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We develop a general theory to test correct specification of multiplicative error models of non-negative time-series
processes, which include the popular autoregressive conditional duration (ACD) models. Both linear and nonlinear
conditional expectation models are covered, and standardized innovations can have time-varying conditional
dispersion and higher-order conditional moments of unknown form. No specific estimation method is required, and
the tests have a convenient null asymptotic N(0,1) distribution. To reduce the impact of parameter estimation
uncertainty in finite samples, we adopt Wooldridge’s (1990a) device to our context and justify its validity.
Simulation studies show that in the context of testing ACD models, finite sample correction gives better sizes in
finite samples and are robust to parameter estimation uncertainty. And, it is important to take into account time-
varying conditional dispersion and higher-order conditional moments in standardized innovations; failure to do so
can cause strong overrejection of a correctly specified ACD model. The proposed tests have reasonable power
against a variety of popular linear and nonlinear ACD alternatives.
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1. INTRODUCTION

High-frequency data have become widely available in economics and finance over the past decade. As a result of the availability of
these data sets and the rapid advance in computing power, there is a growing interest in modelling high-frequency financial data.
The analysis of high-frequency data has rapidly developed as a promising research area by facilitating a deeper understanding of
market activity. As Engle and Russell (1998) point out, quantity purchased in a period of time is often the key economic variable to be
modelled or forecast, and market microstructure theories are typically tested on a transaction-by-transaction basis. Such massive
transaction data provide rich information about financial activities and market microstructure.

In high-frequency financial econometrics, the timing of transactions is a key factor to understanding economic theory. For
example, the time duration between market events has been found to have a deep impact on the behaviour of market agents (e.g.
traders and market makers) and on the intraday characteristics of the price process. Recent models in market microstructure
literature based on asymmetric information argue that time may convey information and should be modelled as well. The
important role of time has been highlighted by Easley and O’Hara (1992) and Easley et al. (1997), which generalize Glosten and
Milgrom (1985).

However, an inherent feature of transaction data presents a great challenge to econometricians. When every single transaction and
quoted price are recorded, the ultimate limit case, ‘ultra-high frequency data’ as termed by Engle (2000), is obtained. Consequently,
the arrival times of events (e.g. quotes, trades) are irregularly spaced, and the time between successive observations is not
deterministic but random. This renders standard time-series econometric tools inapplicable, since they are based on fixed, regularly
spaced time interval analysis. Motivated by this feature, Engle and Russell (1998) and Engle (2000) propose a class of autoregressive
conditional duration (ACD) models to characterize the arrival time intervals between market events of interest such as the occurrence
of a trade or a bid-ask quote. The main idea behind ACD modelling is a dynamic parameterization of the conditional expected
duration given the past information. This model combines elements of time-series models and econometric tools for analysing
transition data (e.g. Lancaster, 1990) and is well suited for the analysis of high-frequency financial data. In addition, ACD models are
used as a building block for jointly modelling duration and other market characteristics (e.g. price and volume), which may improve
understanding of the complex nature of a trading process.
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Despite the vast literature on ACD specifications, model evaluation has not yet received much attention, as pointed out in (e.g.)
Li and Yu (2003), Meitz and Teräsvirta (2006) and Pacurar (2006). In particular, formal evaluation of ACD models via specification
testing has not been common in empirical study. Most works limit the testing to simple examinations of the standardized residual.
Since the flexibility of ACD models arises from various choices of the models for the conditional expected duration and the
probability density of the standardized innovations, there have been two categories of specification tests for ACD models. The first
checks the probability distribution specification for standardized innovations. Bauwens et al. (2004) check the goodness-of-fit of an
ACD model using the density forecast evaluation methods of Diebold et al. (1998). Fernandes and Grammig (2005) consider
nonparametric specification tests against distributional misspecifications of the standardized innovations, assuming that the
conditional expected duration model is correctly specified. The second category of tests checks specification for conditional expected
duration. The Box–Pierce–Ljung type portmanteau test statistic is often applied to the estimated standardized or squared estimated
standardized durations, as in (e.g.) Dufour and Engle (2000), Bauwen et al. (2004) and Fernandes and Grammig (2005). However, the
Box–Pierce–Ljung type test, when applied to estimated standardized durations, is invalid even asymptotically, because it does not
take into account the impact of parameter estimation uncertainty on the asymptotic distribution of the test statistic. Li and Yu (2003)
derive an asymptotically valid modified portmanteau test for an ACD model based on the estimated standardized duration
autocorrelations in the spirit similar to Li and Mak (1994). Meitz and Teräsvirta (2006) develop a class of Lagrange multiplier (LM) tests
for an ACD model against various parametric alternatives for conditional expected duration. One of their tests is asymptotically
equivalent to Li and Yu’s (2003) test. Hautsch (2006) also considers some LM tests as well as various conditional moment tests and
generalized conditional moment tests for conditional expected duration specification. Building on Hong (1996, 1997), Duchesne and
Pacurar (2006) construct tests for the adequacy of ACD models, based on a kernel spectral density estimator of the standardized
innovation process. They obtain a generalized version of the classical Box–Pierce–Ljung test statistic as a special case. In the literature,
the i.i.d. test of Hong and Lee (2003) has been also used to test conditional expected duration (e.g. Meitz and Teräsvirta, 2006). This is
not suitable when standardized innovations are not i.i.d. because it would reject a correctly specified conditional expected duration
model when standardized innovations display dependence in higher-order moments (e.g. time-varying dispersion).

In this article, we propose a new class of specification tests for the conditional expected duration. Specification for the conditional
expected duration is a fundamental building block of an ACD model. Correct specification of conditional expected duration dynamics
is required to ensure consistency of the quasi-maximum likelihood estimator (QMLE) of an ACD model (Engle and Russell, 1998). Also,
as noted earlier, some tests for the standardized innovation distribution assume correct specification for conditional expected
duration. Our tests have several appealing features. First, it can detect neglected linear and nonlinear dynamic structure in
conditional expected duration. Nonlinear features are not uncommon in high-frequency financial data. Since market activities are
often driven by the arrival of news, it is possible that the trading dynamics measured by intraday transaction durations are different
between heavy and thin trading periods. Engle and Russell (1998) are perhaps the first to recognize the need to account for
nonlinearity in modelling durations of financial events. They use a simple test to detect nonlinearity and find that conditional
durations of a trade are overpredicted by a linear ACD model after shortest or longest durations. This suggests that the standard
linear ACD model of Engle and Russell (1998) cannot fully capture nonlinear dynamics in durations. Zhang et al. (2001) also
document that the dynamics of a short duration regime, which is associated with informed trading, is different from the dynamics of
a long duration regime, which is associated with uninformed trading. They find that the short duration regime is characterized by
wider spreads, larger volume and higher volatility, all of which proxy for informed trading. There have been various nonlinear
extensions of Engle and Russell’s (1998) linear ACD model. These include fractionally integrated ACD models of Jasiak (1999), log-ACD
models of Bauwen and Giot (2000), Box–Cox ACD models of Dufour and Engle (2000) and Hautsch (2003), threshold ACD (TACD)
models of Zhang et al. (2001), Markov-switching ACD models of Hujer et al. (2002), smooth transition ACD models of Meitz and
Teräsvirta (2006) and asymmetric ACD models of Fernandes and Grammig (2006). Each nonlinear ACD model can capture some
nonlinear duration features. However, given these increasing nonlinear specifications, it is unclear which type of ACD model would fit
a financial duration data adequately. Therefore, it is important to have a generally applicable test for ACD models that can detect a
wide range of neglected linear and nonlinear dynamics in durations.

Most existing works in the ACD literature assume that standardized innovations are i.i.d. Such an assumption is convenient but
may not be suitable for nonlinear ACD models. For example, a regime-switching ACD model assumes that depending on the state of
the latent information regime corresponding to heavier or thinner trading periods, trade durations follow different data-generating
mechanisms (i.e. fast and slow regimes have different dynamics). Thus, it is more appropriate to assume that standardized
innovations follow a mixture distribution with unit mean but time-varying higher-order conditional moments (e.g. Hujer, et al., 2002,
appendix A.2). In fact, one implication of the i.i.d. innovations assumption is that the ACD model does not allow for independent
variation of the conditional mean and dispersion as higher-order conditional moments are solely linked to the conditional mean.
Ghysels et al. (2004) argue that this is a very restrictive assumption, especially in analysis of market liquidity. Drost and Werker (2004)
show that for commonly used ACD models, the assumption of i.i.d. innovations is too restrictive and inappropriate to describe
financial durations accurately (see also Pacurar, 2006). They relax the i.i.d. innovations assumption and consider its impact on
semi-parametric estimation efficiency of an ACD model. Zhang et al. (2001) also relax the i.i.d. innovations assumption via a
regime-switching model. It is important to take into account the impact of serial dependence in the higher-order conditional
moments of standardized innovations when constructing a test for ACD models. Failure to do so may cause incorrect Type I errors,
as illustrated in our simulation study.

Our tests are robust to time-varying conditional dispersion and higher-order conditional moments of unknown form. We use a
generalized spectral derivative approach. The generalized spectrum, originally proposed in Hong (1999), is a frequency domain
tool for nonlinear time-series analysis. It is essentially a spectral analysis of time series transformed via the characteristic function.
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The generalized spectrum itself is not suitable for testing conditional expected duration models, because it can capture serial
dependence not only in the conditional mean but also in higher-order conditional moments. However, using a suitable partial
derivative of the generalized spectrum, we can construct tests that solely focus on the conditional expected duration dynamics.
Thanks to the use of the characteristic function, our tests can detect a wide class of neglected linear and nonlinear dynamic
structures in conditional expected duration. Also, thanks to the use of the spectral analysis, the proposed tests can check a large
number of lags without suffering from the curse of dimensionality. This is particularly appealing in the present context because most
ACD models are non-Markovian, where the conditioning observable information set is infinite-dimensional containing an infinite
number of lags (i.e. the entire past history).

Our tests only require estimation of the null ACD model and have a convenient null asymptotic N(0,1) distribution. Unlike the
Box–Pierce–Ljung portmanteau test, parameter estimation uncertainty has no impact on the asymptotic distribution of the proposed
tests for ACD models. However, the impact of parameter estimation uncertainty is not trivial in finite samples, as revealed in the
following simulation study. To alleviate it, we adopt Wooldridge’s (1990a) device to our context, which can effectively remove the
impact of parameter estimation uncertainty. By running an increasing sequence of auxiliary regressions, we can reduce the impact of
parameter estimation uncertainty for the generalized spectral derivative tests of ACD models. As a result, the finite sample
distribution of the tests becomes robust to parameter estimation uncertainty to some extent. Arguably, the reasonable size
performance with the convenient asymptotic N(0,1) distribution is one of the most appealing properties of our tests from a
practitioner’s point of view. In particular, the bootstrap procedure can be avoided, which would be rather computationally expensive
for massive high-frequency financial time-series data especially when the standardized innovations have time-varying conditional
higher-order moments of unknown form.

We note that Hong and Lee (2007) also use Wooldridge’s (1990a) device to remove the impact of parameter estimation uncertainty
in testing a time-series regression model with additive regression errors. Because we explicitly explore the multiplicative error
structure in an ACD model and can eliminate conditional dispersion clustering completely when the standardized innovations are
i.i.d., our approach here is expected to give better size and power for the proposed tests (see Section 6 for more discussion). The
multiplicative error structure of ACD also results in a different form of regressors in running Wooldridge’s (1990a) auxiliary
regressions. Moreover, the moment condition on the multiplicative errors is much weaker.

Although our tests are motivated by checking the adequacy of ACD models, they are readily applicable to strictly stationary
time-series models with a multiplicative error structure with a non-negative conditional expectation. Such models are often used to
characterize the dynamics of non-negative time-series processes. Non-negative time-series are common in finance. Examples include
the volume of shares traded over a period, the ask-bid price spread and the number of trades in a period. For instance, our tests can
be used to check the conditional autoregressive range (CARR) model proposed by Chou (2005) for the high–low price spread of stock
prices. As such, the main contribution of this article is to propose a general framework to test multiplicative error models for
non-negative processes. The methodology is related to Hong and Lee (2005, 2007), which proposed a framework for testing the
martingale difference sequence (m.d.s.) hypothesis in a sense that the moment restriction we are testing is a m.d.s. property of
standardized errors implied by correct specification of a conditional mean model. However, Hong and Lee (2005) consider additive
errors whereas we used standardized multiplicative errors here. As explained next, when testing multiplicative error models including
ACD models, the tests based on additive model residuals may be asymptotically less powerful because of the existence of conditional
heteroskedasticity of unknown form in the additive model residuals even when the standardized errors are i.i.d. Our use of
standardized multiplicative model residuals avoid such an undesired feature.

Section 2 introduces hypotheses of interest and the testing approach. We propose the generalized spectral derivative tests in
Section 3, and derive their asymptotic normal distribution in Section 4. Section 5 considers a finite sample correction to remove
parameter estimation uncertainty. Section 6 investigates the asymptotic power property of the tests. Section 7 examines their finite
sample performance via Monte Carlo experiments. Section 8 concludes. All mathematical proofs are collected in the appendix.
Throughout, we denote C for a generic bounded constant, A� for the complex conjugate of A, ReA for the real part of A and ||A|| for
the Euclidean norm of A. All limits are taken as the sample size n ! 1. The GAUSS code to implement our tests is available from the
authors on request.

2. HYPOTHESES OF INTEREST AND APPROACH

2.1. Hypotheses of interest

In subsequent sections, we develop a general theory to test model specification of a non-negative time-series process fYig1i¼1 of the
multiplicative form

Yi ¼ w0
i ei; ð1Þ

where ei is a non-negative innovation, w0
i � EðYi j Ii�1Þ is the conditional expectation, Ii�1, is the information set that contains lagged

values of Yi and possibly other lagged observable variables available at time indexed by i�1, and this information set is increasing in i.
Non-negative time series processes are common in time-series analysis and occur in many applied areas, such as economics and
finance. A prime example is a point process fti, i ¼ 1, 2, …g, a sequence of strictly increasing random variables, corresponding to
arrival times of events of interest, such as transactions. Here, one may be interested in the dynamics of Yi ¼ ti � ti�1, the elapsed
time between two consecutive events occurring at times ti and ti�1 respectively. Other examples of Yi include the volume of shares
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over a 10-minute period, the high price minus the low price over a time period, the ask price minus the bid price and the number of
trades in a period (Engle, 2002).

The multiplicative innovation ei is also called a standardized innovation because ei ¼ Yi=w
0
i : By construction, E(ei | Ii�1) ¼ 1 almost

surely. It is often assumed in the literature that feig is i.i.d. For example, feig can follow an i.i.d. sequence of standard exponential or
Weibull random variables, as in the ACD model of Engle and Russell (1998). In this case, all past information enters the current
duration Yi via the conditional expected duration w0

i ; which captures the full dynamics of Yi. However, the i.i.d. assumption for feig
may be too restrictive in practice. It rules out the possibility that the conditional dispersion of feig is time-varying. As Engle (2000)
points out, feig may follow a non-negative distribution with a unit mean and time-varying variance, and there are many such
candidates. One example is

ei ¼ expð
ffiffiffiffi
hi

p
ziÞ= expð12 hiÞ;

zi � i.i.d. Nð0; 1Þ;

�
ð2Þ

where hi ¼ h(Ii�1), E(ei | Ii�1) ¼ 1 and var(ei | Ii�1) ¼ exp(hi) � 1. Liu et al. (2006) document that the standardized innovation feig is
not i.i.d. for both intraday Eurodollars and Japanese Yens. In fact, many empirical applications allow feig having different dispersions
across different regimes. In such scenarios, fei � 1g is an m.d.s. but not i.i.d.

The flexibility of modelling the conditional expectation of fYig arises from various choices of models for the conditional
expectation, w0

i ; and the probability density function of ei. Conditional expectation w0
i contains useful information about the

dynamics of fYig. For example, in ACD modelling, long durations indicate lack of trading activities, which signifies a period of no new
information. To capture the dynamics of conditional expectation, practitioners often use a parametric model for w0

i : An example is
Engle and Russell’s (1998) linear ACD(p,q) model. Suppose w(Ii�1,h), h 2 H � Rr; is a parametric model for w0

i ; where Q is a finite-
dimensional parameter space. We say that w(Ii�1, h) is correctly specified for w0

i if

H0 : wðIi�1; h0Þ ¼ w0
i almost surely for some h0 2 H � Rp:

Alternatively, we say that w(Ii�1,h) is misspecified for w0
i if

HA : There exists no h 2 H such that wðIi�1; hÞ ¼ w0
i almost surely.

Our goal is to develop tests for H0 vs. HA that can detect a wide range of misspecifications in w(Ii�1, h) while being robust to time-
varying higher-order conditional moments of ei.

