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ABSTRACT 
Identification of outliers can lead to the discovery of unex- 
pected, interesting, and useful knowledge. Existing methods 
are designed for detecting spatial  outliers in multidimen- 
sional geometric da ta  sets, where a distance metric is avail- 
able. In this paper, we focus on detecting spatial  outliers 
in graph structured da ta  sets. We define statistical tests, 
analyze the statistical foundation underlying our approach, 
design several fast algorithms to detect spatial  outliers, and 
provide a cost model for outlier detection procedures. In ad- 
dition, we provide experimental results from the application 
of our algorithms on a Minneapolis-St.Paul(Twin Cities) 
traffic dataset  to show their effectiveness and usefulness. 

Keywords 
Outlier Detection, Spatial  Data  Mining, Spatial Graphs 

1. INTRODUCTION 
Outliers have been informally defined as observations which 

appear to be inconsistent with the remainder of that  set of 
da ta  [2], or which deviate so much from other observations 
so as to arouse suspicions that  they were generated by a dif- 
ferent mechanism [5]. The identification of outliers can lead 
to the discovery of unexpected knowledge and has a number 
of practical applications in areas such as credit card fraud, 
the performance analysis of athletes, voting irregularities, 
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bankruptcy, and weather prediction. 
Outliers in a spatial  da ta  set can be classified into three 

categories: set-based outliers, multi-dimensional space-based 
outliers, and graph-based outliers. A set-based outlier is a 
da ta  object whose at t r ibutes  are inconsistent with a t t r ibute  
values of other objects in a given da ta  set regardless of spa- 
tial relationships. Both multi-dimensional space-based out- 
liers and graph-based outliers are spatial  outliers, that  is, 
da ta  objects that  are significantly different in a t t r ibute  val- 
ues from the collection of da ta  objects among spatial neigh- 
borhoods. However, multi-dimensional space-based outliers 
and graph-based outliers are based on different spatial  neigh- 
borhood definitions. In multi-dimensional space-based out- 
lier detection, the definition of spatial  neighborhood is based 
on Euclidean distance, while in graph-based spatial outlier 
detections, the definition is based on graph connectivity. 

Many spatial  outlier detection algorithms have been re- 
cently proposed; however, spatial  outlier detection remains 
challenging for various reasons. First ,  the choice of a neigh- 
borhood is nontrivial. Second,the design of statistical tests 
for spatial  outliers needs to account for the distribution of 
the a t t r ibute  values at various locations as well as the aggre- 
gate distribution of a t t r ibute  values over the neighborhoods. 
In addition, the computat ion cost of determining parame- 
ters for a neighborhood-based test can be high due to the 
possibility of join computations.  

In this paper, we formulate a general framework for de- 
tecting outliers in spatial  graph da ta  sets, and propose an ef- 
ficient graph-based outlier detection algorithm. We provide 
cost models for outlier detection queries, and compare un- 
derlying da ta  storage and clustering methods that  facilitate 
outlier query processing. We also use our basic algorithm to 
detect spatial  outliers in a Minneapolis-St.Panl(Twin Cities) 
traffic da ta  set, and show the correctness and effectiveness 
of our approach. 

1.1 An Illustrative Application Domain 
In 1995, the University of Minnesota and the Traffic Man- 

agement Center(TMC) Freeway Operations group started 
the development of a database to archive sensor network 
measurements from the freeway system in the Twin Cities. 
The sensor network includes about  nine hundred stations, 
each of which contains one to four loop detectors, depending 
on the number of lanes. Sensors embedded in the freeways 
monitor the occupancy and volume of traffic on the road. At 
regular intervals, this information is sent to the Traffic Man- 
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agement Center for operational purposes, e.g., ramp meter 
control, and research on traffic modeling and experiments. 

