
Detecting Feature Interaction
Hotspots in Automotive Software

using Relational Algebra

by

Bryan J. Muscedere

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Bryan J. Muscedere 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Modern software projects are programmed by numerous teams, consist of millions of lines of
code, and are split into numerous components that, during runtime, may not be contained
in the same process. Due to these complexities, software defects are a common reality;
defects cost the global economy over a trillion dollars each year. One area where developing
safe software is crucial is the automotive domain. As modern vehicles are equipped with 100
million lines of code and are responsible for controlling vehicle motion through advanced
driver-assistance systems (ADAS), there is a potential for these systems to malfunction in
catastrophic ways.

Due to this, automotive software needs to be inspected to verify that it is safe. The
problem with this is that it can be difficult to carry out this detection; manual analysis
does not scale well, search tools like grep have no contextual awareness of code, and code
reviews, while effective, cannot target the entire codebase properly. Further, automotive
systems are comprised of numerous, communicating features that can possible interact in
unexpected or undefined ways. This thesis addresses this problem through the development
of a static analysis methodology that detects custom problem areas coined as hotspots. We
identify several classes of automotive hotspots that describe areas in automotive software
that have the possibility of causing a feature interaction.

To detect these hotspots, this methodology employs a static, relational analysis toolchain
that creates a queryable model from source code. Once these models are generated, re-
lational algebra queries can be written that detect potential hotspots in the underlying
source code. The purpose of this methodology is not to detect bugs with surety but rather
scale down the amount of code that is inspected through other approaches.

We test this hotspot detection methodology through a case study conducted on the
Autonomoose autonomous driving platform. In it, we generate a model of the entire
Autonomoose codebase and run relational algebra queries on the model. Each script in the
case study detects a type of hotspot we identify in this thesis. The results of each query
are presented.

iii

Acknowledgements

There are numerous people I would like to acknowledge in this thesis that provided me
with countless opportunities to excel during my time at the University of Waterloo. My
thesis would certainly not be possible without the time and dedication that each of these
individuals put in.

First I would like to thank Dr. Joseph D‘Ambrosio and his team at General Motors
for their assistance with my research. They provided a lot of suggestions and support that
allowed me to focus my research to the automotive domain. Further, I was able to draw
upon experience gained through an internship with Dr. D’Ambrosio’s group at General
Motors. This internship allowed me to collaborate with numerous automotive domain
experts; I will value this experience throughout my computer science career.

I would also like to thank to the Waterloo Autonomous Vehicle Lab (WAVELab) for
providing me with access to the Autonomoose source code. Since this project relied on
verifying the toolchain on automotive software, this project would not have been possible
without access to Autonomoose. In addition, special thanks to research engineer Dr.
Antkiewicz for meeting with me to describe the Autonomoose software and to examine
some of the hotspot instances detected in the vehicle software to check their value.

I would like to thank Dr. Ian Davis for his support during my time at the University
of Waterloo. He helped build many of the original tools used and provided assistance
in using these tools. Additionally, he supported my work developing the ClangEx and
Rex fact extractors by improving the Clang API and by tackling certain issues inherent
with developing C and C++ extractors. Further, he provided numerous suggestions that
allowed me to develop extremely polished hotspots and tools.

I would also like to thank Dr. Michael Godfrey for his help on this thesis. His work,
insight, and advice was extremely valuable and I greatly appreciate the time he spent
assisting me with this research. Further, Dr. Godfrey has a great deal of experience that
I was able to draw upon from his own experiences from past research endeavors and from
developing and using the relational algebra toolchain in a variety of different settings.

Finally, I would like to express my utmost gratitude to my supervisor Dr. Joanne Atlee
for her support during my thesis and for being such a positive role model. I learned so
much from her during my time at Waterloo and this thesis certainly would not be possible
without her guidance and support. Dr. Atlee provided a lot of feedback that improved
my writing and research ability. Additionally, under her supervision, I was able to partake
in many different opportunities that allowed me to improve my research and abilities as a
computer scientist.

iv

Dedication

Dedicated to Mom, Dad, Danielle, Montana, and Mabel. I could not have done it
without your love and support.

v

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Hotspots . 4

1.2 Thesis Overview . 5

1.2.1 Generation of Program Model . 6

1.2.2 Generation of Hotspot Report . 7

1.3 Thesis Contributions . 8

1.4 Thesis Organization . 8

2 Background 10

2.1 Related Work & Tools . 10

2.1.1 Related Research . 11

2.1.2 Related Static Analysis Tools . 14

2.2 Relational Analysis Toolchain . 15

2.2.1 Fact Extractors . 17

2.2.2 Factbases & The Tuple-Attribute Language 18

2.2.3 Relational Query Engine - Grok . 22

2.2.4 Model Visualizer - LSEdit . 22

vi

2.3 Robot Operating System (ROS) . 23

2.3.1 Communication Framework . 24

3 Fact Extractors 26

3.1 ClangEx . 28

3.1.1 ClangEx Metamodel . 29

3.1.2 Advantages of the ClangEx Extractor 32

3.1.3 Disadvantages of the ClangEx Extractor 32

3.1.4 ClangEx Internals . 33

3.2 Rex . 41

3.2.1 Rex Metamodel . 43

3.2.2 Advantages of the Rex Extractor 45

3.2.3 Disadvantages of the Rex Extractor 45

3.2.4 Rex Internals . 46

4 Analysis of Automotive Software 53

4.1 Automotive Architecture . 53

4.1.1 CAN Bus Protocol . 54

4.1.2 Challenges with Analysis . 55

4.2 Hotspots in Automotive Systems . 56

4.2.1 Feature Communication Hotspots 57

4.2.2 Multiple Input Hotspots . 62

4.2.3 Control Flow Hotspots . 66

5 Case Study 72

5.1 Autonomoose . 72

5.2 Autonomoose Case Study . 74

5.2.1 Setup . 75

vii

5.2.2 Feature Communication Hotspots 78

5.2.3 Multiple Input Hotspots . 80

5.2.4 Control Flow Hotspots . 83

5.2.5 Verification with Autonomoose Developers 87

6 Conclusions 90

6.1 Contributions . 90

6.2 Limitations . 91

6.3 Future Work . 93

References 96

APPENDICES 101

A The bfx64 Extractor 102

A.1 Installing bfx64 . 102

A.1.1 Prerequisites . 103

A.1.2 Building bfx64 . 104

A.2 Using bfx64 . 105

A.2.1 Basic Usage . 105

A.2.2 Advanced Features . 106

B The ClangEx & Rex Extractors 110

B.1 Installing ClangEx & Rex . 110

B.1.1 Prerequisites . 110

B.1.2 Building ClangEx . 112

B.1.3 Building Rex . 113

B.2 Using ClangEx . 114

B.2.1 Step 1 - Adding and Removing Files 115

viii

B.2.2 Step 2 - Enabling or Disabling Features 116

B.2.3 Step 3 - Analyzing Files . 116

B.2.4 Step 4 - Outputting Models . 118

B.3 Using Rex . 119

B.3.1 Optional Step - Feature Resolution 120

B.3.2 Differences Between Rex and ClangEx 120

C Relational Algebra Scripts 123

C.1 Feature Communication Hotspots . 123

C.1.1 Component-Based Communication 123

C.1.2 Dataflow Communication . 124

C.1.3 Loop Detection . 126

C.2 Multiple Publisher Hotspots . 127

C.2.1 Multiple Input . 127

C.2.2 Race Condition . 129

C.3 Control Flow Hotspots . 130

C.3.1 Behaviour Alteration . 130

C.3.2 Publish Alteration . 132

ix

List of Tables

2.1 The different sections of a TA file. 19

3.1 A comparison of several publically available fact extractors. 28

3.2 Language features supported by ClangEx. 36

4.1 The three hotspots part of the feature communication class. 58

4.2 The two hotspots part of the multiple input class. 63

4.3 The two hotspots part of the control flow class. 66

5.1 Required model elements to detect all hotspots. 76

5.2 Result of detecting feature communication hotspots in Autonomoose. . . . 78

5.3 Completeness of ROS-based entities and relations in the Autonomoose model. 79

5.4 Result of detecting multiple influence hotspots in Autonomoose. 80

5.5 Completeness of ROS-based entities required to detect multiple influence
hotspots. 81

5.6 Result of detecting control flow hotspots in Autonomoose. 84

5.7 Completeness of ROS-based entities required to detect control flow hotspots. 85

A.1 A collection of basic bfx64 arguments. 106

A.2 A collection of advanced bfx64 arguments. 107

B.1 ClangEx language feature names. 117

B.2 An overview of common ClangEx commands. 121

B.3 An overview of common Rex commands. 122

x

List of Figures

1.1 The number of lines of code for several software systems. 2

1.2 A case where vehicular features might interact in a vehicle (blue). 3

1.3 An example of a possible hotspot in a monolithic system. 5

1.4 The hotspot detection toolchain. 6

2.1 The Jianta analysis architecture. Adapted from [1]. 12

2.2 The robotic analysis architecture. Adapted from [2]. 13

2.3 The Understand GUI analyzing the ClangEx fact extractor. 14

2.4 The Klocwork desktop GUI running on an example project [3]. 16

2.5 The relational algebra toolchain. 17

2.6 The conversion of a C++ class to a TA factbase. 19

2.7 An empty TA file with the sections defined. 20

2.8 An example of TA tuples for a generic C++ program. 21

2.9 Examples of TA attributes. 22

2.10 LSEdit visualizing the ClangEx fact extractor project. 23

2.11 An example of the publisher-subscriber paradigm in ROS with two compo-
nents. 25

3.1 The ClangEx metamodel. Black classes are C/C++ language features. . . 31

3.2 The modules and the order of their use in ClangEx. 34

3.3 Example matchers for the full-analysis AST Walker module. 38

xi

3.4 An example of ClangEx ID generation for the testVar variable. 39

3.5 An example of the edge list data structure. 40

3.6 The Rex metamodel for full-analysis mode. Red classes are ROS features
and blue classes are C++ features. 44

3.7 A comparison of how graphs in ClangEx and Rex are stored. 50

3.8 An example of the variable read/write detection algorithm. 52

4.1 A CAN bus with two connected ECUs. 54

4.2 An example where data is sent on the CAN bus. 55

4.3 The breakdown of feature interaction hotspots. 57

4.4 The difference between direct and indirect communications between features
A and B. 59

4.5 The difference between the component-based and dataflow communication
hotspots. 61

4.6 An example of the multiple publisher hotspot. 64

4.7 An example of the race condition hotspot. 65

4.8 Two examples of the behaviour alteration hotspot with two features: A and
B. 68

4.9 Two examples of the publish alteration hotspot for two features: A and B. 70

5.1 The modified Lincoln MKZ used by Autonomoose. 73

5.2 A high-level overview of the Autonomoose software stack. 74

5.3 An example of the Autonomoose model generated by Rex. 77

5.4 An example Grok script that detects the race condition hotspot. 77

5.5 The race condition hotspot in Autonomoose broken down by severity. . . . 82

5.6 The behaviour alteration hotspot in Autonomoose broken down by severity. 87

5.7 The publish alteration hotspot in Autonomoose broken down by severity. . 88

6.1 C++ code that would cause Rex to generate an incorrect model. 92

6.2 An example of why determining variable accesses is flawed. 93

xii

A.1 A run of bfx64 with no arguments. 106

A.2 A run of bfx64 with some advanced processing options enabled. 108

A.3 A run of bfx64 in low-memory mode. 109

B.1 The ClangEx processing pipeline. 115

B.2 ClangEx while running on some unspecified source code. 117

B.3 The Rex processing pipeline. 119

C.1 Grok script that detects the component-based communication hotspot. . . 124

C.2 Grok script that detects the dataflow communication hotspot. 125

C.3 Grok script that detects the loop hotspot. 126

C.4 Grok script that detects the multiple publishers hotspot. 128

C.5 Grok script that detects the race condition hotspot. 130

C.6 Grok script that detects the behaviour alteration hotspot. 131

C.7 Grok script that detects the publish alteration hotspot. 133

xiii

Chapter 1

Introduction

Developing a large-scale software system is complex. It can involve hundreds of people
spread across multiple teams and requires the development of numerous software artifacts
including models and source code. Additionally, software continues to increase in com-
plexity; many modern systems consisting of over a million lines of code (MLoC) divided
across numerous components. To illustrate, Figure 1.1 highlights the sheer size of several
common, large-scale software systems1. Each of these systems have codebases of over 2
million lines of code meaning that no single person or team can have a full mental model of
the underlying software. Problems can arise when integrating components that are inde-
pendently developed; these components have the potential of interacting in unexpected or
undefined ways which can introduce bugs into the project. A 2017 report from Australian
software testing firm Tricentis found that the global economic cost of faulty software was
1.1 trillion US dollars in 2016 [13]. While this amount currently compares to the gross do-
mestic product of Mexico [14], the economic impact from such bugs is expected to increase
as society continues to become even more technology-centric.

More worrying is that software is increasingly responsible for safety. The software that
manages airplanes, power plants, and medical devices all have the potential of risking
human lives if not developed properly. For instance, it was discovered that a tool used
by the UK’s National Health Service (NHS) that calulated patient risk for medication
perscription, miscalulated for 300,000 heart patients exposing them to the wrong drugs [15].
Another case of faulty medical software took place in the 1980s involving the Therac-25
radiation therapy machine [16]. The software caused the release of lethal doses of radiation
to seven patients resulting in their death.

1Data comes from [4], [5], [6], [7], [8], [9], [10], [11], and [12].

1

Figure 1.1: The number of lines of code for several software systems.

One safety-critical domain where software is increasingly playing a role is the automo-
tive industry. According to Dr. Manfred Broy, the modern, high-end car contains over 100
million lines of code that operates across hundreds of electronic control units (ECUs) [4].
While a lot of that code powers non-safety-critical systems such as infotainment, a lot of
this software is now responsible for operating advanced driver assistance systems (ADAS).
ADAS are specific features that are designed to help drivers operate the vehicle [17] and in-
clude features such as collision imminent braking (CIB) and adaptive cruise control (ACC).
The CIB feature causes the car to brake or stop when a forward obstacle is detected and
ACC maintains a vehicle’s speed based on a user set speed and the traffic around the vehi-
cle. While these systems are designed to improve driver safety, there have been numerous
cases of these features not operating properly. For instance, in 2017, the Fiat-Chrysler
automotive group decided to recall over 1.25 million trucks due to a software glitch that
could cause side airbags and seat pretensioners to fail during a collision [18]. These recalls
have real consequences; the failure of these airbags have been linked to one death in the
United States.

At a high level, automotive systems are comprised of numerous features that all com-
municate with each other. While the definition of a feature varies depending on the gran-
ularity at which someone decides to work at [19], I define a feature as “a coherent and
identifiable bundle of system functionality that helps characterize the system from a user
perspective” [20]. If unchecked, ADAS features such as CIB and ACC have the potential

2

of interacting in an unexpected or unintended manner known as a feature interaction. Fea-
ture interactions amongst ADAS features can result in occupant injury or death. Figure
1.2 gives an example of a feature interaction amongst two ADAS features in the blue car:
collision avoidance (CA) and side collision avoidance (SCA). Here, one red car is merging
onto the road causing the SCA feature in the blue car to move the car to the side to avoid
a collision. The other red car is accelerating from behind into the blue car causing the CA
feature to accelerate the car forward to avoid a rear collision. This rapid change in forward
and lateral acceleration could result in a vehicle rollover causing an accident. Due to the
severity of vehicular feature interactions, I tackle the issue of detecting feature interactions
in an automotive software system in this thesis.

Figure 1.2: A case where vehicular features might interact in a vehicle (blue).

Detecting these feature interactions can be difficult due to codebase size and complexity.
As this problem is not new, numerous techniques have been developed to assist developers.
One popular technique is the use of manual code inspection to detect bugs and interactions.
While code reviews are an important tool, they can be fairly slow. Effective code reviews
should only focus on 200 to 400 lines of code at a time and should not exceed an inspection
rate of 300 to 500 lines of code per hour [21]. Another detection method is the use of static
analysis tools to detect problem areas and highlight calls between components [22]. Tools
such as Understand or Klocwork are common and used to facilitate developer understand-
ing of the source code and detect potential violations such as dereferencing NULL pointers
or uninitialized variables. While valuable, these type of tools do not have the capability of
detecting high-level patterns such as feature interactions.

3

The aim of this thesis is to present a novel static analysis toolchain to detect feature
interaction hotspots in automotive software systems to avoid potential feature interactions.
This novel toolchain creates a program model from software artifacts that can be queried
using a context-aware language that allows for the detection of these hotspots. Since
manual inspection is beneficial on a small scale, the goal of this approach is to scale down
the number of areas required for manual analysis by identifying these program hotspots.
I argue that this approach complements current tools used in the automotive domain due
to its flexibility, scalability, and ability to detect message passing.

1.1 Hotspots

Before I give an overview of this thesis, the notion of a hotspot is introduced. A hotspot is
an abstract concept that describes a potential problem area in code that can be detected
using static analysis. The purpose of characterizing these hotspots is not to detect bugs
with surety but rather to develop tools that can identify these areas so that afflicted
code segments can be better inspected using other, more thorough, traditional analysis
techniques. Since these problem areas differ depending on the domain, the type of hotspots
one might want to look for varies greatly. For instance, a traditional software system
may not have to deal with component communication or threads whereas an automotive
system generally has to contend with lots of communication across ECUs. For this analysis
methodology to be effective, users of this toolchain need to identify the hotspots they deem
important prior to using the toolchain to analyze the software.

Figure 1.3 shows a potential hotspot for a monolithic software system. In this example,
there are three separate components that each communicate with each other in some way.
Component A and B both have a function that modifies Component C. Component C
has a function that uses a variable. The value of this variable affects how the function
in Component C operates. This type of situation could be deemed a hotspot because
Components A and B potentially alter how Component C functions at some point in the
program. If this hotspot was detected by the toolchain, system experts could then verify
that the interaction between these three functions operates as expected.

Static analyses are evaluated with respect to their precison and recall of the target
information [23][22]. Developing tools that identify hotspots in a software project are
no exception; different tools may identify problem areas with varying levels of precision
and recall. An identified feature interaction hotspot may point to a problematic area of
code or may be a false positive. Precision and recall tend to be inversely related [24] and
developing a “golden” static analysis tool that identifies hotspots with high precision and

4

Figure 1.3: An example of a possible hotspot in a monolithic system.

recall is impossible. As such, it is best to identify hotspots that have high recall since any
false positives returned by some static analysis tool can be filtered out using other static
analysis methods or manual analysis. While it may seem tedious to pair this methodology
with other static analysis tools, research by Willis et al. [25] found that analyzing source
code with multiple static analysis tools allows for the more effective detection of issues in
that project.

1.2 Thesis Overview

This section gives an overview of the two main steps of this methodology: the generation
of a program model using fact extractors and the generation of a hotspot report. Detailed
information describing the technology behind this methodology is described in Chapter 2.
Importantly, this methodology is extremely generic and changes depending on the software
project being examined, the domain of the project, and the hotspots being searched for.
Subsequent sections of this thesis (Section 3 and 4) describe this process in more detail for
automotive systems.

5

Figure 1.4: The hotspot detection toolchain.

1.2.1 Generation of Program Model

A high-level overview of my hotspot detection methodology is shown in Figure 1.4. In this
figure, blue boxes are files, yellow boxes are intermediate files produced by the toolchain,
and the single purple box represents a human-based thought process which identifies these
hotspots.

Before hotspots can be detected in an automotive system, a model representing the un-
derlying automotive software needs to be created. This model is generated statically from
the source code and must contain enough information about the software that will allow
for the identification of feature interaction hotspots in subsequent steps. The information
that needs to be included in these models to detect feature interaction hotspots varies
depending on the automotive software architecture and programming language. However,
from a general perspective, information about features, how these features communicate,
and how information flows between features should be recorded.

The generation of a program model occurs automatically by running artifacts from
the software project through a custom, human-defined analyzer known as a fact extrac-
tor. This step is crucial since it keeps only information about the software project that
is essential for detecting specific hotspots. Additionally, fact extraction transforms the
software project into a condensed model that is in a format that can easily be queried.
Since software projects vary in programming language, different fact extractors must exist
for each language. While it takes some effort to elicit fact extractor requirements and to
determine the type of information to include in the model, once an extractor is developed

6

it can be used on any project that uses the language it targets.

In this thesis, two custom fact extractors called ClangEx and Rex are designed to de-
tect feature interaction hotspots in automotive code. ClangEx is a general C and C++
fact extractor that serves as a basic fact extractor and collects program information like
variables, functions, and relationships amongst these entities like function calls and
inheritance hierarchies. Rex builds upon ClangEx by extracting information about C++
language features as well as components, message passing information, and feature com-
munication in distributed robotic systems.

1.2.2 Generation of Hotspot Report

Once a model exists that describes the automotive software, feature interaction hotspots
can be identified. First, before they can detected, these hotspots need to be characterized.
This is a manual, thought-based task where developers of the system need to determine
what they define as a hotspot.

In this thesis, I characterize three different types of automotive hotspots that might be
present in such a system: feature communication, multiple input, and control flow hotspots.
Feature communication hotspots look at how automotive features communicate in a system
and which features they communicate with directly and indirectly. Multiple input hotspots
discover features that receive inputs from multiple features. Lastly, control flow hotspots
look for features that alter another feature’s behaviour based on messages sent.

Once characterized, queries can be written that comb through the program model
looking for these hotspots. These queries are written in a specialized query language
known as Grok (see Section 2.2.3) and output a list of areas of code that reflect the hotspot
description. I develop Grok scripts that detect each hotspot described in this thesis and
run them on the Autonomoose autonomous car project.

A third step that is technically part of this methodology, but not covered in this thesis,
is the action that is taken after the hotspots are identified. While these hotspot reports
do not necessarily show areas of code that contain problems, these reports can be used in
tandem with manual code reviews or additional static analysis tools to find bugs. These
reports merely provide developers with a list of areas of code that need to be inspected
more thoroughly.

7

1.3 Thesis Contributions

The contributions made in this thesis are as follows:

• The development of two different fact extractors that automatically produce program
models from software artifacts. Each of these extractors collect information about
the underlying source code with the goal of detecting hotspots. These fact extractors
both generate models based on a particular schema. The two fact extractors are as
follows:

– ClangEx: A generic C and C++ fact extractor that is capable of extracting
numerous language features from both languages. The purpose of ClangEx is
to serve as a model fact extractor that can be easily extended to target more
specific things in C or C++ projects. This extractor uses the Clang open-source
compiler to operate and is able to process any source code that is adherent to
ANSI C or ISO C++.

– Rex: A C++ fact extractor based upon ClangEx that is capable of extracting
messages passed between components. Rex looks for messages sent and received
using the Robot Operating System (ROS) framework. It is the first extractor
developed that captures message-passing in a distributed system.

• The identification of several different types of hotspots for automotive software sys-
tems. With automotive systems being distributed across ECUs, having a large code-
base, and having active safety requirements, hotspots in these systems tend to be on
a feature interaction level. This thesis describes the feature interaction hotspots that
might be present Additionally, I discuss the type of information that would need to
be extracted that would allow for the detection of these hotspots.

• A case study that uses the relational analysis toolchain to detect hotspots in the
Autonomoose autonomous car platform. The case study demonstrates the feasibility
of detecting these hotspots in an automotive system that makes use of message-
passing between components. The precision and recall of the detection of these
hotspots is explored.

1.4 Thesis Organization

This thesis is organized into several sections. Chapter 2 gives a background on related
work and and other static analysis tools. This chapter also provides a detailed description

8

of the relational analysis toolchain and the ROS framework.

Chapter 3 gives a description of the two fact extractors that were developed during
this thesis. These fact extractors are capable of extracting information from certain types
of software artifacts and allows users to gain insight into how components in a software
system interact. This chapter also compares the differences between these two extractors.

Chapter 4 describes the unique challenges associated with using static analysis on soft-
ware in the automotive domain. Further, it describes several different types of hotspots
that might be present in such systems.

Chapter 5 describes a major case study that was conducted that demonstrates the
feasibility of detecting hotspots using the relational analysis toochain on an automotive
software system. This chapter describes the methodology of this case study, provides the
results, and shows example relational algebra scripts that carry out this detection. The
case studies in this section were conducted on the Autonomoose project.

Last, Chapter 6 provides a summary of the work completed in this thesis as well as
limitations and future work that needs to be conducted.

In addition to the fact extractors discussed in Chapter 3, Appendix A is a user man-
ual for the bfx64 extractor and Appendix B is a user manual for the ClangEx and Rex
extractors. These manuals provide installation instructions and usage details.

9

Chapter 2

Background

This chapter gives an overview of state-of-the-art static analysis research and current in-
dustry analysis tools used in software development. Additionally, this chapter describes
the relational algebra toolchain that is used to detect hotspots in automotive systems.
Understanding current research in academia and the tools used in industry is important
to understand the strengths and weaknesses of current technology.

Section 2.1 highlights previous research in academia and industry. Section 2.2 provides
an in depth description of the relational analysis toolchain used in my thesis to detect
hotspots.

2.1 Related Work & Tools

Static analysis is not a new concept. Research into static analysis techniques spans decades
and has become an essential part of the software development lifecycle. Much modern static
analysis research aims to improve current methods that are used in statically analyzing
a software project. This research works towards building techniques that are scalable,
accurate, and informative. While research is continuing, there are already numerous static
analysis tools that are used in industry to detect defects in code and to assist developers
with program comprehension.

This section will explore related areas of academic work and two relevant static analy-
sis tools that are used in industry. Section 2.1.1 looks at research that developed unique
approaches to statically detect interactions between components in software artifacts. Sec-

10

tion 2.1.2 looks at two related static analysis tools that many development companies use
to build software.

2.1.1 Related Research

There is much research that aims to develop novel approaches to efficiently analyze soft-
ware systems. This section explores two state-of-the-art techniques to statically detect
interactions amongst components in distributed environments; Jianta and a method to
analyze distributed robotic systems. Other areas of related work are briefly discussed.

Jianta

Tsutano et al. developed a novel analysis framework that targets the applications built
for the Android platform to detect interactions amongst themselves [1]. Known as Jianta,
this framework works by connecting to an Android device using the Android Debug Bridge
(ADB) protocol and then extracting program information about selected Android pro-
grams. Information about these programs from the Java Class Loader and analysis engines
that interface with the analysis controller. Once information is obtained from the ADB,
Jianta is able to generate graphs showing component communication. Figure 2.1 shows a
high-level overview of this architecture.

Compared to previous research, this approach is powerful since previous solutions to an-
alyze cross-application communications required combining the Android packages (APKs)
into a single APK and then extracting inter-component communication (ICC) calls. In-
stead, by leveraging the class loader, Jianta is able to generate class, method graphs, and
class loader graphs. Each of these graphs are represented as a hierarchical graph and can
be converted to common graph formats like GraphViz or TraViz.