2.2. Generalized spectral derivative analysis

In practice, fYig is often a non-Markovian process, as is the case for almost all ACD models considered in the literature. As a result, the
conditioning information set Ii�1 is infinite-dimensional (i.e. dating back to the infinite past) or its dimension grows with time ti. This
poses a challenge in testing the model w(Ii�1, h), because of the curse of dimensionality. To avoid it, we will propose a non-
parametric test of H0 using a suitable partial derivative of Hong’s (1999) generalized spectrum. Define the standardized model error

eiðhÞ �
Yi

wðIi�1; hÞ
; h 2 H � Rp: ð3Þ

Then H0 holds if and only if E[ei(h0) | Ii�1] ¼ 1 a.s. for some h0 2 Q. This implies E½eiðh0Þ j Iei�1� ¼ 1 a.s., where
Iei�1 � fei�1ðh0Þ; ei�2ðh0Þ; . . .g. It forms a basis for testing H0. We note that one could also test H0 by using the additive error
ni ¼ Yi�w(Ii�1,h) (see Hong and Lee, 2005, 2007) rather than the multiplicative error ei in (3). However, the test based on fnig may
result in an asymptotically less powerful test than a test based on feig because fni ¼ ei½w0

i � wðIi�1; hÞ�g is conditionally
heteroskedastic even when feig is i.i.d. (see Section 6 for more discussion). In addition, the use of feig rather than fnig allows weaker
moment conditions on the data-generating process (DGP). In particular, we allow integrated ACD models which are strictly but not
weakly stationary [an integrated ACD(1,1) model is given as follows: wi ¼ a + bwi�1 + cYi�1, with b + c ¼ 1]. In this case, feig is still
weakly stationary but fnig is not.

For notational economy, we put ei ” ei(h0), where h0 is the probability limit of some parameter estimator ĥ and h0 satisfies the
condition that w0

i ¼ wðIi�1; h0Þ almost surely under H0. Li and Yu (2003) propose a portmanteau diagnostic test for H0 using a
modified Box–Pierce (1970) type test statistic based on finitely many sample autocorrelations of feig, in a spirit similar to Li and Mak
(1994). The modification takes into account the impact of parameter estimation uncertainty in the ACD model. The resulting test
statistic has a convenient asymptotically valid chi-squared distribution under H0, and has power against dynamic misspecification
(i.e. misspecification in lag order structure). The test also has good power against many nonlinear ACD alternatives, although it may
miss some important nonlinear ones because of the use of the autocovariance function of feig. Meitz and Teräsvirta (2006) also
propose a class of LM-type tests against some specific ACD alternatives. These tests are most powerful against the assumed
alternatives.

We note that there are tests for conditional moment restrictions with respect to an infinite information set in the literature. For
example, Escanciano and Velasco (2006) proposed a test for the martingale hypothesis for raw data, and Escanciano (2006) proposed
a specification test for parametric conditional mean models. The former is not directly applicable for testing ACD models since they
do not consider estimated model residuals, whereas the sampling variation of parameter estimation affects the asymptotic
distribution of their test statistic. The latter can be viewed as an alternative to Hong and Lee (2005) and could be used to test ACD
models. Like Hong and Lee (2005), however, Escanciano’s (2006) test is based on additive model residuals; thus, it may be less
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powerful than the test based on standardized errors as the test proposed in the present article. Also, the non-standard limiting
distribution of his test requires computationally costly resampling.

Because no prior information about the true alternative is usually available to practitioners, it is highly desirable to develop
complementary tests for ACD models that do not require the knowledge of the alternative and have reasonable power against a
wide range of neglected linear and nonlinear ACD alternatives. We now develop a class of such tests using a generalized spectral
derivative approach. Suppose feig is a strictly stationary process with marginal characteristic function u(u) ” E(eiuei) and pairwise joint
characteristic function uj(u,v) ” E(eiuei+ivei�|j|), where i �

ffiffiffiffiffiffiffi
�1
p

, u; v 2 R, and j ¼ 0, ± 1, …. The basic idea of the generalized spectrum
in Hong (1999), tailored to the present context, is to consider the spectrum of the transformed series feiueig, which is defined as

f ðx; u; vÞ � 1

2p

X1
j¼�1

rjðu; vÞe�ijx; x 2 ½�p; p�; u; v 2 R; ð4Þ

where x is the frequency, and rj(u,v) ” cov(eiuei, eivei�|j|) is the covariance function of the transformed series. The function f(x, u, v) is
well defined when

X1
j¼�1

sup
ðu;vÞ2R2

jrjðu; vÞj <1;

which holds if feig is an a-mixing process with a-mixing coefficients satisfying the restriction that

X1
j¼�1

aðjÞðm�1Þ=m <1

for some m > 1 (see Hong, 1999). It can capture any type of pairwise serial dependence in feig, that is dependence between ei and
ei�j for any lag j 6¼ 0, including nonlinear serial dependence with zero autocorrelation. This is analogous to the higher-order spectra
(Brillinger, 1965; Brillinger and Rosenblatt, 1967a, 1967b). Unlike the higher-order spectra, however, f(x, u, v) does not require the
existence of any moment of feig. When Eðe2

i Þ exists, we can obtain the conventional power spectrum from a partial derivative of
f(x,u,v) at (u,v) ¼ (0,0):

� @2

@u@v
f ðx; u; vÞ jðu;vÞ¼ð0;0Þ ¼

1

2p

X1
j¼�1

covðei; ei�jjjÞe�ijx; x 2 ½�p; p�;

where interchanging differentials and expectation is valid given

X1
j¼�1

jcovðei; ei�jjjÞj <1:

For this reason, f(x, u, v) is called the generalized spectrum of feig.
As is well known, the interpretation of spectral analysis is more difficult for nonlinear time series than for linear time series. Unlike

the power spectrum, the higher-order spectra have no physical interpretation (i.e. energy decomposition over frequencies). This is
also true of f(x, u, v). However, the basic idea of characterizing cyclical dynamics still applies: f(x, u, v) is useful when searching for
linear or nonlinear cyclical movements. A strong cyclicity of data can be linked with a strong serial dependence in feig that may not
be captured by the autocorrelation function of feig. The generalized spectrum f(x, u, v) can capture such nonlinear cyclical patterns
by displaying distinct spectral peaks. This can be seen from the Taylor series expansion of f(x,Æ,Æ) around the origin (0,0):

f ðx; u; vÞ ¼
X1
m¼0

X1
l¼0

ðiuÞmðivÞl

m!l!

1

2p

X1
j¼�1

covðem
i ; e

l
i�jjjÞe�ijx

" #
; x 2 ½�p; p�; u; v 2 R;

which holds under suitable regularity conditions. Now suppose feig is a white noise [cov(ei, ei�j) ¼ 0 for all j 6¼ 0] but has a stochastic
cyclical pattern in dispersion clustering. Then the power spectrum will miss such dispersion clustering, but f(x, u, v) can effectively
capture it. More generally, f(x, u, v) can capture cyclical dynamics in the conditional distribution of feig, including those in the tail
clustering of the distribution.

Correct specification for w0
i is equivalent to the condition that E(ei | Ii�1) ¼ 1 a.s. It is possible that feig is not i.i.d. under H0, as is

illustrated in (2). The generalized spectrum f(x, u, v) itself is not suitable for testing H0, because it can capture serial dependence in
not only conditional mean but also higher-order conditional moments. In other words, it may incorrectly reject H0 because of the
existence of serial dependence in higher-order conditional moments of ei rather than the violation of H0.

However, just as the characteristic function can be differentiated to generate various moments of feig, f(x, u, v) can be
differentiated to capture serial dependence in various moments of feig. To focus on and only on the departures from E(ei | Ii�1) ¼ 1,
one can use the partial derivative

f ð0;1;0Þðx; 0; vÞ � 1

2p

X1
j¼�1

rð1;0Þj ð0; vÞe�ijx; x 2 ½�p; p�; v 2 R; ð5Þ

where
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rð1;0Þj ð0; vÞ � @

@u
rjðu; vÞ ju¼0 ¼ covðiei; eivei�jjj Þ:

Note that rð1;0Þj ð0; vÞ ¼ 0 for all v 2 R if and only if E(ei | ei�|j|) ¼ 1 given the boundedness of the complex-valued exponential
function eivei�|j| and E|et| < 1 (see Stinchcombe and White, 1998, Thm. 2.3). The function E(ei | ei�|j|) is called the autoregression
function of feig in nonlinear time series analysis (Tong, 1990, p. 8) and can capture linear and nonlinear dependences in the
conditional mean of feig, including the processes with zero autocorrelation. Therefore, rð1;0Þj ð0; vÞ, or equivalently f(0,1,0)(x, 0, v),
ideally suits for testing w(Ii�1, h). Moreover, although E(ei | ei�|j|) and rð1;0Þj ð0; vÞ are equivalent measures, the use of rð1;0Þj ð0; vÞ rather
than E(ei | ei�|j|) avoids smoothed non-parametric estimation.

Under H0, the generalized spectral derivative f(0,1,0)(x,0,v) becomes a ‘flat spectrum’:

f
ð0;1;0Þ
0 ðx; 0; vÞ ¼ 1

2p
rð1;0Þ0 ð0; vÞ for all x 2 ½�p; p�; and v 2 R:

Thus, one can test H0 vs. HA by comparing two consistent estimators for f(0,1,0)(x,0,v) and f
ð0;1;0Þ
0 ðx; 0; vÞ respectively. Under H0,

these estimators converge to the same limit. If they converge to different limits, there exists evidence against H0. Note that we
always have a flat spectrum under H0 even if there exists conditional dispersion clustering [i.e. covðe2

i ; e
2
i�jÞ 6¼ 0 for some j 6¼ 0]. This

provides a basis for constructing tests for H0 that are robust to time-varying higher-order conditional moments in feig.

3. GENERALIZED SPECTRAL DERIVATIVE TESTS

Because feig is not observed, we need to use an estimated standardized model residual

êi �
Yi

wðIyi�1; ĥÞ
; i ¼ 1; . . . ; n; ð6Þ

where Iyi�1 is the feasible information set observed at time ti�1 that may involve some assumed initial values. For example, consider
an ACD(1,1) model Yi ¼ wiei, where wi ¼ a + bwi�1 + cYi�1. Here, the infeasible information set Ii�1 ¼ fYi�1, Yi�2,…, Y1, Y0, …g
contains the entire past history fYs, s < ig dating back to the infinite past. On the other hand, Iyi�1 ¼ fYi�1; Yi�2; . . . ; Y1; �Y0; �w0g,
where �Y0; �w0 are some assumed initial values for Y0,w0 respectively.

In (6), any
ffiffiffi
n
p

-consistent parameter estimator ĥ based on a random sample fYign
i¼1 of size n can be used. An example of ĥ is the

QMLE of Engle and Russell (1998) in estimating an ACD model, which is based on the assumption that feig � i.i.d. exp(1):

ĥ ¼ arg min
h2H

Xn

i¼1

ln wðIyi�1; hÞ þ
Yi

wðIyi�1; hÞ

" #
: ð7Þ

Engle and Russell (1998) show that ĥ in (7) is consistent for h0 under H0 even if feig is not i.i.d. exp(1), although it is not asymptotically
most efficient. More generally, Drost and Werker (2004) show that QMLE is consistent when it is based on the standard Gamma
family.

With fêign
i¼1, one can estimate f(0,1,0)(x, 0, v) by a non-parametric smoothed kernel estimator

f̂ ð0;1;0Þðx; 0; vÞ � 1

2p

Xn�1

j¼1�n

1� jjj
n

� �1=2

k
j

p

� �
r̂ð1;0Þj ð0; vÞe�ijx; x 2 ½�p; p�; v 2 R;

where

r̂ð1;0Þj ð0; vÞ ¼ 1

n� jjj
Xn

i¼jjjþ1

iðêi � 1Þ/̂i�jjjðvÞ; ð8Þ

/̂i�jjjðvÞ ¼ eivêi�jjj � ûðvÞ and ûðvÞ ¼ n�1
Pn

i¼1 eivêi . One could replace unity in (8) by the sample mean of fêig. Here, p ” p(n) is a
bandwidth that grows with the sample size n, and k : R! ½�1; 1� is a symmetric kernel that assigns weights to various lags.
Examples of k(Æ) include the Bartlett, Daniell, Parzen and quadratic spectral kernels (e.g. Priestley, 1981, p. 442). The factor (1�|j|/n)1/2

is a finite-sample correction. It could be replaced by unity.
To estimate the flat spectral derivative f

ð0;1;0Þ
0 ðx; 0; vÞ; we use the estimator

f̂
ð0;1;0Þ
0 ðx; 0; vÞ � 1

2p
r̂ð1;0Þ0 ð0; vÞ; x 2 ½�p; p�; v 2 R:

Under H0; f̂ ð0;1;0Þðx; 0; vÞ and f̂
ð0;1;0Þ
0 ðx; 0; vÞ converge to the same limit. Under HA, they generally converge to different limits. Thus,

we can test H0 based on the comparison of f̂ ð0;1;0Þðx; 0; vÞ and f̂
ð0;1;0Þ
0 ðx; 0; vÞ via a divergence measure (e.g. L2-norm). Any significant

difference between them will be evidence against H0.
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3.1. Tests under martingale difference sequence standardized innovations

An important feature of H0 is that it is silent about the higher-order conditional moments of feig. In a Markov-chain regime-switching
ACD model, for example, the innovation feig may have different dispersions and time-varying higher-order conditional moments
across different regimes. Thus, fei � 1g is m.d.s. but not i.i.d. although it may be i.i.d. within each regime. Hence, the assumption of
i.i.d. innovations is too restrictive because it ignores the impact of dispersion clustering in feig across different regimes. This may
result in an incorrect Type I error. Therefore, it is highly desirable to develop tests for H0 that are robust to time-varying higher-order
conditional moments in feig.

A class of tests with such an appealing robust property can be constructed by comparing f̂ ð0;1;0Þðx; 0; vÞ and f̂
ð0;1;0Þ
0 ðx; 0; vÞ via the

quadratic form

n

Z Z p

�p
ĵf ð0;1;0Þðx; 0; vÞ � f̂

ð0;1;0Þ
0 ðx; 0; vÞj2dxdWðvÞ

¼
Xn�1

j¼1

k2 j

p

� �
ðn� jÞ

Z
r̂ð1;0Þj ð0; vÞ
��� ���2dWðvÞ;

ð9Þ

where the equality follows by Parseval’s identity. The resulting test statistic is a properly standardized version of (9):

M̂1ðpÞ �

Pn�1

j¼1

k2 j

p

� �
ðn� jÞ

Z
r̂ð1;0Þj ð0; vÞ
��� ���2dWðvÞ � Ĉ1ðpÞ

" #
ffiffiffiffiffiffiffiffiffiffiffiffi
D̂1ðpÞ

q ; ð10Þ

where W : R! Rþ is a non-decreasing function that weighs sets of v symmetric around 0 equally, and the centering and scaling
factors are, respectively,

Ĉ1ðpÞ ¼
Xn�1

j¼1

k2 j

p

� �
1

n� j

Xn�1

i¼jþ1

ðê2
i � 1Þ

Z
/̂i�jðvÞ
��� ���2dWðvÞ;

D̂1ðpÞ ¼ 2
Xn�2

j¼1

Xn�2

l¼1

k2 j

p

� �
k2 l

p

� �Z Z ���� 1

n�max ðj; lÞ
Xn

i¼maxðj;lÞþ1

ðê2
i � 1Þ/̂i�jðvÞ/̂i�lðv0Þ

����
2

dWðvÞdWðv0Þ:

Throughout, all unspecified integrals are taken on the support of W(Æ). An example of W(Æ) is the N(0,1) CDF, which is commonly
used in the empirical characteristic function literature. The factors Ĉ1ðpÞ and D̂1ðpÞ are the approximate mean and variance of the
quadratic form in (9). In deriving the forms of Ĉ1ðpÞ and D̂1ðpÞ; we have exploited the implication of H0 : EðeijIi�1Þ ¼ 1, and we have
taken into account the impact of conditional dispersion clustering and time-varying higher-order conditional moments in feig. As a
result, M̂1ðpÞ is robust to dispersion clustering and time-varying higher-order conditional moments of unknown form, as can occur in
a threshold or regime-switching ACD model. In fact, we conjecture that M̂1ðpÞ is still applicable even if feig displays unconditional
heteroskedasticity [i.e. var(ei) differs from i]. Note that both Ĉ1ðpÞ and D̂1ðpÞ grow to infinity at a rate of p as p ! 1, p/n ! 0 (see the
Appendix for details).

3.2. Tests under i.i.d. standardized innovations

Although the robust test M̂1ðpÞ is applicable no matter whether fei � 1g is i.i.d. or m.d.s., we can obtain a simpler test statistic with
better finite sample performance when feig is i.i.d. In this case, we can define a simpler test statistic

M̂0ðpÞ �

Pn�1

j¼1

k2 j

p

� �
ðn� jÞ

Z
r̂ð1;0Þj ð0; vÞ
��� ���2dWðvÞ � Ĉ0ðpÞ

" #
ffiffiffiffiffiffiffiffiffiffiffiffi
D̂0ðpÞ

q ; ð11Þ

where the centering and scaling factors now are simplified as follows:

Ĉ0ðpÞ ¼ ð̂s2 � 1Þ
Z
½1� ûðvÞj j2�dWðvÞ

Xn�1

j¼1

k2 j

p

� �
;

D̂0ðpÞ ¼ 2ðŝ2 � 1Þ2
Z Z

ûðv þ v0Þ � ûðvÞûðv0Þj j2dWðvÞdWðv0Þ
Xn�2

j¼1

k4 j

p

� �
;

with ŝ2 ¼ n�1
Pn

i¼1 ê2
i . In deriving the forms of Ĉ0ðpÞ and D̂0ðpÞ, we have exploited the implication of the i.i.d. assumption on feig.