In this application, each station exhibits both graph and 
a t t r ibute  properties. The topological space is the map, where 
each station represents a node and the connection between 
each station and its surrounding stations can be represented 
as an edge. The a t t r ibute  space for each station is the traf- 
fic flow information (e.g., volume, occupancy) stored in the 
value table. We are interested in discovering the location 
of stations whose measurements are inconsistent with those 
of their graph-based spatial  neighbors and the time periods 
when those abnormalities arise. This outlier detection task 
is to: 

• Build a statistical model for a spatial da ta  set 
• Check whether a specific stat ion is an outlier 
• Check whether stations on a route are outliers 
We use three neighborhood definitions in this applica- 

tion as shown in Figure 1. First ,  we define a neighbor- 
hood based on spatial  graph connectivity as a spatial  graph 
neighborhood. In Figure 1, (sl ,  t2) and (s3, t2) are the spa- 
tial neighbors of (s2,t2) if sl  and s3 are connected to s2 in 
a spatial  graph. Second, we define a neighborhood based 
on time series as a temporal  neighborhood. In Figure 1, 
(s2, t l )  and (s2, t3) are the temporal  neighbors of (s2, t2) if 
t l ,  t2, and ta are consecutive t ime slots. In addition, we 
define a neighborhood based on both space and time series 
as a spat ial- temporal  neighborhood. In Figure 1, ( s l , t l ) ,  
(sl,t2), (sl,t3), (s2,tl), (s2,t3), (s3,tl), (s3,t2), and (sa,t3) 
are the spat ial- temporal  neighbors of (s2, t2) if sl  and s3 are 
connected to s2 in a spatial  graph, and t l ,  t2, and t3 are 
consecutive t ime slots. 'l Time ~ S p a ~ - ~  

Neighbors 
T ral Temporal 

Neighbors 
Additional Neighbors 

i l in Spatial-Temporal I_.._ Spatial ~ Neighborhood 
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Figure 1: Spatial a n d  T e m p o r a l  o u t l i e r  in  traffic data 

1.2 Problem Formulation 
In this section, we formally define the spatial  outlier de- 

tection problem. Given a spatial  framework S for the un- 
derlying spatial  graph G, an a t t r ibute  f over S, and neigh- 
borhood relationship R, we can build a model and construct 
statistical tests for spatial  outliers based on a spatial  graph 
according to the given confidence level threshold. The prob- 
lem is formally defined as follows. 

Spat ia l  Ou t l i e r  D e t e c t i o n  P r o b l e m  

G i v e n :  
• A spatial  graph G = {S, E}, where S is a spatial  frame- 

work consisting of locations s l , s 2 , . . .  ,s,~ and E is a 
collection of edges between locations in S 

* A neighborhood relationship R consistent with E 
• An a t t r ibute  function f :  S --r a set o f  real numbers  
• An aggregate function faggr : R N --~ a set o f  real numbers  

to summarize values of a t t r ibute  f over a neighbor- 
hood relationship R Iv C R 

• Confidence level threshold 0 

F i n d :  
• A set of spatial  outliers 

Objective: 
• Correctness: outliers identified are significantly differ- 

ent from those of their neighborhood 
• Efficiency: to minimize the computat ion t ime 

C o n s t r a i n t s :  
• At t r ibute  values have a normal distribution 
• Size of the da ta  set >> main memory size 
• The range of a t t r ibute  function f is the set of real 

numbers 
The formulation shows two subtasks in this spatial  outlier 

detection problem: (a) the design of a statistical model M 
and a test for spatial  outliers (b) the design of an efficient 
computat ion method to est imate parameters  of the test,  test 
whether a specific spatial  location is an outlier, and test 
whether spatial  locations on a given pa th  are outliers. 

2. RELATED W O R K ,  C O N T R I B U T I O N  
Many outlier detection algorithms [1, 2, 3, 7, 8, 10, 12, 14] 

have been recently proposed. These methods can be broadly 
classified into two categories, namely set-based outlier detec- 
tion methods and spatial-set-based outlier detection meth- 
ods. The set-based outlier detection algorithms [2, 6] con- 
sider the statist ical  distr ibution of a t t r ibute  values, ignoring 
the spatial  relationships among items. Numerous outlier de- 
tection tests, known as discordancy tests [2, 6], have been 
developed for different circumstances, depending on the da ta  
distribution, the number of expected outliers, and the types 
of expected outliers. The main idea is to fit the da ta  set to 
a known s tandard  distribution, and develop a test based on 
distribution properties. 

