.391 0.1795 0.2876 

0.11  8-Dec-91 41 128 3.122 0.5547 0.0871 0.0563 8.300 0.1432 0.2779 

0.12  16-Jan-92 51 168 3.294 0.4524 0.0753 0.0459 8.208 0.2036 0.2781 

0.95  8-Mar-92 50 176 3.520 0.5057 0.0581 0.0403 11.113 0.1345 0.2503 

0.96a 22-May-92 60 218 3.633 0.5596 0.0528 0.0360 14.079 0.1598 0.2773 
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0.96b 22-Jun-92 62 227 3.661 0.5551 0.0472 0.0315 16.125 0.0644 0.2778 

0.96c 5-Jul-92 69 258 3.739 0.5891 0.0457 0.0299 18.169 0.1138 0.2966 

0.97 1-Aug-92 77 299 3.883 0.5886 0.0388 0.0259 21.186 0.0931 0.2879 

0.99.2 1-Jan-93 150 575 3.833 0.7200 0.0423 0.0243 27.893 0.1258 0.3071 

0.99.5 9-Feb-93 149 573 3.846 0.726 0.0422 0.0236 28.962 0.1135 0.3103 

0.99.7 13-Mar-93 170 699 4.112 0.7668 0.0322 0.0215 34.199 0.1207 0.3130 

0.99.9 24-Apr-93 171 702 4.105 0.7764 0.0316 0.0200 37.243 0.1002 0.3254 

0.99.10 7-Jun-93 196 850 4.337 0.7553 0.0247 0.0185 39.413 0.1289 0.3184 

0.99.11 18-Jul-93 196 859 4.383 0.7579 0.0243 0.0173 42.422 0.1223 0.3258 

0.99.12 15-Aug-93 201 888 4.418 0.7635 0.0218 0.0167 44.524 0.1212 0.3324 

0.99.13 20-Sep-93 203 904 4.453 0.7788 0.0216 0.0172 43.941 0.1254 0.3084 

0.99.15 3-Feb-94 234 1084 4.632 0.8044 0.0174 0.0146 53.773 0.1274 0.328 

1.0 13-Mar-94 235 1100 4.681 0.7673 0.0162 0.0139 53.913 0.1232 0.3662 

1.1.0 6-Apr-94 234 1084 4.632 0.7703 0.0171 0.0142 53.006 0.1256 0.3209 

1.1.13 23-May-94 242 1092 4.512 0.7711 0.0205 0.0163 45.992 0.1022 0.3003 

1.1.23 27-Jun-94 252 1189 4.718 0.7771 0.0165 0.0144 52.638 0.1154 0.3531 

1.1.29 14-Jul-94 254 1214 4.780 0.7727 0.0151 0.0134 56.689 0.0949 0.312 

1.1.45 15-Aug-94 275 1293 4.702 0.7873 0.0162 0.0134 57.440 0.0864 0.3309 

1.1.52 6-Oct-94 277 1315 4.747 0.7916 0.0163 0.0142 54.439 0.0967 0.3527 

1.1.63 14-Nov-94 275 1293 4.702 0.7873 0.0157 0.0139 55.672 0.0864 0.3309 

1.1.70 2-Dec-94 287 1385 4.826 0.8065 0.0141 0.0133 59.396 0.0549 0.3838 

1.1.76 2-Jan-95 296 1546 5.223 0.8273 0.0096 0.0104 78.481 0.0326 0.321 

1.1.89 5-Feb-95 333 1709 5.132 0.8660 0.0106 0.0114 74.773 0.0298 0.3576 

1.2.0 7-Mar-95 334 1738 5.204 0.8452 0.0101 0.0110 76.072 0.047 0.3576 

1.2.3 2-Apr-95 334 1739 5.207 0.8436 0.0101 0.0110 75.942 0.0465 0.3571 

1.2.8 3-May-95 334 1740 5.210 0.8437 0.0094 0.0108 77.329 0.043 0.3559 

1.3.0 12-Jun-95 344 1898 5.517 0.8583 0.0073 0.0094 90.217 0.0376 0.3401 

1.3.7 6-Jul-95 382 2108 5.518 0.8667 0.0074 0.0091 94.892 0.0496 0.3276 

1.3.15 2-Aug-95 384 2140 5.573 0.8673 0.0063 0.0086 100.121 0.046 0.3288 

1.3.22 1-Sep-95 384 2170 5.651 0.8659 0.0056 0.0081 106.810 0.0443 0.3279 

1.3.31 4-Oct-95 390 2248 5.764 0.8674 0.0050 0.0075 114.472 0.0477 0.3295 

1.3.38 7-Nov-95 406 2301 5.667 0.8609 0.0057 0.0085 100.725 0.0526 0.3242 

1.3.46 11-Dec-95 438 2585 5.902 0.8286 0.0045 0.0070 117.154 0.0449 0.3324 

1.3.53 2-Jan-96 457 2647 5.792 0.8342 0.0048 0.0073 113.011 0.0202 0.3031 

1.3.60 7-Feb-96 482 2776 5.759 0.835 0.0054 0.0079 104.383 0.049 0.3289 

1.3.70 1-Mar-96 514 3010 5.856 0.8432 0.0048 0.0075 111.167 0.0216 0.319 

1.3.82 2-Apr-96 554 3355 6.056 0.8393 0.0040 0.0066 126.854 0.0261 0.319 

1.3.98 4-May-96 646 3952 6.118 0.8335 0.0034 0.0063 132.816 0.0289 0.3145 

2.0 9-Jun-96 661 4055 6.135 0.8486 0.0037 0.0067 125.871 0.0269 0.3259 

2.0.5 10-Jul-96 661 4070 6.157 0.8511 0.0036 0.0067 126.504 0.0261 0.3172 