As a result, Ĉ0ðpÞ and D̂0ðpÞ are simpler than Ĉ1ðpÞ and D̂1ðpÞ under the m.d.s. case. We emphasize that M̂0ðpÞ is not a test for the
i.i.d. hypothesis of feig. Instead, it is a test for H0 (conditional expected duration specification) with the auxiliary assumption that feig
is i.i.d. (i.e. the higher-order conditional moments of feig are constant). Note that if the additive error, ni ¼ Yi�w(Ii�1, h), was used,
such a simple test statistic as M̂0ðpÞ cannot be obtained, because of the presence of conditional heteroskedasticity in fnig even when
feig is i.i.d.
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As shown in Section 4, M̂1ðpÞ!d Nð0; 1Þ under H0 and M̂0ðpÞ!d Nð0; 1Þ when feig is i.i.d. To gain the intuition, we consider an
example of M̂0ðpÞ where the truncated kernel k(z) ¼ 1(|z| � 1) is used, where 1(Æ) is the indicator function. In this case, the sum in (9)
becomes

Xp

j¼1

ðn� jÞ
Z

r̂ð1;0Þj ð0; vÞ
��� ���2dWðvÞ;

and both Ĉ0ðpÞ and D̂0ðpÞ are proportional to p and 2p respectively. Because the sequence

ðn� jÞ
Z

r̂ð1;0Þj ð0; vÞ
��� ���2dWðvÞ

� �p

j¼1

is approximately i.i.d. when H0 holds, we have, by the central limit theorem, that the sum in (9) converges to N(0, 1) after proper
centering and scaling. Of course, our formal proof does not rely on this simplistic heuristics.

4. ASYMPTOTIC NULL DISTRIBUTION

To derive the asymptotic distribution of the proposed tests under H0, we first provide some regularity conditions.

ASSUMPTION A.1. fYig is a strictly stationary non-negative time-series process such that w0
i � EðYi j Ii�1Þ exists a.s., where Ii�1 is an

information set at time ti�1 that may contain lagged dependent variables fYi�j, j>0g as well as current and lagged exogenous variables
fZi�j, j 	 0g.

ASSUMPTION A.2. w(Ii�1,h) is a parametric model for w0
i , where h 2 H � Rr is a finite-dimensional parameter and Q is a parameter

space, such that (a) for each h 2 Q, w(Æ,h) is measurable with respect to Ii�1; (b) with probability 1, w(Ii�1, Æ) is continuously twice
differentiable with respect to h 2 Q, and for some m > 1, E suph2Hjj @@h ln wðIi�1; hÞjj4 maxðm;2Þ O C; E suph2Hjj @2

@h@h0 ln wðIi�1; hÞjj4 O C
and E suph 2 Q[ei(h)]4max(m,4) O C, where ei(h) ¼ Yi /w(Ii�1,h).

ASSUMPTION A.3. Let Iyi be a feasible observed information set available at time ti that may contain some assumed initial values. Then

lim
n!1

Xn

i¼1

E sup
h2H

wðIyi�1; hÞ � wðIi�1; hÞ
wðIyi�1; hÞ

�����
�����

" #8( )1=8

OC:

ASSUMPTION A.4. ĥ� h0 ¼ OPðn�1=2Þ; where h0 2 int (Q) satisfies the condition that w0
i ¼ wðIi�1; h0Þ almost surely under H0.

ASSUMPTION A.5. Put ei ” ei(h0) ¼ Yi /w(Ii�1,h0) and Gi � @
@h lnwðIi�1; h0Þ, where h0 is as in Assumption A.4. Then fei;G0ig

0 is a strictly
stationary a-mixing process with a-mixing coefficient a(j) satisfying

X1
j¼�1

j2aðjÞðm�1Þ=m <1

for m > 1 be as in Assumption A.2.

ASSUMPTION A.6. k : R! ½�1; 1� is symmetric around 0, and is continuous at 0 and all points except a finite number of points, with
k(0) ¼ 1 and |k(z)| O C|z|�b as z!1 for some b > 3.

ASSUMPTION A.7. W : R! Rþ is non-decreasing and weighs sets symmetric around 0 equally, with
R1
�1 v4 dWðvÞ � C.

ASSUMPTION A.8. For each sufficiently large integer q, there exists a strictly stationary non-negative process feq,ig such that as
q ! 1, eq,i is independent of Ii�q�1, E(eq,i | Ii�1) ¼ 1 a.s., E(ei�eq,i)

4OCq�2j for some constant j 	 1.

Assumption A.1 imposes a strict stationarity condition on fYig. Assumption A.2 is a set of smoothness and moment conditions on
the model w(Ii�1,h). It covers many stationary linear and nonlinear ACD models. Assumption A.3 is a condition on the truncation of
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information set Ii�1, which usually contains the information dating back to the very remote past and so may not be completely
observable. Because of the truncation, one may have to assume some initial values in estimating the model w(Ii�1,h). Assumption A.3
ensures that the use of initial values, if any, has no impact on the limiting distributions of M̂1ðpÞ and M̂0ðpÞ. For instance, consider an
ACD(1,1) model:

wi ¼ aþ bwi�1 þ cYi�1;

where wi ¼ wðIi�1; hÞ; h ¼ ða; b; cÞ0; a > 0; 0 � b � �b < 1 and 0 � c � �c < 1. Here, we have Ii�1 ¼ fYi�1, Yi�2,…,Y1, Y0,…g but
Iyi�1 ¼ fYi�1; Yi�2; . . . ; Y1; �Y0; �w0g, and �Y0; �w0 are initial values assumed for Y0,w0 respectively. By recursive substitution, we can show

Xn

i¼1

E sup
h2H

wðIyi�1; hÞ � wðIi�1; hÞ
��� ���� 	8

( )1=8

O
1

1� �b
½Eð�w8

0Þ�
1=8 þ �c

1� �b
½Eð�Y8

0 Þ�
1=8

� �
OC:

Assumption A.4 requires that ĥ be a
ffiffiffi
n
p

-consistent estimator under H0, which need not be asymptotically most efficient, and
converges to a constant under the alternative. It can be the QMLE in (7), or an efficient estimator developed in Drost and Werker
(2004). We do not need to know the asymptotic expansion structure of ĥ, because the sampling variation in ĥ does not affect the
asymptotic distribution of M̂1ðpÞ. Assumption A.5 imposes a mixing condition on fei;G0ig

0; which restricts the degree of temporal
dependence in fei;G0ig

0: Mixing conditions are convenient for nonlinear time-series analysis. For more discussion on mixing
conditions, see (e.g.) White (2001, pp. 46–47).

Assumption A.6 is a regularity condition on the kernel function k(Æ), which assigns weights to various lags. It includes many
commonly used kernels in practice. The condition of k(0) ¼ 1 ensures that the asymptotic bias of the smoothed kernel estimator
f̂ ð0;1;0Þðx; 0; vÞ in (8) vanishes to 0 as n ! 1. The tail condition on k(Æ) requires that k(z) decay to 0 sufficiently fast as |z|!1.
It implies that

Z1
0

ð1þ z2ÞjkðzÞjdz <1:

This condition rules out the Daniell and quadratic spectral kernels, whose b ¼ 2. However, it includes all kernels with bounded
support, such as the Bartlett and Parzen kernels, for which b ¼ 1. Assumption A.7 is a condition on the weighting function W(v). It is
satisfied by the CDF of any symmetric continuous distribution with a finite fourth moment.

Assumption A.8 is required only under H0. It assumes that when q is sufficiently large, the innovation ei can be approximated by a
q-dependent non-negative process eq,i arbitrarily well. Horowitz (2003) imposes a similar condition in a different context. Because
E(ei|Ii�1) ¼ 1 under H0, Assumption A.8 essentially imposes restrictions on the serial dependence in higher-order moments of feig.
It holds trivially when feig is i.i.d. or when feig is a q0-dependent process with an arbitrarily large but fixed order q0. It also covers
many non-Markovian innovation processes. This assumption greatly simplifies the proof of the asymptotic normality for the
proposed test statistics.

We now derive the asymptotic distributions of the M̂1ðpÞ and M̂0ðpÞ tests under H0.

THEOREM 1. Suppose Assumptions A.1–A.8 hold, and p ¼ cnk for 0 < k < (3 + 1/4b�2)�1 and 0 < c < 1. Then (i)
M̂1ðpÞ!d Nð0; 1Þ under H0. (ii) Suppose in addition feig is i.i.d., then M̂0ðpÞ!d Nð0; 1Þ.

Because a
ffiffiffi
n
p

-consistent estimator ĥ converges to h0 under H0 faster than the non-parametric estimator f̂ ð0;1;0Þðx; 0; vÞ converges
to f (0,1,0)(x,0,v), the asymptotic distribution of M̂1ðpÞ is solely determined by the non-parametric estimator f̂ ð0;1;0Þðx; 0; vÞ.
Consequently, unlike the Box–Pierce–Ljung type portmanteau test, parameter estimation uncertainty in ĥ has no impact on the
asymptotic distribution of M̂1ðpÞ; a so-called ‘asymptotic nuisance parameter free’ property. In other words, the asymptotic
distribution of M̂1ðpÞ remains unchanged when ĥ is replaced by its probability limit h0. This results in a convenient procedure. Only
estimated model residuals are needed to compute the test statistics M̂1ðpÞ and M̂0ðpÞ.

The M̂1ðpÞ test is applicable no matter whether feig is i.i.d. under H0. However, when feig is i.i.d., we expect that M̂0ðpÞ has better
size than M̂1ðpÞ in finite samples, because M̂0ðpÞ exploits the implication of the i.i.d. property of feig in constructing the centering and
scaling factors. Nevertheless, M̂0ðpÞ is expected to have size distortion when feig is not i.i.d. under H0. These are confirmed in our
simulation study (see Table 1).

5. REMOVING PARAMETER ESTIMATION UNCERTAINTY

The ‘asymptotic nuisance parameter free’ property is appealing, but it is not free of cost. Although parameter estimation uncertainty
has no impact on the asymptotic distributions of M̂1ðpÞ and M̂0ðpÞ, it affects their finite sample distributions, particularly when the
sample size n is not large. Intuitively, the estimator ĥ can result in an adjustment of at most a finite number of degrees of freedom to
the distributions of M̂1ðpÞ and M̂0ðpÞ. When the lag order p!1 as n!1, the impact of ĥ becomes negligible when normalized by
the scaling factor D̂

1=2
1 ðpÞ or D̂

1=2
0 ðpÞ, which grows to infinity at the rate of p1/2. Nevertheless, asymptotic analysis reveals that the

asymptotically negligible higher-order terms in M̂1ðpÞ and M̂0ðpÞ that are associated with parameter estimation uncertainty vanish to
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0 in probability rather slowly. Therefore, ĥ may significantly distort the sizes of M̂1ðpÞ and M̂0ðpÞ in finite samples, as is observed in
the simulation study that follows.

In practice, one could use a bootstrap procedure to approximate the finite sample distributions of M̂1ðpÞ and M̂0ðpÞ. A naive
bootstrap could be used for M̂0ðpÞ when feig is i.i.d. and this is expected to yield accurate sizes in finite samples. However, even the
naive bootstrap is computationally costly because, to account for the impact of parameter estimation uncertainty in finite samples, it
will involve reestimation of the null ACD model using bootstrap samples. When the null ACD model is nonlinear, estimation can be
rather involved. Moreover, the naive bootstrap cannot be used when feig is not i.i.d. Sophisticated bootstraps (e.g. block bootstraps)
are needed to take into account unknown serial dependence in higher-order conditional moments in feig. Here, we will use a
convenient finite sample correction that can purge the impact of parameter estimation uncertainty of the test statistics and the
resulting test statistics still follow the convenient null asymptotic N(0, 1) distribution. This is achieved by adopting Wooldridge’s
(1990a) device which has also been used in Hong and Lee (2007) for tests of time series regression models with additive errors.

5.1. Wooldridge’s device

Wooldridge (1990a, 1990b, 1991) proposes a novel approach to robust, moment-based parametric specification testing for possibly
dynamic time-series models. Specifically, Wooldridge (1990a) considers the null hypothesis

E eiðh0ÞjIi�1½ � ¼ 0 for some h0 2 H;

where ei(h) is a measurable, possibly vector-valued function. In the present context, ei(h) ¼ i[ei(h)�1]. Wooldridge (1990a) uses a
weighting function Ai(h) 2 Ii�1 and checks if E[Ai(h0)ei(h0)] ¼ 0 by using the sample moment

m̂ � 1

n

Xn

i¼1

miðĥÞ ¼
1

n

Xn

i¼1

Âi êi;

where mi(h) ¼ Ai(h)ei(h), Âi ¼ AiðĥÞ; êi ¼ eiðĥÞ and ĥ is a
ffiffiffi
n
p

-consistent estimator of h0. Straightforward algebra shows that

ffiffiffi
n
p

m̂ ¼ n�1=2
Xn

i¼1

½miðh0Þ þ Aiðh0ÞUiðh0Þðĥ� h0Þ� þ OPðn�1=2Þ;

where

Table 1. Empirical sizes of tests

�p

M1ðp̂0Þ M0ðp̂0Þ Md
1ðp̂0Þ Md

0ðp̂0Þ LY1ð�pÞ LY2ð�pÞ

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP S.1: ACD(1,1) � i.i.d. errors
N ¼ 500

5 3.7 2.5 4.7 2.9 7.9 4.0 10.0 6.0 7.2 4.2 7.0 3.3
10 3.9 2.7 5.0 3.2 8.6 4.5 10.6 6.9 9.2 4.7 7.4 4.0
20 3.7 2.0 7.2 4.0 6.7 3.4 11.3 7.3 9.0 5.9 8.9 4.8

N ¼ 1000
5 4.2 3.0 4.4 2.9 8.1 4.8 7.5 4.5 6.5 3.2 7.0 3.7
10 4.6 3.0 4.9 2.9 8.6 5.1 7.4 4.3 8.6 5.1 9.1 5.8
20 4.8 2.8 5.9 3.6 8.1 4.8 7.1 2.9 9.9 5.3 8.9 4.9

N ¼ 2000
5 5.0 3.3 5.4 3.4 9.6 5.8 10.8 6.6 7.0 3.8 7.1 3.5
10 5.0 3.4 5.4 3.4 9.8 5.8 10.9 6.6 7.1 3.7 7.8 3.9
20 5.3 2.5 6.8 3.3 9.5 5.9 10.3 7.5 8.7 4.3 8.6 4.6

DGP S.2: ACD(1,1) � non-i.i.d. errors
N ¼ 500

5 6.0 4.1 17.2 11.6 7.7 5.1 23.4 23.4 29.5 21.3 8.9 5.3
10 6.2 4.4 17.9 12.4 7.8 5.2 24.4 18.0 34.5 29.0 9.1 6.3
20 3.9 3.9 17.7 10.7 5.1 2.9 21.7 15.4 44.0 37.6 11.9 7.7

N ¼ 1000
5 3.7 1.8 17.8 11.7 7.5 3.7 27.8 20.1 41.1 33.9 10.6 5.9
10 3.8 1.8 18.2 12.3 7.9 3.7 28.6 20.3 46.9 39.8 9.6 5.8
20 2.6 1.3 19.1 12.6 5.9 2.6 27.1 18.4 57.7 51.4 12.3 7.3

N ¼ 2000
5 6.0 3.2 25.1 18.4 9.6 6.1 33.2 25.6 56.0 48.5 12.0 8.0
10 6.0 3.2 25.3 18.8 9.7 6.1 33.5 25.8 62.1 54.7 12.8 7.8
20 5.1 3.1 25.0 18.5 8.2 4.8 31.6 25.4 68.0 67.2 13.8 9.4

1000 iterations; M̂1ðp̂0Þ; M̂0ðp̂0Þ, generalized spectral tests derived under time-varying higher moments and i.i.d. respectively; M̂d
1 ðp̂0Þ; M̂d

0 ðp̂0Þ, finite
sample-corrected generalized spectral tests derived under time-varying higher moments and i.i.d. respectively; LY1ð�pÞ;LY2ð�pÞ, Li and Yu’s (1994) test
derived assuming var(ei) ¼ 1 known and without assuming it; the Bartlett kernel is used for M̂1ðp̂0Þ; M̂0ðp̂0Þ; M̂d

1 ðp̂0Þ and M̂d
0 ðp̂0Þ. DGP S.1: Yt ¼ wiei,

wi ¼ 0:15 þ 0:8wi�1 þ 0:05Y 2
i�1, ei ¼ zi, zi � i.i.d. exp (1); DGP S.2: Yt ¼ wiei, wi ¼ 0:15 þ 0:8wi�1 þ 0:05Y 2

i�1, ei ¼ expð
ffiffiffi
h
p

iziÞ= expð12 hiÞ,
hi ¼ 0:5 þ 0:5e2

i�1, zi � i.i.d. exp (1).
DGP indicates data-generating process and ACD autoregressive conditional duration.
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Uiðh0Þ � E
@

@h
eiðh0Þ j Ii�1

� 	
:

Thus, the asymptotic distribution of
ffiffiffi
n
p

m̂ is jointly determined by n�1=2
Pn

i¼1 miðh0Þ and
ffiffiffi
n
p
ðĥ� h0Þ, unless the expected derivative

Ui(h0) ¼ 0 under H0. Here, the impact of
ffiffiffi
n
p
ðĥ� h0Þ is because of the sampling variation of parameter estimation.