Spatial-set-based outlier detection methods consider both 
a t t r ibute  values and spatial  relationships. They can be fur- 
ther grouped into two categories, namely multi-dimensional 
metric space-based methods and graph-based methods. The 
multi-dimensional metric space-based methods model da ta  
sets as a collection of points in a multidimensional space, 
and provide tests based on concepts such as distance, den- 
sity, and convex-hull depth.  We discuss different example 
tests now. Knorr  and Ng presented the notion of distance- 
based outliers [7, 8]. For a k dimensional da ta  set T with N 
objects, an object O in T is a DB(p ,  D)-outl ier  if at least 
a fraction p of the objects in T lies greater than distance 
D from O. Ramaswamy et al. [11] proposed a formulation 
for distance-based outliers based on the distance of a point 
from its k *n nearest neighbor. After ranking points by the 
distance to its k *h nearest neighbor, the top n points axe 
declared as outliers. Breunig et al. [3] introduced the notion 
of a "local" outlier where the outlier-degree of an object is 
determined by taking into account the clustering structure 
in a bounded neighborhood of the object, e.g., k nearest 
neighbors. In computat ional  geometry, some depth-based 
approaches [12, 10] organize da ta  objects in convex hull lay- 
ers in da ta  space according to their peeling depth [10], and 
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outliers are expected to be found from data objects with a 
shallow depth value. Yu et al. [14] introduced an outlier de- 
tection approach, called FindOut, which identifies outliers 
by removing clusters from the original data. 

Methods for detecting outliers in multi-dimensional Eu- 
clidean space have several limitations. First, multi-dimensional 
approaches assume that the data items are embedded in a 
isometric metric space and do not capture the spatial graph 
structure. Secondly, they do not exploit apriori information 
about the statistical distribution of attribute data. Last, 
they seldom provide a confidence measure of the discovered 
outliers. 

In this paper, we formulate a general framework for de- 
tecting spatial outliers in a spatial data set with an underly- 
ing graph structure. We define neighborhood-based statis- 
tics and validate the statistical distribution. We then design 
a statistically correct test for discovering spatial outliers, 
and develop a fast algorithm to estimate model parameters, 
as well as to determine the results of a spatial outlier test 
on a given item. In addition, we evaluate our method in a 
Twin Cities traffic data set and show the effectiveness and 
usefulness of our approach. 

3. OUR APPROACH 
In this section, we list the key design decisions and propose 

an I /O efficient algorithm for spatial graph-based outliers. 

3.1 Choice of Spatial Statistic 
For spatial statistics, several parameters should be pre- 

determined before running the spatial outlier test. First, 
the neighborhood can be selected based on a fixed cardinal- 
ity or a fixed graph distance or a fixed Euclidean distance. 
Second, the choice of neighborhood aggregate function can 
be mean, variance, or auto-correlation. Third, the choice for 
comparing a location with its neighbors can be either just a 
number or a vector of at tr ibute values. Finally, the statis- 
tic for the base distribution can be selected from various 
choices. 

The statistic we used is S(x) = [f(x) - E~eN(~)(f(y))], 
where f (x)  is the attribute value for a data record x, N(x) is 
the fixed cardinality set of neighbors of x, and E~eN(= ) (f(y)) 
is the average attribute value for neighbors of x. Statistic 
S(x) denotes the difference of the attribute value of each 
data object x and the average attribute value of x's neigh- 
bors. 

LEMMA 1. Spatial Statistic S(x) = [f(x)-EyeN(=)(f(y) )] 
is normally distributed if attribute value f(x)  is normally 
distributed. 
Proof:  

Given the definition of neighborhood, for each data record 
x, the average attribute values E~eN(=)(f(y)) of x's k neigh- 
bors can be calculated. Since attribute values f (x)  are 
normally distributed and an average of normal variables 
is also normally distributed, the average attribute values 
E~N(=)(f(y)) over neighbors is also a normal distribution 
for a fixed cardinality neighborhood. 