While Tsutano et al. developed an innovative way to detect application interactions on
the Android platform, techniques to analyze these graphs is out of scope for their research.
Notably, this technique focuses on extraction and visualization of Android application
information using external tools such as GraphViz [26] or TraViz [27]. While it would
be feasible to analyze or visualize smaller projects, determining problematic interactions
between applications in large projects may not be manageable without having access to
some query mechanism.

11

Figure 2.1: The Jianta analysis architecture. Adapted from [1].

Distributed Robotic Analysis

Purandare et al. developed an efficient method to extract conditional component depen-
dence from robotic systems [2]. Analysis using their approach looks at interactions between
components that arise due to program control flow decisions. This technique discovers in-
teractions that are created due to control structures or interactions that are the effect of
other interactions. The result of this analysis is a single model that highlights any inter-
actions that arise in some project or a delta model from two software projects that shows
interactions present in one but not the other. This delta model feature is useful as it can
be used to see how code changes in a project affect the interactions. Figure 2.2 shows the
architecture of this static analysis technique.

Similar to Tsutano et al., Purandare et al.’s research focuses on extracting information
from software artifacts. Therefore, in large projects, it can be difficult to sift through
models generated by this approach to find specific instances where components interact
with each other. Unlike Jianta, a portion of this framework is devoted to comparinchg
multiple models to detect how code changes affect interactions between components. For
two multiset models generated by this approach, by checking A ≡ B through A ⊆ B
and A ⊇ B, the model comparison unit shows only interactions that are unique in each
model [2]..

12

Figure 2.2: The robotic analysis architecture. Adapted from [2].

Other Work

In addition to work by Tsutano et al, and Purandare et al., there is other research in the
static analysis field that aims to detect interactions between subsystems in event-based
systems. For the purpose of this section, event-based systems are systems which produce,
consume, and react to events send between components [28]. Safi et al. [29] develop an
approach for detecting anomalies in event-based systems. Since these systems tend to
suffer from unexpected interactions that arise due to nondeterminism, Safi et al. present
a static analysis technique called DEvA to detect potential event anomalies. DEvA was
tested on 20 open-source systems and found event-based anomalies in each.

Jayaram et al. [30] develop program analysis techniques for event-based distributed
systems. In their research, they describe three different types of static analysis checks
that can be integrated into languages that utilize event-driven semantics; immutability
analysis, guard analysis, and causality analysis. Each type of analysis can be used in
different types of event-based systems including those that use the publisher/subscriber
architecture. Jayaram et al. found that integrating such checks into a programming
language reduced the number of manual checks programmers had to do when writing
event-driven programs.

Other researchers have attempted to use forms of relational algebra in defect detection
and static analysis. Kozen [31] proposes using a form of relational algebra called Kleene
Algebra with Tests (KAT) to statically verify the compliance of safety policies. While
Kozen demonstrates that KAT is effective in verifying such policies, programs analyzed
using this method need to be translated to an equivalent automation.

13

2.1.2 Related Static Analysis Tools

There are numerous static analysis tools used in industry that assist developers with pro-
gram comprehension and bug detection. Many of these tools tout similar features including
simple syntactic code analysis, the generation of dependency diagrams, and the ability for
developers to add their own syntactic code checks. Two notable static analysis tools that
are commonly used are Understand and Klocwork. The remainder of this section pro-
vides a quick overview of these two tools.

Understand

Understand is a commerical static code analysis integrated development environment (IDE)
created by Scientific Toolworks. The tool features incorporated code metric reporting, sim-
ple error detection, and can generate UML class and dependency diagrams of the underlying
project [32]. Figure 2.3 shows the Understand tool visualizing the directory structure of
the ClangEx fact extractor project. In this figure, the user is presented with a dependency
diagram that groups functions into the source files that they are defined in.

Figure 2.3: The Understand GUI analyzing the ClangEx fact extractor.

There are two major features in Understand that make it a valuable tool. First, it
has a feature called CodeCheck which checks the software project for a variety of different

14

bugs. These bugs can be style-based such as code that is commented out or more spe-
cific issues such as unreachable code. Despite this, there is a limitation to the types of
issues that CodeCheck can detect as it has trouble performing dataflow analysis, memory
allocation/leak detection, and tracking variable use amongst functions [33]. The other
major feature is the ability to generate diagrams that assist users with understanding the
interactions between software components. Understand can generate UML diagrams by
performing a syntactic scan of the code and can generate dependency digraphs showing
which modules interact with each other. An issue with this is that, in large software
projects, these UML diagrams can become restrictively large and incomprehensible.

Klocwork

Klocwork is a commercial static analysis tool for C, C++, C#, and Java projects. It is a
commercial tool that consists of a variety of different features including static code analysis,
code metrics reporting, and security violation detection [34]. Both the static code analysis
and security violation detection tools come with a collection of pre-identified fingerprints
that Klocwork checks for. These fingerprints are synonymous with hotspots; they are areas
of code that have the potential four causing problems. Further, both Klocwork tools allow
for users to develop their own fingerprints. These custom fingerprints target the AST of
the source code and match code segments based on some XPath-like expression. Figure
2.4 shows the Klocwork desktop GUI running on an example project. The right portion of
the window shows some error that Klocwork identified.

While Klocwork is powerful, it is not without limitations. First, Klocwork is only able
to detect issues with how language elements in a project are used. This means that users
cannot easily write fingerprints that check how specific programming frameworks (such as
Hadoop [35] or Boost [36]) are used. Further, while Klocwork has an extensive collection
of built-in security checks, many of these checks are unable to discover all violations of that
type. This is more of a problem with static analysis as a whole since most static analysis
approaches have the potential of producing false positives and negatives.

2.2 Relational Analysis Toolchain

The relational algebra toolchain is a generic static analysis toolchain developed at the Uni-
versity of Waterloo. This toolchain is comprised of several steps that generate a queryable
model that represent some underlying software artifact. The toolchain is used in this thesis
to identify hotspots in an automotive software system. Figure 2.5 shows each step in the

15

Figure 2.4: The Klocwork desktop GUI running on an example project [3].

relational analysis toolchain. Gray boxes represent files, blue boxes represent programs,
and the single green box represents additional programs that could be amended to the
toolchain that are able to read and write factbases generated through the “fact extraction”
step.

The basic idea of this toolchain is to generate a queryable model that represents some
software artifact. These models are created automatically by feeding software artifact into
a custom, human-defined analyzer called a fact extractor. The models generated by
fact extractors are a collection of facts about the software system that come together to
form a factbase. Facts can be any desired information about the software artifact; func-
tions, the relationship between a class and a functions, or variables all could be considered
facts. To represent these models, the toolchain uses a common, plain-text format known
as tuple-attribute (TA). When developing a fact extractor, the user should have it only
extract facts of interest; including too information means that the model is too detailed
for lightweight analysis. For instance, if a user is only interested in examining the function
calls of a program, the queryable model of that program’s source code should just include

16

the function call graph. By extracting just the information that is needed from the software
artifact, the resultant model’s complexity is reduced and queries executed on the model
will be faster. Once a model is created, the toolchain has two custom tools called Grok
and LSEdit that allow the user to query and visualize their custom model.

This toolchain is generic. It can be adapted to work with any software artifact and
can be extended so that tools other than Grok and LSEdit can read and write to these
models. As an example of this genericity, Java [37], C++ [38] and ELF object files [39] all
can currently be analyzed using this toolchain. In addition, with the TA encoding being
simple to read and write to, tools can be added that load in TA factbases and output
modified models or supplemental information.

Figure 2.5: The relational algebra toolchain.

The remainder of this section will discuss each portion of the toolchain in detail. Section
2.2.1 will discuss the concept of fact extraction. Section 2.2.2 will discuss the TA format
and the concept of factbases. Finally, Sections 2.2.3 and 2.2.4 will discuss two important
tools that operate on TA models; Grok and LSEdit respectively.

2.2.1 Fact Extractors

Fact extractors are custom, human-defined analyzers that automatically scan structured
software artifacts to pull out pertinent details to be included in a resultant factbase. Since
a fact extractor is tuned to pull out specific information about a particular type of artifact,

17

separate fact extractors have to be created for each programming language one wants to
target. Further, different fact extractors may need to be developed for the same language
depending on the queries one might want to ask. For instance, there might be one C++
fact extractor that only extracts the function call graph of a program whereas another
C++ extractor that might exist to extract all static variables.

While it may appear daunting to develop a fact extractor to target different software
artifacts and different query types, the hardest part of developing these extractors is deter-
mining the type of information one wants to extract and how that information should be
best exploited. Once this information is collected, fact extractors can be tuned to detect
and parse these facts from the underlying artifact. How fact extractors collect information
from software artifacts is extremely variable and depends on the type of artifact and the
type of information a user wants to collect. Extractors can use debug information from
compiled programs, the abstract syntax tree of parsed source code, or even information
from XML log files. Further, in the case of source code, there is no need to directly parse
the source files; object files or executables compiled from the source can be used.

Figure 2.6 illustrates an example fact extraction process. Here, a fact extractor is used
that gleans information from the AST of C++ source code to generate a factbase. This
program consists of a simple class called Square that represents square objects (shown
on left of Figure 2.6). This class can calculate the area of the square through a function
called getArea. When this code snippet is converted into an abstract syntax tree and then
processed by this example fact extractor, a resultant TA model is generated (shown on the
right). This model tracks C++ classes, functions, and variables as well as the relationships
that show which entities are “contained” in other entities and the flow of data between
variables. The next section describes the layout of these TA files and how data is presented.

2.2.2 Factbases & The Tuple-Attribute Language

Once extracted, facts are stored in factbases in a format known as tuple-attribute (TA).
First developed by Dr. Ric Holt in 1997, the TA language is a formal grammar designed
to describe directed graphs (digraphs) in a simplistic yet powerful format [40] because one
mental model that developers have of software systems tend to be a graph consisting of
a collection of sub-components connected by edges denoting their relationships. Graphs
encoded in the TA language can then be transformed through a series of relational operators
as defined by Tarski’s relational algebra [41]. These transformations produce new facts that
can answer questions about the underlying software system.

Factbases encoded in the TA language are written in plain text and are divided into two

18

Figure 2.6: The conversion of a C++ class to a TA factbase.

major sections; tuples and attributes. Tuples describe entities and relationships amongst
entities, and attributes describe the attributes for entities and relationships. Each of these
sections have two associated subsections; the scheme and facts. The scheme allows users
to define a schema for tuples and attributes and the fact section is where the tuple and
attribute instances are stored. Table 2.1 shows each section of a TA file along with its
purpose.

Section Name Section Header Description
Scheme Tuple Schema SCHEME TUPLE Describes the schema for

tuples.
Attribute Schema SCHEME ATTRIBUTE Describes the schema for

attributes.
Fact Tuple Facts FACT TUPLE This section stores facts

that describe the software
artifact.

Attribute Facts FACT ATTRIBUTE This section stores at-
tributes for already-defined
facts.

Table 2.1: The different sections of a TA file.

In a TA file, each of these four sections need to be declared using a special keyword
that is written before any element of that section is written. Figure 2.7 shows an empty

19

TA file with each of the four sections defined. The remainder of this section describes the
format of the tuples and attribute sections.

1 SCHEME TUPLE :
2 //The schema f o r t u p l e s .
3

4 SCHEME ATTRIBUTE :
5 //The schema f o r a t t r i b u t e s .
6

7 FACT TUPLE :
8 //The e n t i t i e s and r e l a t i o n s h i p s .
9

10 FACT ATTRIBUTE :
11 // Att r ibute s f o r e n t i t i e s and r e l a t i o n s h i p s .

Figure 2.7: An empty TA file with the sections defined.

Tuples

The tuple section of a TA factbase is where entities and the relationships amongst entities
are defined. Tuples follow the Rigi Standard Format (RSF) encoding where they are
triplets [42] of the form: Item1 Item2 Item3. Both entities and relationships are written
in this RSF format.

Entities are encoded in the form: $INSTANCE <Item Name> <Set Name>. The $INSTANCE
flag indicates that this triplet is an entity. The <Item Name> is the unique ID for that en-
tity. The ID must not contain special symbols like spaces or colons. Last, <Set Name> is
the name of the set that this entity belongs to. By grouping entities into sets, relational
queries can target specific groups of entities all at once. For instance, one could have a set
called Variables that groups all variables in a C++ program together.

Relationships are encoded in a similar fashion. They are written in the form: <Relationship Name>

<Item 1> <Item 2>. The <Relationship Name> is the type of the relationship that this
entry is part of. This is similar to the <Set Name> field for entities. The <Item 1> and
<Item 2> are the IDs for the source and destination entities.

Figure 2.8 shows an example of tuples encoded in a TA factbase. Here, there are six dif-
ferent entities and five different relationships. There are also three types of entities: class,
variable, and function. Also, each of these entities participate in some relationship. For
instance, classA contains aFunction.

20

Figure 2.8: An example of TA tuples for a generic C++ program.

Attributes

The attribute section describes attributes for previously defined entities and relations in
the TA model. Attributes are untyped key-value pairs which can either be unique for a
single entry or applied to the entire entity or relationship set [43]. There are two types of
attributes: single-value and multiple-value attributes. Attributes are important for storing
information that might not fit as an entity or relation. An example of this could be a
boolean flag that notes whether a variable is static or not.

Attributes are defined in the FACT ATTRIBUTE section for each entity or relationship.
Before attributes are written, the entity or relationship must be previously-defined in the
TA file. To define attributes on an entity, the entity ID is written first and to define
attributes on a relation, the entire relationship string is written surrounded in brackets.
Then, a list of attribute key and value pairs are written surrounded by curly braces. Single-
valued attributes take the form key = value and multiple-valued attributes take the form
key = (value1 value2 ...).

Figure 2.9 shows several example lines of the attribute section of the TA file. In it,
there are several entities and one relationship. With aFunction and bFunction there is
a label attribute and an isStatic attribute. For the xVariable entity, there is a multiple-
valued attribute for the lines that it is used in. The calls relation between aFunction and
bFunction has an attribute called numberOfCalls.

21

1 FACT ATTRIBUTE :
2 aFunction { l a b e l = c lassA : : aFunction i s S t a t i c = 1 }
3 bFunction { l a b e l = c las sB : : bFunction i s S t a t i c = 0 }
4 xVar iab le { l i n e sUsed = (5 10 15) }
5 (c a l l s aFunction bFunction) { numberOfCalls = 5 }

Figure 2.9: Examples of TA attributes.

2.2.3 Relational Query Engine - Grok

Grok is a relational algebra calculator that allows users to execute relational algebra queries
on TA factbases. With the Grok tool, a user loads in a TA factbase, executes relational
operations on the sets and relations in the factbase, and then adds new facts to the fact-
base [43]. Relational operations that can be performed include transitive closure, relational
selection, and composition1. Grok can be run interpretively through the command line or
can be invoked using scripts that execute certain relational commands and output the
results.

Grok was originally created as a program comprehension tool [43] to allow users to
write queries that would allow for relation lifting and edge induction to improve the com-
prehenison of large software systems. Since then, the use of Grok has expanded to other
things such as clone detecton in source code [44].

In addition to Grok, a Java-based version called jGrok was developed in 2006 [45]. While
jGrok has a similar syntax to Grok and supports the same operations, there are some subtle
differences. The benefit of jGrok is that it supports several additional operations such as
better math and file operations. However, one drawback is that jGrok is slower compared
to Grok due to fewer performance optimizations and because it runs in the JVM.

2.2.4 Model Visualizer - LSEdit

The Landscape Editor (LSEdit) is a tool that operates on TA factbases to visualize, ma-
nipulate, and clustering of digraphs [46]. The initial purpose of LSEdit was to provide
a means to easily visualize architectural models of large software systems by using the
semantics from TA models to perform node clustering through hierarchies. Figure 2.10
shows an example of LSEdit visualizing an example model. Here, entities are shown as

1Other Grok operations and syntax can be found at http://www.swag.uwaterloo.ca/grok/grokdoc/
index.html

22

http://www.swag.uwaterloo.ca/grok/grokdoc/index.html
http://www.swag.uwaterloo.ca/grok/grokdoc/index.html

coloured boxes and relationships are shown as lines between the boxes. In this particular
visualization, relationships amongst C++ classes (green) in the ClangEx fact extractor
project are shown.

Figure 2.10: LSEdit visualizing the ClangEx fact extractor project.

To support complex visualizations, LSEdit makes use of the scheme and attribute
sections of TA factbases. LSEdit uses “special” attributes defined on nodes that tell LSEdit
how to format them. Node colours, display names, and appearance can all be modified by
setting specific attributes for each node type. Further, by default, LSEdit obtains hierarchy
information by looking for a contain relation in the TA file. Children nodes “contain”ed
inside parent nodes will be displayed as a hierarchy in the resulting visualization. This
hierarchy relation can be set to be any relation in the TA file.

2.3 Robot Operating System (ROS)

The Robot Operating System (ROS) is a popular, programming framework that is designed
to assist programmers with developing robotic applications. This framework is used in nu-
merous autonomous robotic applications including the Autonomoose self-driving platform.
It is important to understand how ROS works since the Autonomoose project is used in a
case study in Chapter 5 to evaluate the effectiveness of the relational algebra toolchain in
hotspot detection.

23

Essentially, ROS is a collection of C++ libraries that provide several services for robotic
developers. Although ROS is named as an operating system, it is not an operating system in
the traditional sense. Rather, ROS provides services that assist programmers in developing
robotic systems that run on heterogeneous computing clusters. These services include
hardware abstraction, interprocess communication, and package management [47]. ROS
is fairly common in the robotics industry and there are numerous hardware systems that
support ROS. For instance, iRobot, the maker of the popular Roomba autonomous vacuum,
sells a modified, hackable version the vacuum that is designed to run ROS [48].

The remainder of this section will describe the communication framework of ROS. While
ROS has other services, Autonomoose makes heavy use of the communication framework.
Understanding ROS’ communication framework is important to understand the hotspots
described in Chapter 4 and the case study described in Chapter 5.

2.3.1 Communication Framework

Robotic systems tend to consist of multiple electronic control units (ECU) distributed
across the robotic chassis. These ECUs need to be able to send messages between each
other to carry out actions. To carry out message-passing, ROS uses an event-driven,
publisher-subscriber architecture where components can publish and subscribe to a named
topic. When a component wants to send data about particular information, it publishes
that data to some relevant topic. Then, any node which is subscribed to that topic will
receive the data. There can be zero to many publishers and zero to many subscribers for
each topic. Additionally, publishers and subscribers are independent; they are unaware of
other publishers or subscribers connected to their topic. Figure 2.11 shows an example
of two ROS components communicating with each other using this publisher-subscriber
system. In this figure, note that Component 1 and Component 2 both have publishers
that publish to the same topic.

While Figure 2.11 shows topics as an intermediate buffer that exists outside of each
component, topics are simply named buses in which messages flow [47]. ROS simply facil-
itates sending a message from a component’s outgoing buffer to all subscriber’s incoming
buffers. When topics are created, users specify the type of data that passes through that
topic. These datatypes can be primitive types such as int or double or more complex
types like RADAR data or LiDAR pointclouds. Because message data is not buffered in
queues outside of components, each publisher or subscriber that connects to a topic bus
needs to specify an outgoing message queue size (for publishers) or an incoming message
queue size (for subscribers). If message queues fill up, the ROS framework specifies that

24

Figure 2.11: An example of the publisher-subscriber paradigm in ROS with two compo-
nents.

old messages will be dropped. Message queues can also be infinite; however, this could
cause an error condition where publishers flood a subscriber with messages causing it to
crash.

25

Chapter 3

Fact Extractors

As described in Section 2.2, before the relational algebra toolchain can be used to detect
hotspots in a software project, a factbase representing that project needs to be created
by running the source code through a fact extractor. For the toolchain to be effective,
fact extractors need to be developed that can generate high quality, accurate models that
contain just the right amount of information that allow for the detection of hotspots. Fact
extractors operate by automatically discerning information about a software artifact based
on a predefined schema that describes the type of entities, relationships, and attributes it
extracts.

For this thesis, I developed two different fact extractors; ClangEx and Rex. Both
extractors were developed to extract enough information from C and C++ source code
to perform feature interaction hotspot detection in software systems. While these two
extractors are both capable of detecting feature interaction hotspots and target the same
programming languages, the type of information they extract and the models they generate
are different. Each extractor is designed to effective for different types of situations.

While I developed ClangEx and Rex, numerous other extractors have been developed
through previous research. Further, since the relational analysis toolchain was initially
developed to help programmers understand a software system, many extractors developed
in previous work aim to support this task [49]. Three notable extractors developed prior
to this thesis are bfx64, ASX and CPPX; all extract C and C++ code and were used as
an initial starting point for work on the ClangEx and Rex extractors.

CPPX Created by Ric Holt, Tom Dean, and Andrew Malton, CPPX is the first C++
fact extractor developed [38]. It utilizes a modified version of the GNU compiler (gcc)

26

to gain access to the abstract syntax tree (AST) and, from it, obtain information about
the underlying source code. CPPX was crucial in the development of ClangEx and Rex
as it tackled numerous issues that come with analyzing C++ source code. This includes
issues such as resolving header declarations with source definitions. While I used some
of CPPX’s solutions, ClangEx and Rex use the Clang compiler rather than gcc to gain
access to the AST. Using Clang allowed for easier AST access and well-defined API calls
to gather source code information.

ASX Created by Ian Davis, ASX is a fact extractor that targets C, C++, and assembler
code1 [50]. By reverse engineering debugging information, ASX is able to gather informa-
tion about functions, variables, classes, and item usage. While ASX is useful for assisting
developers with program comphrehension, it has also been used in other research to detect
and eliminate dead functions in a software project [51]. ASX was important in developing
ClangEx as I used it as a “sanity” check to compare results between it and ClangEx. ASX
and ClangEx models of example code were compared ensure output was comparable2. Fur-
ther, the ASX schema for TA files was used as a starting point to decide upon the entities
to include in the ClangEx model.

bfx64 I developed this extractor while conducting my initial research into the relational
algebra toolchain for use in hotspot detection. This extractor is based on the original
BFX extractor developed by Jingwei Wu [45] and targets ELF object files. While bfx64
is capable of targeting C and C++ code, the models generated were not precise enough
for feature interaction hotspot detection. Since bfx64 is unable to generate these types
of models, work was started on ClangEx and Rex. However, algorithms from bfx64 were
reused in ClangEx and Rex such as the digraph to TA conversion algorithm.

Table 3.1 compares the bfx64, ClangEx, and Rex extractor. The Language(s) column
indicates the source programming language each extractor targets. The Compilation Level
column indicates how each extractor obtains information about the source code. For in-
stance, bfx64 obtains its information to generate its models by deconstructing object files.
Finally, the Purpose column indicates the specific purpose of each extractor.

The remainder of this chapter introduces the ClangEx extractor in Section 3.1 and the
Rex extractor in Section 3.2. For each extractor I present the motivation behind its devel-

1To operate, ASX utilizes version 5 of the DWARF debugging format standard. Programs compiled
with future versions of the DWARF standard may not be compatible.

2Differences in entity naming did exist since ASX and ClangEx have different naming schemes.

27

Comparison of Fact Extractors
Name Language(s) Compiltation

Level
Purpose

bfx64 C, C++ ELF Object Files For analyzing projects where source
code is not available. This in-
cludes third-party supplier code that
is non-obfuscated.

ClangEx C, C++ Abstract Syntax
Tree

General C and C++ fact extractor
that can be extended. Captures ba-
sic C and C++ language informa-
tion in source code passed to it.

Rex C, C++ Abstract Syntax
Tree

For analyzing ROS-based projects to
detect messages sent between com-
ponents. Also captures flow of data
between functions and components.

Table 3.1: A comparison of several publically available fact extractors.

opment, its tuple-attribute schema, and its internals. Further, each section discusses the
benefits and drawbacks of using the extractor. While not a part of this chapter, Appendix
A provides installation and usage instructions for the bfx64 extractor and Appendix B
provides installation and usage instructions for the ClangEx and Rex extractors.

3.1 ClangEx

ClangEx (Clang Extractor) is a C and C++ extractor that uses the Clang open-source
compiler to generate a model of a software project by parsing the underlying source code.
Unlike bfx64, which targets object files produced from compilation, ClangEx analyzes
abstract syntax tree (AST) fragments created during the compilation of C and C++ source
code. The reason ClangEx uses the Clang compiler for analysis is that Clang has an
extensive API and allows ClangEx to operate on the C/C++ AST. By having access to
the AST, ClangEx is able to obtain a large amount of information about the source code
it is analyzing. This extractor was developed with no particular goal in mind; it serves as
a simple generic fact extractor that can extract information about C and C++ language
features like classes, functions, and variables. By remaining generic, ClangEx serves as a
model extractor that can be easily be extended to achieve specific goals. For instance, the

28

Rex extractor (discussed in Section 3.2) is a modified version of ClangEx that can detect
ROS messages between components.

Due to the idiosyncrasies of processing C and C++, ClangEx has two main analysis
modes: (i) regular mode; and (ii) full-analysis mode. The purpose of these two modes
is to utilize two different source code processing methodologies. While both modes use
the schema shown in Figure 3.1, models generated can be drastically different from one
another due to how these modes deal with header files. Regular mode examines all features
inside a C or C++ source file and ignores header files. This ensures that any unnecessary
declarations contained in header files not directly related to the source file are not included
in the model. Opposite to this, full-analysis mode looks at all language features inside
the source file and drills down into the contents of all included header files (excluding
system header files). This produces a “blob-like” model since code fragments from other
source file’s headers will be included in the model even if those source files are not directly
selected for analysis. The preferred processing mode used depends on the types of queries
one wants answered and the number of files being processed. For instance, if a user is
analyzing the whole project, full-analysis mode is recommended since the extractor will
encounter all definitions for all header file declarations. Further, if a function is declared
and defined inside a header file, regular mode will not include that function in the model
whereas full-analysis mode will.

3.1.1 ClangEx Metamodel

Figure 3.1 shows the metamodel that describes all models created using the ClangEx
extractor. This section presents terminology used and then describes each section of the
metamodel.

Terminology

Before the metamodel is described, some terminology used in the metamodel is presented.
First, the concept of a language feature is introduced. Language features are code fragments
that are specific to a particular programming language. As described in Section 2, when
building a fact extractor, users need to decide on the language features they want to extract.
These language features are highly dependent on the language. For instance, they could be
try statements, variable declarations, or statements. TA models produced using a fact
extractor will record instances of language features detected in source files. There could
be zero or many instances of a particular language feature in a source file. These instances
are commonly known as entities in the TA file.

29

How the extractor records an instance of the language feature depends on the type of
language feature being recorded. These instances can be recorded as nodes, relationships,
or attributes in the resultant TA file. Whether certain language features are recorded as
nodes, relationships, or attributes depends on the type of language feature and how the
metamodel is designed. For instance, variables are recorded as a node while statements
like varA = varB are recorded as relationships.