To remove the impact of parameter estimation uncertainty of ĥ on the asymptotic distribution of
ffiffiffi
n
p

m̂, Wooldridge (1990a) first
purges from Âi its linear projection onto Ûi , a consistent estimator of Ui(h0), and then considers the modified sample moment

m̂d �
1

n

Xn

i¼1

md
i ðĥÞ ¼

1

n

Xn

i¼1

ðÂi � Û0i b̂Þêi;

where md
i ðhÞ ¼ ½AiðhÞ � UiðhÞ0bðhÞ�eiðhÞ, b(h) ¼ fE[Ui(b)Ui(b)

0
]g�1E[Ui(b)Ai(b)], b̂ is the ordinary least square (OLS) estimator of

regressing Âi on Ûi . It can be shown that for any
ffiffiffi
n
p

-consistent estimator ĥ,

ffiffiffi
n
p

m̂d ¼ n�1=2
Xn

i¼1

md
i ðh0Þ þ OPðn�1=2Þ:

Thus, the asymptotic distribution of
ffiffiffi
n
p

m̂d is robust to parameter estimation uncertainty because it is not affected by anyffiffiffi
n
p

-consistent estimator ĥ up to OP(n�1/2). In other words, the asymptotic distribution of
ffiffiffi
n
p

m̂d remains unchanged when ĥ is
replaced with h0. An asymptotic chi-squared test can be obtained by forming a quadratic form in

ffiffiffi
n
p

m̂d . It may be emphasized that
Wooldridge’s (1990a) device does not imply that

ffiffiffi
n
p

m̂d has a better asymptotic approximation than
ffiffiffi
n
p

m̂ in finite samples, or
vice versa. However, it generates a new set of moment conditions

ffiffiffi
n
p

m̂d that is robust to parameter estimation uncertainty up to
OP(n�1/2). Consequently, its asymptotic distribution does not depend on any

ffiffiffi
n
p

-consistent estimator ĥ. This makes the test based
on

ffiffiffi
n
p

m̂d rather convenient.
Although Wooldridge’s (1990a) device may not deliver a better asymptotic distribution approximation for a test based on

ffiffiffi
n
p

m̂d ,
it ideally suits our purpose of improving the finite sample performance of the generalized spectral derivative tests M̂1ðpÞ and M̂0ðpÞ in
(10) and (11). Intuitively, with a new set of moment conditions, it can make the asymptotically negligible higher-order terms in M̂1ðpÞ
and M̂0ðpÞ that are associated with ĥ vanish faster to 0, thus yielding better sizes in finite samples. Next, we first describe how
Wooldridge’s (1990a) device can be adopted to M̂1ðpÞ and M̂0ðpÞ and then explain the rationale behind the improvement of the
asymptotic normal approximation for M̂1ðpÞ and M̂0ðpÞ.

Although M̂1ðpÞ and M̂0ðpÞ are more complicated than Wooldridge’s (1990a) test statistic, Wooldridge’s (1990a) device can be
applied to each generalized covariance derivative r̂ð1;0Þj ð0; vÞ, which has a similar structure to m̂, with êi ¼ iðêi � 1Þ and
Âi ¼ /̂i�jjjðvÞ. The analysis here is more involved because of the need to integrate out the parameter v. Put /i(v) ¼ eivei�u(v) and
gj(v) ¼ E[Gi/i�j(v)] for j > 0 where Gi ¼ @

@h ln wðIi�1; h0Þ as in Assumption A.5, and let ~rð1;0Þj ð0; vÞ be defined in the same way as
r̂ð1;0Þj ð0; vÞ with feign

i¼1 replacing fêign
i¼1. Then, by a Taylor series expansion around h0, we have for each given j > 0,

r̂ð1;0Þj ð0; vÞ ¼ ~rð1;0Þj ð0; vÞ � igjðvÞ0ðĥ� h0Þ þ OP½ðn� jÞ�1�:

For most ACD models, where w(Ii�1, h0) is a function of lagged dependent variables fYi�jg and lagged expected durations fwi�jg, gj(v)
is non-zero at least for some j > 0. Consequently, for each given j, the asymptotic distribution of r̂ð1;0Þj ð0; vÞ is jointly determined by
~rð1;0Þj ð0; vÞ and gjðvÞ0ðĥ� h0Þ. The asymptotic distribution of M̂1ðpÞ or M̂0ðpÞ, however, is only determined by the terms
f~rð1;0Þj ð0; vÞgn�1

j¼1 , because M̂1ðpÞ or M̂0ðpÞ is a cumulative weighted sum of
R
jr̂ð1;0Þj ð0; vÞj2 dWðvÞ over many lags, and the cumulative

effect of the terms fgjðvÞ0ðĥ� h0Þgn�1
j¼1 is of smaller order of magnitude than that for the terms f~rð1;0Þj ð0; vÞgn�1

j¼1 givenP1
j¼0 jjgjðvÞjj < 1; which in turn is implied by the a-mixing condition on fei;G0ig

0 in Assumption A.5.
Although the terms fgjðvÞ0ðĥ� h0Þgn�1

j¼1 together are asymptotically negligible for the asymptotic distribution of M̂1ðpÞ and M̂0ðpÞ,
they vanish to 0 slowly and thus may affect the finite sample distributions of M̂1ðpÞ and M̂0ðpÞ. This is indeed the case, as revealed in
the simulation study in Section 7. To alleviate this, we introduce a modified sample generalized covariance function

ĉð1;0Þj ð0; vÞ ¼ ðn� jjjÞ�1
Xn

i¼jjjþ1

iðêi � 1Þĥi�jjjðvÞ; j ¼ 0;
1; . . . ;
ðn� 1Þ; ð12Þ

where ĥi�jjjðvÞ is the OLS residual of regression /̂i�jðvÞ on the log-gradient vector Ĝi ¼ @
@h lnwðIyi�1; ĥÞ; that is,

ĥi�jjjðvÞ ¼ /̂i�jjjðvÞ � Ĝ0i b̂jjjðvÞ, where

b̂jjjðvÞ ¼
Xn

i¼1

ĜiĜ
0
i

 !�1 Xn

i¼jjjþ1

Ĝi/̂i�jjjðvÞ: ð13Þ

Following an analogous reasoning to Wooldridge (1990a), we have that for each j > 0,

ĉð1;0Þj ð0; vÞ ¼ ~cð1;0Þj ð0; vÞ þ OP½ðn� jÞ�1=2�;

where
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~cð1;0Þj ð0; vÞ ¼ 1

n� j

Xn

i¼jþ1

iðei � 1Þhi�jðvÞ;

hi�jðvÞ ¼ /i�jðvÞ � G0ibjðvÞ, and bj(v) ¼ [E(GiGi)]
�1E[Gi/i�j(v)]. In other words, the impact of parameter estimation uncertainty has

been effectively purged of ĉð1;0Þj ð0; vÞ. One can thus expect that the tests based on ĉð1;0Þj ð0; vÞ will perform better than the tests that
are based on r̂ð1;0Þj ð0; vÞ in finite samples, because the most slowly vanishing terms in M̂1ðpÞ and M̂0ðpÞ that are associated with
parameter estimation uncertainty now disappear.

5.2. Finite sample corrected tests under m.d.s. innovations

When fei�1g is m.d.s., we can obtain the modified test statistic:

M̂d
1ðpÞ ¼

Pn�1

j¼1

k2ðj=pÞðn� jÞ
Z

ĉð1;0Þj ð0; vÞ
��� ���2 dWðvÞ � Ĉd

1 ðpÞ
" #

ffiffiffiffiffiffiffiffiffiffiffiffi
D̂d

1ðpÞ
q ; ð14Þ

where the centering and scaling factors

Ĉd
1 ðpÞ ¼

Xn�1

j¼1

k2ðj=pÞ 1

n� j

Xn

i¼jþ1

ðê2
i � 1Þ

Z
ĥi�jðvÞ
��� ���2 dWðvÞ;

D̂d
1ðpÞ ¼ 2

Xn�2

j¼1

Xn�2

l¼1

k2 j

p

� �
k2 l

p

� �Z Z ���� 1

n�maxðj; lÞ
Xn

i¼maxðj;lÞþ1

ð̂e2
i � 1Þĥi�jðvÞĥi�lðv0Þ

����
2

dWðvÞdWðv0Þ:

We expect a finite sample improvement of the asymptotic normal approximation for M̂d
1ðpÞ, because its asymptotically negligible

higher-order terms vanish to 0 in probability faster than the higher-order terms in M̂1ðpÞ. This is confirmed in our simulation study.
The finite sample improvement is achieved by combining Wooldridge’s device and our non-parametric testing approach. As noted
earlier, Wooldridge’s device alone does not necessarily improve the finite sample performance. Intuitively, for each r̂ð1;0Þj ð0; vÞ; there
is an impact of parameter estimation uncertainty. The Taylor series expansion of ðn� jÞ1=2r̂ð1;0Þj ð0; vÞ around h0 reveals that replacing
ĥ for h0 affects the asymptotic distribution of ðn� jÞ1=2r̂ð1;0Þj ð0; vÞ. Although the cumulative effect of replacing ĥ for h0 becomes
asymptotically negligible for M̂1ðpÞ when we use an increasing number of lags, the sampling variation of ĥ may still significantly
affect the finite sample distribution of M̂1ðpÞ. In contrast, a Taylor series expansion of ðn� jÞ1=2ĉð1;0Þj ð0; vÞ around h0 reveals that the
asymptotic distribution of ðn� jÞ1=2ĉð1;0Þj ð0; vÞ is the same as that of ðn� jÞ1=2~cð1;0Þj ð0; vÞ. By using ĉð1;0Þj ð0; vÞ, we can effectively
reduce the impact of parameter estimation uncertainty to a higher order for each lag order j. As a result, robustness of M̂d

1ðpÞ to
parameter estimation uncertainty in finite samples is achieved.

5.3. Finite sample-corrected tests under i.i.d. innovations

The finite sample correction is also applicable to M̂0ðpÞ when feig is i.i.d. In this case, the modified test statistic is:

M̂d
0ðpÞ ¼

Pn�1

j¼1

k2ðj=pÞðn� jÞ
Z
jĉð1;0Þj ð0; vÞj2 dWðvÞ � Ĉd

0 ðpÞ
" #

ffiffiffiffiffiffiffiffiffiffiffiffi
D̂d

0ðpÞ
q ; ð15Þ

where the centering and scaling factors

Ĉd
0 ðpÞ ¼ ð̂s2 � 1Þ

Z
jĥðvÞj2 dWðvÞ

Xn�1

j¼1

k2 j

p

� �
;

D̂d
0ðpÞ ¼ 2ð̂s2 � 1Þ2

Xn�2

j¼1

Xn�2

l¼1

k2ð j

p
Þk2ðl=pÞ

Z Z ���� 1

n�maxðj; lÞ
Xn

i¼maxðj;lÞþ1

ĥi�jðvÞĥi�lðv0Þ
����

2

dWðvÞ dWðv0Þ;

where, as before, ŝ2 ¼ n�1
Pn

i¼1 ê2
i and ĥðvÞ ¼ n�1

Pn
i¼1 ĥiðvÞ. We note that the asymptotic variance estimator D̂d

0ðpÞ under the i.i.d.
case is more complicated than the asymptotic variance estimator D̂0ðpÞ for the original test M̂0ðpÞ. This is because fhi�j(v)g is not i.i.d.
even when f/i�j(v)g is i.i.d.

5.4. Asymptotic distributions of finite sample-corrected tests

To derive the null limiting distribution of M̂d
1ðpÞ and M̂d

0ðpÞ, we impose the following additional regularity conditions:

ASSUMPTION A.9. E½ @@h lnwðIi�1; hÞ @
@h0

lnwðIi�1; hÞ� is non-singular for all h 2 Q.
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ASSUMPTION A.10. Let Iyi be an observed information set available at time ti that may contain some assumed initial values. Then

lim
n!1

Xn

i¼1

E sup
h2H

@

@h
ln wðIyi�1; hÞ �

@

@h
lnwðIi�1; hÞ












� 	2
( )1=2

OC:

We derive the asymptotic distributions of M̂d
1ðpÞ and M̂d

0ðpÞ under H0.

THEOREM 2. Suppose Assumptions A.1–A.10 hold, and p ¼ cnk for 0 < k < ð3 þ 1
4b�2Þ

�1 and 0 < c < 1. Then (i)
M̂d

1ðpÞ � M̂1ðpÞ�!p 0, and M̂d
1ðpÞ�!d Nð0; 1Þ under H0. (ii) Suppose in addition feig is i.i.d. Then M̂d

0ðpÞ � M̂0ðpÞ �!d 0; and
M̂d

0ðpÞ�!d Nð0; 1Þ.

Like the original tests M̂1ðpÞ and M̂0ðpÞ in (10) and (11), we obtain the convenient null asymptotic N(0, 1) distribution for the
finite sample-corrected tests M̂d

1ðpÞ and M̂0ðpÞ. Indeed Theorem 2 implies that M̂1ðpÞ and M̂d
1ðpÞ are asymptotically equivalent

under H0. However, M̂d
1ðpÞ is expected to have a better finite sample performance, as is confirmed in the simulation study that

follows.
The asymptotic equivalence between M̂1ðpÞ and M̂d

1ðpÞ under H0 has an important implication. Although we do not formally
analyse it, we expect that the asymptotic equivalence between M̂1ðpÞ and M̂d

1ðpÞ will continue to hold under a suitable class of local
alternatives to H0 (see Wooldridge, 1990a, p. 29, for a similar discussion on the original and finite sample-corrected parametric
m-tests). In other words, M̂d

1ðpÞ will be asymptotically as powerful as M̂1ðpÞ under a class of local alternatives. This implies that the
finite sample correction improves sizes in finite samples and does not suffer from asymptotic power loss.

We summarize the procedures to implement the modified tests M̂d
1ðpÞ and M̂d

0ðpÞ:

1. Step 1: Obtain a
ffiffiffi
n
p

-consistent estimator ĥ [e.g. QMLE in (7)] for the ACD model w(Ii�1,h), and save the estimated standardized
residual êi ¼ Yi=wðIyi�1; ĥÞ.

2. Step 2: Compute the log-gradient vector Ĝi ¼ @
@h lnwðIyi�1; ĥÞ. The calculation of Ĝi is convenient for most commonly used ACD

models in practice. Although Ĝi may have a tedious closed form expression, it usually satisfies some simple recursive rela-
tionship, which can be used to calculate Ĝi recursively with some assumed initial values.

3. Step 3: For each lag order j from 1 to n�1, run an OLS regression of /̂i�jðvÞ ¼ eivêi�j � ûðvÞ on Ĝi; where ûðvÞ ¼ n�1
Pn

i¼1 eivêi

and we set /̂iðvÞ ¼ 0 for i � 0. (Alternatively, one could use the OLS estimator b̂jðvÞ ¼ ð
PT

i¼jþ1 ĜiĜ
0
iÞ
�1Pn

i¼jþ1 Ĝi/̂i�jðvÞ for
0 < j < T.) Save the estimated residual ĥi�jðvÞ: If the kernel k(Æ) has a bounded support (i.e. k(z) ¼ 0 if |z| > 1), then it suffices
to run regressions for j from 1 to p.

4. Step 4: Compute the finite sample-corrected test statistic M̂d
1ðpÞ in (14) or M̂d

0ðpÞ in (15).
5. Step 5: Compare M̂d

1ðpÞ or M̂d
0ðpÞ with an upper-tailed N(0, 1) critical value (e.g. 1.65 at the 5% level), and reject H0 at a given

level if M̂d
1ðpÞ or M̂d

0ðpÞ is larger than the critical value.

6. ASYMPTOTIC POWER

We now investigate the asymptotic power of the proposed tests, particularly the impact of the finite sample correction on the power
of the tests under HA. For this purpose, we define the covariance function

cjðu; vÞ ¼ cov½eiuðei�1Þ; hi�jðvÞ�; u; v 2 R and j > 0; ð16Þ

where hi�jðvÞ ¼ /i�jðvÞ � G0ibjðvÞ, and bjðvÞ ¼ ½EðGiG
0
iÞ�
�1E½Gi/i�jðvÞ�. We can state Theorem 3 below, the main result of this section.