Since the attribute value and the average attribute value 
over neighbors are two normal variable, the distribution of 
the difference of S(x) of each data object x and the average 
attribute value of x% neighbors is also normally distributed. 

3.2 Test for Outlier Detection 

The test for detecting an outlier can be described as 
> 0. For each data object x with an attr ibute ¢'$ 

value f(x),  the S(x) is the difference of the attribute value 
of data object x and the average at tr ibute value of its neigh- 
bors; #s is the mean value of all S(x), and as is the standard 
deviation of all S(x). The choice of 0 depends on the spec- 
ified confidence interval. For example, a confidence interval 
of 95 percent will lead to 0 ~ 2. 

3.3 Computation of Test Parameters 
We now propose an I /O efficient algorithm to calculate 

the test parameters, e.g., mean and standard deviation for 
the statistics, as shown in Algorithm 1. The computed mean 
and standard deviation can then be used to detect the outlier 
in the incoming data set. 

Given an attr ibute data set V and the connectivity graph 
G, the Test Parameters Computat ion(TPC) algorithm first 
retrieves the neighbor nodes from G for each data object 
x. It then computes the difference of the attribute value of 
x and the average of the attr ibute values of x's neighbor 
nodes. These different values are then stored as a set in 
the AvgDist_Set. Finally, the AvgDist_Set is used to get the 
distribution value ps and as. Note that  the data objects are 
processed on a page basis to reduce redundant  I/O. 

Test Parameters  C o m p u t a t i o n ( T P C )  Algor i thm 

Input: S is the attribute space; 
D is the attribute data set in S; 
F is the distance function in S; 
N D  is the depth of neighbor; 
G = (D ,  E )  is the spatial graph; 

O u t p u t :  ( /~  ,o'a). 
for(i=l;i < IDI 5++){ 

O~=Get_One_Object(i.D); /* Select each object from D */ 
NNS=Find_Neighbor_Nodes-Set(O~ ,ND,G); 

/* Find neighbor nodes of O~ from G */ 
Accum_Dist=0; 
for(j=l;j_< INSSl;j++){ 

Ot~=Get-One.Object(j,NNS); /* Select each object */I 
Accum_Dist += F(Oi, 0~, S) 

} 
Avg_Oist = Accum_Dist / [NNSI; 
Add_Element(AvgDist_Set,i);  / *  A d d  the e l e m e n t  */ 

} 
/z8 = Get_Mean(AvgDist_Set); / *  Compute Mean */ 
~rj = Get.Standard_Dev(AvgDist_Set); 
return (/~6 ,o', ). 

Algorithm 1: Pseudo-code for test parameters computation 

3.4 Computation of Test Results 
The neighborhood aggregate statistics value, e.g., mean 

and standard deviation, computed in the TPC algorithm 
can be used to verify the outliers in an incoming data set. 
The two verification procedures are Route Outlier Detec- 
tion(ROD) and Random Node Verification(RNV). The ROD 
procedure detects the spatial outliers from a user specified 
route, as shown in Algorithm 2. The RNV procedure checks 
the outliers from a set of randomly generated nodes. Given 
route R N  in the data set D with graph structure G, the 
ROD algorithm first retrieves the neighboring nodes from 
G for each data object x in the route RN, then it com- 
putes the difference S(x) between the attribute value of x 
and the average of at tr ibute values of x's neighboring nodes. 
Each S(x) can then be tested using the spatial outlier de- 
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tection test [ ~ l  > 0. The 0 is predetermined by the 
given confidence interval. The steps to detect outliers in 
both ROD and RNV axe similar, except that  the RNV has 
no shared da ta  access needs across tests for different nodes. 
The I /O  operations for Find__Neighbor..Nodes.Set0 in dif- 
ferent iterations are independent of each other in RNV. We 
note that  the operation Find_Neighbor--Nodes-Set 0 is exe- 
cuted once in each iteration and dominates the I /O  cost of 
the entire algorithm. The storage of the da ta  set should 
support  the I /O  efficient computat ion of this operation. We 
discuss the choice for storage structure and provide an ex- 
perimental comparison in Sections 5 and 6. 