Metamodel Elements

At its core, the ClangEx metamodel describes two different classes of nodes. First, it
records nodes that come from language features specific to the C and C++ programming
languages. For the language feature class, there are specific nodes that are recorded includ-
ing variables, functions, enums, structs, and unions. Each language feature instance
detected in source code is recorded as a node in the TA factbase, has various relationships
that it partakes in, and also has numerous attributes that are specific for that type of
language feature. For instance, a function node has attributes that describe whether it
is static, volatile or variadic and a variable node has attributes that describe its scope.
Each union and struct has an attribute called isAnonymous that indicates whether the
declaration is anonymous or not. Overall, most nodes pertaining to some language features
will have several attributes that describe that instance. In Figure 3.1, attributes recorded
for each node type are written underneath the name of that node. One attribute common
to all node types that describe a language feature is the filename attribute. This attribute
describes the files that node is declared or defined in. If a function is declared inside one
header file and defined inside a source file, the filename attribute will store both filenames.

ClangEx also stores information about the relationships that each of these language
node types partake in. Overall, there are several main relationship types: contain,
references, inherits, and calls. A contain relation is used whenever ClangEx wants
to indicate that an entity is contained inside another entity. For instance, a class can
contain functions or variables. This relationship is many-to-one meaning that a node
being contained inside some container node cannot also be inside any other containers. A
reference relation indicates when some entity refers to another entity. For instance, a
function may refer to a variable or field. Overall, this relationship is a “catch-all”
for interactions that occur between entities. The inherits relation is used whenever a
class inherits from another class. Lastly, the calls relation is explicitly reserved for
representing function calls. This relationship forms the call graph for the project that the
model represents.

In addition to nodes that describe instances of C or C++ language features, models

30

F
ig

u
re

3.
1:

T
h
e

C
la

n
gE

x
m

et
am

o
d
el

.
B

la
ck

cl
as

se
s

ar
e

C
/C

+
+

la
n
gu

ag
e

fe
at

u
re

s.

31

produced using ClangEx also contain nodes that describe files and directories. Essentially,
a directory node is a single TA fact that represents a single directory in a file system and
can possibly be contained inside other directories (via the contain) relation. File nodes
represent files in a file system and can be contained inside directories. File nodes are
facts that either represent source or header files. This structure mirrors the file/directory
structure maintained by the operating system. ClangEx does not use the contains relation
to link files and C/C++ language features together. Rather, for each C and C++ language
feature node (struct, class, etc.), there is one or more special fContain (file contains)
relations that point from some file node to that C/C++ node. The reason the contains

relation cannot be used is because a node can only be “contained” inside one container at
a time. Since C or C++ language features may be declared in one file and defined inside
another, the fContain relation is used instead.

3.1.2 Advantages of the ClangEx Extractor

While other C and C++ extractors exist, ClangEx is unique for several reasons. First,
by having access to the Clang API, ClangEx is able to obtain detailed information about
source code as parsed. This gives ClangEx the ability to generate detailed models of
source code easily. Further, because Clang has an open-source API, additional detection
functionality can be integrated into ClangEx easily.

Since ClangEx obtains information from the AST of a source file, ClangEx does not
require a project to be linkable or even fully compilable. In projects with errors, Clang
will still generate a partial AST that can be read by ClangEx. This means that a user can
analyze a subset of the project. An advantage of not requiring the project to be linkable
is that if libraries a project requires are not present, ClangEx can still generate a detailed
model of that project. The extractor performs its own manual linking process to connect
equivalent references from separate compilation units. If a reference cannot be resolved by
the end of the extraction process, it is determined that the reference is not part of a file
that was passed to ClangEx. As a result, ClangEx simply deletes any relationship that
uses that reference from the graph.

3.1.3 Disadvantages of the ClangEx Extractor

ClangEx also has several disadvantages and situations where it is not useful. A major
disadvantage is that ClangEx is bound to the Clang compiler. While this may not appear
to be an issue, Clang is not able to compile all C/C++ programs out of the box. While

32

Clang is adherent to ISO standard C and C++ and supports up to C11 and C++14 [52],
it is unable to process non-standard C or C++ code. For instance, the gcc compiler has a
collection of “gcc-isms” that are not part of standard C but are supported by gcc [53]. The
implications of this is that any projects that take advantage of the “gcc-isms” cannot be
analyzed by ClangEx; the Linux kernel is one such project that suffers from this problem.
One such gcc-ism used heavily in the Linux 3 kernel that Clang cannot process are asm

goto statements.

Second, ClangEx does not incorporate into existing build workflows very well. To pass
compiler arguments to Clang, ClangEx utilizes a Clang compilation database to determine
the compiler flags for each file. These databases are JSON databases that contain each
source file for a project as well as all compilation flags required to build each file. The
reason for the use of these databases in ClangEx is because ClangEx is not a standalone
compiler and cannot be used as a replacement to Clang. Instead, ClangEx has its own
frontend that allows it to interface with Clang. Although build workflows that use CMake
can easily generate compilation databases through the COMPILE COMMANDS CMake flag,
workflows that use make need to use external tools (such as the Bear tool3) to generate
these databases. As such, it may take some effort to analyze a large-scale project with
ClangEx since developers will need to compile their whole project once to generate a
compilation database prior to using ClangEx.

3.1.4 ClangEx Internals

As previously discussed, ClangEx makes heavy use of the Clang API to gather AST in-
formation from a collection of source code files. As a result, ClangEx does not parse or
traverse the AST; this is handled by Clang. Only when Clang encounters a C or C++
language feature that ClangEx finds desirable does Clang pass over control of the AST to
ClangEx. To do this, Clang invokes a specific ClangEx function and passes over an AST
node object that represents the AST node ClangEx finds desirable.

ClangEx is divided into three major sections that are responsible for generating a TA
model from source code. These are: (i) the Driver module that carries out command-line
operations and activates Clang; (ii) AST Walker modules that carry out logic to process
desired sections of the AST; and (iii) the Graph module that maintains an in-memory
graph of the source code being analyzed. Figure 3.2 shows how each module operates
while a C or C++ source file is processed. From a high-level perspective, the Driver
module takes commands from the user and starts the user’s desired AST walker. The

3Bear (Build EAR) can be found at: https://github.com/rizsotto/Bear

33

https://github.com/rizsotto/Bear

Figure 3.2: The modules and the order of their use in ClangEx.

34

user is able to select either regular mode or full-analysis mode. Regular mode ignores
any included header files whereas full-analysis mode processes all non-system header files.
Once complete, the Driver sets up the selected Walker and starts Clang which parses the
source code and generates the AST. Each time Clang encounters a portion of the AST that
matches some characteristic deemed “desirable” by ClangEx, Clang pauses its source code
parsing and hands control over to ClangEx. Then, ClangEx parses the C/C++ declaration
or statement, creates a node or edge that describes that item, and adds it to an in-memory
digraph through the Graph module. Once Clang finishes parsing all specified source files,
ClangEx attempts to resolve any undefined or unknown references contained in the in-
memory digraph. This resolution process happens only when all source files have been
parsed. If a reference still cannot be resolved after this step, that reference is deleted from
the pool of undefined references and not included in the final digraph. The reason a pool of
unresolved references is retained is because if one source file is analyzed before another, any
references to items in source files not yet processed will not yet exist in the graph. Since
the source files can be processed in any order, references added to this pool are retained
until the final reference resolution phase.

ClangEx does not have much control in the way the source file is analyzed. Rather, most
of the time when ClangEx is operating, it is running Clang-specific code that generates
and processes the AST. Only when Clang finds a “match” on a particular portion of the
AST does the AST Walker module process that item and add it to the graph.

The remainder of this section will discuss both AST Walker modules and the Graph
module in detail. The Driver module will not be covered here as it simply takes in command
line arguments and invokes Clang. For commands and how to use ClangEx, see Appendix
B.

AST Walker Modules

An AST Walker is a component which “walks” through the AST as it is being processed and
runs specific code when specific language elements are encountered. While AST Walkers
vary in behaviour, all AST Walkers have two specific elements; a section where AST
matchers are defined and a function called run that is invoked whenever a specific language
element is encountered. AST matchers are special statements that are defined prior to the
AST Walker being run that tell Clang which portions of the AST that ClangEx is interested
in. AST matchers are used in ClangEx because it allows Walkers to be able to toggle on
and off different language features at a user’s request. If a user does not want to extract
details about a certain feature (such as enums or classes), ClangEx will not activate that

35

matcher. If that happens, Clang will not call ClangEx even if that specific AST fragment
is encountered.

In the case of ClangEx, there are two different AST Walkers a user can select that each
correspond to a different type of analysis mode; regular and full-analysis. Each of these
two Walkers have their own set of AST matchers and their own specialized code which
runs when a match is found. In both AST Walkers, the specialized code converts an AST
element into a node or relationship that is then added to the digraph maintained by the
Graph module.

AST Matchers
Full-Analysis Mode Regular Mode

Classes Matches any class declaration state-
ment. class A would be detected.

Does not directly look for classes.
Finds the class that each function or
variable belongs to.

Functions Matches both function declarations
and definitions.

Only functions defined inside the
source file will be included. If a func-
tion is declared and defined inside a
header file it won’t be found.

Variables Finds all variables and fields as well
as their usage.

Finds all variables. Fields that are
used will be detected.

Enums All enums and enum constants will
be detected.

If an enum or enum constant is used
inside the source file, all associated
enum constants will be included.

Structs All structs and fields inside the
struct will be detected. Anonymous
structs apply.

If a struct is used inside the source
file, all entries inside the struct will
be included.

Unions All unions and fields inside the union
will be detected.

If a union is used inside the source
file, all entries inside the union will
be included.

Table 3.2: Language features supported by ClangEx.

Table 3.2 highlights the differences between the regular and full-analysis AST Walker
for each language feature that ClangEx supports. Essentially, the major difference between
the regular and full-analysis AST Walker is that the full-analysis Walker processes code
fragments contained inside all header files included in the source file4.

4System header files are not processed since processing all code fragments inside all system headers
would generate models that contain far too much irrelevant information.

36

The reason ClangEx has these two processing modes is due to how header and source
files are used in C and C++. When compiling a project, a user specifies the source files
they want compiled. From there, the preprocessor includes all header file code included at
the top of the source file before generating the AST. Most of these included header files
either come from system files or declare code that is defined in other source files. This
information does not need to be processed by ClangEx for the current source file since it
does not relate. The problem here is that ClangEx has no way of knowing which header
files describe elements inside the current source file. Even if ClangEx tried to overcome
this issue by only processing the header file with the same name as the current source file,
there is the possibility that a user broke convention and named the header file differently.
As such, either all header files need to be processed (full-analysis mode) or none do (regular
mode).

Figure 3.3 shows a portion of the AST matcher code from the full-analysis AST Walker
which tells Clang which AST fragments to match on. This figure is showing several AST
matchers that match on functions and classes. These matchers detect when portions of
the AST match exactly to the statement described by the matcher. As an example, take
line 8 in Figure 3.3. This matcher detects a C or C++ call expressions: it binds a variable
to be the call-expression AST object and another variable to be the AST function object
that indicates the function where the call originated.

When Clang detects that an AST matcher has been triggered, it invokes AST Walker
code that adds associated nodes or edges to the digraph contained in the Graph module.
While this may appear to be a straightforward task, there are several things that the
Walker module has to do prior to adding a graph item. First, it has to generate a unique
and linkable ID for the item. This ID has to be the same regardless of where this item was
encountered so that it can be linked across compilation units. For edges, the ID simply
consists of the source node ID combined with the destination node ID. While developing
a unique node ID is not as difficult in C, this can be extremely complicated in C++ due
to function overloading. To generate an ID, the Walker gets the locally declared name
(not the fully qualified name). If it is a function, ClangEx augments the local name
with (i) the function’s return type as a prefix and (ii) the types of all the parameters in
order of declaration as a suffix. Then, ClangEx gets the next ancestor AST node that
is a declaration. It performs the same steps to get the ID of that declaration and then
prepends it to the front of the initial ID that ClangEx is trying to generate. This process
continues until the top of the AST has been reached. Although C has no concept of fully
qualified names or function overloading, ClangEx generates IDs for both languages in this
manner. Figure 3.4 shows how an ID is generated for a local variable inside a function.
Here, ClangEx generating an ID for the testVar local variable. Although local variables

37

1 void BlobWalker : : generateASTMatches (MatchFinder ∗ f i n d e r) {
2 // Function methods .
3 i f (! e x c l u s i o n s . cFunction) {
4 // Finds func t i on d e c l a r a t i o n s f o r cur rent C/C++ f i l e .
5 f i nde r−>addMatcher (func t i onDec l (i s D e f i n i t i o n ()) . bind (types [FUNC DEC

]) , t h i s) ;
6

7 // Finds func t i on c a l l s from one func t i on to another .
8 f i nde r−>addMatcher (ca l lExpr (hasAncestor (func t i onDec l () . bind (types [

FUNC CALLER]))) . bind (types [FUNC CALLEE]) ,
9 t h i s) ;

10 }
11

12 // Class methods .
13 i f (! e x c l u s i o n s . cClas s) {
14 // Finds c l a s s d e c l a r a t i o n s .
15 f i nde r−>addMatcher (cxxRecordDecl (i s C l a s s ()) . bind (types [CLASS DEC]) ,

t h i s) ;
16 }
17 }

Figure 3.3: Example matchers for the full-analysis AST Walker module.

do not have qualified names, this keeps the testVar node ID unique.

In addition to generating an ID, the Walker must generate attributes for an item as
described by the ClangEx metamodel. To do this, each declaration or statement object has
a set of functions, as per the Clang API, that allows ClangEx to gather information about
it. This includes its visibility, line number, and the filenames to which it belongs. This
filenames attribute is appended to each time the same AST node is encountered inside a
new header or source file. Once all of this information is collected, ClangEx adds the node
or edge to the graph using the Graph module.

Once Clang terminates, the Driver module notifies the Walker module that it needs
to resolve any undefined references. In the context of ClangEx, undefined references are
stored in an unordered list called the edge list. Each entry in the edge list consists of a
source node ID, destination node ID, and an edge type. These references describe edges
that could not be added because one of the two nodes did not exist when the edge was
originally supposed to be added. During this phase, ClangEx iterates through each entry
in the edge list and checks the Graph module to see if both node IDs now exist. If they
do, ClangEx creates adds a new edge that corresponds to the information in the edge list
and adds it to the digraph. If not, that undefined edge list entry is removed from the list

38

Figure 3.4: An example of ClangEx ID generation for the testVar variable.

and the graph remains unchanged.

Figure 3.5 gives an example of the edge list being used to resolve undefined references.
Starting with an initial graph that contains several function and variable nodes and a single
references relation, ClangEx would process the edge list shown in Figure 3.5 and add any
relations where the source and destination exist. Here, two edge list entries could be
resolved and one could not because the functionB function does not exist in the digraph.

Graph Module

The Graph module maintains a digraph of all encountered nodes and edges while ClangEx
is running. This digraph uses ClangNodes, each of which describe some C or C++
language feature, a directory, or a file; and uses ClangEdges, each of which represents a
relationship between ClangNodes. Both ClangNodes and ClangEdges have an ID, label,
and type that describe them.

The Graph module stores pointers to nodes and edges in hash maps: nodes are stored
with unique IDs as the hash; and edges are stored in two different hash maps, one with
source IDs as the hash and the other with the destination IDs being the hash. While this
means that the graph has a space complexity of Θ(V + E) (where V are the number of
vertices and E are the number of edges), looking up a node by ID has a time complexity
of Ω(1) (assuming no collisions) while looking up an edge by source or destination ID has
a worst-case time complexity of Ω(E). The graph module contains numerous getter and
setter functions that allow AST walkers to operate on the graph.

In addition to maintaining the graph, the Graph Module also is responsible for con-
verting the digraph into a TA model. Algorithm 1 shows the algorithm responsible for

39

Figure 3.5: An example of the edge list data structure.

40

carrying out this conversion. This algorithm starts with a set of nodes called N and a
set of edges called E. First, before the TA facts can be printed, a predefined schema
needs to be printed that the graph conforms to. This schema is hardcoded and does
not change between runs of the algorithm. Once the schema is printed, the algorithm
prints the nodes and then the edges. For each node in the node set N , a line is gen-
erated in the TA file of the following format: $INSTANCE <NODE ID> <NODE TYPE>. For
each edge in the edge set E, a line is generated in the TA file of the following format:
<EDGE TYPE> <SOURCE NODE ID> <DEST NODE ID>. Since forward declaration is not al-
lowed in TA, all nodes are declared in the TA file before all edges. Last, attributes
are then generated for each node and edge that contains at least one attribute. For
each node in N and each edge in E with attributes, the following is outputted to the
TA file: for nodes the line <NODE ID> { <ATTRIBUTE KEY> = <ATTRIBUTE VALUE> ...}
is printed and for edges the line (<EDGE TYPE> <SOURCE NODE ID> <DEST NODE ID>) {
<ATTRIBUTE KEY> = <ATTRIBUTE VALUE> ...} is printed. Once done, the outputted TA
file is equivalent to the in-memory digraph.

3.2 Rex

Rex (ROS Extractor) is a C and C++ extractor that is designed to capture ROS mes-
sages sent between components in a robotic system. Previously in Section 2.3, ROS is a
C++ framework that facilitates the easy communication of components by using a publish-
er/subscriber architecture. Rex is capable of extracting information about publishers,
subscribers, topics, and the messages sent between components. To carry out its anal-
ysis, Rex is a modified version of ClangEx; it uses the Clang API to gain access to the
AST of a source file as it is being parsed. Many of the internals of Rex and ClangEx are
extremely similar which highlights the simplicity of extending ClangEx.

Rex has two analysis modes: (i) full-analysis mode and (ii) simple-analysis mode ,
both of which analyze all source and header files similar to ClangEx’s full-analysis mode.
Rex’s simple-analysis mode extracts information that pertains to ROS communications
and the components that take part in these communications. This includes information
about classes and the ROS publishers, subscribers, and topics contained inside
them. Full-analysis mode builds upon simple-analysis mode by extracting information
about ROS publishers, subscribers, and topics as well as information about basic
C++ language features such as classes, variables, and functions. The choice of mode
depends on the queries one might want to ask of the system. For instance, if one only wants
to follow the dataflow between components, simple-analysis mode would be sufficient.

41

Algorithm 1 Tuple-Attribute Model Generation from Digraph

1: procedure writeTAModel(N,E)
2: model← SCHEMA
3:

4: model← “FACT TUPLE :”
5: for ∀ nodes in N do
6: model← “$INSTANCE” + “ ” + nodeID + “ ” + nodeType

7: for ∀ edges in E do
8: model← edgeType + “ ” + srcNodeID + “ ” + dstNodeId

9:

10: model← “FACT ATTRIBUTE :”
11: for ∀ nodes in N do
12: model← nodeID + “{”
13: for ∀ attributes in Node do
14: model← attributeKey + “=” + attributeValue

15: model← }
16:

17: for ∀ edges in E do
18: model← edgeType + “ ” + srcNodeID + “ ” + dstNodeId + “{”
19: for ∀ attributes in Edge do
20: model← attributeKey + “=” + attributeValue

21: model← }
22:

23: Print model

42

3.2.1 Rex Metamodel

Figure 3.6 shows the metamodel that describes models created using full-analysis mode
of the Rex extractor. In this metamodel, there are two classes of nodes; C++ language
features and ROS features. The top level node type in Rex models is the component item.
Components are sub-projects inside a main ROS project that separate the project into
individual compilable units. The compContains relation connects components with any
class located inside that component.

The class item is the next level of the model. Since this is where specific C++ lan-
guage features and ROS elements might be defined, class nodes might contain functions,
variables or ROS components such as publishers and subscribers.

The function node describes functions declared and defined in C++ source code.
These functions have several C++-related attributes such as isStatic, isVolatile, and is-
Variadic. Further, functions also have a boolean flag called isCallbackFunc that indicates
whether that function is a callback function for when a ROS subscriber receives data from
a topic. Lastly, functions form a relationship with each other that indicates the functions
that call other functions.

The variable node describes local variables or class fields. These nodes have several
different attributes such as isStatic, isPublisher, and isSubscriber. Additionally if a variable
is used in some sort of control structure, be it a loop or if statement, a flag called isCon-
trolFlow is set. Variables form relationships with several other entities in the metamodel.
First, they can be contained in classes (if they are fields) or functions (if they are local).
Next, if a function reads or writes to a variable, a relationship called reads or writes is
formed between the function and variable. Last, flow of data between variables can be
traced with the varWrites relation. If one variable writes its data into another variable, a
varWrites relation will be added.

The publisher and subscriber nodes are ROS features that describe when a class
communicates with some ROS topic. Publisher entities are created when an advertise

function call is made. This immediately creates a publisher entity and then forms an
advertise relationship between the publisher and topic. Then, whenever publish call is
made, a link is established between that publisher and the topic. Whenever a subscribe

call is encountered, a subscriber node is created and then a link is created between it an a
topic. In addition, if that subscriber uses a callback function, a link is created between it
and the callback function.

43

Figure 3.6: The Rex metamodel for full-analysis mode. Red classes are ROS features and
blue classes are C++ features.

44

3.2.2 Advantages of the Rex Extractor

Since Rex is based upon ClangEx, it shares many of ClangEx’s advantages including its
use of the Clang API and its ability to analyze a subset of a project.

The notable advantage of Rex is that it is able to capture messages sent between com-
ponents in a distributed software system. This allows users to write relational queries
that can detect interactions between the components in a distributed system. Further,
while Rex only targets ROS-based projects, insights that were gained from building Rex
could be used to explore the development of new extractors that target different messag-
ing frameworks. These new extractors could support messages sent between components
connected by a bus or a network connection (Ethernet or CAN). While developing these
new extractors requires much future work, solutions to challenges that were encountered
during the development of Rex could potentially be recycled during extractor development
for these platforms.

3.2.3 Disadvantages of the Rex Extractor

With Rex being built upon ClangEx, many of the disadvantages that exist in the ClangEx
extractor are also present in Rex. Issues including its being bound to the Clang com-
piler and requiring the use of compilation databases exist. In addition, Rex has several
disadvantages related to how it extracts ROS projects.

Rex has the potential of generating erroneous models due to static analysis limitations.
While it is also possible for ClangEx to generate incorrect facts, Rex suffers more from this
issue due to how ROS topics are created. Since Rex extracts ROS topics by looking at
function calls to the advertise and subscribe ROS library functions, Rex can be fooled
into adding incorrect topics or relationships into the final model. If one component creates
a topic by passing a string literal as the parameter for the name of the topic while another
component passes a string variable as the parameter for the name of the topic, Rex will see
that as two different topics being created even if the two strings are equivalent. As such,
before Rex can be run, a user has to check all the publisher and subscriber code to ensure
string literals are being used for the topic name parameter in advertise and subscribe

calls5.

5For more information on this, see Figure 6.1.

45

3.2.4 Rex Internals

The implementation of Rex is very similar in make-up to that of ClangEx. Rex uses Clang’s
LibTooling API and AST Walkers to analyz parsed C++ source code. The major difference
is that Rex uses Clang’s AST visitor API rather than AST matchers to gather information
about the source code. Whereas AST matchers would pass control over to Rex if a certain
AST situation was met, Clang’s AST visitor API allows for Rex to run code every time
an AST node encountered. Due to this, Rex programmatically uses its own checks to look
for particular situations such as calls to publish or subscribe to ROS topics. The reason
the AST visitor API was used is because there are many different types of code fragments
that could correspond to publishing or subscribing data to a topic. Further, since Clang
does not have AST matchers that find specific ROS code fragments (like advertise or
subscribe calls), using AST matchers would still require Rex to further narrow down
these matches to only select advertise and subscribe calls. AST matchers were used in
ClangEx since that extractor was just looking for simple C and C++ language features
and not the type of items declared or used inside statements.

Other than these differences, Rex uses similar modules to ClangEx in a similar manner.
Like ClangEx, there are three modules in use: (i) the Driver module that carries out
command line operations and activates Clang; (ii) AST Walker modules that carry out
how the AST is processed; and (iii) the Graph module that maintains an in-memory graph
of the source code being analyzed. Since Rex uses similar models to ClangEx, Figure 3.2
(from Section 3.1) shows how the modules in Rex interact.

Due to the similarity between Rex and ClangEx, instead of providing a detailed de-
scription of the modules in Rex, the remainder of this section will describe features in the
Walker and Graph modules that are unique to Rex. This includes ROS specific detectors
and an improved variable read/write detection system.

AST Walker Modules

The AST Walker module operates in a similar fashion to the ClangEx AST Walker module
with some major differences. Instead of using the AST matcher API to match certain
areas of the AST in a particular source file, Rex runs each time a high-level declaration
or statement is encountered. This means that Rex code executes whenever a function,
variable, or class declaration is encountered or any time a C++ statement is detected.
When Rex receives an AST node, it checks the node to ensure it has not been encountered
before. If it has not, the AST Walker module then will break down that AST node into a
declaration or statement of a specific type. For instance, declarations could be variables,

46

classes, or functions and statements could be a call expression, binary/unary expression,
or constructor call expression. For each of these subtypes, Rex has specific code that will
run to adds corresponding nodes and edges to the digraph in the Graph module. For
example, detecting a call expression statement between two functions would add a calls

relation to the digraph where the source node is the caller function and the destination
node is the callee function.

In addition to these changes, the Rex AST Walker has some special features for it to
generate a model for detecting feature interaction hotspots. These include recording facts
about publishers, subscribers, and variable reads and writes. The difficulty here is
that, unlike C and C++ language features, Clang does not have built-in detectors that are
capable of finding these ROS components. As such, the AST Walker has custom publisher

and subscriber detectors. These detectors look in several different areas of the AST based
on how the ROS communication API is used. Publisher and subscriber nodes are created
by looking for function calls originating from a NodeHandle object. If a ros::subscribe

or ros::advertise call is encountered, Rex creates an associated subscriber or publisher
node. Additionally, since these function calls create a publisher or subscriber objects, Rex
has to remember the last publisher or subscriber created and then look for the variable
that is going to store that publisher or subscriber object.

Creating topic nodes is a little more complicated since topics are not created through
their own function calls. When a publisher or subscriber is created, one of the parameters
is a string that is used to name the topic that publisher or subscriber points to. Therefore,
when Rex detects a function call that creates a publisher and subscriber, Rex examines the
parameters to look for the parameter value that names the topic. It then creates a topic
node in the graph with the name of the variable or value of string literal obtained from the
advertise/subscribe function call. Unfortunately, this presents a problem. Since Rex relies
on the value of a parameter to create a topic node, the type passed to that parameter
is important. If a variable is passed, Rex cannot resolve the value of that variable due
to static analysis limitations. Instead, Rex will just use the variable name. That means
that if the variable names containing the topic name given to two separate advertise calls
re different between components (even if the topic name contained in that variable is the
same), Rex will create two different topic nodes for the same topic.