THEOREM 3. Suppose Assumptions A.1–A.7 hold, and p ¼ cnk for 0 < k < 1/2 and 0 < c < 1. Then

(i)

ðp1=2=nÞM̂1ðpÞ�!
p

2D

Z 1
0

k4ðzÞ dz

� 	�1=2X1
j¼1

Z
rð1;0Þj ð0; vÞ
��� ���2 dWðvÞ;

where

D ¼ r4
X1

j¼�1

Z Z
jrjðu; vÞj2 dWðuÞ dWðvÞ; r2 ¼ Eðe2

1Þ � 1;

and

ðp1=2=nÞM̂0ðpÞ�!
p

2D0

Z 1
0

k4ðzÞdz

� 	�1=2X1
j¼1

Z
rð1;0Þj ð0; vÞ
��� ���2 dWðvÞ;
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where D0 ” r4
R R

|r0(u,v)|2 dW(u) dW(v).
(ii) Suppose in addition Assumptions A.9 and A.10 hold. Then

ðp1=2=nÞM̂d
1ðpÞ�!

p
2Dd

Z 1
0

k4ðzÞ dz

� 	�1=2X1
j¼1

Z
cð1;0Þj ð0; vÞ
��� ���2 dWðvÞ;

where

Dd ¼ r4
X1

j¼�1

Z Z
jqjðu; vÞj2 dWðuÞdWðvÞ; qjðu; vÞ ¼ cov hiðuÞ; hi�jðvÞ

� �
:

Moreover,

ðp1=2=nÞM̂d
0ðpÞ�!

p
2Dd

Z 1
0

k4ðzÞ dz

� 	�1=2X1
j¼1

Z
cð1;0Þj ð0; vÞ
��� ���2 dWðvÞ:

The constant D, in Theorem 3(i) takes into account the impact of serial dependence in conditioning functions f/i�j(v), j > 0g,
which generally exists even under H0, because of the presence of serial dependence in the conditional dispersion and higher-order
conditional moments of feig. As a result, D > D0 when feig is not i.i.d. This implies that M̂0ðpÞ will tend to have a large value than
M̂1ðpÞ for sample sizes sufficiently large when feig is not i.i.d. under HA. Thus, M̂0ðpÞ is expected to be more powerful than M̂1ðpÞ
under HA when both tests are applicable to test H0. Of course, the finite sample performance might tell a different story.

The constant Dd takes into account the impact of the finite sample correction. It depends on the serial dependence in
fhi�j(v),j > 0g, which exists even when feig is i.i.d., because bj(v) is generally non-zero for most ACD models. Both the modified tests
M̂d

1ðpÞ and M̂d
0ðpÞ are asymptotically equally powerful because they converge to the same probability limit.

As was noted in Section 2, one could test H0 by using the additive error ni ¼ Yi � wðIi�1; hÞ ¼ ei½w0
i � wðIi�1; hÞ� rather than the

standardized error ei ¼ Yi/w(Ii�1,h). However, fnig is conditionally heteroskedastic under H0 even when feig is i.i.d. Therefore, a test
based on fnig is expected to be asymptotically less powerful than a test based on feig, because fnig displays ‘more’ serial
dependence in higher-order moments than feig. To some extent, this is similar in spirit to the relative efficiency gain of the
generalized least squares estimator over the ordinary least squares estimator when there exists conditional heteroskedasticity.
Moreover, the use of feig rather than fnig allows weaker moment conditions on the DGP. In particular, an integrated ACD(1,1) model
which is strictly but not weakly stationary is allowed. In this case, feig is still weakly stationary but fnig is not.

Because bj(v) is generally non-zero for (non-Markovian) ACD models, we have D 6¼ Dd and rð1;0Þj ð0; vÞ 6¼ cð1;0Þj ð0; vÞ: As a result,
M̂d

1ðpÞ and M̂1ðpÞ are not asymptotically equivalent under HA in terms of Bahadur’s (1960) asymptotic slope criterion because they do
not converge to the same probability limit after multiplied by the rate p1/2/n. Unlike the case under H0, where the auxiliary
regressions have no impact on the asymptotic distribution of M̂d

1ðpÞ, the auxiliary regressions have impact on the probability limit of
ðp1=2=nÞM̂d

1ðpÞ under HA and thus affect the asymptotic efficiency of the test in terms of Bahadur’s (1960) criterion.
To investigate how the auxiliary regressions may affect the asymptotic power of M̂1ðpÞ, we assume that the autoregression

function E(ei|ei�j) 6¼ 1 at some lag j > 0 under HA. Then we have
R
jrð1;0Þj ð0; vÞj2 dWðvÞ > 0 for any weighting function W(Æ) that is

positive, monotonically increasing and continuous, with unbounded support on R. It follows from Theorem 3 that
P½M̂1ðpÞ > CðnÞ� ! 1 for any sequence of constants C(n) ¼ o(n/p1/2), and so the original test M̂1ðpÞ has asymptotic unit power at
any given significance level a 2 (0,1). Thus, M̂1ðpÞ has omnibus power against a wide variety of linear and nonlinear ACD alternatives
with unknown lag structure. It avoids the blindness of searching for different alternatives when one has no prior information.

Theorem 3 also indicates that the power of the modified test M̂d
1ðpÞ depends on whether cð1;0Þj ð0; vÞ 6¼ 0 at least for some j > 0

under HA. Generally we have cð1;0Þj ð0; vÞ 6¼ rð1;0Þj ð0; vÞ under HA. However, if we have either (i) E[Gi(ei�1)] ¼ 0 or (ii) bj(v) ¼ 0 for all
j > 0 under HA, then cð1;0Þj ð0; vÞ ¼ rð1;0Þj ð0; vÞ for all v 2 R. In these cases, M̂d

1ðpÞ has the same consistency property (i.e. asymptotic
unit power) as M̂1ðpÞ, although their probability limits may be different, because of the fact that D 6¼ Dd generally. As noted earlier,
we generally have bj(v) 6¼ 0 for some j > 0 for non-Markovian ACD models. However, Case (i) that E[Gi(ei�1)] ¼ 0 can arise under HA

even when w(Ii�1,h) contains lagged dependent variables and lagged innovations. In particular, when ĥ is the QMLE in (7), then
h� ¼ p lim ĥ will satisfy the- first order condition that

E½Giðei � 1Þ� ¼ E½ @
@h

lnwðIi�1; h
�Þei� ¼ 0

even under HA.
When E[Gi(ei�1)] 6¼ 0 and bj(v) 6¼ 0 at least for some j > 0, we generally have cð1;0Þj ð0; vÞ 6¼ 0 if rð1;0Þj ð0; vÞ 6¼ 0; although

rð1;0Þj ð0; vÞ 6¼ cð1;0Þj ð0; vÞ. In this case, M̂d
1ðpÞ has the same consistency property as M̂1ðpÞ. However, there exists certain model

misspecification against which the modified test M̂d
1ðpÞ has no power. This arises when cð1;0Þj ð0; vÞ ¼ 0 for all j > 0 but

rð1;0Þj ð0; vÞ 6¼ 0 for some j > 0. Let

a � ½EðGiG
0
iÞ�
�1E½Giðei � 1Þ�

be the least squares coefficient of regressing ei�1 on the log-gradient vector Gi. Then the possibility that cð1;0Þj ð0; vÞ ¼ 0 for all j > 0
but rð1;0Þj ð0; vÞ 6¼ 0 for all j > 0 can arise if and only if a 6¼ 0 and
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rð1;0Þj ð0; vÞ � cov½iðei � 1Þ; eivei�j � ¼ ia0E GiG
0
i

 �
bjðvÞ ¼ icov½a0Gi;G0ibjðvÞ� for all j > 0;

that is, if and only if the covariance between ei�1 and eivei�j coincides with the covariance between their linear projections onto Gi.
This occurs when the neglected dynamics takes the form of E(ei|Ii�1) ¼ 1 + a0[Gi�E(Gi)] subject to the constraint that ei 	 0, The finite
sample-corrected test M̂d

1ðpÞ has no power against this (pathological) misspecification. This is the price that we have to pay when
using Wooldridge’s (1990a) device. However, we emphasize that the gain in the size improvement from using Wooldridge’s device
for our tests overwhelms the possible power loss in detecting misspecification in the direction of the log gradient Gi. More
importantly, if the QMLE in (7), which is always available, is used so that E[Gi(ei�1)] ¼ 0, M̂d

1ðpÞ will be able to detect such
pathological misspecification, and achieve the same consistency property as the original test M̂1ðpÞ.

Because of using a relatively large number of lag orders, the proposed tests have power against misspecification at higher-order
lags. In particular, they are expected to have good power against long memory ACD models (Jasiak, 1998). At the same time, they do
not suffer from the loss of a large number of degrees of freedom, thanks to the use of k2(Æ). Most non-uniform kernels discount
higher-order lags. This enhances good power against the alternatives whose serial dependence in mean decays to 0 when lag order j
increases, as shown in the simulation study. Thus, our tests can check a large number of lags without losing too many degrees of
freedom. This feature is not shared by chi-squared-type tests with a large number of lags, which essentially give equal weighting to
each lag. Equal weighting is not fully efficient when a large number of lags is used.

Once the model w(Ii�1,h) is rejected by M̂d
1ðpÞ, one may like to further explore possible sources of misspecifications in an ACD

model. For this purpose, we can construct a sequence of tests similar in spirit to M̂1ðpÞ and M̂d
1ðpÞ by using the partial derivatives with

respect to v:

rð1;lÞj ð0; 0Þ � @ l

@vl
rð1;0Þj ð0; vÞjv¼0 ¼ cov½iðei � 1Þ; ðiei�jÞl�;

cð1;lÞj ð0; 0Þ � @ l

@vl
cð1;0Þj ð0; vÞjv¼0 ¼ cov iðei � 1Þ; ðiei�jÞl � G0i

dl

dvl
bjð0Þ

� 	
; l ¼ 0; 1; 2; . . . :

For l ¼ 1, 2, 3, 4, tests based on these derivatives can check whether there exists linear correlation, dispersion-in-mean, skewness-
in-mean and kurtosis-in-mean effects respectively. These derivative tests may reveal valuable information about the nature of model
misspecification. For space, we do not derive the concrete form of these diagnostic test statistics.

7. MONTE CARLO EVIDENCE

We now investigate the finite sample performance of the proposed tests M̂1ðpÞ; M̂0ðpÞ; M̂d
1ðpÞ and M̂d

0ðpÞ in comparison with the
most closely related modified portmanteau test of Li and Yu (2003).

7.1. Simulation design

7.1.1. Size
To examine the sizes of the tests under H0, we consider an ACD(1,1) DGP

Yi ¼ w0
i ei;

w0
i ¼ a0 þ b0w

0
i�1 þ c0Yi�1;

�

where (i) feig � i.i.d. exp (1), or (ii) ei ¼ expð
ffiffiffiffi
hi

p
ziÞ= expð12 hiÞ; hi ¼ 0:5 þ 0:5e2

i�1; where fzig � i.i.d. N(0,1). Under (i), feig is i.i.d.
with E(ei) ¼ 1, whereas under (ii), E(ei | Ii�1) ¼ 1 but its conditional variance var(ei | Ii�1) ¼ hi follows an autoregressive conditional
heteroskedasticity (ARCH)-type behaviour. We set h0 ¼ (a0, b0, c0)

0 ¼ (0.15, 0.8, 0.05)
0
.

The null model for Yi is an ACD(1,1) specification:

wi ¼ aþ bwi�1 þ cYi�1; ð17Þ

where wi ¼ w(Ii�1,h) and h ¼ (a,b,c)
0
. We estimate h using QMLE in (7). The standardized model error fei(h0)g is i.i.d. under (i), and

displays dispersion clustering under (ii). This allows us to examine the robustness of the tests to time-varying conditional dispersion.
We consider three sample sizes: n ¼ 500, 1000 and 2000. For each n, we generate 1000 data sets using the GAUSS Windows version
5.0 random number generator on a PC. For each iteration, we first generate n + 500 observations and then discard the first 500 to
reduce the impact of some assumed initial values, �Y0 and �w0.

To compute the generalized spectral derivative tests, we use the N(0,1) CDF truncated on [�3,3] for the weighting function W(Æ),
and use the Parzen kernel

kðzÞ ¼
1� 6z2 þ 6jzj3 if jzj � 1=2,
2ð1� jzjÞ3 if 1=2 � jzj < 1,
0 otherwise,

8<
:
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which has a bounded support and is computationally efficient. For the choice of lag order p, we use a data-driven lag order p̂0 via the
plug-in method considered in Hong (1999), with the Bartlett kernel �kðzÞ ¼ ð1 � jzjÞ1ðjzj � 1Þ used in a preliminary generalized
spectral derivative estimator. To certain extent, the data-driven lag order p̂0 lets the data speak for an appropriate lag order, but it still
involves the choice of the preliminary bandwidth �p which is somewhat arbitrary. To examine the impact of the choice of the
preliminary bandwidth �p, we consider �p ¼ 5; 10; 20 respectively.

We also consider Li and Yu’s (2005) test. Let r̂ ¼ ½̂rð1Þ; r̂ð2Þ; . . . ; r̂ðpÞ�0; where r̂ðjÞ is the sample autocorrelation function of the
estimated standardized model error fêig. Li and Yu’s (2005) test statistic is

LYðpÞ ¼ nr̂0ðI � XĤ�1X 0Þ�1 r̂!d v2
p;

where X is a p · d matrix with the jth row Xj ¼ n�1
Pn

i¼jþ1 Ĝi êiðêi�j � 1Þ; and Ĥ is the negative Hessian matrix

Ĥ ¼ 1

n

Xn

i¼1

ð1� 2êiÞĜiĜ
0
i þ

1

n

Xn

i¼1

êi
@2 ln wðIyi�1; ĥÞ

@h@h0
:

We consider two versions of Li and Yu’s (2005) test. The first is considered in Li and Yu (2003), where the variance estimator is set
to unity, under the assumption that feig � i.i.d. exp (1); the second version is based on the sample variance. We note that we could
use some simpler expressions for X and Ĥ by exploiting the fact E(ei | Ii�1) ¼ 1 under H0: However, the resulting test statistics often
lead to negative values so they were not used in the simulation study.

7.1.2. Power
To examine the power of the tests for dynamic misspecification (i.e. lag order misspecification) and neglected nonlinearity in w(Ii�1,h),
we consider the following DGPs:

DGP P.1 [ACD(2, 1)]:

w0
i ¼ 0:15þ 0:10Yi�1 þ 0:05Yi�2 þ 0:80w0

i�1;

DGP P.2 [log-ACD(1, 1)]:

ln w0
i ¼ 0:1334þ 0:115 ln Yi�1 þ 0:7749 ln wi�1;

DGP P.3 [exponential ACD]:

ln w0
i ¼ �0:0806þ 0:2061ei�1 � 0:1309jei�1 � 1j þ 0:9149 ln w0

i�1;

DGP P.4 [threshold ACD(1, 1)]:

w0
i ¼

0:020þ 0:257Yi�1 þ 0:847w0
i�1 if Yi�1 � 3:79,

1:808þ 0:027Yi�1 þ 0:501w0
i�1 if Yi�1 > 3:79,

�

where feig � i.i.d. exp (1).
DGP P.1 is an ACD(2, 1) process used in Meitz and Teräsvirta (2006). This allows us to investigate dynamic misspecification (i.e. lag

order misspecification) of an ACD(1, 1) model. DGP P.2–P.4 are some popular nonlinear ACD processes. DGP P.2, a log-ACD model,
introduced by Bauwen and Giot (2000), is more flexible than a linear ACD model because no restrictions are required on the sign of
its coefficients. It allows for nonlinear effects of short and long durations, without requiring the estimation of additional parameters.
DGP P.3, an exponential ACD model, is introduced by Dufour and Engle (2000) in a similar spirit to Nelson’s (1991) exponential
generalized ARCH model. This allows for a piecewise linear news impact function kinked at the mean E(ei) ¼ 1. DGP P.4, a threshold
ACD model, proposed by Zhang et al. (2001), is a simple but powerful approach to allow subregimes to achieve different
persistences in w0

i ; which allows for greater flexibility compared with the ACD models.
By construction, the proposed tests have power when w(Ii�1,h) is misspecified for w0

i : Thus, they are expected to have power
against all DGPs P.1–P.4 when an ACD(1, 1) model in (17) is used. On the other hand, they also have power when an ACD(1, 1) model
is correctly specified for w0

i but the parameter estimator ĥ is not consistent for h0 where h0 is defined in H0: We note that parameter
choices are also relevant under the alternative. In this simulation study, our main purpose is to examine whether the proposed tests
have reasonable power in distinguishing specification differences, namely in distinguishing an ACD(1, 1) model from other
alternatives. We have used the QMLE ĥ which is consistent under H0:

For each of the DGPs P.1–P.4, we consider three sample sizes: n ¼ 500, 1000 and 2000. For each n, we generate 500 data sets
under each DGP. For each data set, we generate n + 500 observations and then discard the first 500 to reduce the impact of the
choice of some initial values.