Rou te  Out l ie r  De tec t i on (ROD)  Algorithm 
I npu t :  S is the attribute space; 

D is the attribute data set in S; 
F is the distance function in S; 
N D  is the depth of neighbor; 
G = (D ,  E)  is the spatial graph; 
C ]  is the confidence interval; 
( /~ ,aa)  are mean and standard deviation calculated in TPC; 
R N  is the set of node in a route; 

O u t p u t :  Outlier_Set. 
for(i=l;i < IRNI ;i++){ 

Oi=Get_One_Object(i,D); / *  Select each object f rom D * /  
N NS= Find _Neigh bet_Nodes.Set (e l  ,ND,G); 

/ *  Find neighbor nodes of Oi f rom G * /  
Accum_Dist=O; 
for(j=l;i_< INSSl;j++){ 

O/a=Get_One_Object(j,NNS); / *  Select each object * /  
Accum_Dist + =  F(  Oi , 0~ , S) 

} 
AvgOist = Accum_Dist/[NNS[; 
Tvatue= AvsDiat-Pa 

//*Check the normal  distribution table "1/ 
if( Check_Normal_Table(T~l~,CI)== True){ 

Add.Element(Outlier_Set,i);/* Add the element * /  
} 

} 
return Outlier_Set. 

Algorithm 2: Pseudo-code for route outlier detection 

The I / O  cost of ROD and RNV are also dominated by 
the I / O  cost of Find-Neighbor_Nodes_Set 0 operation. 

4. ANALYTICAL EVALUATION 
In this section, we provide simple algebraic cost models 

for the I / O  cost of outlier detection operations, using the 
Connectivity Residue Rat io(CRR) measure of physical page 
clustering methods. The CRR value is determined by the 
page clustering method, the da ta  record size, and the page 
size. The CRI~ value is defined as follows. 

C1~t~ ~ Total number of  unsplit ed,qes 
Total numbe of  edges 

[ Symbol Meaning I 
The CRR value 
Average blocking factor 

N 
L 
R 
A 

Total number of nodes 
Number of nodes in a route 
Number of nodes in a random set 
Average number of neighbors for each node 

Table 1: S y m b o l s  u s e d  in Cost Analysis  

Table 1 lists the symbols used to develop our cost formu- 
las. c~ is the CRR value. /3 denotes the blocking factor, 

which is the number of da t a  records tha t  can be stored in 
one memory page. A is the average number of nodes in the 
neighbor list of a node. N is the total  number of nodes in 
the da ta  set, L is the number of nodes along a route, and 
R is the number of nodes randomly generated by users for 
spatial  outlier verification. 

4.1 Cost Modeling 
The TPC algorithm is a nest loop index join. Suppose 

that  we use two memory buffers. If one memory buffer stores 
the da ta  object x used in the outer loop and the other mem- 
ory buffer is reserved for processing the neighbors of x, we 
get the following cost function to est imate the number num- 
ber of page accesses. 

CTPO = ff + N . h .  (1 - a )  
The outer loop retrieves all the da ta  records on a page 

basis, and has an aggregated cost of ft .  For each node x, on 
average, a * A neighbors are in the same page as x, and can 
be processed without redundant  I /O.  Addit ional  da ta  page 
accesses are needed to retrieve the other ( 1 - a ) . A  neighbors, 
and it takes at  most (1 - a )  * A da ta  page accesses. Thus 
the expected total  cost for the inner loop is N • A * (1 - a) .  

In a similar way, a cost model for ROD algorithms can be 
derived as follows: CROD = L * (1 - c~) + L * A * (1 - a)  = 
L * (1 - a)  * (1 + A); and a cost model for RNV algorithms 
can be derived as follows: C R N v  = R + R • A • (1 - a)  

5. EXPERIMENT DESIGN 
In this section, we describe the layout of our experiments 

and then il lustrate the candidate clustering methods. 