The AST walker also has a variable read/write detection system that is used to deter-
mine whether a function reads or writes to a variable. This system is useful as it allows
users to write Grok queries that can trace the flow of data between components. For in-
stance, a user could write a Grok query that determines all the variables that a ROS topic
modifies. Algorithm 2 shows the general algorithm that detects variable accesses from
a C or C++ statement. The algorithm shown here is a scaled down version of the one

47

that is in Rex and is just for illustration. Since expressions can be composed of numerous
sub-expressions, this algorithm starts at a top level expression and breaks the expression
into each sub-expression recursively.

The algorithm is invoked by passing in a target expression, empty hash map where
the keys are variables and values are access types (either Read, Write, or Both), and an
upper access type (which when invoked should be null). Then, since an expression ei-
ther is binary, unary, or a variable6, the algorithm then checks what type of expression
the target expression is. If the expression is binary (meaning that the expression has a
left-hand and right-hand side and a central operator), the algorithm gets the left and right
sub-expressions as well as the central operator. Once done, it uses two functions called
getReadOrWriteForLHS and getReadOrWriteForRHS which get whether the LHS and RHS
are being read or written to based on the upper access type and the central operator in
the binary expression. Then, for both the LHS and RHS, if the subexpression is a vari-
able, it simply adds that variable and the access type to the varMap hash map. If the
subexpression is another binary or unary expression, the algorithm calls itself with the
LHS or RHS subexpression, the current varMap and the current access type contained in-
side currentV al (to propagate it downwards). If the expression is a unary expression, the
algorithm just gets the operator of the unary expression and the base expression. Then, it
uses a function called getReadOrWriteForUnary to get the access type for that expression
based on the upperV al and current operator. Once the access type is determined, the
algorithm then checks if the subexpression is a variable or another expression. If its a vari-
able, it simply adds the access type contained within currentV al to the varMap for that
variable. If it’s an expression, the algorithm recursively calls itself with the subexpression,
varMap, and current access type contained in currentV al.

Figure 3.8 shows an example of the read/write detection algorithm in action. This
figure determines the variable access types contained inside the basic C++ expression
variable1 = (variable2+ = variable1). As per the AST, this expression is a binary
expression centered around the = sign with the left-hand side (LHS) being variable1 and
right-hand side being (variable2+ = variable1). According to Algorithm 2, the LHS is
written to and the RHS is read from. Then, Algorithm 2 is recursively called for both the
LHS and RHS of that expression. When Algorithm 2 is invoked on the LHS, it records
that in the parent expression the LHS side was written to and notes that the expression
variable1 is just a declaration reference expression. Since a declaration reference is a
reference to a variable, the algorithm records that variable1 was written to.

6This is extremely simplified to reduce the complexity of this algorithm. As per the C++ AST,
expressions could also be parenthesis expressions, block expressions, or others. This is addressed in the
full algorithm contained in Rex.

48

Algorithm 2 Basic Read/Write Detection Algorithm

1: procedure readWriteDetection(expr, varMap, upperV al)
2: if expr isa BinaryExpression then
3: operator← expr.getOperator()
4: lhsExpr← expr.getLHS()
5: rhsExpr← expr.getRHS()
6:

7: currentVal← getReadOrWriteForLHS(upperVal, operator)
8:

9: if lhsExpr isa DeclRef then
10: varMap.add(lhsExpr, currentVal)
11: return varMap
12: else
13: varMap← varMap + readWriteDetection(lhsExpr, varMap, currentVal)

14:

15: currentVal← getReadOrWriteForRHS(upperVal, operator)
16:

17: if rhsExpr isa DeclRef then
18: varMap.add(rhsExpr, currentVal)
19: return varMap
20: else
21: varMap← varMap + readWriteDetection(lhsExpr, varMap, currentVal)

22: return varMap
23: else if expr isa UnaryExpression then
24: operator← expr.getOperator()
25: baseExpr← expr.getBase()
26:

27: currentVal← getReadOrWriteUnary(upperVal, operator)
28: if baseExpr isa DeclRef then
29: varMap.add(baseExpr, currentVal)
30: return varMap
31: else
32: return readWriteDetection(baseExpr, varMap, currentVal)

49

Figure 3.7: A comparison of how graphs in ClangEx and Rex are stored.

On the RHS of variable1 = (variable2+ = variable1), the algorithm records that in the
parent expression, the RHS side was read from. Here, since (variable2+ = variable1) is
surrounded by parentheses, the algorithm strips away the parentheses and then notes that
this expression is binary centered around the + = operator with the LHS being variable2
and RHS being variable1. Since the + = compound operator is involved, the LHS is read
from and written to and the RHS is just read from. As such, algorithm 2, recursively
calls itself for the LHS and RHS passing down the variable access values (write and read
for the LHS and read for the RHS). Since both the LHS and RHS are just variables,
the algorithm records the access types for both variables. As such, for the expression
variable1 = (variable2+ = variable1), both variable1 and variable2 are found to be read
from and written to.

Graph Module

Rex’s Graph module is an improved version of the ClangEx Graph module. It maintains a
digraph that stores a collection of nodes and edges. Nodes are called RexNodes and can be
of several different types that reflect language and ROS features. Edges are called RexEdges

and have a source and destination RexNode that participate in the relationship. Edges
also have different types that symbolize different relationships that can occur between the
nodes. The names of the edge types follow the metamodel shown in Figure 3.6.

Compared to ClangEx, Rex manages digraphs slightly different. The major difference
is in how each deal with undefined references during edge creation. As previously stated,
when analyzing source code, some edges may be encountered prior to encountering the

50

declaration of source or destination nodes that edge describes. As a result, there needs to
be a way to create and describe these edges prior to the creation of the nodes. Instead of
having a list of undefined edges that has to be resolved at the end of the program run (like
in ClangEx), RexEdges just store the ID of the source and destination node instead of a
pointer to the RexNode. Then, before an edge is written out in TA format, it is checked
to ensure both the source and destination node exist. The advantage of this approach is
that multiple structures do not have to be used to keep track of these undefined references
and code complexity is reduced. Further, even though Rex has to check if the source and
destination nodes exist before outputting the edges, ClangEx also has to do this.

Figure 3.7 shows an example of how Rex edges and ClangEx edges are stored in memory.
For ClangEx, edges use pointers to refer to nodes that participate in relations. For Rex,
edges use strings to store unique IDs of nodes that participate in relations.

51

F
ig

u
re

3.
8:

A
n

ex
am

p
le

of
th

e
va

ri
ab

le
re

ad
/w

ri
te

d
et

ec
ti

on
al

go
ri

th
m

.

52

Chapter 4

Analysis of Automotive Software

As software continues to play an increasing role in the automotive domain, it is important
for developers to identify potential feature interactions. Due to its genericity and exten-
sibility, the relational algebra toolchain is a good fit for detecting these potential feature
interactions. The major difference between analyzing monolithic systems and automotive
systems using this toolchain is that automotive systems rely on message-passing for fea-
tures to communicate. As a result, a fact extractor and Grok scripts need to be developed
so that this message passing information is appropriately captured and analyzed.

This section describes how the relational algebra toolchain can be used to analyze au-
tomotive software to detect potential feature interactions. Section 4.1 presents the unique
characteristics of automotive software and highlights several inherent challenges to ana-
lyzing this software. Section 4.2 introduces several different classes of feature interactions
hotspots that might be present in automotive software.

4.1 Automotive Architecture

From a high-level, automotive software can be characterized as a collection of features that
each perform a specific task in the vehicle. The difference between automotive systems
and traditional monolithic systems is that automotive systems isolate and distribute these
features across numerous embedded electronic control units (ECUs). Each of these ECUs
might be responsible for a number of different features, are capable of receiving input from
sensors, and can act on vehicle actuators. An example of a common vehicle ECU is the
Electronic Control Braking Module (EBCM). The EBCM is responsible for implementing

53

the antilock braking (ABS) and electronic stability control (ESC) features [54]. To imple-
ment these two features, it needs to be able to take input from sensors and other ECUs and
apply the brakes in certain situations. The modern car has hundreds of such ECUs that
are each responsible for implementing countless other features that can affect consumer
safety [4]. The remainder of this section describes the method in which ECUs communi-
cate and then discusses why this architecture can be challenging to analyze statically.

4.1.1 CAN Bus Protocol

To communicate with each other, features rely on a centralized vehicle bus known as the
Controller Area Network (CAN). First introduced by Bosch in 1986, this bus is used in the
majority of modern automobiles due to its high-speed data rate, error detection features,
and data consistency for all nodes in the network [55]. Figure 4.1 shows how the CAN
bus protocol connects ECUs in an automotive system. The bus consists of two signal
lines called CANH and CANL which make up a 120Ω twisted pair wire. Nodes can be
connected in any order and consist of an ECU and transceiver that pushes data onto the
bus. This protocol dictates that communication be generic; there may or may not be a
master communication node and nodes can be added or removed during operation of the
system.

Figure 4.1: A CAN bus with two connected ECUs.

The CAN bus uses a broadcast protocol. Data sent from one node onto the bus is
“heard” by all other nodes. Although messages are global, nodes can decide which messages

54

they want to keep based on a flilter that is applied to each message [56]. Messages sent
over the bus could be processed by zero, one, or many other nodes.

Figure 4.2: An example where data is sent on the CAN bus.

Figure 4.2 shows an example of how data propagates across the CAN bus. In this figure,
CAN node 1 pushes data onto the bus. Since this protocol is global, CAN nodes 2 and
3 both receive the message and apply their filters on it. CAN node 3 keeps the message
since its filter accepts it while CAN node 2 discards the message since its filter rejects it.

4.1.2 Challenges with Analysis

Due to the unique architecture of automotive systems, there are several inherent challenges
that exist when analyzing this software statically. Since the goal of detecting hotspots is to
identify areas of potential feature interactions, it is imperative that models representing the
underlying software system need to be accurate and queries written to detect these hotspots
need to cover all possible ways that hotspot might present itself. Further, with automotive
software being safety-critical, this approach should attempt to reduce the number of false
negatives detected.

Importantly, feature interaction hotspots need to focus on the communications between
features rather than interactions at the function or variable level. As such, fact extrac-
tors that target automotive software must be able to accurately detect message-passing

55

information. The difficult of extracting this information varies depending on the commu-
nication architecture used; for the ROS framework this is easy since components publish
and subscribe to a named bus using a standardized one-line function call. For the CAN
bus architecture, detecting message-passing has the potential of being quite difficult since
CAN controller APIs are not standardized and differ in complexity. Building an extractor
that can handle the code designed for multiple CAN bus controllers would be impossible
unless it was known which controllers an automotive company used before the extractor
was built.

Luckily these problems can be resolved. While CAN controllers are not standardized,
developing a general-purpose automotive extractor might be possible through the AU-
TOSAR framework. This framework is partnership amongst all major automotive compa-
nies and aims to develop a common software framework for ECUs [58]. AUTOSAR divides
the software on the ECU into three different layers; the application, runtime, and service
layers. This division is beneficial as a fact extractor could be built to target “higher lev-
els” of the stack. This is especially important for extracting communication information;
AUTOSAR abstracts ECU communications as a full communication stack [59]. This stack
allows for developers to use high-level code segments to communicate with other ECUs
through simple function calls. This is similar to the publish and subscribe function calls
used in ROS systems. With this abstraction, a fact extractor could be built that only looks
at the application layer of an automotive system and detect communications of features.

4.2 Hotspots in Automotive Systems

There are three different classes of hotspots that might indicate potential feature inter-
actions in an automotive systems. These three hotspot classes are not exhaustive and
might vary depending on the communication architecture. As before, the goal of these
hotspots are to identify areas that should be investigated further using other tools. The
three hotspot categories are feature communication hotspots, multiple input hotspots, and
control flow hotspots. Figure 4.3 provides a breakdown of each of these three hotspot
classes. Each of these classes contain several different hotspots that each identify a specific
issue in the software project. Feature communication hotspots show the flow of informa-
tion amongst the features in the project. Multiple input hotspots identify communications
that flow from multiple features to a single feature and that could result in race conditions.
Lastly, control flow hotspots identify communications between features where the message
might affect the behaviour of the destination feature.

The remainder of this section introduces each class of hotspots and gives a definition

56

Figure 4.3: The breakdown of feature interaction hotspots.

of the hotspots that are part of each class. Section 4.2.1 describes feature communication
hotspots. Section 4.2.2 describes multiple input hotspots. Section 4.2.3 describes control
flow hotspots.

4.2.1 Feature Communication Hotspots

Feature communication hotspots highlight areas in the automotive software system where
one feature communicates with another. This includes direct and indirect communications
between a source and destination feature or loops in the communication graph. There
is inherent value in detecting these hotspots as they allow project stakeholders to gain a
better understanding of how the features in the system interact. Since automotive projects
tend to be spread across numerous teams [60], a developer might not know precisely which
other features their feature communicates with indirectly or might not be aware that their
feature messages itself indirectly.

There are three main hotspots in this class: component-based communication, dataflow
communication, and loop detection. Table 4.1 provides an overview for each of these
hotspots. The remainder of this section describes each hotspot in detail.

Component-Based Communication

The component-based communication hotspot identifies features that send messages to
other features. This hotspot detects the origin and destination feature where a communi-

57

Hotspot Name Description Relation
Component-Based
Communication
(CBC)

Describes features that message
other features directly or indirectly.
Only looks at the high-level commu-
nications.

Direct: CBC ≡ DF
Indirect: CBC ⊇ DF

Dataflow
Communication
(DF)

Describes features that message
other features directly or indirectly.
For indirect messages, looks at func-
tion calls in between.

Direct: DF ≡ CBC
Indirect: DF ⊆ CBC

Loop
Detection (LD)

Describes communication loops
where a feature messages itself
directly or indirectly. Uses the
component-based and dataflow
methodologies.

Uses CBC and DF
hotspots in detecting
loops.

Table 4.1: The three hotspots part of the feature communication class.

cation takes place. Importantly, this hotspot detects both direct and indirect feature com-
munications. Direct feature communication occurs when a source feature directly sends
a message to the destination feature. Indirect feature communication is where a source
feature sends a message that flows through a series of intermediate features. Eventually,
the destination feature will receive a message This message will not be the original mes-
sage sent out by the origin feature but may have been spawned due to the origin feature’s
message.

Detecting this hotspot is advantageous for several reasons. First, it allows for developers
to gain better insight into which features in the automotive system interact meaning that
developers can use it to see which features their feature indirectly messages. Additionally,
this hotspot has the potential to identify how changes in one feature might propagate to
other features.

Figure 4.4 shows an example of both the direct and indirect component-based hotspot.
In this example feature A communicates with feature B. In the direct case, feature A sends
a direct message to feature B. In the indirect case, feature A sends a message to feature
x which sends a message to another set of unspecified features before a message is finally
received by feature B. This set of unspecified features can consist of zero or more unrelated
features.

Detecting this hotspot requires a TA model with little elements. It requires: (i) feature
entities; and (ii) a relation called direct that describes which features directly message

58

Figure 4.4: The difference between direct and indirect communications between features
A and B.

other features. Given this model, this hotspot can be detected using relational algebra as
follows:

1. For direct messages, simply print the contents of the direct relation.

2. Compute the transitive closure of the direct relation and store it in a relation called
indirect.

3. Remove any entries from indirect that are also in direct and store the results back
in indirect (indirect = indirect− direct). Print the results.

These steps can vary depending on the fact extractor, model schema, and names of the
relations being used.

Dataflow Communication

While detecting instances of component-based communication can be beneficial, it is a
high-level hotspot that ignores the function calls inside each feature. The dataflow com-
munication hotspot attempts to address this by examining messages between features at
the function call level. This means that, for an instance of this hotspot to be detected, there

59

has to be a continuous path of function calls from start feature to end feature. For direct
feature messages, this hotspot produces the same results as detecting direct component-
based instances. This is because, with direct communication, there is always a link be-
tween two features messaging each other. For indirect feature communication, detecting
instances of the dataflow communication hotspot will generate fewer results compared to
the component-based hotspot since some of the instances of the indirect component-based
hotspot might not have a continuous function call link from start to finish.

Figure 4.5 compares the component-based communication and dataflow communication
hotspots in an example project. Here, there are three features called A, B, and C each with
functions defined inside them. Looking at the direct communications instances, notice
that the results for the component-based and dataflow hotspots are the same. However,
when looking at the indirect results, note that there is one indirect component-based
instance and zero indirect dataflow instances. The reason this is not considered to be an
indirect dataflow hotspot is because there is no function call between the receiveAData

and sendBData functions.

There are advantages and disadvantages with detecting this hotspot. The major ad-
vantage is that it gives users more detailed results with respect to how data flows inside
features. While this hotspot may appear to be better than the component-based commu-
nication hotspot, it may also provide false negatives. For instance, consider Figure 4.5
except whenever feature A sends a message to feature B, feature B changes state. Then,
whenever B changes state, it sends a message to feature C. In this situation, the dataflow
hotspot would not detect this interaction.

Detecting this hotspot requires a model that has several different entities and relations.
A TA model needs to contain: (i) feature entities; (ii) function entities; (iii) a relation
called direct that describes which features directly message other features; and (iv) a
relation called call that describes which functions call other functions. Then, with that
model, this hotspot can be detected using the following steps:

1. For direct messages, like the component-based communication hotspot, simply print
the contents of the direct relation.

2. Using the union operator, combine the direct and call relations together. This
creates a relation with function calls and feature messages. Call this set communicate
(communicate = direct + call).

3. Compute the transitive closure of communicate. Remove any entries from this rela-
tion that do not start with the last function in a feature and end with the first function

60

Figure 4.5: The difference between the component-based and dataflow communication
hotspots.

in a feature. This is done to ensure the flow of data in a class between subscribe and
publish calls is connected. Store these results in a relation called indirect.

4. Remove any entries from indirect that are also in direct and store the results back
in indirect (indirect = indirect− direct). Print the results.

Loop Detection

Loop detection is the final feature communication hotspot. Its purpose is to detect com-
munication loops that are either self-loops (direct) or a loop consisting of several features
(indirect). A loop can be defined as a path of messages that flow from some origin feature
back to itself. Loops can be detected using the component-based or dataflow-based detec-
tion methodology. For component-based loops, only the messages sent between functions
are considered whereas for dataflow-based loops, the messages and function calls are both
considered. As before, the set of direct loops detected using both methodologies will be
the same. Only the indirect loop results will differ.

The benefit of this hotspot is that it can uncover unexpected self-loops in the com-
munication graph. A detrimental self-loop could occur when a feature participates in a
feedback loop where messages it receives from itself could amplify its output to other fea-
tures. Additionally, since this hotspot detects both component-based and dataflow-based
loops, another benefit is that users can choose the detection methodology that suits their

61

needs. For instance, a user might only care about dataflow loops since it would indicate
that there is continuous chain of function calls and messages from start to finish.

This hotspot is an extension of the first two hotspots in this class. Similar to the
dataflow hotspot, a TA model needs to contain the following facts: (i) feature entities;
(ii) function entities; (iii) a relation called direct that describes which features directly
message other features; and (iv) a relation called call that describes which functions
call other functions. With this model, component-based and dataflow-based loops can be
detected using the following steps:

1. For direct component-based and dataflow-based loops, take the direct relation and
remove relations from it where the domain and range are not the same. Print the
results.

2. For indirect component-based loops, take the transitive closure of direct and store it
in a relation indirectCompLoops. Then, remove relations from it where the domain
and range are not the same. Print the results.

3. For indirect dataflow loops, combine the direct and call relations together using
the union operator. This creates a relation with function calls and feature messages.
Call this set communicate.

4. Compute the transitive closure of communicate, remove entries that do not start with
the last function in a feature and end with the first function in a feature, and then
determine the parent feature that each function belongs to. Store these results back
in the communicate relation. Remove entries from this relation where the domain
and range are not the same.

5. Print the communicate relations to get the indirect dataflow loops.

4.2.2 Multiple Input Hotspots

The multiple input hotspot class detects instances where multiple features send data to the
same feature. These instances might result in a bug where a message from one feature is
drowned out by another competing feature which sends a large number of messages rapidly.
This hotspot class can also detect “race-condition”-like situations where data received from
multiple features update a single variable. In this case, updates made to that variable from
one feature could potentially be lost.

62

Hotspot Name Description Relation
Multiple
Publishers (MP)

Describes situations where multiple
features message the same feature
through the same callback function

MP ⊆ CBC
MP ⊆ DF

Race
Condition (RC)

Describes situations where multiple
features message some feature caus-
ing updates to the same variable.

RC ⊆ CBC
RC ⊆ DF

Table 4.2: The two hotspots part of the multiple input class.

There are two hotspots in this class: the multiple publishers hotspot and the race
condition hotspot. Table 4.2 provides an overview of the two hotspots in this class. The
remainder of this section presents the two hotspots in detail and describes how they can
be detected using relational algebra.

Multiple Publishers

The multiple publishers hotspot identifies situations where multiple features message the
same function inside a feature. Since this hotspot can manifest itself differently depending
on the communication architecture used, any implementations to detect this hotspot needs
to take this into account. For instance, in ROS, features publish data to topics which
are then sent to features that subscribe to these topics. Therefore, an implementation to
detect this hotspot in ROS would need to detect situations where multiple publishers send
data to the same topic and where multiple topics send data to the same callback function.

The benefit of detecting this hotspot is that it can uncover situations where multiple
features send data to a single recipient function causing one feature to overpower the other
functions. In an architecture like ROS, this is especially prevalent since each feature has
an incoming and outgoing message buffer for each topic it subscribes and publishes to. In
this case, if one feature floods this queue, messages from other features are dropped.

Figure 4.6 shows an example of the multiple publishers hotspot. In this figure there are
a collection of features shown in yellow and a single recipient function called callbackFunc

shown in red. Features 1 through N send messages to feature X through the callbackFunc
function.

Detecting this hotspot using relational algebra requires a simple TA model that has the
following elements: (i) feature entities; (ii) function entities; (iii) a relation called direct

that describes which features directly message other features; and (iv) a relation called

63

Figure 4.6: An example of the multiple publisher hotspot.

call that describes which functions call other functions. The model used to detect this
hotspot does not have to be detailed because this hotspot is only concerned with calls
between features. To detect this hotspot the following relational algebra calls are required:

1. For each callback function in the project, take the direct relation and apply the
callback function to the range. Store the results in a new relation called instances.

2. Get the number of entries in the instances relation. If there are 1 or less, go back
to the first step for the next callback function.

3. Get the parent feature name of that callback function and print it. Then, print the
instances relation. This gives all the features that message that callback function.
Then return to step one for the next callback function.

Race Condition

The race condition hotspot describes situations where multiple features send messages that
end up modifying the same variable. Since a feature can receive messages from a variety
of different features through different callback functions, there is the potential for these
callback functions to each write to the same global variables.

Detecting this hotspot is important as it has the potential of highlighting race conditions
in a feature. With message-passing systems, there is the possibility that a variable can

64

be modified by two different features separately through different channels. Modifications
made to this variable by one feature might be overwritten by other features prior to that
variable being used. For instance, say there is a variable that keeps track of the X and Y
positions of a robot and two features are both updating this variable. A program might
run into a lost update scenario if both features modify this variable before the X and Y
positions are used.

Figure 4.7: An example of the race condition hotspot.

Figure 4.7 shows an example of this type of hotspot. Here, two features called A and
B each message a separate callback function inside feature C at some point in time. Then,
each of these callback functions write to a variable called raceVar.

Detecting race condition hotspots using relational algebra requires a model that is a
little bit more detailed compared to the one used for the multiple publishers hotspot. This
is because detecting this hotspot also requires knowledge of variables being written to.
As such, the following is required: (i) feature entities; (ii) function entities; (iii) variable
entities; (iv) a relation called direct that describes which features directly message other
features; (v) a relation called call that describes which functions call which other func-
tions; and (vi) a relation called write describing which functions write to which
variables. The bold text indicates the differences in the model between this and the mul-
tiple publisher hotspot model. To detect race conditions, the following relational algebra
calls are required:

1. For the write relation, keep only cases involving a callback function writing to a
variable. Store this in a new relation called callbackWrite. This now shows the
variables that all callback function writes to.

2. Then, for each variable in the range of callbackWrite, get the number of callback
functions that write to it. If more than one callback function writes to it, proceed to
the next step for that variable.

65

3. For that variable, get the feature that it belongs to and print it. Then, for each
callback function that writes to it, print the features that message that callback
function.

4.2.3 Control Flow Hotspots

Another class of hotspots that can be problematic are control flow hotspots. These hotspots
describe situations when the behaviour of one feature is altered due to messages received
from other features. for instance, one feature sending a message to another feature causing
it to change state is an example of a control flow hotspot. These state changes could also
lead to a feature sending messages to other features. This allows developers to focus on
interactions between features that have a definitive effect on that feature’s behaviour.

Hotspot Name Description Relation
Behaviour
Alteration (BA)

Describes situations where messages
from a feature cause that feature to
alter how it behaves.

BA ⊆ CBC
BA ⊆ DF
BA ⊇ PA

Publish
Alteration (PA)

Describes situations where messages
from a feature cause that feature to
send messages to other features.

PA ⊆ CBC
PA ⊆ DF
PA ⊆ BA

Table 4.3: The two hotspots part of the control flow class.

There are two major hotspots in this class: the behaviour alteration hotspot and the
publish alteration hotspot. Table 4.3 provides an overview of these two hotspots and how
they relate to other hotspots. The remainder of this section presents these two hotspots
and describes how they can be detected using relational algebra.

Behaviour Alteration

The behaviour alteration hotspot describes situations where a message from one feature
causes another feature to change its behaviour. The behaviour of a feature is considered
changed when a variable that is written to by a callback function or a function called
directly or indirectly by that callback function is eventually used in the decision block
of a control structure such as a for loop or if statement. The variable that is used in
the decision block does not have to be the variable originally written to; variables can be

66

written to by the callback function and then transfer their data into other variables that
then get used in control structures.

Detecting this hotspot is important because knowing which communications change the
behaviour of a feature is important. This hotspot provides even greater detail then feature
communication hotspots since it examines how features operate when messaged by other
features. With the results from this hotspot, developers can place further care in ensuring
these communications are handled properly.

Figure 4.8 shows two different instances of the behaviour alteration hotspot. These two
instances are not exhaustive since there are numerous ways this hotspot manifests itself.
As before, yellow boxes are features, red boxes are functions, and blue boxes are variables.
The first configuration is fairly complex; feature A messages the callbackFunc function in
feature B which then calls the secondFunc function. Inside secondFunc, varA is written to.
Then, that variable writes data to another variable called varB. Lastly, varB is used in an
if statement inside unrelatedFunc. The second instance occurs when feature A messages
feature B causing a variable called varA to be modified. This variable is then used in
another function called unrelatedFunc in an if statement. From both these examples,
feature B’s behaviour is being modified as a result of a message from feature A.