7.2. Monte Carlo evidence

Table 1 reports the empirical rejection rates of the tests under H0 at the 10% and 5% significance levels, using the asymptotic theory.
We first consider the robust tests M̂1ðp̂0Þ and M̂d

1ðp̂0Þ: No matter whether feig is i.i.d. or not under H0, M̂1ðp̂0Þ underrejects H0

substantially at both the 10% and 5% levels, even when n ¼ 2000. In contrast, the finite sample-corrected test M̂d
1ðp̂0Þ has reasonable

sizes in most cases, whether feig is i.i.d. or not. These results are consistent with our theory that parameter estimation uncertainty
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may have non-trivial impact on M̂1ðp̂0Þ in finite samples, and the finite sample correction gives better asymptotic approximation.
They indicate the relative robustness of the finite sample-corrected test M̂d

1ðp̂0Þ to parameter estimation uncertainty, illustrating the
merits of adopting Wooldridge’s (1990a) device to the generalized spectral tests for ACD models. Intuitively, parameter estimation is
like a calibration that makes the demeaned estimated standardized model residuals fêi � 1g look more like an m.d.s., leading to
underrejection of the original test M̂1ðp̂0Þ. However, Wooldridge’s (1990a) device effectively removes the impact of parameter
estimation, and as a result, M̂1ðp̂Þ has better sizes.

When feig is i.i.d., M̂0ðp̂0Þ has slightly better sizes than M̂1ðp̂0Þ in many cases, apparently because of the fact that M̂0ðp̂0Þ exploits
the implication of the i.i.d. assumption for feig. However, it still underrejects H0; because of the impact of parameter estimation
uncertainty in finite samples. On the other hand, when feig is not i.i.d., M̂0ðp̂0Þ shows rather strong overrejection, because of the fact
that the asymptotic variance estimator D̂0ðpÞ underestimates the true asymptotic variance D when feig is not i.i.d. (recall D > D0 in
this case where the expressions of D and D0 are given in Theorem 3). This highlights the importance of taking into account time-
varying conditional dispersion and higher-order conditional moments in feig. Failure to do so will cause strong overrejection for the
generalized spectral derivative tests.

When feig is i.i.d. exp (1), both versions LY1ð�pÞ and LY2ð�pÞ of Li and Yu’s (2005) test have reasonable sizes in most cases for all
three sample sizes. When feig is not i.i.d., LY1ð�pÞ; which assumes var(ei) ¼ 1, strongly overrejects H0: However, LY2ð�pÞ; which uses the
sample variance estimator, is still reasonable in many cases, although it tends to overreject H0 in some cases (particularly for
n ¼ 2000). This is interesting because LY2ð�pÞ is not asymptotically valid under case (ii), because of the fact that the parameter
estimator ĥ is not MLE in this case. A robust version of LY2ð�pÞ when ĥ is not MLE could be developed along the reasoning of Li and
Yu (2005), but it is not yet available in the literature.

Next, we turn to the power of the tests, reported in Tables 2 and 3. Table 2 reports the empirical rejection rates of the tests at the
10% and 5% levels under DGPs P.1 and P.2 using empirical critical values, which provide a fair ground to compare different tests. We
find that M̂d

1ðp̂0Þ has a similar power to M̂d
0ðp̂0Þ. This is consistent with the asymptotic theory that they are asymptotically equally

powerful under HA: The LY1ð�pÞ and LY2ð�pÞ tests also have very similar power. The M̂d
1ðp̂0Þ and M̂d

0ðp̂0Þ tests have better power than
LY1ð�pÞ and LY2ð�pÞ in most cases, particularly when lag order �p is large. This highlights the merit of discounting higher-order lags via
the squared kernel function k2(Æ), and the use of the plug-in data-driven method to select p̂0: The power of M̂d

1ðp̂0Þ and M̂d
0ðp̂0Þ is

relatively robust to the choice of the preliminary lag order �p:
For the original tests, M̂1ðp̂0Þ has slightly better power than M̂0ðp̂0Þ in some cases. Both M̂1ðp̂0Þ and M̂0ðp̂0Þ have a little higher

power than M̂d
1ðp̂0Þ and M̂d

0ðp̂0Þ respectively. There is some loss of power because of the use of the finite sample correction under
DGP P.1.

Table 2. Empirical powers of tests

�p

M1ðp̂0Þ M0ðp̂0Þ Md
1ðp̂0Þ Md

0ðp̂0Þ LY1ð�pÞ LY2ð�pÞ

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP P.1: ACD(2,1)
N ¼ 500

5 22.4 14.6 20.8 13.8 17.4 11.8 17.4 10.8 19.2 12.2 17.8 10.8
10 22.8 14.4 20.2 13.0 16.2 11.8 16.6 10.4 19.0 11.6 19.2 12.2
20 18.8 11.0 18.4 10.8 17.0 10.2 16.6 11.4 19.4 13.0 18.0 12.4

N ¼ 1000
5 26.8 17.8 25.6 16.8 20.2 13.4 20.8 13.4 27.2 16.0 25.2 13.8
10 27.0 16.8 25.4 15.8 20.6 13.6 20.4 12.8 20.4 10.6 20.8 9.6
20 23.2 13.0 21.4 11.6 20.6 11.0 20.2 10.0 17.6 11.8 18.8 11.0

N ¼ 2000
5 38.2 28.4 37.4 24.8 32.6 22.4 32.0 21.4 35.0 23.0 35.2 25.0
10 38.2 28.6 37.2 25.0 31.8 22.6 32.0 21.6 30.4 18.6 29.2 18.2
20 31.8 22.6 31.8 20.2 28.6 18.8 29.8 16.8 26.2 15.4 26.0 15.2

DGP P.2: log-ACD
N ¼ 500

5 27.2 15.8 18.0 10.2 28.4 18.0 20.2 11.4 13.6 6.2 11.0 5.2
10 26.6 15.4 18.0 9.6 28.8 18.4 20.0 11.2 14.2 8.0 10.0 7.0
20 23.4 12.0 13.8 6.8 25.2 16.4 17.4 9.0 17.6 7.6 11.2 5.6

N ¼ 1000
5 46.4 30.4 36.6 22.8 47.0 35.4 38.0 38.0 22.0 13.0 20.4 8.4
10 45.8 29.8 35.8 21.6 45.8 35.4 37.8 37.8 21.4 12.4 16.2 8.6
20 40.4 26.6 29.4 18.4 42.8 28.6 33.2 33.2 23.6 16.4 18.6 10.4

N ¼ 2000
5 76.2 66.2 69.2 54.0 78.6 66.8 72.0 58.0 44.6 30.0 39.8 21.2
10 76.2 66.2 69.2 54.0 78.4 66.8 72.0 58.0 46.0 31.4 32.4 17.8
20 74.8 58.6 64.6 46.2 77.4 62.8 71.2 51.6 45.2 31.6 31.8 20.0

500 iterations; M̂1ðp̂0Þ; M̂0ðp̂0Þ, generalized spectral tests derived under time-varying higher moments and i.i.d. respectively; M̂d
1 ðp̂0Þ; M̂d

0 ðp̂0Þ, finite
sample-corrected generalized spectral tests derived under time-varying higher moments and i.i.d. respectively; LY1ð�pÞ;LY2ð�pÞ, Li and Yu’s (1994) test
derived assuming var(ei) ¼ 1 known and without assuming it; the Bartlett kernel is used for M̂1ðp̂0Þ; M̂0ðp̂0Þ; M̂d

1 ðp̂0Þ and M̂d
0 ðp̂0Þ. DGP P.1,

wi ¼ 0.15 + 0.10Yi�1 + 0.05Yi�2 + 0.80wi�1, where feig � i.i.d. exp (1); DGP P.2, lnwi ¼ 0.1334 + 0.115lnYi�1 + 0.7749lnwi�1, where feig � i.i.d.
exp (1).
DGP indicates data-generating process and ACD autoregressive conditional duration.
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Now, we consider DGP P.2 [log-ACD(1, 1)]. The M̂1ðp̂0Þ and M̂d
1ðp̂0Þ tests have a little better power than M̂0ðp̂0Þ and M̂d

0ðp̂0Þ
respectively, whereas LY1(p) has slightly better power than LY2(p) in some cases. Unlike under DGP P.1 [ACD(2, 1)], the original tests
M̂1ðp̂0Þ and M̂0ðp̂0Þ have similar power to the modified tests M̂d

1ðp̂0Þ and M̂d
0ðp̂0Þ respectively. The tests M̂d

1ðp̂0Þ and M̂d
0ðp̂0Þ have

substantially better power than LY1(p) and LY2(p), but the latter also have increasing power when the sample size n increases.
The powers of all tests are robust to the choice of the lag order �p:

Table 3 reports the power patterns under DGP P.3 [EACD(1, 1)] and DGP P.4 [TACD(1, 1)]. They are similar to those under DGP P.2.
In particular, the powers of the generalized spectral derivative tests for ACD models are substantially more powerful than Li and Yu’s
(2005) tests. These results highlight the merits of the generalized spectral tests in detecting nonlinear ACD alternatives from a linear
ACD(1, 1) model.

In summary, we have observed the following stylized facts:

� The empirical sizes of the original generalized spectral derivative tests M̂1ðp̂0Þ and M̂0ðp̂0Þ are substantially lower than the
nominal significance levels, because of the impact of parameter estimation uncertainty in estimating the null ACD model.
Wooldridge’s (1990a) device can effectively reduce the impact of parameter estimation uncertainty – the empirical sizes of the
finite sample-corrected tests M̂d

1ðp̂0Þ and M̂d
0ðp̂0Þ are reasonable and robust to parameter estimation uncertainty in most cases,

especially when the sample size becomes moderately large. The sizes of the generalized spectral tests are relatively robust to the
choice of the preliminary lag order �p.
� The powers of the finite sample-corrected generalized spectral tests M̂d

1ðp̂0Þ and M̂d
0ðpÞ are more or less similar to the original

tests M̂1ðp̂0Þ and M̂0ðp̂0Þ respectively for most cases (except for DGP P.1), suggesting that the finite sample correction does not
suffer from power loss in detecting the alternatives under study. The robust tests M̂d

1ðp̂0Þ and M̂1ðp̂0Þ are very slightly more
powerful than M̂d

0ðp̂0Þ and M̂0ðp̂0Þ respectively in most cases.
� The power of the generalized spectral derivative tests is similar to the power of Li and Yu’s tests in detecting dynamic (lag order)

misspecification in a linear ACD alternative. As expected, the generalized spectral derivative tests have substantially better power
than Li and Yu’s tests against some popular nonlinear ACD models, but the latter also have some power when the sample size n
becomes large.

Table 3. Empirical powers of tests

�p

M1ðp̂0Þ M0ðp̂0Þ Md
1ðp̂0Þ Md

0ðp̂0Þ LY1ð�pÞ LY2ð�pÞ
10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP P.3: EACD(1,1)
N ¼ 500

5 19.6 12.0 14.8 7.8 20.6 13.8 15.0 9.0 13.6 6.4 11.8 6.8
10 19.6 12.6 14.4 7.6 21.0 13.8 14.8 7.8 14.4 9.6 12.6 7.6
20 16.8 10.0 12.0 6.4 20.0 11.0 13.6 8.2 14.4 7.2 14.4 7.6

N ¼ 1000
5 33.4 19.0 27.4 15.2 33.0 22.6 26.6 15.6 18.8 10.6 18.0 7.6
10 33.6 18.6 26.2 13.8 33.2 22.0 26.8 15.2 16.4 8.8 13.4 6.2
20 30.4 17.6 21.8 12.8 30.0 20.2 25.2 13.2 18.0 11.8 16.2 10.2

N ¼ 2000
5 58.6 43.6 50.4 32.6 59.6 45.6 52.2 36.6 28.8 16.8 26.6 15.8
10 58.6 43.6 50.4 32.8 59.2 45.6 52.0 36.6 28.0 18.8 25.2 13.0
20 53.2 37.2 43.0 27.8 55.8 39.4 48.2 32.2 29.8 18.8 24.8 12.8

DGP P.4: 2-TACD
N ¼ 500

5 18.6 11.4 14.2 7.6 20.2 14.2 17.2 10.2 9.6 3.2 9.0 4.4
10 18.4 11.8 15.2 7.0 21.2 14.2 17.4 10.0 9.6 3.8 8.6 4.4
20 17.0 8.6 12.0 5.8 20.4 11.2 16.0 9.4 9.6 5.0 9.6 3.8

N ¼ 1000
5 29.4 18.2 24.2 13.8 29.8 20.4 24.8 17.4 12.4 6.6 9.8 5.0
10 29.4 18.4 23.6 13.4 29.6 20.6 24.6 16.6 14.2 7.6 12.8 5.6
20 27.8 16.0 21.2 13.0 26.8 16.4 24.6 13.8 12.6 6.8 11.0 5.2

N ¼ 2000
5 51.8 38.4 45.6 28.6 52.6 41.6 49.2 34.2 16.0 10.4 15.0 9.6
10 51.4 38.4 45.6 29.0 52.2 41.6 49.0 34.4 15.2 9.0 13.6 6.4
20 48.2 32.2 38.4 24.8 48.8 35.2 47.2 30.4 18.0 12.0 14.6 7.8

500 iterations; M̂1ðp̂0Þ; M̂0ðp̂0Þ, generalized spectral tests derived under time-varying higher moments and i.i.d. respectively; M̂d
1 ðp̂0Þ; M̂d

0 ðp̂0Þ, finite
sample-corrected generalized spectral tests derived under time-varying higher moments and i.i.d. respectively; LY1ð�pÞ;LY2ð�pÞ, Li and Yu’s (1994) test
derived assuming var(ei) ¼ 1 known and without assuming it; the Bartlett kernel is used for M̂1ðp̂0Þ; M̂0ðp̂0Þ; M̂d

1 ðp̂0Þ and M̂d
0 ðp̂0Þ. DGP P.3,

lnwi ¼ �0.0806 + 0.2061ei�1 � 0.1309|ei�1 � 1| + 0.9149lnwi�1, feig � i.i.d. exp (1).

DGP P.4, wi ¼
0:020þ 0:257Yi�1 þ 0:847wi�1 if Yi�1 � 3:79,
1:808þ 0:027Yi�1 þ 0:501wi�1 if Yi�1 > 3:79.

�
feig � i.i.d. expð1Þ:

DGP indicates data-generating process and TACD threshold autoregressive conditional duration.
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8. CONCLUSION

Using a generalized spectral derivative approach, we develop a new class of specification tests for linear and nonlinear ACD models,
where the dimension of the conditioning observable information set grows with time or is infinite, because of the non-Markovian
property of most ACD models. The tests can detect a wide range of model misspecification in the conditional expected duration
dynamics while being robust to time-varying conditional dispersion and other higher-order moments of unknown form in
standardized innovations. The tests have a convenient null asymptotic N(0,1) distribution which is not affected by parameter
estimation uncertainty. To remove the non-trivial impact of parameter estimation uncertainty in finite samples, we propose a finite
sample correction by adopting Wooldridge’s (1990a) device. This leads to reasonable size performances which are robust to
parameter estimation uncertainty in finite samples. Like the original generalized spectral derivative tests, the finite sample-corrected
tests can detect a wide range of model misspecification in the conditional expected duration while being robust to time-varying
conditional dispersion and higher-order moments of unknown form in standardized innovations. Moreover, the consistency property
of the original tests is preserved when QMLE is used to estimate the null ACD model. Both original and modified tests have
reasonable power against a variety of dynamic misspecification and nonlinear ACD alternatives. These results indicate that the
proposed tests with a finite sample correction can be a useful and reliable diagnostic tool in evaluating ACD models.