5.1 Experimental Layout 
The design of our experiments is shown in Figure 2. Us- 

ing the Twin Cities Highway Connectivity Graph(TCHCG),  
we took da ta  from the TCHCG and physically stored the 
da ta  set into da ta  pages using different clustering strate- 
gies and page sizes. These da ta  pages were then processed 
to generate the global distr ibution or sampling distribution, 
depending on the size of the da ta  sets. 

We compared different da t a  page clustering schemesi CCAM 
[13], Z-ordering [9], and Cell-tree [4]. Other parameters  of 
interest were the size of the memory buffer, the buffering 
strategies, the memory block size(page size), and the num- 
ber of neighbors. The measures of our experiments were the 
CRR values and I /O  cost for each outlier detection proce- 
dure. 

CCAM Page Buffer No of Buffering Z-order 11 Size Size Neighbors Strategy Ce -tree 

Twin-Cities ~ S e t s o f p a g e s  l l l 
Highway ~ of data ] Route 0utlkr 
Con~ctivity =I v.~__.~ [ ,[ Dct~tion(ROD). 
Graph [ metlmd I f f -~  RaMom Node 

Test [ I Verification (RHV). 
Sets of page~ Parameters I . 

Buffer si~ '~Test Parameters U 
No ofne'gkbon -~Computation ('rPc) | CRR 
Buff°~s~Y*t(N°='°°PindexJ°in) | " ~o¢ost 

Figure 2: Exper imental  Layout 
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The experiments were conducted on many graphs. We 
present the results on a representative graph, which is a 
spatial  network with 990 nodes tha t  represents the traffic 
detector stations for a 20-square-mile section of the Twin 
Cities area. This da ta  set is provided by the Minnesota 
Dept. of Transportat ion(MnDot) .  

We used a common record type for all the clustering meth- 
ods. Each record contains a node and its neighbor-list, i.e., a 
successor-list and a predecessor-list. We also conducted per- 
formance comparisons of the I / O  cost for outlier-detection 
query processing. 

5.2 Candidate Clustering Methods 
In this section we describe the candidate clustering meth- 

ods used in the experiments. 
Connectivity-Clustered A c c e s s  M e t h o d ( C C A M ) "  

CCAM [13] clusters the nodes of the graph via graph parti-  
tioning, e.g., Metis. Other graph-parti t ioning methods can 
also be used as the basis of our scheme. In addition, an 
auxiliary secondary index is used to support  query opera- 
tions. The choice of a secondary index can be tailored to 
the application. We used the B + tree with Z-order in our 
experiments, since the benchmark graph was embedded in 
graphical space. Other access methods such as the R-tree 
and Grid File can alternatively be created on top of the da ta  
file, as secondary indices in CCAM to suit the application. 

Linear C l u s t e r i n g  b y  Z - o r d e r :  Z-order [9] utilizes spa- 
t ial  information while imposing a total  order on the points. 
The Z-order of a coordinate (x,y) is computed by interweav- 
ing the bits in the binary representation of the two values. 
Alternatively, Hilbert  ordering may be used. A conventional 
one-dimensional pr imary index (e.g. B+-tree) can be used 
to facilitate the search. 

Ce l l  "lYee: A cell tree [4] is a height-balanced tree. Each 
cell tree node corresponds, not necessarily to a rectangular 
box, but  to a convex polyhedron. A cell tree restricts poly- 
hedra to part i t ions of a BSP(Binary Space Partitioning), to 
avoid overlaps among sibling polyhedra. Each cell tree node 
corresponds to one disk space, and the leaf nodes contain 
all the information required to answer a g iwn search query. 
The cell tree can be viewed as a combination of a BSP- 
and R+-tree,  or as a BSP-tree mapped on paged secondary 
memory. 