Detecting this hotspot using relational algebra requires a fairly detailed model that
includes: (i) feature entities; (ii) function entities; (iii) variable entities; (iv) a relation called
direct that describes which features directly message other features; (v) a relation called
call that describes which functions call which other functions; (vi) a relation called write

that describes which functions write to which variables; (vii) a relation called varWrite

that describes which variables write to which other variables; (viii) an attribute called
isControlVar which denotes whether a variable is part of a control flow structure; and
(ix) an attribute called isCallbackFunc which denotes whether a function receives data
from another feature. With a model containing this information, the behaviour alteration
hotspot can detected using the following relational algebra calls:

1. First, create a set called controlVars that contains variables that are present in
some control structure. This can be done by looking at the isControlVar attribute.

2. Create another set called callbackFuncs that contains functions that receive data
from other features. This can be done by looking at the isCallbackFunc attribute.

3. Create a master relation called masterCalls that contains the union of the following
relations: call, write, and varWrite. This relation contains every single instance
where a function or a variable transfers data.

67

Figure 4.8: Two examples of the behaviour alteration hotspot with two features: A and B.

68

4. Get the transitive closure of the masterCalls relation and store the results back in
masterCalls. This relation now is a graph of the dataflow in the program.

5. Apply the callbackFuncs set on the domain of the masterCalls relation using
relational selection. Store these results back in masterCalls. Now, every entry in
the masterCalls relation starts with a callback function.

6. Last, apply the controlVars set on the range of the masterCalls relation using
relational selection. Store these results in masterCalls. This relation now denotes
which callback functions affect the feature’s behaviour.

7. To get the features that directly affect the behaviour of other features, join the
direct relation on the masterCalls relation. This shows which features message
that callback function.

8. To get indirect instances, repeat the previous step but instead of applying direct,
apply the transitive closure of direct.

Publish Alteration

The publish alteration hotspot is a more specific version of the behaviour modification
hotspot. This hotspot describes situations where a feature sends a message to another
feature causing that feature to send a message to a third feature. This hotspot can occur
in two ways. First, calls to “publish” messages to other features can be in a control
structure that have variables in the decision portion that are modified directly or indirectly
by a callback function or descendant function. This is similar to the behaviour alteration
hotspot. The other way this hotspot occurs is where a publish function call is directly
inside the callback function or a descendant function called by that callback function.
This means that if a message is received by that callback function, the publish call will
automatically be activated. In both ways, if a feature receives a message to that callback
function, this will likely result in the feature sending a message to another feature at some
point in the future.

The benefit of detecting this hotspot is that it allows developers to see how a feature
modifies the message-passing behaviour of another feature. While it might be easy to
determine which features message each other, determining whether features affect how
another feature communicates. For instance, while ROS provides a visualization tool called
rqt graph that dynamically shows which features message other features, there is no way

69

Figure 4.9: Two examples of the publish alteration hotspot for two features: A and B.

to see which features have influenced other features. Further, a feature that affects another
feature’s message-passing might introduce unexpected interactions between features.

Figure 4.9 shows two instances of this hotspot in a program with two features: A and
B. In the first example, feature A messages feature B which causes the callback function
callbackFunc to immediately publish data to a third feature. In the second example,
feature A messages feature B which causes the callback function callbackFunc to write
to a variable called varA. This variable is then used in a function called unrelatedFunc

in a control structure that affects whether feature B publishes data to another feature.

Similar to the behaviour alteration hotspot, detecting this hotspot requires a fairly de-
tailed model that includes: (i) feature entities; (ii) function entities; (iii) variable entities;

70

(iv) a relation called direct that describes which features directly message other features;
and (v) a relation called call that describes which functions call which other functions;
(vi) a relation called write that describes which functions write to which variables; (vii) a
relation called varWrite that describes which variables write to which other variables;
(viii) a relation called varInfluence of the form <VARIABLE> <PUBLISH CALL> that,
for variables that participate in a decision condition of a control structure, high-
lights any publish calls that are nested within; (ix) a relation called varFuncInf

of the form <VARIABLE> <FUNCTION> that for variables that participate in the de-
cision condition of a control structure, highlights any function calls that are
nested within; (x) an attribute called isControlVar which denotes whether a variable
is part of a control flow structure; and (xi) an attribute called isCallbackFunc which
denotes whether a function receives data from another feature. The bold elements show
additions to the model from the behaviour alteration hotspot. Given such a model exists,
publish alteration hotspots can be detected through the following algebraic operations:

1. Create a set called callbackFuncs that contains functions that receive data from
other features. This can be done by looking at the isCallbackFunc attribute.

2. Create a master relation called masterCalls that contains the union of the following
relations: call, write, varWrite, varInfluence, and varFuncInf. This relation
contains every single instance where a function or a variable transfers data or where
a control structure is modified leading to another function call or publish message.

3. Get the transitive closure of the masterCalls relation and store the results back in
masterCalls. This relation now is a graph of the dataflow in the program.

4. Apply the callbackFuncs set on the domain of the masterCalls relation using
relational selection. Store these results back in masterCalls. Now, every entry in
the masterCalls relation starts with a callback function.

5. Last, get the relation of publish calls and apply it on the range of the masterCalls

relation using relational selection. Store these results in masterCalls. This relation
now denotes which callback functions cause a publication to occur.

6. To get the features that affect whether a feature publishes data, join the direct rela-
tion on the masterCalls relation. This shows which features message that callback
function.

7. To get indirect instances, repeat the previous step but instead of applying direct,
apply the transitive closure of direct.

71

Chapter 5

Case Study

To determine the effectiveness of detecting feature interaction hotspots using the rela-
tional algebra toolchain, a case study was conducted on the Autonomoose autonomous
driving project. In this case study, Grok scripts were developed which detect each type of
hotspot described in Chapter 4. Each of these scripts were then run on a TA model of the
Autonomoose software and the results were analyzed.

Before the case study results are presented, a brief description of the Autonomoose
autonomous driving project is introduced. Section 5.1 provides a description of Au-
tonomoose’s architecture and hardware components. Section 5.2 presents the setup and
results from the case study. Due to confidentiality obligations with Autonomoose develop-
ers, the description of Autonomoose and the case study are both deliberately obfuscated.

5.1 Autonomoose

Developed by the University of Waterloo Centre for Automotive Research (WatCAR),
Autonomoose is an autonomous driving platform developed on a modified 2015 Lincoln
MKZ. The goal of this project is to develop a vehicle that operates at level 4 of the SAE
autonomous driving standard [61]. For a vehicle to be at this level, it needs to be in control
of all aspects of the dynamic driving task and will not require the human in the vehicle to
respond to a request to intervene. Figure 5.11 shows the modified Lincoln MKZ used in
the Autonomoose project.

1Image comes from [62].

72

Figure 5.1: The modified Lincoln MKZ used by Autonomoose.

Similar to other autonomous driving projects, Lincoln MKZ used by Autonomoose
is comprised of a plethora of sensors that allow it to drive autonomously. The vehicle
features a global positioning system (GPS) and inertial measurement unit (IMU) that
allow Autonomoose to discern the car’s position on the road. The GPS has an accuracy
of 5cm and updates at 20Hz while the IMU has a heading angle accuracy of 0.08 degrees
and updates at 100Hz [63]. The vehicle is also equipped with a LIDAR system that allows
it to detect hazards in all directions. Lastly, the vehicle has a built-in DSRC radio that
provides it with the ability to communicate with other vehicles (V2V) and infrastructure
(V2I).

The Autonomoose software stack uses the built-in sensors to make decisions that get
applied on the vehicle’s actuators. Figure 5.2 shows a high-level visualization of how
the system architecture of Autonomoose is arranged. By obtaining data from sensors,
the software generates a route plan that is executed by vehicle actuators. Importantly, the
software is grouped into different features that each may be located on separate ECUs. Due
to this, sensors, actuators, and features need to be able to communicate with each other in
a reliable, fault-tolerant manner to ensure passenger safety. Rather than using the CAN
bus, Autonomoose communicates using the ROS framework. Currently, the Autonomoose
software stack operates on top of the vehicle’s existing software stack. By using a ROS-
CAN bridge, information obtained from vehicle sensors can be used by Autonomoose and
commands from Autonomoose can be sent to vehicle actuators.

73

Figure 5.2: A high-level overview of the Autonomoose software stack.

While Autnomoose lacks a CAN bus architecture to send messages, it still beneficial
to study it to similarities between the ROS and CAN frameworks. In systems that utilize
a CAN bus for message-passing, nodes send messages across a shared bus. While these
messages are received by all nodes, only nodes that have a filter that accept the message
will consume it [64]. Similarly, in systems that use ROS, nodes send messages to topics
which then get received by other nodes which find those topics pertinent [65]. Both of
these architectures can result in the same type of communication configurations between
nodes such as many-to-one and one-to-many. Further, similar to other modern vehicles,
Autonomoose is comprised of a set of features that each communicate with one another to
achieve a shared goal.

Lastly, the notion of features in Autnomoose needs to be discussed. As before, I define
a feature as “a coherent and identifiable bundle of system functionality that helps charac-
terize the system from a user perspective” [20]. In Autonomoose, features are each divided
into separate ROS packages that each achieve a single goal. This configuration is beneficial
for developers as it improves comprehension and improves relational analysis since features
do not have to directly be delineated in the associated program models; a feature is simply
a ROS package.

5.2 Autonomoose Case Study

As previously mentioned, a case study was conducted on Autonomoose to determine
whether the relational algebra toolchain could be used to detect feature interaction hotspots.

74

As three different classes of feature interaction hotspots were proposed in Chapter 4, this
case study tested each of the three classes. The classes tested are: (i) feature communica-
tion hotspots; (ii) multiple influence hotspots; and (iii) control flow hotspots.

To detect each of these hotspots, the entirety of the Autonomoose source code was
analyzed using the Rex fact extractor to produce a queryable model. Hotspot definitions
as described in Chapter 4 were used to generate Grok relational algebra scripts to detect
these hotspots. Then, each hotspot script was run on the extracted model and results were
analyzed via manual analysis to ensure completeness and correctness. As before, while
this thesis presents aggregated results from this case study, models and direct results have
been obfuscated due to confidentiality obligations with WatCAR developers.

The remainder of this section describes the case study in detail. Section 5.2.1 describes
how the case study was setup and the models generated. Section 5.2.2 discusses feature
communication hotspots, Section 5.2.3 discusses multiple influence hotspots, and Section
5.2.4 discusses control flow hotspots. Lastly, Section 5.2.5 corroborates the results obtained
with Autonomoose developers.

5.2.1 Setup

To detect hotspots in Autonomoose, some initial setup was required. First, I had to
determine which entities and relations to include in the TA model so that all classes of
hotspots could be detected. After examining the hotspot definitions from Chapter 4, Table
5.1 shows the necessary entities and relations that need to be in an Autonomoose model to
detect all hotspots. The necessity to extract such information from Autonomoose was the
motivation behind building the Rex extractor; information pertaining to ROS messages
needed to be extracted as well as typical C++ information such as functions and variables.

With Rex was developed, a model of the Autonomoose source code had to be generated.
To do this, the Rex extractor was incorporated into Autonomoose’s build toolchain so that
Rex’s Clang API could accurately parse the Autonomoose source code. Integrating Rex
was challenging since ROS-based projects use Catkin as a build tool and use a number of
different compiler flags that are hidden to the user. Further, Rex relies on projects having
a compilation database to receive compilation flags needed to build the project. Therefore,
to use Rex on Autonomoose, Catkin needed to generate one.

To solve this problem, I modified one of the top-level build scripts for Autonomoose to
contain a command that forces Catkin to generate a compilation database for each ROS
project compiled. Then, Autonomoose had to be cleanly built without Rex to generate this
database. By doing this, Catkin created a compile commands.json file for each feature

75

Entities Relations Attributes
• Features
• Classes
• Functions
• Variables
• Topics
• Subscriber Nodes
• Publisher Nodes

• A relation denoting data
being sent from publisher
to topic.
• A relation denoting data
being sent from topic to
subscriber.
• A relation denoting func-
tion calls.
• A relation denoting a hi-
erarchy of components.
• A relation denoting vari-
able writes.
• A relation showing which
publishers are under which
control structures.
• A relation showing which
functions are under which
control structures.

• A boolean attribute de-
noting whether a variable
participates in the decision
portion of a control flow
structure.

Table 5.1: Required model elements to detect all hotspots.

in Autonomoose. Since Rex needed to analyze all Autonomoose features at once, all the
compilation databases were merged into a single file.

With a single compilation database created, Rex was able to analyze the entirety of
Autonomoose’s source code. To generate the models, all Autonomoose source files were
added into Rex’s processing queue and then alls “test” files were removed. Two differ-
ent models were generated: ANM FULL.ta and ANM MIN.ta. The ANM MIN.ta model is a
lightweight model generated through Rex’s simple-analysis mode. This version contains
only ROS-based information, features, classes, and messages between classes. Although
this model represents the entirety of the Autonomoose source code, it is only 60KB in size.
The ANM FULL.ta model is a detailed model generated using Rex’s full-analysis mode. This
model contains information about features, variables, functions, and ROS-based informa-
tion such as topics and messages. This model is around 5MB in size and is extremely
dense. These models were generated using a snapshot of the Autonomoose project from
October of 2017. Figure 5.3 shows a portion of the minimal model used in this case study.

76

Figure 5.3: An example of the Autonomoose model generated by Rex.

This figure shows several ROS components and several relationships between classes and
ROS topics. Actual entity and relation names have been obfuscated using an MD5 hash.

1 //Get a l i s t o f c a l l b a c k f u n c t i o n s .
2 cal lbackFunc = rng (s ub s c r i b e o c a l l) ;
3

4 // Determines a l l the v a r i a b l e s that are modi f i ed by each c a l l b a c k func t i on .
5 vars = cal lbackFunc o wr i t e ;
6 f o r curVar in rng vars {
7 s p e c i f i c = vars . {curVar } ;
8

9 // Gets the number o f i n s t a n c e s o f that v a r i a b l e .
10 i f (# s p e c i f i c > 1) {
11 // Deal with ca s e s where mu l t ip l e c a l l b a c k s modify .
12 pr in t ”For the ” + curVar + ” v a r i a b l e : ” ;
13

14 // Gets the c a l l b a c k f u n c t i o n s that push to that v a r i a b l e .
15 c a l l b a c k s = dom s p e c i f i c ;
16 f o r cb in c a l l b a c k s {
17 // Pr in t s the c a l l b a c k .
18 {cb} . @label ;
19 }
20 }
21 }

Figure 5.4: An example Grok script that detects the race condition hotspot.

With these models generated, Grok scripts for each hotspot were written to detect all
instances of that hotspot in the source code. Appendix C shows each of the scripts used
and provides a detailed description of all operations. As an example, Figure 5.4 shows
the script that is capable of detecting all instances of the race detection hotspot in models

77

extracted by Rex. Here, lines 2 and 5 get all the callback functions that write to variables.
Then lines 6 through 21 iterate through each variable written to by callback functions to
determine if two or more callback functions write to them.

5.2.2 Feature Communication Hotspots

The first class of hotspots are feature communication hotspots. The three hotspots in
this class are component-based communication, dataflow communication, and loop detec-
tion. The remainder of this section presents the results and verifies their correctness and
completeness.

Results

After running the three Grok hotspot scripts, the following results were obtained which are
summarized in Table 5.2. For component-based communication, there are 12 instances of
direct and indirect communications between features. For instances involving direct com-
munication, only seven features in Autonomoose actually send messages to other features.
For indirect messages, only four features in Autnomoose messages send messages indirectly
to other features.

Hotspot Name Direct Results Indirect Results
Component-Based Communication 12 12
Dataflow Communication 12 3
Loop Detection 1 2

Table 5.2: Result of detecting feature communication hotspots in Autonomoose.

For cases of direct dataflow communications, the results are the exact same as the direct
component-based messages since DF = CBC. For indirect dataflow communications,
there are only three features that indirectly message other features. The reason there are
few indirect instances despite Autnomoose’s size, is because Autonomoose is not set up to
forward messages when a feature receives a message. Rather, each time an Autonomoose
feature spins and receives a message, it tends to change state which eventually causes it to
publish a message to another feature. These type of instances are detected in the control
flow hotspot class.

Lastly, for loop detection, there was one direct loop and two indirect component-based
loops. No indirect dataflow-based loops were detected. This result was as expected since

78

the dataflow communication hotspot found that there are only three instances of indirect
dataflow communications and none of the instances were a loop. The most interesting
result here is the presence of a direct loop. This means that a feature is sending data that
directly loops back to itself. Since this feature is a core part of Autonomoose and processes
a lot of data there are numerous reasons this loop could be present; it could be used to
send data to other functions or be used as a heartbeat message.

Verification

To detect feature communication hotspots, accurate information about: (i) publishers,
(ii) subscribers, (iii) topics, (iv) functions, (v) classes, (vi) publish messages,
(vii) subscribe messages, (viii) function calls, and (ix) hierarchies between classes

and functions is needed in the resultant model. To ensure the completeness of the re-
sults, each of the ROS-based entities and relations in the model need to be verified for
accuracy. To do this model entries need to be compared to the Autonomoose source code
to ensure these entities and relations are correct. To perform this verification, a manual
scan of the source code was conducted and a TA model containing manually extracted
information was created. The entries in the Rex-generated model were compared to the
manually-generated models to determine the model’s completeness.

Element Type Source Code TA Model Accuracy
Publisher Entities 52 52 100%
Topic Entities 74 71 95.9%
Subscriber Entities 46 46 100%
Publish Relation 60 60 100%
Subscribe Relation 46 46 100%

Table 5.3: Completeness of ROS-based entities and relations in the Autonomoose model.

Table 5.3 shows completeness statistics for all ROS-based elements in the Autonomoose
model. For all but one entity, the Rex-generated TA model was exactly the same as the
manually-generated model. The only entity with less than 100 percent accuracy is the
topic entity as the Rex-generated model labels three topic names incorrectly. The danger
with inaccuracies in the extracted topic name is that publisher and subscriber calls might
not link up causing communications between features to be missed. In the case of the three
invalid topics in the Autonomoose model, this occurred because the publishers using these
topics created them using a variable containing the topic name while Rex is only able to
parse topic names from string literals. This is a known limitation.

79

Other types of model elements needed to detect these hotspots such as function calls

or contain hierarchies are assumed to be complete since they are parsed directly from
abstract syntax tree using Clang. For instance, any function call present in source code
will have a unique callExpr node in the AST.

Since communications between features is a characteristic common to all message-
passing systems, verifying the correctness is not necessary. Ensuring the results are com-
plete is enough for the purpose of this class of hotspots. Communications between features
alone are not enough to indicate whether interactions between these features should be
investigated further. The multiple input and control flow hotspots investigate their cor-
rectness with respect to the Autonomoose source code.

5.2.3 Multiple Input Hotspots

The second class of hotspots are multiple input hotspots. Formally, there are two hotspots
in this class: multiple publishers and race conditions. The remainder of this section de-
scribes presents the results and verifies their correctness and completeness.

Results

After running the two Grok scripts to detect multiple influence hotspots, the following
results were obtained which are summarized in Table 5.4. First, there are no multiple
publisher hotspots detected in the project. This means that any instance of communication
between two features has its own dedicated communication channel and callback function.
This result is as expected since designing the system in this manner reduces the risk of one
feature overpowering another feature.

Hotspot Name Results
Multiple Publishers 0
Race Condition 11

Table 5.4: Result of detecting multiple influence hotspots in Autonomoose.

For the race condition hotspot, there are 11 different variables that are affected by
this hotspot. 8 of those 11 variables are located in the same component. Further, the
number of callback functions that participate in the race condition varies depending on the
variable. The majority of these variables have two callback functions writing to them and
the variable with the most has four callback functions.

80

Verification

To detect these hotspots, the following information is required: (i) publishers, (ii) subscribers,
(iii) topics, (iv) functions, (v) classes, (vi) publish messages, (vii) subscribe mes-
sages, (viii) function calls (ix) variable writes, and (x) hierarchies between classes

and functions. Information shown in bold was not verified in the feature communication
section and will be checked for completeness here.

To check the write relation for completeness, a subset of all the functions in Au-
tonomoose were selected and then each were scanned to manually find all cases where
variables were written to. These manual cases were then compared to the Rex-generated
Autonomoose model to check if the results compare. For this completeness check, the
selected functions to analyze were all 44 callback functions that receive data from ROS
topics. The reason these callback functions were chosen is that these functions tend to
write to many variables as they are responsible for transferring data received from topics.

Element Type Source Code TA Total Correct Incorrect Accuracy
Write Relation 287 226 226 0 78.75%

Table 5.5: Completeness of ROS-based entities required to detect multiple influence
hotspots.

Table 5.5 presents the completeness results for the write relation. In the Rex-generated
TA model, there are 226 cases where a callback function writes to a variable. Through
manual analysis of all the callback functions, it was found that there are 287 cases where
a variable is initialized or written to. Each of the results in the Rex-generated model were
compared to manual analysis results and it was found that Rex correctly predicted 78.75%
of all variable writes. While the accuracy is not high, it is still encouraging that all of Rex’s
predictions are correct. This means that all cases of variable writes in the Rex-generated
Autonomoose model are present in the source code.

The reason the accuracy is around 75% is due to several limitations of Rex’s read and
write detector. First, developing an algorithm to statically detect variable accesses in C++
is impossible due to pointers and aliasing. In a situation where the address of one variable
is written to a pointer, Rex would still consider that to be a write despite it truly being
one. The second limitation is that Rex does not look at function calls that set internal
object fields as a variable write. If an object is modified through the use of a function call
(such as the push back method in the vector class), it will not be detected by Rex. While
the accuracy of read and write detection can never be 100%, future work should aim to
improve this relation.

81

Invalid Instances

8

Unlikely Instances

1Probable Instances

2

Figure 5.5: The race condition hotspot in Autonomoose broken down by severity.

In addition to completeness, the correctness of the multiple publisher and race condition
hotspots were investigated. Since the multiple publisher hotspot detected zero instances
where there were multiple topics feeding into a single callback function the correctness
of this hotspot cannot be verified. However, the lack of this hotspot’s presence in Au-
tonomoose is encouraging since the developers felt the need to ensure each instance of
feature communication had a separate communication channel. Having separate channels
cuts down on the code complexity and ensures that unexpected feature interactions of this
nature do not occur.

Each of the eleven detected race condition hotspot instances were investigated for cor-
rectness using manual inspection. For each race condition instance detected, the source
code pertaining to that instance was manually inspected. Then, from this inspection, each
reported instance was categorized into a severity categories which indicates whether that
instance should be more thoroughly inspected. The three severity categories are: invalid,
unlikely, and probable. The invalid category denotes instances that do not fit the hotspot.
The unlikely category denotes instances that could potentially result in unexpected in-
teractions between features but are unlikely to. Lastly, the probable category is used to
denote instances that could result in potential interactions and should be inspected more
thoroughly through manual analysis.

Figure 5.5 breaks down the results of classifying each instance. While the majority of

82

reported instances were invalid, this was due to a particular set of variables in one feature
that received the exact same value from all callback functions that wrote to them. The
single unlikely instance is one where multiple callbacks update a time variable to get the
most recent received message. This time variable is used to determine when a timeout
occurs. This instance is of little concern since a timeout is likely to not occur due to a race
condition. Lastly, the 2 probable instances involve multiple callback functions writing to
a variable that tracks the state of the car. This is important because unrelated functions
use this variable to determine the behaviour of the car. As such, if conflicting messages are
sent to these callback functions, there might be a potential case where one state change
overrides the other.

5.2.4 Control Flow Hotspots

The third class of hotspots are control flow hotspots. There are two hotspots in this class:
behaviour alteration and publish alteration hotspots. The remainder of this section presents
the results and verifies their completeness and correctness.

Results

After running the Grok scripts that detect control flow hotspots, the following results were
obtained summarized in Table 5.6. Since these hotspots generate a lot of different infor-
mation, this table divides the results into four different categories: Instances, Callback
Functions, Direct, and Indirect. The instances column notes the number of detected
instances for each hotspot. If a feature alters the behaviour of another feature multi-
ple times, each will get recorded as a separate instance. The callback functions column
records the number of callback functions that are responsible for causing these instances.
Note that a callback function may be responsible for numerous instances. Last, the direct
and indirect columns note the number of features which directly and indirectly message
the callback function of a target feature where a detected instance occurs. The reason the
number of callback functions and direct communications do not match up is because some
topics in Autonomoose have no features that publish to them2.

There are 650 instances of behaviour alteration where a feature has its behaviour altered
due to messages received from a ROS topic. While there are a large number of reported
instances, these instances only occur in 35 of Autonomoose’s 47 callback functions. Further,

2This primarily occurs in features at the top of the dataflow chain. These features receive messages
directly from the vehicle through a ROS-CAN bus bridge.

83

Hotspot Name Instances Callback Functions Direct Indirect
Behaviour Alteration 650 35 11 16

Publish Alteration 64 22 7 15

Table 5.6: Result of detecting control flow hotspots in Autonomoose.

these callback functions are only present in 8 of 14 Autonomoose features. For the features
reported in this hotspot, four of them are essential in coordinating the vehicle’s route. As
such, if one of these features receives a message, it is likely that it will change state and
alter the vehicle’s route.

For the publish alteration hotspot, there are 64 cases where a feature publishes data
due to ROS messages it has received. These 64 instances are spread across 22 callback
functions. It was expected that this result would be lower than the behaviour alteration
hotspot since there are not many publish calls in Autonomoose. Again, many of these
instances occur in features that play a central role in the Autonomoose stack. These
features receive data from a plethora of “vehicle-reporting” features, make decisions about
the route based on this data, and pass those decisions to other features.

Verification

To detect this hotspot, the following information is required: (i) publishers, (ii) subscribers,
(iii) topics, (iv) functions, (v) classes, (vi) publish messages, (vii) subscribe mes-
sages, (viii) function calls (ix) variable writes, (x) variables writing to other vari-
ables, (xi) variables affecting whether a function call is made, (xii) variables
affecting whether a publish call is made, (xiii) hierarchies between classes and
functions, and (xiv) variables that alter control flow. Information shown in bold has
not yet been checked for completeness in previous sections.

The varWrite, varInfluence, varFuncInf relations and the isControlFlow needed
to be checked for completeness. To do this, a subset of entities in the Rex-generated TA
model were compared against the source code to confirm that the TA model accurately
represents the source code.