MATHEMATICAL APPENDIX

PROOF OF THEOREM 1. For space, we only consider the proof of M̂1ðpÞ; the proof for M̂0ðpÞ is similar and simpler. We first define a
pseudo test statistic

~M1ðpÞ ¼

Pn�1

j¼1

k2 j

p

� �
nj

Z
j~rð1;0Þj ð0; vÞj2 dWðvÞ � ~C1ðpÞ

" #
ffiffiffiffiffiffiffiffiffiffiffiffi
~D1ðpÞ

q ;

where

~rð1;0Þj ð0; vÞ ¼ n�1
j

Xn

i¼jþ1

iðei � 1Þ/i�jðvÞ;/iðvÞ ¼ eivei � uðvÞ;uðvÞ ¼ Eðeivei Þ;

and

~C1ðpÞ ¼
Xn�1

j¼1

k2 j

p

� �Z
n�1

j

Xn

i¼jþ1

ðe2
i � 1Þ /i�jðvÞ

�� ��2 dWðvÞ;

~D1ðpÞ ¼
Xn�2

j¼1

Xn�2

l¼1

k2 j

p

� �
k2 l

p

� �Z Z ���� 1

n�maxðj; lÞ
Xn

i¼maxðj;lÞþ1

ðe2
i � 1Þ/i�jðvÞ/i�lðvÞ

����
2

dWðuÞdWðvÞ:

It suffices to show Theorems A.1–A.3 next. Theorem A.1 implies that the use of the estimated standardized model residual fêign
i¼1

rather than the unobserved feign
i¼1 has no impact on the limit distribution of M̂1ðpÞ: Theorem A.2 implies that the use of

the truncated disturbances feq;ign
i¼1 rather than feign

i¼1 has no impact on the limit distribution of M̂1ðpÞ when q is sufficiently large.
The assumption that eq,i is independent of fei�jg1j¼qþ1 when q is large simplifies a great deal the proof of asymptotic normality
of M̂1ðpÞ: h

THEOREM A.1. Under the conditions of Theorem 1, M̂1ðpÞ � ~M1ðpÞ!p 0:

THEOREM A.2. Let ~Mq;1ðpÞ be defined as ~M1ðpÞ with feq;ign
i¼1 replacing feign

i¼1; where feq,ig is as in Assumption A.8. Then under the
conditions of Theorem 1 and q ¼ p(1+(1/4b�2))(ln2

n)1/(2b�1), ~Mq;1ðpÞ � ~M1ðpÞ!p 0:

THEOREM A.3. Under the conditions of Theorem 1 and q ¼ pð1þð1=4b�2ÞÞðln
2

nÞ
1

2b�1 ; ~M1qðpÞ!d Nð0; 1Þ:

PROOF OF THEOREM A1. Noting that ei(h) ” Yi /w(Ii�1,h) in (2), where Ii�1 is the information set from period i to the infinite past, we can
write

êi �
Yi

wðIyi�1; ĥÞ
¼ eiðĥÞ

wðIi�1; ĥÞ � wðIyi�1; ĥÞ
wðIyi�1; ĥÞ

þ eiðĥÞ: ðA1Þ

DETECTING MISSPECIFICATIONS IN ACD MODELS AND NON-NEGATIVE PROCESSES

J. Time Ser. Anal. 2011, 32 1–32 � 2010 Blackwell Publishing Ltd. wileyonlinelibrary.com/journal/jtsa

1
9



It follows from (A1) and Markov’s inequality that

Xn

i¼1

½̂ei � eiðĥÞ�2 ¼
Xn

i¼1

e2
i ðĥÞ

wðIi�1; ĥÞ � wðIyi�1; ĥÞ
wðIyi�1; ĥÞ

" #2

¼ OPð1Þ; ðA2Þ

where we have made use of the fact that

E
Xn

i¼1

e2
i ðĥÞ

wðIi�1; ĥÞ � wðIyi�1; ĥÞ
wðIyi�1; ĥÞ

" #2

�
Xn

i¼1

½E sup
h2H0

e4
i ðhÞ�

1=2 E sup
h2H0

wðIi�1; hÞ � wðIyi�1; hÞ
wðIyi�1; hÞ

" #4( )1=2

� C
Xn

i¼1

E sup
h2H0

wðIi�1; hÞ � wðIyi�1; hÞ
wðIyi�1; hÞ

" #4( )1=2

� C2

by the Cauchy–Schwarz inequality and Assumptions A.2 and A.3.
Next, by the mean value theorem for eiðĥÞ around h0, we have

eiðĥÞ ¼ eiðh0Þ þ kið�hÞ0ðĥ� h0Þ ¼ ei þ kið�hÞðĥ� h0Þ ðA3Þ

for some �h between ĥ and h0, where

kiðhÞ �
@

@h
eiðhÞ ¼ �eiðhÞ

@lnw Ii�1; hð Þ
@h

¼ �eiðhÞGiðhÞ;

with Gi(h) ” (¶/¶h)lnw(Ii�1,h). It follows from (A2), the Cauchy–Schwarz inequality and Assumptions A.2–A.4 that

Xn

i¼1

½eiðĥÞ � ei�2 � k
ffiffiffi
n
p
ðĥ� h0Þk2n�1

Xn

i¼1

sup
h2H0

kkiðhÞk2 ¼ OPð1Þ; ðA4Þ

where we made use of the facts that E suph2Q0
||ki(h)||2 � [E suph2Q0

||ki(h)||4]1/2, and

E sup
h2H0

kkiðhÞkmaxð2m;4Þ ¼ E sup
h2H0

eiðhÞGiðhÞk kmaxð2m;4Þ� ½E sup
h2H0

emaxð4m;8Þ
i ðhÞ�1=2½E sup

h2H0

GiðhÞk kmaxð4m;8Þ�1=2 � C ðA5Þ

given Assumption A.2, where m > 1 is in Assumption A.2. Both (A2) and (A4) imply

Xn

i¼1

ð̂ei � eiÞ2 ¼ OPð1Þ: ðA6Þ

Now we put nj ¼ n � |j|. Observe that p ! 1, p/n ! 0, p�1
Pn�1

j¼ 1 krðj=pÞ !
R1

0 krðzÞdz for r ¼ 2,4 given Assumption A.6. To
show M̂1ðpÞ � ~M1ðpÞ!p 0; it suffices to show that p�1½Ĉ1ðpÞ � ~C1ðpÞ� ¼ OPðn�1=2Þ; p�1½D̂1ðpÞ � ~D1ðpÞ�!p 0; ~D1ðpÞ ¼ pD

R1
0 k4ðzÞ

dz½1 þ oð1Þ� for some bounded constant D, and

p�1=2

Z Xn�1

j¼1

k2 j

p

� �
nj½jr̂ð1;0Þj ð0; vÞj2 � j~rð1;0Þj ð0; vÞj2�dWðvÞ!p 0: ðA7Þ

For space, we focus on the proof of (A7); the proofs for p�1½Ĉ1ðpÞ � ~C1ðpÞ� ¼ OPðn�1=2Þ; p�1½D̂1ðpÞ � ~D1ðpÞ�!
p

0; and
~D1ðpÞ ¼ p

R1
0 k4ðzÞ dz½1 þ oð1Þ� are relatively straightforward. We note that the convergence rate OP(n�1/2) for p�1½Ĉ1ðpÞ � ~C1ðpÞ�

implies that replacing Ĉ1ðpÞ with ~C1ðpÞ has asymptotically negligible impact given p/n!0.
To show (A7), we decompose

Z Xn�1

j¼1

k2 j

p

� �
nj jr̂ð1;0Þj ð0; vÞj2 � j~rð1;0Þj ð0; vÞj2
h i

dWðvÞ ¼ Â1 þ 2 ReðÂ2Þ;

where
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Â1 ¼
Z Xn�1

j¼1

k2 j

p

� �
nj r̂ð1;0Þj ð0; vÞ � ~rð1;0Þj ð0; vÞ
��� ���2 dWðvÞ; ðA8Þ

Â2 ¼
Z Xn�1

j¼1

k2 j

p

� �
nj½r̂ð1;0Þj ð0; vÞ � ~rð1;0Þj ð0; vÞ�~rð1;0Þj ð0; vÞ� dWðvÞ; ðA9Þ

where ReðÂ2Þ is the real part of Â2 and ~rð1;0Þj ð0; vÞ� is the complex conjugate of ~rð1;0Þj ð0; vÞ. Then, (A7) follows from Propositions A.1
and A.2 below, and p ! 1 as n ! 1. h

PROPOSITION A.1. Under the conditions of Theorem 1, Â1 ¼ OPð1Þ and p�1=2Â1!p 0.

PROPOSITION A.2. Under the conditions of Theorem 1, p�1=2Â2!p 0:

PROOF OF PROPOSITION A.1. Throughout, we put d̂iðvÞ � eivêi � eivei : Then straightforward algebra yields that for j > 0,

r̂ð1;0Þj ð0; vÞ � ~rð1;0Þj ð0; vÞ

¼ in�1
j

Xn

i¼jþ1

ðêi � eiÞd̂i�jðvÞ þ in�1
j

Xn

i¼jþ1

ðei � 1Þd̂i�jðvÞ

þ in�1
j

Xn

i¼jþ1

ðêi � eiÞ/i�jðvÞ � i ûðvÞ � uðvÞ½ �n�1
j

Xn

i¼jþ1

ðêi � eiÞ

� i ûðvÞ � uðvÞ½ �n�1
j

Xn

i¼jþ1

ðei � 1Þ

¼ i B̂1jðvÞ þ B̂2jðvÞ þ B̂3jðvÞ � B̂4jðvÞ � B̂5jðvÞ
� �

; say:

ðA10Þ

It follows that

Â1 � 8
X5

c¼1

Xn�1

j¼1

k2 j

p

� �
nj

Z
jB̂cjðvÞj2 dWðvÞ:

Proposition A.1 follows from Lemmas A.1–A.5 below, and p/n ! 0.

LEMMA A.1.
Pn�1

j¼1 k2ðj=pÞnj

R
jB̂1jðvÞj2 dWðvÞ ¼ OPðp=nÞ:

LEMMA A.2.
Pn�1

j¼1 k2ðj=pÞnj

R
jB̂2jðvÞj2 dWðvÞ ¼ OPðp=nÞ:

LEMMA A.3.
Pn�1

j¼1 k2ðj=pÞnj

R
jB̂3jðvÞj2 dWðvÞ ¼ OPð1Þ:

LEMMA A.4.
Pn�1

j¼1 k2ðj=pÞnj

R
jB̂4jðvÞj2 dWðvÞ ¼ OPðp=nÞ:

LEMMA A.5.
Pn�1

j¼1 k2ðj=pÞnj

R
jB̂5jðvÞj2 dWðvÞ ¼ OPðp=nÞ:

We now prove these lemmas sequentially. For notional convenience, we put anðjÞ � k2ðj=pÞn�1
j .

PROOF OF LEMMA A.1. By the Cauchy–Schwarz inequality and the inequality that |eiz1 � eiz2| � |z1 � z2| for any real-valued variables
z1 and z2, which implies jdiðvÞj � jvj � ĵei � eij; we have
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jB̂1jðvÞj2 � n�1
j

Xn

i¼1

ðêi � eiÞ2
" #

n�1
j

Xn

i¼1

jd̂iðvÞj2
" #

� v2 n�1
j

Xn

i¼1

ðêi � eiÞ2
" #2

:

It follows from (A6), and Assumptions A.6 and A.7 that

Z Xn�1

j¼1

k2 j

p

� �
njjB̂1jðvÞj2 dW �

Xn�1

j¼1

anðjÞ
" # Xn

i¼1

ðêi � eiÞ2
" #2Z

v2 dWðvÞ ¼ OP
p

n

� �
;

where we made use of the fact that

Xn�1

j¼1

anðjÞ ¼
Xn�1

j¼1

k2 j

p

� �
n�1

j ¼ O
p

n

� �
ðA11Þ

given p ¼ cnk for k 2 ð0; 1
2Þ; as shown in Hong (1999, A.15, p. 1213). h

PROOF OF LEMMA A.2. Using the inequality that |eiz � 1 � iz| � |z|2 for any real-valued z, we have

jd̂iðvÞ � ivðêi � eiÞeivei j � v2ðêi � eiÞ2: ðA12Þ

Also, a second-order Taylor series expansion for eiðĥÞ around h0 yields

eiðĥÞ � ei ¼ kiðh0Þ0ðĥ� h0Þ þ
1

2
ðĥ� h0Þ0k0ið�hÞðĥ� h0Þ ðA13Þ

for some �h between ĥ and h0, where

k0iðhÞ �
@

@h
kiðhÞ ¼ �e2

i ðhÞGiðhÞGiðhÞ0 þ eiðhÞG0iðhÞ

with G0iðhÞ � ð@=@hÞGiðhÞ ¼ ð@2=@h@h0ÞlnwðIi�1; hÞ: Then, (A12), (A13), êi � ei ¼ ½̂ei � eiðĥÞ� þ ½eiðĥÞ � ei� and |eivei| ¼ 1 imply

jd̂iðvÞ � ivkiðh0Þeivei�j ðĥ� h0Þj � jvjĵei � eiðĥÞj þ jvjkĥ� h0k2 sup
h2H
kk0iðhÞk þ v2 êi � eið Þ2:

Therefore, by the definition of B̂2jðvÞ in (A10), we obtain

nj B̂2jðvÞ
�� �� � jvjXn

i¼jþ1

jei � 1jĵei�j � ei�jðĥÞj þ jvjkĥ� h0k
Xn

i¼jþ1

ðei � 1Þki�jðh0Þeivei�j














þ jvjkĥ� h0k2
Xn

i¼jþ1

ei � 1j j sup
h2H0

kk0i�jðhÞk þ v2
Xn

i¼jþ1

ei � 1j jð̂ei�j � ei�jÞ2:

It follows that

Xn�1

j¼1

k2

Z
j

p

� �
njjB̂2jðvÞj2 dW

� 8

Z
v2 dWðvÞ

Xn�1

j¼1

anðjÞ
Xn

i¼1

ei � 1j j êi�j � ei�jðĥÞ
��� ���

" #2

þ 8
ffiffiffi
n
p
ðĥ� h0Þ




 


2Xn�1

j¼1

k2 j

p

� �
n�1

j

Xn

i¼jþ1

ðei � 1Þni�jðh0Þeivei�j














2Z
v2 dWðvÞ

þ 8
ffiffiffi
n
p
ðĥ� h0Þ




 


4

n�1
Xn

i¼1

ðei � 1Þ2
" #

n�1
Xn

i¼1

sup
h2H0

k0iðhÞ


 

2

" # Xn�1

j¼1

anðjÞ
" #Z

v4 dWðvÞ

þ 8
Xn�1

j¼1

anðjÞ
Xn

i¼1

ei � 1j jð̂ei�j � ei�jÞ2
" #2( )Z

v4 dWðvÞ

¼ 8ðF̂1 þ F̂2 þ F̂3 þ F̂4Þ; say.

ðA14Þ

For the first term F̂1 in (A14), using Minkowski’s inequality, the Cauchy–Schwarz inequality, (A1) and Assumptions A.2 and A.3, we
have
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E
Xn

i¼1

ei � 1j j � ĵei�j � ei�jðĥÞj
" #2

�
Xn

i¼1

E½ðei � 1Þ2 ð̂ei�j � ei�jðĥÞÞ2�1=2

" #2

�
Xn

i¼1

½E sup
h2H0

e8
i ðhÞ�

1=4 E sup
h2H0

wðIi�1; hÞ � wðIyi�1; hÞ
wðIyi�1; hÞ

�����
�����

4" #1=4
8<
:

9=
;

2

� C
Xn

i¼1

E sup
h2H0

wðIi�1; hÞ � wðIyi�1; hÞ
wðIyi�1; hÞ

�����
�����

4" #1=4

� C2:

Hence, we have F̂1 ¼ OPðp=nÞ by Markov’s inequality, (A11) and Assumption A.7.
Next, for the second term F̂2 in (A14), using the fact that

E
Xn

i¼jþ1

ðei � 1Þki�jðh0Þeivei�j














2

� Cnj

given the m.d.s. property of fei � 1g under H0 and (A5), we have F̂2 ¼ OPðp=nÞ by Markov’s inequality, (A11) and Assumptions A.4,
A.6 and A.7.