6. E X P E R I M E N T A L  R E S U L T S  

In this section, we illustrate the outlier examples detected 
in the traffic da ta  set, present the results of our experiments, 
and test the effectiveness of the different page clustering 
methods. To simplify the comparison, the I / O  cost repre- 
sents the number of da ta  pages accessed. This represents the 
relative performance of the various methods for very large 
databases. For smaller databases, the I /O  cost associated 
with the indices should be measured. Here we present the 
evaluation of I /O  cost for the TPC algorithm. The eval- 
uations of I /O  cost for the I~NV and ROD algorithms are 
available in the full version paper. 

6 .1  Outliers Detected 
We tested the effectiveness of our algorithm on the Twin 

Cities traffic da ta  set and detected numerous outliers, as 
described in the following examples. 

Figure 3 shows one example of traffic flow outliers. Fig- 
ures 3(a) and (b) are the traffic volume maps for 1-35W 

North Bound and South Bound, respectively, on 1/21/1997. 
The X-axis is a 5-minute t ime slot for the whole day and the 
Y-axis is the label of the stations installed on the highway, 
start ing from 1 on the north end to 61 on the south end. 
The abnormal white line at 2:45pm and the white rectangle 
from 8:20am to 10:00am on the X-axis and between stations 
29 to 34 on the Y-axis can be easily observed from both (a) 
and (b). The white line at 2:45pm is an instance of tempo- 
ral outliers, where the white rectangle is a spat ial- temporal  
outlier. Moreover, stat ion 9 in Figure 3(a) exhibits incon- 
sistent traffic flow compared with its neighboring stations, 
and was detected as a spatial  outlier. 

Average Traffic Volume(Time v.a Station) 

• " ~ ii~i / 

~,c ixl 

Avenge Traffic Voturne(Time v.s. Station) 

6 8 1012141618202224 4 6 8 1012141618202224 
Time Time 

(a) 1-35W North (b) 1-35W South 
Bound Bound 

Figure 3: An example of outliers 

6 .2  Evaluation of I/O cost for TPC algorithm 
In this section, we present the results of our evaluation of 

the I /O  cost and CRI~ value for alternative clustering meth- 
ods while computing the test parameters.  The parameters 
of interest are buffer size, page size, number of neighbors, 
and neighborhood depth. 

6.2.1 The effect of page size and CRR value 
Figures 4 (a) and (b) show the number of da ta  pages ac- 

cessed and the CRR values respectively, for different page 
clustering methods as the page sizes change. The buffer size 
is fixed at 32 Kbytes. As can be seen, a higher CRR value 
implies a lower number of da ta  page accesses, as predicted in 
the cost model. CCAM outperforms the other competitors 
for all four page sizes, and CELL has bet ter  performance 
than Z-order clustering. 

6.2.2 The effect of neighborhood cardinality 
We evaluated the effect of varying the number of neigh- 

bors and the depth of neighbors for different page clustering 
methods. We fixed the page size at 1K, and the buffer size 
at 4K, and used the LRU buffering strategy. Figure 5 shows 
the number of page accesses as the number of neighbors for 
each node increases from 2 to 10. CCAM has bet ter  perfor- 
mance than Z-order and CELL. The performance ranking 
for each page clustering method remains the same for dif- 
ferent numbers of neighbors. Figure 5 shows the number of 
page accesses as the neighborhood depth increases from 1 to 
5. CCAM has bet ter  performance than Z-order and CELL 
for all the neighborhood depths. 
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7. CONCLUSIONS 
In this paper, we focused on detecting outliers in spatial 

graph data sets. We proposed the notion of a neighbor out- 
lier in graph structured data sets, designed a fast algorithm 
to detect outliers, analyzed the statistical foundation un- 
derlying our approach, provided the cost models for different 
outlier detection procedures, and compared the performance 
of our approach using different data clustering approaches. 
In addition, we provided experimental results from the ap- 
plication of our algorithm on Twin Cities traffic archival to 
show its effectiveness and usefulness. 

We have evaluated alternative clustering methods for neigh- 
bor outlier query processing, including model construction, 
random node verification, an/( route outlier detection. Our 
experimental results show that the CCAM, which achieves 
the highest CRR, provides thexbest overall performance. 
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