For the VarWrite relation, 100 variables were randomly selected in Autonomoose.
Then, the source code was manually scanned to find each of these variables and it was
recorded whenever any of those variables received data from another variable. The results
of this analysis were compared to the Rex-generated TA model to determine the accuracy
of VarWrite. Out of these 100 random variables that were tracked, the Rex model was

84

Element Type Source Code TA Total Correct Incorrect Accuracy
VarWrite 100 100 97 3 97.00%
VarInfluence 52 52 51 1 98.08%
VarFuncInf 100 100 93 7 93.00%
isControlFlow 164 164 154 10 93.90%

Table 5.7: Completeness of ROS-based entities required to detect control flow hotspots.

found to be correct 97% of the time. There were 3 false negatives that occurred since Rex
ignores situations where variables are parameters in functions. For example, an expression
like var = function(varA, varB) is not visited despite varA and varB technically writing
to var. Further, while the accuracy of this relation is good, this relation does not track
the flow of data between function calls. Therefore, the model will not contain any variable
writes between a variable used in a function call and its associated parameter. Future work
should investigate developing a relation that can track this type of dataflow.

For the VarInfluence relation, since there are only 52 publishers, all publisher objects
and the associated publish calls were inspected. For each publish call, manual anal-
ysis was conducted to note whether it was nested under a control structure and which
variables affect the decision portion of that control structure. This was compared to the
VarInfluence relation in the Rex-generated model. It was found that for 52 of the pub-
lishers, the Rex-generated model is correct for 51 of them. This means that it accurately
identifies all the publishers under a control structure and the variables that indirectly affect
each. There was one false negative case where the Autonomoose model was incorrect.

For the VarFuncInf relation, 100 functions from across the Autonomoose project were
randomly selected for manual analysis. Like the VarInfluence relation, for each function,
it was noted whether there was a call to that function nested under a control structure and,
if so, the variables that participate in the decision portion of that control structure. This
was then compared to the VarFuncInf relation in the Autonomoose model. It was found
that, for 100 of these variables, the model correctly identified 93 of them as being under
a control structure or not. Of the 7 incorrectly identified functions, 2 were false positives;
the model marks them as incorrectly being under a control structure.

For the isControlFlow attribute, 167 variables were inspected across ten different
Autonomoose components. Each variable was manually inspected to determine whether
it affects the decision condition of a for, switch, if, or while statement. The results
from this manual analysis was then compared to the Rex-generated model. Overall, the
isControlFlow attribute is correct 92.22% of the time. Of the ten incorrect cases, Rex
predicted them all to participate in a control structure making them false positives.

85

Determining the correctness of these two hotspots is important. To do this, each
reported instance for the two hotspots were manually verified and then classified into
three categories: invalid, unlikely, and probable. As before, the invalid category denotes
instances that do not properly fit into the hotspot definition. The unlikely category is used
to describe instances that fit the hotspot definition but are unlikely to result in unexpected
interactions or impact the overall behaviour of the feature. Last, the probable category
is for instances where the overall behaviour of the feature is impacted and where multiple
features are involved. These instances should be investigated further.

First, for behaviour alteration, Figure 5.6 breaks down the results from classifying each
instance. Overall, there are 505 invalid instances, 89 unlikely instances, and 56 probable
instances. While the number of invalid instances is high, the vast majority of these are due
to Autonomoose’s use of ROS logging and debugging macros. After preprocessing, these
macros expand into several lines of code that make use of variables that participate in the
decision section of control structures. As such, if any callback function uses these macros,
this hotspot will report those macros as instances of behaviour alteration. Since these
macros just responsible for logging data to console and altering the logging frequency, they
can be safely discarded and classified as invalid instances. Future versions of Rex should
attempt to detect these cases and ignore them to avoid overwhelming the user.

For unlikely instances, while they are not as strong as probable instances, they do
technically affect a node’s behaviour. In these 89 instances, values from a variable go on
to slightly affect how the feature performs. For instance, a large number of these cases are
variables that participate in the terminating condition of a for loop. Other cases included
in this severity level include instances where one variable affects what the value of another
variable is. In all of these cases, there is no major behaviour change in the node or function.
As such, many of these can be ignored.

For an instance to be considered a probable instance, it has to write to a variable that
goes on to modify the state of the node. In many of these cases, the variables modified are
fields inside the node that keep track state across the callback functions and alter the type
of computations performed. It is recommended that each of these 56 instances should be
investigated further.

For the publish alteration hotspot, Figure 5.7 breaks down the results from classifying
each instance. Overall, of the 64 instances reported, 12 are invalid, 27 are unlikely, and 25
are probable. Of the 12 invalid instances, the majority are merely used for debugging so
developers can see real-time information about the vehicle. The publish call involved in
each of these instances publishes to a debugging topic.

For the 27 unlikely instances, there is one overall pattern that describes these instances.

86

Invalid Instances

505

Unlikely Instances

89
Probable Instances

56

Figure 5.6: The behaviour alteration hotspot in Autonomoose broken down by severity.

Primarily, they have no direct or indirect features that invoke this instance. In other
words, the callback function in this instance does not have any features that message it.
Instead, many of these instances receive information from the car such as braking or gear
information, process it, and pass it on. These areas are unlikely to be problematic since
they are at the top of the Autonomoose stack and are simply responsible for forwarding
data based on vehicle messages.

Lastly, for the 25 probable instances, the publish calls involved in these instances tend
to pass “important” messages to recipient features. This could include route information
or information about vehicle state. Further, these instances not only affect the publishing
behaviour of the feature but also cause the node to change state. Further investigating
these reported instances using manual analysis is important as they are critical to how
Autonomoose operates.

5.2.5 Verification with Autonomoose Developers

In the case study, each reported instance for the race condition, behaviour alteration, and
publish alteration hotspots were classified into three severity groups: invalid, unlikely,
and probable. Since I manually classified these instances, I verified these instances and
classifications with developers from the Autonomoose project. For each of these three
hotspots, a subset of the reported instances were presented to Dr. Michal Antkiewicz, the

87

Invalid Instances

12

Unlikely Instances

27

Probable Instances

25

Figure 5.7: The publish alteration hotspot in Autonomoose broken down by severity.

lead research engineer on the Autonomoose project. For each instance, Dr. Antkiewicz
would determine whether it was valid and would classify it as either unlikely or probable.

For each of the three hotspots, all invalid instances were discarded3 and then ten random
instances were selected for each hotspot type. Since the race condition hotspot had only
three non-invalid instances, all three were presented.

Race Condition

For the race condition hotspot, all three non-invalid instances were shown to Dr. An-
tkiewicz. As per Section 5.2.3, I manually classified two as probable and one as unlikely.
Each of these three instances were shown to Dr. Antkiewicz and he characterized two as
probable and one as unlikely. These classifications matched the ones that I made.

For the two probable instances, Dr. Antkiewicz confirmed that there was some global
variable that was modified by multiple callback functions that went on to affect the feature’s
state. He noted that for these cases, it would be useful to subject those callback functions
to more thorough analysis.

3Invalid instances are cases that do not fit the hotspot definition as they are errors that result from
invalid entries in the Autonomoose TA model. As such, these are not useful to present to Dr. Antkiewicz.

88

Behaviour Alteration

For the behaviour alteration hotspot, ten random instances were chosen amongst the 145
non-invalid instances. As per, Section 5.2.4, I manually classified six as unlikely and four
as probable. Interestingly, Dr. Antkiewicz found that all the instances presented were not
really useful. Based on the instances presented to him, he determined that this hotspot
was not overly useful.

One reason that might explain why Dr. Antkiewicz did not find this hotspot to be
useful in determining code fragments to inspect further is that only ten random instances
were selected out of 145. Such a small sample might mean that if there were some useful
instances, they likely were not have been shown to Dr. Antkiewicz. This is concerning
since having this much noise in the results might mean that developers could miss an
important hotspot instance. Future work should investigate developing sensitivity levels
for each hotspot to attempt to cut down on the number of results. Further, many of the
probable instances had a simple path from callback function to control variable. It would
be interesting to present instances involving more complex paths to Dr. Antkiewicz.

Publish Alteration

For the publish alteration hotspot, ten random instances were chosen amongst the 53
non-invalid instances. Of these I manually classified five of these as unlikely and five as
probable. After showing each instance to Dr. Antkiewicz, he categorized six as probable
and four as unlikely. Of his classifications, his matched with mine for 60% of the instances.

The reason there was a difference in how Dr. Antkiewicz and I classified these instances
is due to what each of us deemed as important. Dr. Antkiewicz was interested in all publish
alteration instances where there was a complex path between the origin callback function
and the destination publish call. For instance, if a callback function directly publishes a
message, this was considered to be “known” interaction and not considered interesting.
However, if a callback function calls another function, which writes to a variable, which
then affects whether a publish call is made, this would be considered important to inspect
further. Many of these instances with complex traces would be difficult for a developer to
detect without the use of tools.

89

Chapter 6

Conclusions

This chapter discusses the contributions made in this thesis as well as the limitations of
my work and areas of future work that should be pursued.

6.1 Contributions

The contributions presented in this thesis are as follows:

• The development of the ClangEx fact extractor which is capable of extracting general
information from C and C++ source code. ClangEx was written as a general purpose
extractor with the intention for it to be used as a starting point to develop more
specific C and C++ fact extractors.

• The development of the Rex fact extractor which is used to extract information
about ROS messages sent between components from C and C++ source code. This
extractor allows for distributed, message-passing systems to be analyzed using the
relational algebra toolchain. This extractor was built from ClangEx.

• The identification of seven different feature interaction hotspots that might be present
in distributed, message-passing systems. Each of these hotspots can be detected in
models generated by the Rex extractor. These seven hotspots are: component-based
communication, dataflow communication, loop detection, multiple publishers, race
conditions, behaviour alteration, and publish alteration.

90

• A case study that demonstrates the feasibility of detecting these hotspots in auto-
motive software system. The case study was conducted on the Autonomoose au-
tonomous driving platform which contains over 20,000 lines of code in the main
project and 7.3 million lines of code of libraries [66]. Each hotspot type was run
on the Autonomoose TA model and the instances were classified into severity levels.
These severity levels were verified by Dr. Michal Antkiewicz of the Autonomoose
project.

6.2 Limitations

While the relational algebra toolchain is effective at detecting feature interaction hotspots
in distributed, message-passing systems, there are several limitations to this methodology.
The majority of these limitations are due to limitations of static analysis.

First, the relational algebra toolchain is a static analysis approach. While fact extrac-
tors are capable of modeling the entire codebase of a project, these extractors share limita-
tions that plauge other static analysis tools. Since static analysis requires the examination
of the code without execution, some code behaviours such as threads or message-passing
cannot be modelled accurately. This leads tools to reason about the system in an approx-
imate manner [67]. Interactions shown in models developed using fact extractors might
not actually be present when the software is running. Due to these drawbacks, detecting
hotspots using this approach is not a fully automated process. Since there is a possibility
of false positives and negatives, this toolchain is merely a technique that aims to narrow
down the amount of manual analysis that needs to be done on the software system.

Another limitation is that the Rex extractor relies on several “programmer-conventions”
when generating a model of message-passing information in a ROS project. While relying
on these conventions was sufficient when analyzing Autonomoose, Rex may not be as
successful in generating a correct model for other ROS-based projects. An example of
this is that, when creating publisher and subscriber objects in a ROS-based component,
Rex assumes that the topic name passed to the publisher and subscriber object is a string
literal. While programmers are able to pass string variables to the publisher or subscriber
objects constructor instead, Rex will use the name of the variable passed as the topic
name1. Figure 6.1 shows an example of this limitation. In it, while the two advertise

1Determining the contents of a variable statically is extremely difficult if not impossible. Future work
on Rex might be able to determine the variable contents and use those contents for the topic name in
simple cases.

91

functions create publishers which publish data to the same topic, Rex sees these two topics
as different.

Figure 6.1: C++ code that would cause Rex to generate an incorrect model.

Lastly, there are limitations with how the read, write, and varWrites relations in Rex
and ClangEx operate; all of these relations are responsible for tracking variable usage in
expressions. In C and C++, detecting variable reads and writes is not as straightforward
as in other languages such as Java2. Due to aliasing, developing a precise variable read
and write detector is impossible in static analysis since variable values can be used as
addresses or values. If it were possible to statically determine variable values, compilers
could simply record the output of a program rather than having to compile it3. The read
and write detection in Rex and ClangEx is simplistic; all binary and unary expressions
involving variables are treated as being non-aliased. This means that even if a variable
uses the indirection or address operator it will be treated the same as variables not using

2Eclipse for Java has a feature that statically allows a user to view all variable references directly inside
the IDE.

3See this StackOverflow discussion:
https://stackoverflow.com/questions/15252137/monitoring-variable-accesses-in-c-c

92

https://stackoverflow.com/questions/15252137/monitoring-variable-accesses-in-c-c

these operators. As shown in Figure 6.2, this can cause a possible analysis error.

1 i n t main () {
2 // Var iab l e s being c rea ted .
3 i n t varOne = 10 ;
4 i n t ∗ varTwo = 20 ;
5

6 // Var iab le be ing wr i t t en to .
7 varOne = 5 ;
8

9 // I s t h i s v a r i a b l e be ing read , wr i t t en to , or n e i t h e r ?
10 varTwo = &varOne ;
11

12 re turn 0 ;
13 }

Figure 6.2: An example of why determining variable accesses is flawed.

6.3 Future Work

There is much work that needs to be conducted to further the contributions presented in
this thesis. These areas of future work fall into four main categories: (i) determining the
feasibility of using the relational algebra toolchain on automotive source code that utilizes
the CAN bus protocol and conducting a case study on this type of software; (ii) updat-
ing ClangEx and Rex to extract more information from C and C++ source code and to
improve current detection; (iii) exploring whether analyzing additional software artifacts
can improve hotspot detection quality; and (iv) developing more hotspots and creating a
method to automatically classify the severity of each hotspot instance. Each of these areas
of future areas of work will be further explained in this section.

First, while this thesis examines a distributed automotive system where features are
separated into different modules and communicate using a common framework, this system
is not fully indicative of other automotive systems. The majority of automotive systems
tend to be complexly distributed and use a centralized CAN bus to communicate. While
Section 5.1 argues that analyzing Autonomoose is sufficient due to the ROS achitecture’s
similarity to the CAN bus architecture, a lot of work is still required to determine how
feature interaction information can be extracted from CAN bus systems. Further, the pres-
ence of the AUTOSAR framework means that extractors targeting traditional automotive

93

systems must be able to understand the AUTOSAR API to detect feature communica-
tions. Once this has been achieved, it is important to conduct a case study using an
AUTOSAR and CAN-based automotive system to ensure the relational algebra toolchain
can be used and to determine whether the hotspots postulated in this thesis are still appli-
cable. Although AUTOSAR is not currently used in many traditional automotive systems,
most automotive companies express their intention to move to the AUTOSAR in the fu-
ture [68]. The advantage of focusing on AUTOSAR in future work is that this framework
divides the software system into multiple layers each abstracted from layers above. This
layered architecture would make analyzing an AUTOSAR-based project far easier than
analyzing another automotive software projects due to a standard, unified API. Analyzing
messages passed between ECUs or services is likely to be simpler than analyzing raw CAN
bus messages.

Another area of future work is to further develop the ClangEx and Rex extractors to
improve their accuracy and to add more TA model elements. While the Rex extractor is
capable of extracting enough information to detect all the hotspot types proposed in this
thesis, extracting further entities and relations from the target source code could improve
hotspot detection and could allow for the detection of more complex hotspots. As an
example, one new relation that could be developed would track how data moves between
function calls. For instance, if there is a function call such as var = function(varA, varB),
it would be important to record which parameters varA and varB transfer their data to
and to record that function returns data to var. For ROS-based projects, entities could
be added to record additional ROS components such as timers4. These could allow users
to track which variables are influenced by timers or services. Further, while most of the
relations in Rex were verified to have over 90% accuracy, it would be good to further
improve their accuracies to produce better models.

While the relational algebra toolchain is effective at processing C and C++ code, it is
also capable of extracting information from other structured artifacts. As an area of future
work, it would be interesting to develop extractors and tools that can process additional
project resources including build scripts. By generating models that include information
about code and other project files, queries could be written that are more precise and
less erroneous. For instance, Autonomoose makes use of XML scripts that configure the
software stack. These configuration scripts dictate which nodes (features) are started
and how many of each node type to start. Without processing these files, models of
Autonomoose contain a “full-project” view of the codebase where all features are active
at the same time. This could result in detected interactions that might never be present

4As per ROS documentation, timers call a certain function with a certain frequency. This could be
used to send data to other features at a set frequency.

94

in an actual run of Autonomoose. In addition, by including information extracted from
configuration scripts, queries could find instances where the same feature running multiple
times may write to the same variable.

Lastly, although the collection of hotspots presented in this thesis is thorough, these
hotspots are not exhaustive. Future work should investigate developing more hotspots to
better detect feature interactions in message-passing systems. While the hotspots presented
in this thesis tend to be generic, some platform-specific hotspots could be introduced. For
instance, ROS has the concept of timers which call specific functions at a particular fre-
quency; developing hotspots that involve those might be useful. Users could discover when
a feature publishes data as a result of a timer. Additionally, it might be beneficial to de-
velop a filtering method for hotspot results to prevent users from being overwhelmed. For
instance, as per Chapter 5, running the behaviour alteration hotspot on Autonomoose re-
turned over 650 results and many of these results were deemed not useful by Autonomoose
research engineers. By being inundated by so many results, there is a possibility that
developers might miss some important instances. Filtering out results might involve ex-
amining each instance to predefined patterns that dictate “severity” or look at the trace
length of an instance. For instance, for the publish alteration hotspot, an instance where a
callback function immediately publishes data might be less severe than an instance where
a callback function writes to a variable that then affects whether data is published.

95

References

[1] Y. Tsutano, S. Bachala, W. Srisa-an, G. Rothermel, and J. Dinh, “An efficient, robust,
and scalable approach for analyzing interacting android apps,” in Proceedings of the
39th International Conference on Software Engineering, pp. 324–334, IEEE Press,
2017.

[2] R. Purandare, J. Darsie, S. Elbaum, and M. B. Dwyer, “Extracting conditional com-
ponent dependence for distributed robotic systems,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pp. 1533–1540, IEEE, 2012.

[3] A. Bridgwater, “Winding up klocwork source code analysis,” oct 2013.

[4] R. N. Charette, “This Car Runs on Code,” IEEE Spectrum, Feb. 2009.

[5] E. Priestley, “How many lines of code is facebook?,” jan 2011.

[6] M. Windows, “Windows - posts,” jan 2011.

[7] G. Clarke, “Cern’s boson hunters tackle big data bug infestation,” sep 2011.

[8] S. Edelstein, “The ford gt has more lines of code than a boeing passenger jet,” may
2014.

[9] OpenHub, “The android open-source project,” 2017.

[10] R. Paul, “Linux kernel in 2011: 15 million total lines of code and microsoft is a top
contributor,” apr 2012.

[11] F. M. JR., “Excitement and dismay at space telescope center,” feb 1989.

[12] C. Metz, “Google is 2 billion lines of codeand its all in one place,” sep 2015.

[13] W. Platz, “Software fail watch: 2016 in review,” whitepaper, Tricentis, 2017.

96

[14] W. Bank, “Mexico gdp per year,” 2017.

[15] S. Borland, “Up to 300,000 heart patients may have been given wrong drugs or advice
due to major nhs it blunder,” may 2016.

[16] N. G. Leveson and C. S. Turner, “An investigation of the therac-25 accidents,” Com-
puter, vol. 26, pp. 18–41, July 1993.

[17] T. Hummel, M. Kühn, J. Bende, and A. Lang, “Advanced driver assistance systems,”
German Insurance Association Insurers Accident Research. Available on www. udv.
de, accessed at, vol. 6, no. 01, p. 2015, 2011.

[18] N. Bomey, “Fiat chrysler recalling 1.25m ram pickups to fix rollover air bag, seat belt
failure,” may 2017.

[19] A. L. Juarez Dominguez, Detection of feature interactions in automotive active safety
features. PhD thesis, University of Waterloo, 2012.

[20] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf, “A conceptual basis for feature
engineering,” Journal of Systems and Software, vol. 49, no. 1, pp. 3 – 15, 1999.

[21] J. Cohen, “11 proven practices for more effective, efficient peer code review,” jan 2011.

[22] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros, A. Kam-
sky, S. McPeak, and D. Engler, “A few billion lines of code later: using static analysis
to find bugs in the real world,” Communications of the ACM, vol. 53, no. 2, pp. 66–75,
2010.

[23] V. Okun, A. Delaitre, and B. P. E., “Report on the static analysis tool exposition
(sate) iv,” in NIST Special Publication 500-297, 2013.

[24] C. W. CLEVERDON, “On the inverse relationship of recall and precision,” Journal
of Documentation, vol. 28, no. 3, pp. 195–201, 1972.

[25] C. Willis, “Cas static analysis tool study overview,” in proc. eleventh annual high
confidence software and systems conference, p. 86, National Security Agency, 2011.

[26] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull, “Graphvizopen
source graph drawing tools,” in International Symposium on Graph Drawing, pp. 483–
484, Springer, 2001.

97

[27] S. Jänicke, A. Geßner, G. Franzini, M. Terras, S. Mahony, and G. Scheuermann,
“Traviz: a visualization for variant graphs,” Digital Scholarship in the Humanities,
vol. 30, no. suppl 1, pp. i83–i99, 2015.

[28] G. Mühl, L. Fiege, and P. Pietzuch, Distributed event-based systems. Springer Science
& Business Media, 2006.

[29] G. Safi, A. Shahbazian, W. G. J. Halfond, and N. Medvidovic, “Detecting event
anomalies in event-based systems,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, (New York, NY, USA),
pp. 25–37, ACM, 2015.

[30] K. R. Jayaram and P. Eugster, “Program analysis for event-based distributed sys-
tems,” in Proceedings of the 5th ACM International Conference on Distributed Event-
based System, DEBS ’11, (New York, NY, USA), pp. 113–124, ACM, 2011.

[31] D. Kozen, “Kleene algebra with tests and the static analysis of programs,” tech. rep.,
Cornell University, 2003.

[32] SciTools, “Scitools’ understand,” 2017.

[33] SciTools, “Writing codecheck scripts,” 2017.

[34] C. Bolduc, “Lessons learned: Using a static analysis tool within a continuous in-
tegration system,” in 2016 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pp. 37–40, Oct 2016.

[35] A. Hadoop, “Hadoop,” 2009.

[36] C. Boost, “Libraries,” 2012.

[37] S. A. G. (SWAG), “Javex - java fact extractor,” apr 2010.

[38] S. A. G. (SWAG), “Cppx - open source c++ fact extractor,” jun 2001.

[39] S. A. G. (SWAG), “Ldx and bfx pipeline,” 2010.

[40] R. Holt, “The tuple-attribute (ta) language,” 1997.

[41] A. Tarski, “On the calculus of relations,” The Journal of Symbolic Logic, vol. 6, no. 03,
pp. 73–89, 1941.

[42] J. Uhl, “Rigi standard format,” 1996.

98

[43] R. C. Holt, “Structural manipulations of software architecture using tarski relational
algebra,” in Proceedings Fifth Working Conference on Reverse Engineering (Cat.
No.98TB100261), pp. 210–219, Oct 1998.

[44] D. Beyer, A. Noack, and C. Lewerentz, “Simple and efficient relational querying of
software structures,” in Reverse Engineering, 2003. WCRE 2003. Proceedings. 10th
Working Conference on, pp. 216–225, IEEE, 2003.

[45] J. Wu, Open Source Software Evolution and Its Dynamics. PhD thesis, University of
Waterloo, 2006.

[46] N. Synytskyy, R. C. Holt, and I. Davis, “Browsing software architectures with lsedit,”
in 13th International Workshop on Program Comprehension (IWPC’05), pp. 176–178,
May 2005.

[47] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source
software, vol. 3, p. 5, Kobe, 2009.

[48] S. Agarwal, “How to use irobot create with ros indigo and gazebo,” feb 2015.

[49] H. Fahmy and R. C. Holt, “Software architecture transformations,” in Proceedings
2000 International Conference on Software Maintenance, pp. 88–96, 2000.

[50] S. A. G. (SWAG), “Asx - c/c++/assembler fact extractor,” jan 2017.

[51] I. J. Davis, M. W. Godfrey, R. C. Holt, S. Mankovskii, and N. Minchenko, “Analyzing
assembler to eliminate dead functions: An industrial experience,” in 2012 16th Eu-
ropean Conference on Software Maintenance and Reengineering, pp. 467–470, March
2012.

[52] C. O.-S. Compiler, “Language compatibility.”

[53] M. Jones, “Gcc hacks in the linux kernel,” nov 2008.

[54] E. Ruelas, “Symptoms of a bad or failing electronic brake control module (ebcm),”
Jan 2016.

[55] S. Corrigan, “Introduction to the controller area network (can),” Texas Instrument,
Application Report, 2008.

99

[56] I. Standard, “Iso 11898, 1993,” Road vehicles–interchange of digital information–
Controller Area Network (CAN) for high-speed communication, 1993.

[57] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, T. Kohno, et al., “Comprehensive experimental analyses of
automotive attack surfaces.,” in USENIX Security Symposium, San Francisco, 2011.

[58] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller, P. Heitkämper,
G. Kinkelin, K. Nishikawa, and K. Lange, “Autosar–a worldwide standard is on the
road,” in 14th International VDI Congress Electronic Systems for Vehicles, Baden-
Baden, vol. 62, 2009.

[59] J. Alexandersson and O. Nordin, “Implementation of can communication stack in
autosar,” 2015.

[60] J. D. Herbsleb, “Global software engineering: The future of socio-technical coordina-
tion,” in 2007 Future of Software Engineering, FOSE ’07, (Washington, DC, USA),
pp. 188–198, IEEE Computer Society, 2007.

[61] S. O.-R. A. V. S. Committee et al., “Taxonomy and definitions for terms related to
on-road motor vehicle automated driving systems,” SAE Standard J3016, pp. 01–16,
2014.

[62] L. Mathews, “Autonomoose is the first driverless car on canadas roads,” nov 2016.

[63] A. Dakibay, “Autonomous driving: Baseline autonomy,” Master’s thesis, University
of Waterloo, 2017.

[64] Bosch Semiconductors and Sensors, CAN Specification, 2.0 ed., sep 1991.

[65] J. M. O’Kane, A Gentle Introduction to ROS, vol. 2.1.3. University of South Carolina,
apr 2014.

[66] J. Kuehn, “Ros code quality,” Mar 2013.

[67] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in WODA 2003:
ICSE Workshop on Dynamic Analysis, pp. 24 – 27, 2003.

[68] F. Kirschke-Biller et al., “Autosar–a worldwide standard current developments, roll-
out and outlook,” in 15th International VDI Congress Electronic Systems for Vehicles,
Baden-Baden, Germany, 2011.

100

APPENDICES

101

Appendix A

Installing & Using the bfx64
Extractor

bfx64 is a fact extractor designed to collect basic program information from object files.
Based upon Jingwei Wu’s BFX extractor [45], bfx64 is capable of processing 32-bit and
64-bit ELF-based object files to generate a TA model that contains information about
that object file’s functions, variables, and the relationships amongst them. While this fact
extractor was not covered in this thesis, bfx64 was developed during my research at the
University of Waterloo.