2.0.13 16-Aug-96 663 4084 6.160 0.8511 0.0032 0.0058 146.264 0.0253 0.3157 

2.1 30-Sep-96 668 4100 6.138 0.8515 0.0036 0.0066 128.125 0.0261 0.3088 

2.1.6 29-Oct-96 663 3955 5.965 0.8516 0.0043 0.0072 117.095 0.038 0.3033 

2.1.13 23-Nov-96 704 4258 6.048 0.8422 0.0039 0.0065 128.103 0.0368 0.3389 

2.1.16 18-Dec-96 743 4579 6.163 0.8574 0.0033 0.0063 136.632 0.0204 0.2939 

2.1.20 2-Jan-97 757 4709 6.221 0.8609 0.0031 0.0060 142.333 0.0166 0.2835 
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2.1.25 2-Feb-97 775 4893 6.314 0.8580 0.0030 0.0057 151.306 0.019 0.2918 

2.1.30 26-Mar-97 823 5444 6.615 0.8720 0.0023 0.0052 166.595 0.0252 0.2815 

2.1.36 23-Apr-97 880 5833 6.628 0.8838 0.0019 0.0047 188.563 0.0268 0.2588 

2.1.40 22-May-97 871 5776 6.631 0.8776 0.0021 0.0051 173.238 0.0276 0.2456 

2.1.43 16-Jun-97 883 5807 6.576 0.8776 0.0024 0.0054 160.998 0.0279 0.2644 

2.1.45 17-Jul-97 945 6177 6.537 0.8844 0.0024 0.0053 166.812 0.0321 0.2604 

2.1.50 14-Aug-97 972 6376 6.560 0.8912 0.0022 0.0049 182.892 0.0318 0.2648 

2.1.56 20-Sep-97 1014 6615 6.524 0.8698 0.0021 0.0049 175.799 0.0334 0.2656 

2.1.60 25-Oct-97 1044 6672 6.391 0.8698 0.0029 0.0061 142.437 0.0304 0.269 

2.1.65 18-Nov-97 1053 6776 6.435 0.8669 0.0025 0.0054 161.265 0.0304 0.2587 

2.1.75 22-Dec-97 1152 7343 6.374 0.8501 0.0025 0.0053 160.780 0.0366 0.2915 

2.1.80 21-Jan-98 1279 7990 6.247 0.8831 0.0034 0.0062 141.106 0.0491 0.2933 

2.1.88 21-Feb-98 1316 8205 6.235 0.8851 0.0031 0.0060 145.903 0.0458 0.2413 

2.1.90 18-Mar-98 1321 8227 6.228 0.8922 0.0036 0.0066 134.715 0.0468 0.2441 

2.1.97 18-Apr-98 1389 8725 6.281 0.8889 0.0029 0.0058 153.434 0.0783 0.2535 

2.1.103 21-May-98 1441 9131 6.337 0.8938 0.0029 0.0059 151.729 0.0743 0.2841 

2.1.105 7-Jun-98 1470 9323 6.342 0.8985 0.0028 0.0055 162.692 0.0705 0.2114 

2.1.109 17-Jul-98 1476 9383 6.357 0.8995 0.0029 0.0058 154.547 0.0738 0.1974 

2.1.116 19-Aug-98 1502 9528 6.344 0.8969 0.0029 0.0058 154.768 0.0732 0.2873 

2.1.122 16-Sep-98 1516 9661 6.373 0.8970 0.0028 0.0059 151.750 0.0718 0.1937 

2.1.126 23-Oct-98 1550 9905 6.390 0.8900 0.0026 0.0057 156.533 0.0832 0.2796 

2.1.129 19-Nov-98 1559 9978 6.400 0.8931 0.0026 0.0055 162.222 0.0837 0.2833 

2.1.132 22-Dec-98 1615 10413 6.448 0.8939 0.0024 0.0053 167.164 0.0655 0.282 

2.2 26-Jan-99 1663 10811 6.501 0.9053 0.0023 0.0052 173.143 0.057 0.2635 

2.2.2 22-Feb-99 1663 10826 6.510 0.9049 0.0021 0.0050 181.488 0.0562 0.2841 

2.2.4 23-Mar-99 1661 11040 6.647 0.9027 0.0022 0.0053 170.552 0.0591 0.2248 

2.2.6 16-Apr-99 1663 11091 6.669 0.9042 0.0021 0.0051 178.270 0.0589 0.2108 

2.3 11-May-99 1695 11315 6.676 0.9088 0.0019 0.0050 182.177 0.0581 0.2333 

 

1,000 randomly-generated comparable networks are used to calculate hrand and z-score for each 

data point. Because hierarchy degrees of random networks do not vary significantly with the 

increases of N when k>2 and N>80 (see Fig.3 in the main text), to reduce computation efforts we 

use randomly-generated networks with a constant N (=100) and corresponding k to predict hrand 

and z-scores for most of the data points with large N, except the earliest 8 ones with less than 100 

nodes. For the earliest 8 data points, the random networks have the same N and L of their 

corresponding actual networks. 
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