A.1 Installing bfx64

Before bfx64 can be installed, there are several libraries and tools that must be present
on the target system. First, since ELF object files are encoded in a binary format, bfx64
uses a custom C++ library called ELFIO to assist with object file processing. In addition,
CMake is required to build bfx64 and the C++ Boost libraries are required for command
line parsing and file processing. Once each of these are installed, bfx64 can be built from
source and run.

The remainder of this section walks through installing CMake, Boost, and ELFIO on
a target Linux system and then shows how bfx64 can be built from source. Section A.1.1
describes CMake, Boost, and ELFIO installation. Section A.1.2 describes how to build
bfx64.

102

A.1.1 Prerequisites

CMake

If using a Ubuntu or Debian-based system, installing CMake is as simple as using apt-get.
This is done using the following two commands:

$ sudo apt−get i n s t a l l cmake
$ cmake −−ve r s i on

Using apt-get might not install the latest version of CMake. However, as long as it installs
a version of CMake greater than 3.0.0, it can be used to build bfx64. If this is the case,
proceed to the Boost installation instructions.

If this method did not work, CMake must be built from source. To do this, the latest
version of CMake source needs to be downloaded from the CMake website, compiled, and
then installed. This guide provides instructions on how to build CMake 3.7.0 from source.
The first step is to download the CMake source code and unzip it. This can be from the
command line using the following commands:

$ wget https : // cmake . org / f i l e s /v3 .7/ cmake−3 . 7 . 0 . ta r . gz
$ ta r xvz f cmake−3 . 7 . 0 . ta r . gz
$ cd cmake−3.7.0

Once in the cmake-3.7.0 directory, CMake can be configured and install on the target
system. This process may take several minutes. To do this, use the following commands:

$. / c o n f i g u r e
$ make
$ make i n s t a l l
$ cmake −−ve r s i on

If these steps completed successfully, CMake is now installed and ready for use.

Boost

Installing Boost on Ubuntu or Debian-based systems is extremely easy by using the
apt-get package manager. This installation process will install the libraries and add
them to the target system’s default include path. This can be done using the following
command:

$ sudo apt i n s t a l l l i bboo s t−a l l−dev

103

ELFIO

To install ELFIO, it needs to be downloaded and then installed to the target system’s
default include path. Since ELFIO is not a part of the Ubuntu or Debian software universe,
manual installation is required. First, the source code needs to be downloaded from the
ELFIO website and extracted. This can be achieved using the following command:

$ wget https : // downloads . s o u r c e f o r g e . net / p r o j e c t \
/ e l f i o /ELFIO−s ou r c e s /ELFIO−3.2/ e l f i o −3.2. z ip

$ gunzip e l f i o −3.2. z ip
$ cd e l f i o −3.2

With ELFIO downloaded and unzipped, it can now be installed. To do this, the following
shell script needs to be run:

$. / i n s t a l l −sh . sh

A.1.2 Building bfx64

To build bfx64, the source code needs to be checked out from the bfx64 GitHub repository
and then built using CMake. If bfx64 fails to build, first ensure that all tools and libraries
installed in the previous section are present on the target system.

To download bfx64, first checkout the source code from GitHub by using the following
command:

$ g i t checkout https : // github . com/bmuscede/ bfx64 . g i t

If this completed successfully, a directory called bfx64 will be created that contains all the
bfx64 source code.

The next step is to build bfx64. These steps install bfx64 in a directory called bfx64-Build

adjacent to the bfx64 directory. To install bfx64 somewhere else, simply replace the
bfx64-Build string in the following commands with a desired directory name. The fol-
lowing steps install bfx64 in the bfx64-Build directory:

$ mkdir bfx64−Build
$ cd bfx64−Build
$ cmake −G ”Unix Make f i l e s ” . . / bfx64
$ make

104

By running these commands, CMake will build the source code and an executable called
bfx64 will be created inside the bfx64-Build directory. To verify that bfx64 built correctly,
run:

$. / bfx64 −−help

This will show bfx64’s version and license. Now, bfx64 is ready to process ELF-based,
C/C++ object files and generate TA models.

A.2 Using bfx64

As previously stated, bfx64 is used to analyze ELF-based object files that correspond to
C or C++ source code. Using bfx64 is easy as it runs on the command line, automatically
finds and processes object files, and then outputs a resultant TA model.

The remainder of this section describes how to use bfx64. Section A.2.1 highlights basic
commands and Section A.2.2 highlights advanced commands. For more information about
a command, refer to bfx64’s help screen by running bfx64 --help.

A.2.1 Basic Usage

The easiest way to generate a TA model of object files is to run bfx64 with no arguments.
In the terminal, navigate to the root directory of a project to analyze and then type bfx64.
By doing this, bfx64 will scan the current directory and all descendant directories for object
files. These files will then be processed one at a time. Lastly, bfx64 will save the resultant
TA model to disk. By default, the TA model is saved to ./out.ta. Figure A.1 shows what
bfx64 looks like as it is processing object files inside a demo directory.

Basic Command Line Arguments

bfx64 has four basic command line arguments that can be set to alter its analysis. Table
A.1 provides quick reference information for each of these arguments. The remainder of
this section will describe each of these arguments in detail.

The first argument is --output (-o) [NAME]. This allows users to specify where the
resultant TA model is outputted to. The [NAME] portion of the argument should be a
relative or absolute path. As shown in A.1, if the --output argument is not used, the TA
model will be saved to ./out.ta.

105

Figure A.1: A run of bfx64 with no arguments.

The --dir (-d) [DIRECTORY] argument can be used to change where bfx64 looks for
object files. If this argument is not used, bfx64 will just look in the current working
directory for object files. The [DIRECTORY] portion of the argument is the directory for
bfx64 to look in.

The --verbose (-v) flag causes bfx64 to print more detailed information to screen.
Instead of showing a progress bar while bfx64 is processing object files (as shown in Figure
A.1), verbose mode prints information about each object file as it is being processed.

Last, the --help (-h) flag displays license information and program options. This flag
is processed prior to evaluating any other program argument.

Basic bfx64 Program Arguments
Long Option Short Option Description

--output [NAME] -o [NAME] Changes the name of the file that bfx64 out-
puts.

--dir [DIRECTORY] -d [DIRECTORY] Changes the directory where bfx64 searches
for object files.

--verbose -v Shows verbose processing information.
--help -h Shows program help information.

Table A.1: A collection of basic bfx64 arguments.

A.2.2 Advanced Features

There are also some advanced arguments that provide more fine-grained control over bfx64.
Table A.2 shows the advanced program arguments that bfx64 supports. There are two

106

types of advanced features: file processing arguments and low-memory arguments.

Advanced bfx64 Program Arguments
Long Option Short Option Description
--suppress -s Forces bfx64 to not search for object files.

--object [FILENAME] -i [FILENAME] Allows users to specify an object file to
include.

--exclude [FILENAME] -e [FILENAME] Allows users to specify an object file to
exclude.

--low -l (Low-memory mode) Dumps the in-
memory graph to disk every so often to
prevent large projects fro crashing bfx64.

--dump [NUM] -u [NUM] (Low memory mode) Sets the interval in
which the graph is dumped to disk.

Table A.2: A collection of advanced bfx64 arguments.

File Processing Arguments

There are three file processing arguments that can be used. First, users can manually spec-
ify files they want to include or exclude from processing. The --object (-i) [FILENAME]

argument allows users to specify files they want to add. The --exclude (-e) [FILENAME]

argument allows users to remove files from the processing queue. Both these options can
be used multiple times. The --object argument is useful for adding extra files in con-
junction to bfx64’s search tool. The --exclude argument is useful for removing specific
object files from the object files found using bfx64’s search tool. For example, if a project
has hundreds of object files in a single directory and a user wants to process all but one of
these object files, they can simply exclude that one object file.

The other file processing argument is the --suppress (-s) flag. It forces bfx64 to
not search for object files and, instead, rely only on object files added using the --object

option. If this flag is used, the --object option must also be used at least once or else
bfx64 will have no object files to process.

As an example of these file processing arguments, say a user wants to process a series
of object files inside a directory called bfx64Demo as well as an additional object file called
demoOne.cpp.o inside an adjacent directory called objectFiles. Also, while that user
wants to process most of the object files inside bfx64Demo, they do not want to process the

107

Figure A.2: A run of bfx64 with some advanced processing options enabled.

main.cpp.o object file. Figure A.2 shows how this can be achieved using bfx64. In this
example the -i argument is used to tell bfx64 to include the demoOne.cpp.o object file
while the -e argument is used to tell bfx64 to exclude the main.cpp.o object file. Lastly,
the -v flag puts bfx64 into verbose mode. This tells the user which files have been found
and which files have been added and removed.

Low-Memory Arguments

Since some software projects can consist of thousands of object files, bfx64 has two argu-
ments that improve performance on low-memory systems. The --low (-l) flag tells bfx64
to enable low-memory mode. In this mode, bfx64 will dump its in-memory TA graph to
disk every so often to free up memory. By default, this graph dump occurs every 100 ob-
ject files. The --dump (-u) [NUM] argument allows users to set their own dump interval.
Since this argument can only be used in low memory mode, using it without the --low

flag will cause bfx64 to display an error.

As an example, Figure A.3 shows a run of bfx64 in low-memory mode. Here, low-
memory mode was enabled by using the --low flag and bfx64 was set to dump the TA
model after every object file is processed1. Lastly, verbose mode is set using the -v flag.
When low-memory mode is enabled, verbose mode notifies the user every time the object
file is dumped.

1This is merely for demonstration. Since dumping the model impacts performance, a user would want
to set this value as high as possible without causing bfx64 to crash.

108

Figure A.3: A run of bfx64 in low-memory mode.

109

Appendix B

Installing & Using ClangEx/Rex

B.1 Installing ClangEx & Rex

ClangEx and Rex are two separate C and C++ fact extractors that utilize similar libraries.
Due to this, this section will provide information that installs the required libraries and
tools used to install both extractors. Before they can be built, ClangEx and Rex both re-
quire the following to be installed on the target system: CMake 3.0.0 or greater, Boost,
and Clang 5.0 or greater. CMake is used to build ClangEx and Rex, Boost is a collection
of C++ libraries that is used to process command line arguments and directory informa-
tion, and Clang is used to obtain AST information about the source code currently being
processed. The Clang API provides methods for operating on C/C++ language features
and carries out the brunt of the C and C++ analysis.

The remainder of this section provides information on how to install these required
libraries and then how to build ClangEx and Rex from source. Section B.1.1 describes how
to install CMake, Boost, and Clang. If any of these are already installed on the target
system, it can be skipped. Section B.1.2 describes how to build ClangEx from source and
Section B.1.3 describes how to build Rex from source.

B.1.1 Prerequisites

CMake

If using a Ubuntu or Debian-based system, installing CMake is as simple as using apt-get.
This is done using the following two commands:

110

$ sudo apt−get i n s t a l l cmake
$ cmake −−ve r s i on

Using apt-get might not install the latest version of CMake. However, as long as it installs
a version of CMake greater than 3.0.0, it can be used to build ClangEx and Rex. If this
is the case, proceed to the Boost installation instructions.

If this method did not work, CMake must be built from source. To do this, the latest
version of CMake source needs to be downloaded from the CMake website, compiled, and
then installed. This guide provides instructions on how to build CMake 3.7.0 from source.
The first step is to download the CMake source code and unzip it. This can be from the
command line using the following commands:

$ wget https : // cmake . org / f i l e s /v3 .7/ cmake−3 . 7 . 0 . ta r . gz
$ ta r xvz f cmake−3 . 7 . 0 . ta r . gz
$ cd cmake−3.7.0

Once in the cmake-3.7.0 directory, CMake can be configured and install on the target
system. This process may take several minutes. To do this, use the following commands:

$. / c o n f i g u r e
$ make
$ make i n s t a l l
$ cmake −−ve r s i on

If these steps completed successfully, CMake is now installed and ready for use.

Boost

Installing Boost on Ubuntu or Debian-based systems is extremely easy by using the
apt-get package manager. This installation process will install the libraries and add
them to the target system’s default include path. This can be done using the following
command:

$ sudo apt i n s t a l l l i bboo s t−a l l−dev

Clang

While Clang exists as a package that can be installed using apt-get, it needs to be installed
from source to take advantage of Clang’s API. To do this, source code needs to be checked

111

out from the official Clang repository, compiled, and then installed. The first step is to
checkout the Clang source code using Subversion. This can be done by executing the
following:

$ svn co http :// llvm . org /svn/ llvm−p r o j e c t / llvm / trunk llvm
$ cd l lvm / t o o l s
$ svn co http :// llvm . org /svn/ llvm−p r o j e c t / c f e / trunk c lang
$ cd c lang / t o o l s
$ svn co http :// llvm . org /svn/ llvm−p r o j e c t /

clang−t oo l s−ext ra / trunk ext ra
$ cd . . / . . / . . / . .

These commands will download the LLVM and Clang source code to a directory called
llvm in the current working directory. Now, Clang can now be built. This process can
take up to several hours and uses a large amount of disk space. This guide shows how to
build Clang in a directory called Clang-Build that is adjacent to the llvm directory. To
use another directory, simply replace the Clang-Build string in the following commands
with another directory name.

The following commands build Clang in the Clang-Build directory:

$ mkdir Clang−Build
$ cd Clang−Build
$ cmake −G ”Unix Make f i l e s ” −DCMAKE BUILD TYPE=Release

−DLLVM ENABLE EH=ON −DLLVM ENABLE RTTI=ON . . / l lvm
$ make
$ make i n s t a l l

Once these steps have been completed, Clang and LLVM have been installed. By typing
clang --version, Clang should report that it is version 5.0 or higher.

B.1.2 Building ClangEx

To build ClangEx, the source code needs to be checked out from the ClangEx GitHub
repository and then built using CMake. If ClangEx fails to build, first ensure that all tools
and libraries installed in the previous section are present on the target system.

To download ClangEx, you first need to checkout the source code from GitHub. Before
checking out the repository, ensure that you are in a directory where you want to install
ClangEx. To checkout the ClangEx code from GitHub, execute the following command:

112

$ g i t checkout https : // github . com/bmuscede/ClangEx . g i t

If this completed successfully, a directory called ClangEx will be created that contains all
ClangEx source code.

Next, before ClangEx can be built, two separate environment variables must be set:
LLVM PATH and CLANG VER. The LLVM PATH variable tells ClangEx where LLVM and Clang
were built to. The CLANG VER variable is the version of Clang installed. To set these
variables, open up .bashrc located in the home directory and add the following lines to
the bottom of the file:

$ export LLVM PATH=<PATH TO CLANG−BUILD>
$ export CLANG VER=<VERSION OF CLANG>

Restart the terminal to ensure these variables have been exported.

The next step is to build ClangEx. These steps install ClangEx in a directory called
ClangEx-Build adjacent to the ClangEx directory. To install ClangEx somewhere else,
simply replace the ClangEx-Build string in the following commands with a desired direc-
tory name. The following steps install ClangEx in the ClangEx-Build directory:

$ mkdir ClangEx−Build
$ cd ClangEx−Build
$ cmake −G ”Unix Make f i l e s ” . . / ClangEx
$ make

By running these commands, CMake will build the source code and an executable called
ClangEx will be created inside the ClangEx-Build directory. To verify that ClangEx built
correctly, run:

$. / ClangEx

If ClangEx built, this command will run the ClangEx executable. This will print a splash
screen and information to the screen. Now, ClangEx is ready to process C/C++ source
files and generate tuple-attribute models.

B.1.3 Building Rex

To build Rex, the source code needs to be checked out from the Rex GitHub repository and
then built using CMake. If ClangEx fails to build, first ensure that all tools and libraries
installed in the previous section are present on the target system.

113

To download Rex, you first need to checkout the source code from GitHub. Before
checking out the repository, ensure that you are in a directory where you want to install
Rex. To checkout the Rex code from GitHub, execute the following command:

$ g i t checkout https : // github . com/bmuscede/Rex . g i t

If this completed successfully, a directory called Rex will be created that contains all Rex
source code.

Next, before Rex can be built, two separate environment variables must be set: LLVM PATH

and CLANG VER. The LLVM PATH variable tells Rex where LLVM and Clang were built to.
The CLANG VER variable is the version of Clang installed. To set these variables, open up
.bashrc located in the home directory and add the following lines to the bottom of the
file:

$ export LLVM PATH=<PATH TO CLANG−BUILD>
$ export CLANG VER=<VERSION OF CLANG>

Restart the terminal to ensure these variables have been exported.

The next step is to build Rex. These steps install Rex in a directory called Rex-Build

adjacent to the Rex directory. To install Rex somewhere else, simply replace the Rex-Build
string in the following commands with a desired directory name. The following steps install
Rex in the Rex-Build directory:

$ mkdir Rex−Build
$ cd Rex−Build
$ cmake −G ”Unix Make f i l e s ” . . / Rex
$ make

By running these commands, CMake will build the source code and an executable called
Rex will be created inside the Rex-Build directory. To verify that Rex built correctly, run:

$. / Rex

If Rex built, this command will run the Rex executable. This will print a splash screen
and information to the screen. Now, Rex is ready to process ROS-based C/C++ source
files and generate tuple-attribute models.

B.2 Using ClangEx

ClangEx is an interpretative command line tool that allows users to run multiple analysis
jobs in a single run of the program. Figure B.1 shows the steps required to process C or

114

C++ projects using ClangEx. In this figure, green boxes represent mandatory steps while
purple boxes represent optional steps. In the pipeline, a user starts ClangEx, adds the C
or C++ files they want analyzed, enables or disables certain language features to include
in the final model, generates a model that represents those source files, and then outputs
that model. As per the figure, multiple models can be generated and outputted in a single
run of ClangEx.

Figure B.1: The ClangEx processing pipeline.

When ClangEx is first started, it displays an empty prompt and waits for a user’s
commands. Table B.2 shows a list of commands that ClangEx accepts. To display help
information, simply type help. For help on a specific ClangEx command, the command
help [COMMAND] provides tailored help information for that specific command. The re-
mainder of this guide will walk through the ClangEx processing pipeline shown in Figure
B.1.

B.2.1 Step 1 - Adding and Removing Files

Before ClangEx is able to generate a model of the software project, files need to be added to
the queue. This can be done using the add command. Removing files from the processing
queue is also possible by using the remove command. There are two ways to add files
to ClangEx: adding an individual file directly or recursively adding files in bulk using a
directory. To add an individual file directly, use the add -s [FILE] command. In this
command, the [FILE] portion represents the path to the file to add. Files added in this
fashion can have any extension. If you attempt to add a file that does not yet exist,
ClangEx will display a warning that this file does not exist and will ask if you want to
continue. It is acceptable to have files in the processing queue that do not yet exist as long
as they exist in step 3.

115

Files can be added in bulk through a built-in source file search tool. The command
add [DIRECTORY] will do this. In this command, [DIRECTORY] represents a directory that
contains a collection of source files you want added. This process is recursive; ClangEx will
search all directories that are descendants to the directory passed in this add command.
As an example, say the command add / is used.From this, ClangEx will add every single
C or C++ source file on the system to the processing queue. While C and C++ files can
technically end with any extension, this search tool only looks for files that end with the
following extensions: (i) .c; (ii) .cc; and (iii) .cpp.

Removing files is also possible. There are two ways files can be removed; individually
by specifying their full path or by using a regular expression to match a collection of files.
To remove a single file, use the remove -s [FILE] command. In it [FILE] is the absolute
path of the file to be removed. If this does not match any files in the queue, ClangEx
will display an error. To remove files in bulk, use the remove -r [REGEX] command.
Here, [REGEX] is a regular expression that will be used to remove any file that matches
it. Importantly, ClangEx will apply the regular expression on the whole file path. Once
complete, ClangEx will report the number of files removed; this can be zero if the regular
expression does not match any files.

B.2.2 Step 2 - Enabling or Disabling Features

An optional step of the processing pipeline is the ability to enable or disable C and C++
language features that are included in resultant TA models. By default, all language
features are enabled when the program starts. If a language feature is enabled or disabled,
it will remain that way until it is enabled or disabled again or until ClangEx is restarted.
Table B.1 shows all the language features that can be enabled or disabled.

To enable a language feature simply use the enable [FEATURES...] command. In this
command, the [FEATURES...] portion is a list of language features to enable separated by
spaces. For instance, say a user wants to enable the cVariable and cClass features. To do
this, they would type enable cVariable cClass. To disable these features, the disable

[FEATURES...] command is used. This command works in the same fashion. If a user
would like to disable the cEnum feature, simply type disable cEnum.

B.2.3 Step 3 - Analyzing Files

Once files have been added and language features have been optionally enabled or disabled,
ClangEx can now process this source code to generate a model. The command to start this

116

Language Feature Name Description
cSubSystem Directories that contain source code files.

cFile Source code files (headers and source files).
cClass C++ classes.

cFunction Function definitions/declarations.
cVariable Any type of variable (fields and variables).
cEnum Enumerations and enumeration constants.
cStruct Structure definitions.
cUnion Union definitions.

Table B.1: ClangEx language feature names.

analysis is generate. Figure B.2 shows ClangEx while it is analyzing source code. Note
that ClangEx will output any compiler errors or warnings that are encountered during
analysis.

Figure B.2: ClangEx while running on some unspecified source code.

The generate command will only work if there is at least one file in the processing
queue. If there are no files in the queue, ClangEx will display an error message.

With the generate command, two different processing modes can be set: regular and
blob mode. By default, ClangEx generates models using regular mode. This means that
using the generate command with no arguments yields a model created using the regular

117

analysis methodology. If a user wants to generate a model using the blob methodology,
they can use the following command: generate -b.

Using the two methodologies can result in drastically different models. Regular mode
only analyzes the contents inside each source file and ignores all header files. Therefore,
if a function is declared and defined inside a header file, regular mode will ignore it. The
blob methodology does the opposite; it looks at each source file and all header files that
file includes and processes the contents (minus system header files).

One last caveat with generating models. If the project being processed uses any compiler
flags, a compilation database will need to be generated for that project an placed in the
root directory of all the project source files. All files being analyzed by ClangEx must either
be in the same directory as the database or in some descendant directory. A compilation
database is a JSON file that has an entry for each file that ClangEx will analyze. If a
file is not present in that database, it will be ignored. If a compilation database does not
exist, ClangEx will show a warning and attempt to proceed without it.

B.2.4 Step 4 - Outputting Models

Once ClangEx has generated models, they need to be outputted to disk as TA files. Since
ClangEx can generate multiple models in one program run, the output command is designed
to output multiple models at once. This step is divided into two parts. There is a guide
for users who only want to output a single model and a guide for users who want to output
multiple models.

One Model - If only one model was generated in a ClangEx run, outputting that model
is extremely easy. The command output [FILENAME] can be used. In this command, the
[FILENAME] portion represents the name of TA model to output. This filename should
not include an extension at the end; ClangEx will automatically add that for you in the
form of the .ta extension.

Multiple Models - There are two options to output multiple models using ClangEx.
They can either be all outputted at the same time or a specific model can be outputted by
typing its model number. To output all models at once, use the output [BASE FILENAME]

command. In this case, [BASE FILENAME] is a base file name that will be shared by
all models. Each model will be saved with this base name with its model number and
extension appended to the end. For instance, say a user types output baseName and there

118

are two models to output. In that case, ClangEx will output two files: baseName-0.ta and
baseName-1.ta. The other method allows users to output a specific model. To do this, the
command output -s [NUM] [FILENAME] needs to be used. In this command, the [NUM]

option specifies the model number. For each model, its model number is displayed when
that model is generated by the generate command.

B.3 Using Rex

Since Rex is based upon ClangEx, it operates in a similar manner. Rex’s processing pipeline
is the exact same as ClangEx with two differences. First, users cannot enable or disable
specific language features with Rex. Second, there is an optional step after file analysis
called resolve features. Figure B.3 shows the Rex pipeline in detail. In this, green boxes
represent mandatory steps and purple boxes are optional steps. This pipeline is capable of
generating multiple models in a single run of the Rex extractor. There are four major steps
when analyzing projects using Rex: (i) adding files to the processing queue; (ii) building
a model of all source files in the processing queue; (iii) resolving which classes belong to
which features; and (iv) outputting all generated models to disk as tuple-attribute files.

Figure B.3: The Rex processing pipeline.

Since the Rex pipeline is almost identical to the ClangEx pipeline, it uses the same
commands as ClangEx. Table B.3 gives common Rex commands that can be used while
running the extractor. This section will not delve into too much detail on how to use Rex.
For an example on how to add files, analyze files, or output models, refer to the ClangEx
guide. The remainder of this guide will describe the resolve features step and discuss any
other differences between Rex and ClangEx.

119

B.3.1 Optional Step - Feature Resolution

Once a project is analyzed using Rex, feature resolution can be conducted. This is an
optional step that can be used when entire ROS projects are analyzed at once. For instance,
say a user is analyzing a ROS project with four different ROS packages (features). The
feature resolution step links each class and ROS component with the ROS package that it
is declared in.

To perform feature resolution, the command resolve [DIRECTORY] can be used. It
can only be used once a ROS project has been analyzed. The [DIRECTORY] portion of
the command specifies a directory that contains a compilation database for each ROS
package in the project. These compilation databases can be in a descendant directory of
the directory supplied.

B.3.2 Differences Between Rex and ClangEx

There are two other notable differences between Rex and ClangEx from an operational
perspective. The first is that Rex has no enable/disable language feature. This means
that all language features present in the TA metamodel will always be included. While
Rex does not have this functionality, nodes or edges in the TA models can be retroactively
removed through Grok scripts. Additionally, unlike ClangEx, all language features in the
Rex metamodel are required for effective hotspot detection.

The other major difference is that, instead of ClangEx’s regular and blob modes, Rex
has the simple-analysis and full-analysis processing modes. The models that these two
modes generate are at different levels of granularity. Simple-analysis mode generates a
model that shows which classes communicate with which whereas full-analysis mode gen-
erates a heavier model showing all C++ language features. Full-analysis mode is enabled
by default and is used when the generate command is typed. Simple-analysis mode needs
to be activated by using the -m flag with the generate command: generate -m.

120

ClangEx Quick Reference Sheet
Command Usage Description
help help [COMMAND] Displays program help information.

Can also display specific information
tailored to a particular command.

add add [DIRECTORY]

add -s [FILE]

Adds a single source file (with the
-s flag) or recursively adds all the
source files inside a directory. These
will be processed by ClangEx.

remove remove -r [REGEX]

remove -s [FILE]

Removes all files that match a cer-
tain regular expression (with the -r

flag) or a singular file name (with
the -s flag).

enable enable [FEATURES...] Allows ClangEx to process specific
language features. See Section B.2.2
for a list of language features that
can be turned on.

disable disable [FEATURES...] Stops ClangEx from processing spe-
cific language features. See Section
B.2.2 for a list of language features
that can be turned off.

generate generate

generate -b

Processes all source files that have
been added using the add command.
The -b flag tells ClangEx to process
the files using the blob methodology.

output output [FILENAME]

output -s [NUM] [FILENAME]

Outputs all models stored by
ClangEx. By specifying a file name,
ClangEx will output all TA models
using that file name as a base. Also,
the -s flag outputs an individual
model based on its model number.

script script [SCRIPT FILE] Runs a specified script file. Scripts
are a collection of ClangEx com-
mands in some text file. When the
script finishes, ClangEx will return
back to its command prompt.

Table B.2: An overview of common ClangEx commands.

121

Rex Quick Reference Sheet
Command Usage Description
help help [COMMAND] Displays program help information.

Can also display specific information
tailored to a particular command.

add add [DIRECTORY]

add -s [FILE]

Adds a single source file (with the
-s flag) or recursively adds all the
source files inside a directory. These
will be processed by Rex.

remove remove -r [REGEX]

remove -s [FILE]

Removes all files that match a cer-
tain regular expression (with the -r

flag) or a singular file name (with
the -s flag).

generate generate

generate -m

Processes all source files that have
been added using the add command.
The -m flag tells Rex to generate the
model in simple-analysis mode.

resolve resolve [DIRECTORY] Identifies which ROS package each
class and ROS component be-
longs to. The directory specified
must have a separate compilation
database for each ROS package.

output output [FILENAME]

output -s [NUM] [FILENAME]

Outputs all models stored by Rex.
By specifying a file name, Rex will
output all TA models using that file
name as a base. Also, the -s flag
outputs an individual model based
on its model number.

script script [SCRIPT FILE] Runs a specified script file. Scripts
are a collection of Rex commands
in some text file. When the script
finishes, Rex will return back to its
command prompt.

Table B.3: An overview of common Rex commands.

122

Appendix C

Relational Algebra Scripts

This chapter presents all Grok relational algebra scripts that were used in the case study on
Autonomoose. There is a script for each of the seven types of hotspots that were presented
in this thesis and can be used for programs that utilize ROS for communication between
features. These scripts were each written to operate on TA models generated by the Rex
extractor and utilize the jGrok syntax1. The remainder of this chapter presents each of
the hotspot scripts and describes how they work.

C.1 Feature Communication Hotspots

C.1.1 Component-Based Communication

Figure C.1 shows the Grok script that detects component-based communications. In it,
lines 1 through 6 check arguments given to the script to ensure that a TA model was
supplied. Lines 9 through 11 initialize Grok by setting the $INSTANCE variable to the
empty set and then by loading the desired TA model into memory. Lines 14 and 15 are
the central part of the script; line 14 joins the publish and subscribe relations together
using the selection operator and then lifts this joined relation to the parent classes. Line
15 gets any indirect communications by taking the lifted direct relation and then gets the
transitive closure (the + operator). Line 15 also uses set difference to remove any direct
entries from that list. Finally, lines 17 through 22 print the relations. The reason inv

1jGrok syntax can be accessed here: http://www.swag.uwaterloo.ca/jgrok/grokdoc/operators.

html

123

http://www.swag.uwaterloo.ca/jgrok/grokdoc/operators.html
http://www.swag.uwaterloo.ca/jgrok/grokdoc/operators.html

@label o <RELATION NAME> o @label is needed in lines 19 and 22 is because without it,
the IDs of the features communicating would be printed rather than their human-readable
name.

1 //Argument check .
2 i f ($# != 1) {
3 pr in t ”Usage : Grok1 . q l [ROS MODEL] ”
4 pr in t ”Gets the f e a t u r e s that d i r e c t l y / i n d i r e c t l y c a l l each other . ”
5 re turn ;
6 }
7

8 // Sets up Grok .
9 $INSTANCE = e s e t ;

10 i n p u t F i l e = $1 ;
11 get ta (i n p u t F i l e) ;
12

13 // Performs l i f t i n g and ge t s d i r e c t / i n d i r e c t c a l l s .
14 d i r e c t = conta in o (pub l i sh o s ub s c r i b e) o (inv conta in) ;
15 i n d i r e c t = (d i r e c t +) − d i r e c t ;
16

17 // Pr in t s the r e s u l t s .
18 pr in t ” Di rec t Messages : ”
19 inv @label o (compContain o d i r e c t o inv compContain) o @label ;
20

21 pr in t ” I n d i r e c t Messages : ” ;
22 inv @label o (compContain o i n d i r e c t o inv compContain) o @label ;

Figure C.1: Grok script that detects the component-based communication hotspot.

C.1.2 Dataflow Communication

Figure C.2 shows the Grok script that detects instances of the dataflow communication
hotspot. For brevity, while also required in this script, lines 1 through 11 of the component-
based communication script in Figure C.1 were omitted from this script.

Like in the component-based communication script, line 2 of Figure C.2 gets all direct
communications between components by joining the publish and subscribe relations using
the selection (o) operator and then by lifts that joined relation up to the parent class. Line
5 through 18 gets the indirect instances of communication. To do this, the publish and
subscribe relations are joined again and then combined with the function call relation using
the union operator (+) into a set called rosComm. This set has every function call or instance

124

1 // Gets the d i r e c t communications
2 d i r e c t = conta in o (pub l i sh o s ub s c r i b e) o (inv conta in) ;
3

4 //Combines p u b l i s h e r s and s u b s c r i b e r s with func t i on c a l l s .
5 rosComm = publ i sh o su bs c r i b e ;
6 f u l l C a l l = rosComm + c a l l ;
7 f u l l C a l l = f u l l C a l l +;
8

9 // Gets a l i s t o f p u b l i s h e r s and s u b s c r i b e r s .
10 pub l i shSe t = $INSTANCE . {” ro sPub l i sh e r ” } ;
11 su b s c r i b eS e t = $INSTANCE . {” r o s S u b s c r i b e r ” } ;
12

13 // Ensures p u b l i s h e r s s t a r t and s u b s c r i b e r s end .
14 comms = pub l i shSe t o f u l l C a l l o s ub s c r i b e Se t ;
15

16 // Gets the i n d i r e c t communication .
17 i n d i r e c t = conta in o comms o inv conta in ;
18 i n d i r e c t = i n d i r e c t − d i r e c t
19

20 // Pr in t s the r e s u l t s .
21 pr in t ” Di rec t Messages : ” ;
22 inv @label o (compContain o d i r e c t o inv compContain) o @label ;
23

24 pr in t ” I n d i r e c t Messages : ” ;
25 inv @label o (compContain o i n d i r e c t o inv compContain) o @label ;

Figure C.2: Grok script that detects the dataflow communication hotspot.

of communications between features in the project. Line 7 gets the transitive closure of
the rosComm relation. With the transitive closure of fullCall generated, lines 10 and
11 create a set of publisher objects (publishSet) and subscriber objects (subscribeSet).
This is done by taking the set of entities in the model and only selecting any publisher or
subscriber objects. The purpose of the publishSet and subscribeSet is that, in line 14,
the script filters out results from rosComm that do not start with a publisher and end with
a subscriber. This gives us all the dataflow communications between features. Last, line
17 lifts the indirect relation to the class level and line 18 removes and direct results. The
resulting values are then printed in lines 22 through 25.

125

C.1.3 Loop Detection

Figure C.3 shows the Grok script that detects any loops in the feature communication
graph. Again, for brevity, lines 1 through 11 of the component-based communication
script in Figure C.1 were omitted from this script. From a high-level perspective, this
script is similar to the first two scripts in getting direct and indirect communications. The
difference here is that this script removes any entries from the direct and indirect relations
that do not have the same domain and range.

1 // Generates a l i s t o f c l a s s e s po in t ing back to themse lves .
2 c l a s s e s = $INSTANCE . {” cClas s ”}
3 c l a s s e s = (c l a s s e s o conta in) o inv conta in ;
4

5 // Generates the c a l l graph .
6 f u l l C a l l = (pub l i sh o su b s c r i b e) + c a l l ;
7 f u l l C a l l = f u l l C a l l +;
8

9 // Generates the d i r e c t l oops .
10 classComm = conta in o (pub l i sh o su b s c r i b e) o (inv conta in) ;
11 d i r e c t = classComm ˆ c l a s s e s ;
12

13 //Get the component−based i n d i r e c t r e s u l t s .
14 indirectComp = ((classComm+) ˆ c l a s s e s) − d i r e c t ;
15

16 // Gets the dataf low i n d i r e c t r e s u l t s .
17 dataflowComm = conta in o pub l i sh o f u l l C a l l o su b s c r i b e o inv conta in ;
18 i nd i r e c tData f l ow = dataflowComm ˆ c l a s s e s ;
19 i nd i r e c tData f l ow = ind i r e c tData f l ow − d i r e c t ;
20

21 // Pr in t s the r e s u l t s .
22 pr in t ” Di rec t Loops : ” ;
23 inv @label o (compContain o d i r e c t o inv compContain) o @label ;
24

25 pr in t ” I n d i r e c t Component Loops : ” ;
26 inv @label o (compContain o indirectComp o inv compContain) o @label ;
27

28 pr in t ” I n d i r e c t Dataflow Loops : ”
29 inv @label o (compContain o ind i r e c tData f l ow o inv compContain) o @label ;

Figure C.3: Grok script that detects the loop hotspot.

Lines 2 and 3 in Figure C.3 generate a nonsense relation where, for each class in the
model, there is an entry where the domain and range is itself. This means that, in this

126

relation, each class in the model points to itself. While it may appear useless, this classes
relation is used later to determine whether there is a direct or indirect loop. Like in lines 5
through 7 of Figure C.2, lines 6 and 7 combine the relation of messages between functions
and function calls and then get the transitive closure. This is stored in a relation called
fullCall and will be used in later lines to get the indirect loops.

Lines 10 and 11 get the direct loops in the model by getting all the features that
communicate with other features. This is done by joining the publish and subscribe

relations by topic and then lifting to the class level. Since this gets all communications
and not just loops, to remove any non-loops, the intersection operator (^) is used on
the classComm relation and classes relation. This means only entries in the classComm

relation that has the same domain and range are kept. These are the direct loops.

Line 14 generates a list of indirect component-based communication loops. This is
achieved by computing the transitive closure of classes that communicate, only keeping
the loops, and then removing any of the direct loops from the results. Lines 17 through
19 get the indirect dataflow loops. This is achieved by taking the fullCall set (created
in lines 6 and 7), ensuring that it only starts with a publisher and ends with a subscriber,
and then removing any non-loops. Lastly, lines 22 through 29 print the results of each.

C.2 Multiple Publisher Hotspots

C.2.1 Multiple Input

Figure C.4 shows the Grok script that detects the multiple input hotspot. For brevity, lines
1 through 11 of the component-based communication script in Figure C.1 were omitted
from this figure. Additionally, to further simplify this script, a built-in Grok function called
indegree was used to count the number of publishers or topics being received.

The script starts by generating a relation called direct in lines 2 and 3 by joining the
publish and subscribe relations together by topic and then by getting the parent class
that sends messages to some subscriber. This is done by joining contain with direct

on the domain of the direct relation. By doing this, the direct relation has record of
situations where multiple publishers message the same topic and where multiple topics
message the same subscriber. Next, line 6 uses the indegree function on the direct

relation. This function looks at the range of the direct relation and counts the number
of times each entity ID in the range appears. As output, it generates a relation of the
form <SUBSCRIBER ID> <NUM OCCURRENCES>. Then, since this script is only interested in

127

1 // Gets s u b s c r i b e r s that are wr i t t en to .
2 d i r e c t = pub l i sh o s ub s c r i b e ;
3 d i r e c t = conta in o d i r e c t ;
4

5 // Gets the indegree
6 i n s e t = indegree (d i r e c t) ;
7

8 // Purges communications with one in s t anc e .
9 f o r entry in dom i n s e t {

10 curNum = { entry } . i n s e t ;
11 i f #(curNum − {”1” }) == 0 {
12 i n s e t = i n s e t − ({ entry } X {”1” }) ;
13 }
14 }
15

16 // Pr in t s the r e s u l t s .
17 pr in t ” Subsc r i b e r s that have Mult ip l e Component Communications : ”
18 inv @label o i n s e t ;
19

20 //Now, d ive s deeper .
21 f o r item in dom(i n s e t) {
22 cbFunc = { item} . c a l l ;
23 cFunction = (rng (cbFunc o @label)) ;
24 cClas s = rng ((dom(conta in o rng{ item })) o @label) ;
25

26 // Pr int the items .
27 pr in t ” Cal lback Function ” + cFunction + ” (” + cClass + ”) − ” ;
28

29 //Get the p u b l i s h e r s .
30 inv @label o (compContain . (d i r e c t . { item })) ;
31 }

Figure C.4: Grok script that detects the multiple publishers hotspot.

subscribers that receive messages from numerous features, this script filters out any entries
in inset relation where the number of occurrences is only 1. To do this, lines 9 through
14 loop through the inset relation on the domain, and check if that subscriber only has
one feature that messages it. If it does, it removes that entry from inset.

Once the inset relation has been whittled down to remove any subscribers that receive
messages from only one feature, this relation now contains all multiple publisher hotspots
in the project. Lines 17 and 18 print those results. If the inset relation is empty, it means
there are no instances of this hotspot.

128

The last part of the script provides more detail about each multiple publisher instance
detected. The script loops through the domain of the inset relation (the ID of the sub-
scriber) and then, for each, lines 22 through 24 get the callback function the subscriber
messages and the class the subscriber resides in. Getting the callback function is achieved
by joining the subscriber to the call relation using the . operator. This works because
the subscriber messages the callback function via the call relation when data is received.
Getting the class in line 24 involves taking the contains relation and joining the sub-
scriber to the range of that relation. This gets the parent class. Line 27 prints the function
and class the subscriber is in and then line 30 prints all the features that message that
subscriber.

C.2.2 Race Condition

Figure C.5 shows the Grok script that is used to detect the race condition hotspot. While
the process to detect this hotspot might appear to be complex, it is actually fairly easy. Like
all previous scripts, for brevity, lines 1 through 11 of the component-based communication
script in Figure C.1 were omitted from this figure.

First, line 2 gets a list of callback functions in the project by taking the set of ROS
subscribers and joining it with call relation. Since this creates a relation of the form
<SUBSCRIBER> <CALLBACK FUNCTION>, the range operator (rng) is applied to that new
relation to get a set of callback functions. Then, line 5 gets all the variables written to
by these callback functions. This is done by taking the callbackFunc set and using the
selection operator (o) on the domain of the write relation to generate a relation of the
form <CALLBACK FUNCTION> <VARIABLE>.

Lines 6 through 21 contain a for loop block that loops through every variable in the
vars relation created in the previous line. Since the range operator returns a set with no
duplicates as per relational algebra, each variable written to will only be processed once
by this loop. Line 7 takes the current variable and gets all instances in the vars relation
where that variable is written to. By doing this, the script can then check if that variable is
written to by more than one callback function. Lines 10 through 20 only process variables
where more than one callback function writes to them. If a variable is written to by more
than one callback function, the name of the variable is printed in line 12. Then line 15
gets all callback functions that modify this variable and prints each to the screen.

129

1 //Get a l i s t o f c a l l b a c k f u n c t i o n s .
2 cal lbackFunc = rng (s ub s c r i b e o c a l l) ;
3

4 // Determines a l l the v a r i a b l e s that are modi f i ed by each c a l l b a c k func t i on .
5 vars = cal lbackFunc o wr i t e ;
6 f o r curVar in rng vars {
7 s p e c i f i c = vars . {curVar } ;
8

9 // Gets the number o f i n s t a n c e s o f that v a r i a b l e .
10 i f (# s p e c i f i c > 1) {
11 // Deal with ca s e s where mu l t ip l e c a l l b a c k s modify .
12 pr in t ”For the ” + curVar + ” v a r i a b l e : ” ;
13

14 // Gets the c a l l b a c k f u n c t i o n s that push to that v a r i a b l e .
15 c a l l b a c k s = dom s p e c i f i c ;
16 f o r cb in c a l l b a c k s {
17 // Pr in t s the c a l l b a c k .
18 {cb} . @label ;
19 }
20 }
21 }

Figure C.5: Grok script that detects the race condition hotspot.

C.3 Control Flow Hotspots

C.3.1 Behaviour Alteration

Figure C.6 shows the Grok script that detects the behaviour alteration hotspot. For brevity,
some portions of this script were removed or altered. This includes the initial argument
check shown in the component-based communication script in Figure C.1. From a high-level
perspective, this script detects callback functions that write to variables that “eventually”
participate in the decision portion of a control structure.

To carry out this detection, lines 2, 3, and 4 get instances of direct and indirect commu-
nication between features. Line 2 gets instances of direct communication between a feature
and a recipient feature’s callback function. To do this, the publish and subscribe relations
are joined by topic and then joined with the call relation to get the callback function that
receives this data. Lastly, this is joined with contain relation on the left-hand side to get
the parent class that sends the data. Line 3 does the same thing as line 2 except it lifts
both ends of the relation up to the class level. Then line 4 gets the transitive closure of

130

1 // Gets the d i r e c t and i n d i r e c t r e l a t i o n s .
2 d i r e c t = conta in o pub l i sh o su b s c r i b e o c a l l ;
3 i n d i r e c t = conta in o pub l i sh o su bs c r i b e o inv conta in ;
4 i n d i r e c t = i n d i r e c t +;
5

6 // Generates r e l a t i o n s to t rack the f low o f data .
7 ca l lbackFuncs = rng (s ub s c r i b e o c a l l) ;
8 controlFlowVars = @isControlFlow . {”\”1\”” } ;
9 masterRel = varWrite + c a l l + wr i t e ;

10 masterRel = masterRel +;
11

12 // Gets the behaviour a l t e r a t i o n s .
13 behAlter = ca l lbackFuncs o masterRel o controlFlowVars ;
14 pr in t ”There are ” + #behAlter + ” ca s e s o f behaviour a l t e r a t i o n . ” ;
15 pr in t ” Across ” + #(dom behAlter) + ” c a l l b a c k f u n c t i o n s . ” ;
16

17 //Loops through each c a l l b a c k func t i on .
18 f o r item in dom behAlter {
19 // Gets the c a l l b a c k func t i on name .
20 { item} . @label ;
21 pr in t ”” ;
22

23 // Pr int the v a r i a b l e s i t a f f e c t s .
24 pr in t ” A f f e c t s Var i ab l e s : ”
25 inv @label . ({ item} . behAlter) ;
26 pr in t ”” ;
27

28 // Pr int f e a t u r e s that d i r e c t l y i n f l u e n c e .
29 pr in t ” In f l u enced By − Direc t : ”
30 d i r I n f = d i r e c t . { item } ;
31 inv @label . d i r I n f ;
32

33 // Pr int f e a t u r e s that i n d i r e c t l y i n f l u e n c e .
34 pr in t ” In f l u enced By − I n d i r e c t : ” ;
35 i n I n f = (i n d i r e c t . (d i r e c t . { item })) − d i r I n f ;
36 inv @label . i n I n f ;
37 pr in t ”” ;
38 }

Figure C.6: Grok script that detects the behaviour alteration hotspot.

indirect to get all indirect instances of communication.

Now, the control flow variables and callback functions need to be obtained. Line 7 gets

131

all callback functions by joining the subscribe relation with the call relation and then gets
the range of that result. Line 8 gets all variables that participate in the decision portion
of a control structure by taking the isControlFlow attribute and only keeping entries
that have a value of 1. Lines 9 and 10 takes a collection of relations and combines them
together. This includes the varWrite, call, and write relations. Then, in line 10, the
transitive closure of this relation is obtained. This gives a relation called masterRel that
contains the dataflow of all variables and functions in the program.

Once the masterRel relation has been created, the behaviour alteration instances can
be obtained. Line 13 does this by whittling down the masterRel relation to only start with
callback functions and to only end with control flow variables. By doing this, it shows any
callback functions that eventually modify variables that participate in the decision portion
of control structures. The results are printed in lines 14 and 15.

Since printing the number of instances is not enough, lines 18 through 38 loop through
each callback function in the set of behaviour alteration instances and print important
details. In this loop, line 20 prints the name of the callback function being investigated.
Then lines 24 and 25 print all the control flow variables that are affected by this callback
function. This is done by taking the callback function being investigated and projecting it
upon the behAlter relation.

Once this is complete, the direct and indirect features that influence this callback
function are printed. Lines 29 through 31 print the direct instances. This is done by taking
the direct relations and projecting it on the callback function. This gives all the features
that write to that callback function. Lines 34 through 37 print the indirect instances. This
is done by getting all direct instances and projecting them with the indirect relation.

C.3.2 Publish Alteration

Figure C.7 shows the Grok script that detects the publish alteration hotspot. For brevity,
some portions of this script were removed or altered. This includes the initial argument
check shown in the component-based communication script in Figure C.1. Further, since
this script is a slight modification of the behaviour alteration script, there are some simi-
larities in how this hotspot is detected.

To detect this hotspot, lines 2, 3, and 4 get instances of direct and indirect communi-
cation between features. Line 2 gets instances of direct communication between a feature
and a recipient feature’s callback function. To do this, the publish and subscribe relations
are joined by topic and then joined with the call relation to get the callback function that
receives this data. Lastly, this is joined with contain relation on the left-hand side to get

132

1 // Gets the d i r e c t and i n d i r e c t r e l a t i o n s .
2 d i r e c t = conta in o pub l i sh o su b s c r i b e o c a l l ;
3 i n d i r e c t = conta in o pub l i sh o su bs c r i b e o inv conta in ;
4 i n d i r e c t = i n d i r e c t +;
5

6 // Generates r e l a t i o n s to t rack the f low o f data .
7 ca l lbackFuncs = rng (s ub s c r i b e o c a l l) ;
8 masterRel = varWrite + v a r I n f l u e n c e + varInfFunc + c a l l + wr i t e ;
9 masterRel = masterRel +;

10

11 // Gets p u b l i s h e r a l t e r a t i o n s .
12 pubAlter = ca l lbackFuncs o masterRel o pub l i sh ;
13 pr in t ”There are ” + #pubAlter + ” ca s e s o f p u b l i s h e r a l t e r a t i o n . ” ;
14

15 //Loops through each c a l l b a c k func t i on .
16 f o r item in dom pubAlter {
17 // Pr in t s the name o f the c a l l b a c k .
18 { item} . @label ;
19 pr in t ”” ;
20

21 // Pr in t s t o p i c s that get modi f i ed .
22 pr in t ” Writes to Topics : ”
23 inv @label . ({ item} . pubAlter) ;
24 pr in t ”” ;
25

26 // Pr in t s d i r e c t i n f l u e n c e s .
27 pr in t ” In f l u enced By − Direc t : ” ;
28 d i r I n f = d i r e c t . { item } ;
29 inv @label . d i r I n f ;
30 pr in t ”” ;
31

32 // Pr in t s i n d i r e c t i n f l u e n c e s .
33 pr in t ” In f l u enced By − I n d i r e c t : ” ;
34 i n I n f = (i n d i r e c t . (d i r e c t . { item })) − d i r I n f ;
35 inv @label . i n I n f ;
36 pr in t ”” ;
37 }

Figure C.7: Grok script that detects the publish alteration hotspot.

133

the parent class that sends the data. Line 3 does the same thing as line 2 except it lifts
both ends of the relation up to the class level. Then line 4 gets the transitive closure of
indirect to get all indirect instances of communication.

Now, callback functions need to be obtained. Line 7 gets all callback functions by
joining the subscribe relation with call relation and then gets the range of that relation.
Lines 8 and 9 takes a collection of relations and combines them together. This includes the
varWrite, varInfluence, varInfFunc, call, and write relations. Then, the transitive
closure of this relation is obtained. This gives a relation with the dataflow of all variables
and functions in the program. This is stored in the masterRel relation.

Once the masterRel relation has been created, the publish alteration instances can be
obtained. Line 12 does this by whittling down the masterRel relation to only start with
callback functions and to only end with publishers. By doing this, it shows any callback
functions that eventually result in a publication. The results are printed in line 13.

Since only printing the number of instances is not enough, lines 16 through 37 loop
through each callback function in the set of publish alteration instances and print important
details. In this loop, line 18 prints the name of the callback function being investigated.
Then lines 22 and 23 print all the topics that get written to due to this callback function.
This is done by taking the callback function and projecting it upon the pubAlter relation.

Once this is complete, the direct and indirect features that influence this callback
function are printed. Lines 27 through 29 print the direct instances. This is done by taking
the direct relations and projecting it on the callback function. This gives all the features
that write to that callback function. Lines 33 through 35 print the indirect instances. This
is done by getting all direct instances and projecting them on the indirect relation.

134

	List of Tables
	List of Figures
	Introduction
	Hotspots
	Thesis Overview
	Generation of Program Model
	Generation of Hotspot Report

	Thesis Contributions
	Thesis Organization

	Background
	Related Work & Tools
	Related Research
	Related Static Analysis Tools

	Relational Analysis Toolchain
	Fact Extractors
	Factbases & The Tuple-Attribute Language
	Relational Query Engine - Grok
	Model Visualizer - LSEdit

	Robot Operating System (ROS)
	Communication Framework

	Fact Extractors
	ClangEx
	ClangEx Metamodel
	Advantages of the ClangEx Extractor
	Disadvantages of the ClangEx Extractor
	ClangEx Internals

	Rex
	Rex Metamodel
	Advantages of the Rex Extractor
	Disadvantages of the Rex Extractor
	Rex Internals

	Analysis of Automotive Software
	Automotive Architecture
	CAN Bus Protocol
	Challenges with Analysis

	Hotspots in Automotive Systems
	Feature Communication Hotspots
	Multiple Input Hotspots
	Control Flow Hotspots

	Case Study
	Autonomoose
	Autonomoose Case Study
	Setup
	Feature Communication Hotspots
	Multiple Input Hotspots
	Control Flow Hotspots
	Verification with Autonomoose Developers

	Conclusions
	Contributions
	Limitations
	Future Work

	References
	APPENDICES
	The bfx64 Extractor
	Installing bfx64
	Prerequisites
	Building bfx64

	Using bfx64
	Basic Usage
	Advanced Features

	The ClangEx & Rex Extractors
	Installing ClangEx & Rex
	Prerequisites
	Building ClangEx
	Building Rex

	Using ClangEx
	Step 1 - Adding and Removing Files
	Step 2 - Enabling or Disabling Features
	Step 3 - Analyzing Files
	Step 4 - Outputting Models

	Using Rex
	Optional Step - Feature Resolution
	Differences Between Rex and ClangEx

	Relational Algebra Scripts
	Feature Communication Hotspots
	Component-Based Communication
	Dataflow Communication
	Loop Detection

	Multiple Publisher Hotspots
	Multiple Input
	Race Condition

	Control Flow Hotspots
	Behaviour Alteration
	Publish Alteration