For the third term F̂3 in (A14), we have F̂3 ¼ OPðp=nÞ given Assumptions A.2, A.4–A.7, (A11) and the fact that

E sup
h2H0

k0iðhÞ


 

2� 2½E sup

h2H
e8

i ðhÞE sup
h2H
kGiðhÞk8�1=2 þ 2½E sup

h2H
e4

i ðhÞE sup
h2H
kG0iðhÞk

4�1=2 � C ðA15Þ

given Assumption A.2.
Finally, for the last term F̂4 in (A14), we have F̂4 ¼ OPðp=nÞ because

Xn�1

j¼1

anðjÞ
Xn

i¼1

ei � 1j jðêi�j � ei�jÞ2
" #2

� 2
Xn�1

j¼1

anðjÞ
Xn

i¼1

ei � 1j j½̂ei�j � ei�jðĥÞ�2
" #2

þ2
Xn�1

j¼1

anðjÞ
Xn

i¼1

ei � 1j j½ei�jðĥÞ � ei�j�2
" #2

¼ OP
p

n

� �
þ OP

p

n

� �
;

ðA16Þ

where, for the first term in (A16), we have made use of the fact that, using (A1), Minkowski’s inequality, the Cauchy–Schwarz
inequality,

E
Xn

i¼1

ei � 1j j½̂ei�j � ei�jðĥÞ�2
" #2

�
Xn

i¼1

½Eðe8
i ÞE sup

h2H0

e16
i ðhÞ�

1=8 E sup
h2H0

wðIi�1; hÞ � wðIyi�1; hÞ
wðIyi�1; hÞ

�����
�����

8" #1=4
8<
:

9=
;

2

� C
Xn

i¼1

E sup
h2H0

wðIi�1; hÞ � wðIyi�1; hÞ
wðIyi�1; hÞ

�����
�����

8" #1=4
8<
:

9=
;

2

� C2

given Assumptions A.2; and for the second term in (A16), we have made use of the fact that, using the first-order Taylor series
expansion for eiðĥÞ in (A3) and the Cauchy–Schwarz inequality,

Xn

i¼1

ei � 1j j½ei�jðĥÞ � ei�j�2
" #2

� k
ffiffiffi
n
p
ðĥ� h0Þk4 n�1

Xn

i¼1

ðei � 1Þ2
" #

n�1
Xn

i¼1

sup
h2H
kkiðhÞk4

" #
¼ OPð1Þ

given Assumptions A.2 and A.4, and (A5).
Because F̂c ¼ OPðp=nÞ for c ¼ 1, 2, 3, 4, we have from (A14) that

Xn�1

j¼1

Z
k2 j

p

� �
njjB̂2jðvÞj2 dW ¼ OP

p

n

� �
:

This completes the proof of Lemma A.2. h
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PROOF OF LEMMA A.3. Using that êi � ei ¼ êi � eiðĥÞ þ eiðĥÞ � ei; we first write

B̂3jðvÞ ¼ n�1
j

Xn

i¼jþ1

½̂ei � eiðĥÞ�/i�jðvÞ þ n�1
j

Xn

i¼jþ1

½eiðĥÞ � ei�/i�jðvÞ � B̂31jðvÞ þ B̂32jðvÞ; say. ðA17Þ

Given |/i(v)| � 2, (A11), and Assumptions A.2, A.3, A.6 and A.7, we have

Xn�1

j¼1

k2 j

p

� �
nj

Z
jB̂31jðvÞj2 dWðvÞ � 2

Xn

i¼1

ĵei � eiðĥÞj
" #2Xn�1

j¼1

anðjÞ
Z

dWðvÞ ¼ OP
p

n

� �
; ðA18Þ

where Xn

i¼1

ĵei � eiðĥÞj ¼ OPð1Þ ðA19Þ

by Markov’s inequality and the fact that, using (A1) and Assumption A.3,

E
Xn

i¼1

ĵei � eiðĥÞj �
Xn

i¼1

½E sup
h2H

e2
i ðhÞ�

1=2 E sup
h2H

wðIi�1; hÞ � wðIyi�1; hÞ
wðIyi�1; hÞ

�����
�����

2" #1=2

� C
Xn

i¼1

E sup
h2H

wðIi�1; hÞ � wðIyi�1; hÞ
wðIyi�1; hÞ

�����
�����

8" #1=8

� C2:

Next, using the second-order Taylor series expansion of eiðĥÞ in (A13), we have

B̂32jðvÞ ¼ ðĥ� h0Þ0n�1
j

Xn

i¼jþ1

kiðh0Þ/i�jðvÞ þ
1

2
ðĥ� h0Þ0 n�1

j

Xn

i¼jþ1

k0ið�hÞ/i�jðvÞ
" #

ðĥ� h0Þ;

where �h lies between ĥ and h0. We then have

Xn�1

j¼1

k2 j

p

� �
nj

Z
jB̂32jðvÞj2 dWðvÞ

� 2
ffiffiffi
n
p
ðĥ� h0Þ




 


2Xn�1

j¼1

k2 j

p

� �Z
n�1

j

Xn

i¼jþ1

kiðh0Þ/i�jðvÞ













2

dWðvÞ

þ 2
ffiffiffi
n
p
ðĥ� h0Þ




 


4

n�1
j

Xn

i¼1

sup
h2H0

k0iðhÞ


 

2

" # Xn�1

j¼1

anðjÞ
" #Z

dWðvÞ:

ðA20Þ

We now consider the first term in (A20). Put nj(v) ” Efki(h)/i�j(v)g ¼ cov[ki(h),/i�j(v)]. Then, Assumptions A.2 and A.5 and a
standard a-mixing inequality imply

knjðvÞk � ½Ej kiðhÞjj j2m�1=2m½E /i�jðvÞ
�� ��2m�1=2maðjÞðm�1Þ=m � CaðjÞðm�1Þ=m: ðA21Þ

Moreover, given Assumptions A.4 and A.5, we have

E n�1
j

Xn

i¼jþ1

kiðh0Þ/i�jðvÞ � njðvÞ













2

� Cn�1
j ; ðA22Þ

using reasoning analogous to (A.7)–(A.10) in the proof of Thm 1 of Hong (1999, pp. 1212–1213). Consequently, from (A21), (A22),
|k(Æ)| � 1, (A11) and p/n!0, we have

Xn�1

j¼1

k2 j

p

� �
E

Z
n�1

j

Xn

i¼jþ1

kiðh0Þ/i�jðvÞ













2

dWðvÞ � C
Xn�1

j¼1

Z
njðvÞ


 

2

dWðvÞ þ C
Xn�1

j¼1

anðjÞ

¼ Oð1Þ þ O
p

n

� �
¼ Oð1Þ:

ðA23Þ

Next, for the second term in (A20), we have
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ffiffiffi
n
p
ðĥ� h0Þ




 


4

n�1
j

Xn

i¼1

sup
h2H0

k0iðhÞ


 

2

" # Xn�1

j¼1

anðjÞ
" #Z

dWðvÞ ¼ OPð1ÞOPð1ÞOP
p

n

� �
¼ OP

p

n

� �
; ðA24Þ

by Assumption A.4, (A11), and (A15). The desired result follows from (A20), (A23) and (A24) as well as (A17) and (A18). h

PROOF OF LEMMA A.4. By the triangle inequality and the fact that jd̂iðvÞj � jvj � ĵei � eij; we have

jûðvÞ � uðvÞj � n�1
Xn

i¼1

d̂iðvÞ
�����

�����þ n�1
Xn

i¼1

/iðvÞ
�����

�����
� jvjn�1

Xn

i¼1

êi � eij j þ n�1
Xn

i¼1

/iðvÞ
�����

�����:
ðA25Þ

For the first term in (A25), we have

n�1
Xn

i¼1

êi � eij j � n�1
Xn

i¼1

ĵei � eiðĥÞj þ n�1
Xn

i¼1

jeiðĥÞ � eij

¼ OPðn�1Þ þ OPðn�1=2Þ ¼ OPðn�1=2Þ;
ðA26Þ

given (A19), and the fact that

n�1
Xn

i¼1

jeiðĥÞ � eij � kĥ� h0kn�1
Xn

i¼1

sup
h2H0

kkiðhÞk ¼ OPðn�1=2Þ

by (A3), the Cauchy–Schwarz inequality, Assumption A.4 and (A5). Moreover, we have supv2RE n�1
Pn

i¼1 /iðvÞ
�� ��2� Cn�1 using a

standard a-mixing inequality that |e[/i(v)/i�j(v)| � Ca( j )(m � 1)/m. It follows from Markov’s inequality that

Z
n�1

Xn

i¼1

/iðvÞ
�����

�����
2

dWðvÞ ¼ OPðn�1Þ: ðA27Þ

Combining (A25)–(A27), we have

Z
jûðvÞ � uðvÞj2 dWðvÞ ¼ OPðn�1Þ: ðA28Þ

It follows from (A6), (A11) and (A28) that

Xn�1

j¼1

k2 j

p

� �
nj

Z
jB̂4jðvÞj2 dW � n

Z
jûðvÞ � uðvÞj2 dWðvÞ

Xn

i¼1

ðêi � eiÞ2
" #Xn�1

j¼1

anðjÞ ¼ OP
p

n

� �
:

This completes the proof of Lemma A.4. h

PROOF OF LEMMA A.5. Given (A11), (A28) and the m.d.s. property of fei � 1g under H0; we have

Xn�1

j¼1

k2 j

p

� �
nj

Z
jB̂5jðvÞj2 dWðvÞ � n

Z
jûðvÞ � uðvÞj2 dWðvÞ

Xn�1

j¼1

k2 j

p

� �
n�1

j

Xn

i¼jþ1

ðei � 1Þ
" #2

¼ OP
p

n

� �
;

where we made use of the fact that

E½n�1
j

Xn

i¼jþ1

ðei � 1Þ�2 � Cn�1
j : (

PROOF OF PROPOSITION A.2. Given the decomposition in (A10), we have
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½r̂ð1;0Þj ð0; vÞ � ~rð1;0Þj ð0; vÞ�~rð1;0Þj ð0; vÞ�
��� ��� �X5

c¼1

jB̂cjðvÞk~rð1;0Þj ð0; vÞj; ðA29Þ

where fB̂cjðvÞg are defined in (A10). By the Cauchy–Schwarz inequality, we have for c ¼ 1, 2, 4, 5,

Xn�1

j¼1

k2 j

p

� �
nj

Z
jB̂cjðvÞk~rð1;0Þj ð0; vÞj dWðvÞ

�
Xn�1

j¼1

k2 j

p

� �
nj

Z
jB̂cjðvÞj2 dWðvÞ

" #1=2 Xn�1

j¼1

k2 j

p

� �
nj

Z
j~rð1;0Þj ð0; vÞj2 dWðvÞ

" #1=2

¼ OP
p1=2

n1=2

� �
OPðp1=2Þ ¼ oPðp1=2Þ;

ðA30Þ

given Lemmas A.1, A.2, A.4 and A.5, and p/n ! 0, where

p�1
Xn�1

j¼1

k2 j

p

� �
nj

Z
j~rð1;0Þj ð0; vÞj2 dWðvÞ ¼ OPð1Þ

by Markov’s inequality, the m.d.s. hypothesis of fei � 1g under H0; and (A11).
It remains to consider the case with c ¼ 3. By (A17) and the triangular inequality, we have

Xn�1

j¼1

k2 j

p

� �
njjB̂3jðvÞk~rð1;0Þj ð0; vÞj

�
Xn�1

j¼1

k2 j

p

� �
njjB̂31jðvÞk~rð1;0Þj ð0; vÞj þ

Xn�1

j¼1

k2 j

p

� �
njjB̂32jðvÞk~rð1;0Þj ð0; vÞj:

ðA31Þ

For the first term in (A31), we have

Xn�1

j¼1

k2 j

p

� �
nj

Z
jB̂31jðvÞj ~rð1;0Þj ð0; vÞ

��� ���dWðvÞ

� 2
Xn

i¼1

ĵei � eiðĥÞj
" #Xn�1

j¼1

k2 j

p

� �Z
~rð1;0Þj ð0; vÞ
��� ��� dWðvÞ

¼ OPð1ÞOP
p

n1=2

� �
¼ OP

p

n1=2

� �
;

ðA32Þ

by (A19), Markov’s inequality and the fact that njEjrð1;0Þj ð0; vÞj2 � C under H0:
For the second term in (A31), using the second-order Taylor series expansion of eiðĥÞ in (A13), we have

Xn�1

j¼1

k2 j

p

� �
nj

Z
B̂32jðvÞ
�� �� ~rð1;0Þj ð0; vÞ

��� ���dWðvÞ

�
ffiffiffi
n
p

ĥ� h0




 


n�1=2
Xn�1

j¼1

k2 j

p

� �
nj

Z
n�1

j

Xn

i¼jþ1

kiðh0Þ/i�jðvÞ












 ~rð1;0Þj ð0; vÞ
��� ��� dWðvÞ

þ
ffiffiffi
n
p
ðĥ� h0Þ




 


2

n�1
j

Xn

i¼1

sup
h2H0

k0iðhÞ


 

" #Xn�1

j¼1

k2 j

p

� �Z
~rð1;0Þj ð0; vÞ
��� ��� dWðvÞ

¼ OP
1þ p

n1=2

� �
þ OP

1þ p

n1=2

� �
¼ oPðp1=2Þ

ðA33Þ

given p/n ! 1. The orders of magnitude for the terms in (A33) is obtained by the following reasoning. Given (A22) and the fact that
njEj~rð1;0Þj ð0; vÞj2 � C under H0, we have
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E n�1
j

Xn

i¼jþ1

kiðh0Þ/i�jðvÞ












 ~rð1;0Þj ð0; vÞ
��� ���

" #
� E n�1

j

Xn

i¼jþ1

kiðh0Þ/i�jðvÞ













2" #1=2

E ~rð1;0Þj ð0; vÞ
��� ���2� 	1=2

� C njðvÞ


 

þ Cn

�1=2
j

h i
n
�1=2
j :

Consequently,

n�1=2
Xn�1

j¼1

k2 j

p

� �
njE

Z
n�1

j

Xn

i¼jþ1

kiðh0Þ/i�jðvÞ












 ~rð1;0Þj ð0; vÞ
��� ���dWðvÞ

� C
Xn�1

j¼1

Z
njðvÞ


 

 dWðvÞ þ Cn�1=2

Xn�1

j¼1

k2 j

p

� �
¼ Oð1þ p=n1=2Þ;

given Assumptions A.5–A.7 and (A21). It follows that the first term in (A33) is OP(1 + p/n1/2) by Markov’s inequality. The second term
in (A33) is OP(p/n1/2) given Assumption A.4, (A15), (A11) and the fact that njEj~rð1;0Þj ð0; vÞj2 � C under H0. Combining (A31)–(A33)
then yields the result for c ¼ 3. This completes the proof of Proposition A.2. h

PROOF OF THEOREM A.2. The proof of Theorem A.2 is similar to that of Theorem A.1. Let Âq;1 and Âq;1 be defined in the same way as
Â1 and Â2 in (A8) and (A9) respectively, with feq;ign

i¼1 replacing fêign
i¼1: It suffices to show p�1=2Âq;1!

p
0 and p�1=2Âq;2!

p
0: Put

dq,i ” eivei � eiveq,i and /q,i(v) ” eiveq,i � uq(v), where uq(v) ” E(eiveq,i). Let ~rð1;0Þq;j ð0; vÞ be defined as ~rð1;0Þj ð0; vÞ; with feq;ign
i¼1 replacing by

feign
i¼1: Then, we can decompose

~rð1;0Þj ð0; vÞ � ~rð1;0Þq;j ð0; vÞ

¼ in�1
j

Xn

i¼jþ1

ðei � eq;iÞ/i�jðvÞ þ in�1
j

Xn

i¼jþ1

ðeq;i � 1Þdq;i�jðvÞ þ i uqðvÞ � uðvÞ
� �

n�1
j

Xn

i¼jþ1

ðeq;i � 1Þ

¼ i B̂q;1jðvÞ þ B̂q;2jðvÞ þ B̂q;3jðvÞ
� �

; say.

ðA34Þ

For the B̂1j;qðvÞ term in (A34), observing that (ei � eq,i)/i�j (v) is an m.d.s. under H0, we have

EjB̂q;1jðvÞj2 ¼ n�1
j E ðei � eq;iÞ2j/i�jðvÞj2
h i

� n�1
j Eðei � eq;iÞ2 � Cn�1

j q�j

by Assumption A.8. It follows from Markov’s inequality, (A11) and Assumptions A.7 and A.8 thatZ Xn�1

j¼1

k2 j

p

� �
njjB̂q;1jðvÞj2 dWðvÞ ¼ OP

p

qj

� �
:

Next, for the B̂2j;qðvÞ term in (A34), by the Cauchy–Schwarz inequality and the inequality that |eiz1 � eiz2| � |z1�z2| for any real-
valued variables z1 and z2, we have

EjB̂q;2jðvÞj2 ¼ n�1
j E½ðeq;i � 1Þ2jdi�jðvÞj2� � n�1

j ½Eðe4
q;iÞ�

1=2 Eðeq;i � eiÞ4
� �1=2� Cn�1

j q�j:

It follows from (A11), and Assumptions A.7 and A.8 thatZ Xn�1

j¼1

k2 j

p

� �
njjB̂q;2jðvÞj2 dWðvÞ ¼ OP

p

qj

� �
:

Finally, we consider the B̂q;3jðvÞ term in (A34). Because

juqðvÞ � uðvÞj � EjdiðvÞj � jvjEjeq;i � eij

and

E n�1
j

Xn

i¼jþ1

ðeq;i � 1Þ
" #2

� n�1
j Eðe2

q;iÞ � Cn�1
j

by the m.d.s. property of feq,i � 1g, we have

E B̂q;2jðvÞ
�� ��2¼ uqðvÞ � uðvÞ

�� ��2E n�1
j

Xn

i¼jþ1

ðeq;i � 1Þ
" #2

� Cv2n�1
j q�j
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given Assumption A.8. It follows from (A11) thatZ Xn�1

j¼1

k2 j

p

� �
njjB̂q;3jðvÞj2 dWðvÞ ¼ OP

p

qj

� �
:

Therefore, we obtain

p�1=2Âq;1 ¼ 16p�1=2
X3

c¼1

Xn�1

j¼1

k2 j

p

� �
nj

Z
B̂q;cjðvÞ
�� ��2 dWðvÞ ¼ OP

p1=2

qj

� �
¼ oPð1Þ

given p/qj ! 0. Moreover, by (A34) and the Cauchy–Schwartz inequality, we have

p�1=2Âq;2 ¼ 16p�1=2
X3

c¼1

Xn�1

j¼1

k2 j

p

� �
nj Re

Z
B̂q;cjðvÞ~rð1;0Þqj ð0; vÞ� dWðvÞ

� p�1=2
X3

c¼1

Xn�1

j¼1

k2 j

p

� �
nj

Z
jB̂q;cjðvÞj2 dWðvÞ

" #1
2 Xn�1

j¼1

k2 j

p

� �
nj

Z
j~rð1;0Þqj ð0; vÞj2 dWðvÞ

" #1=2

¼ OPðq�1=2jÞOPðp1=2Þ ¼ OP
p1=2

qð1=2Þj

� �
¼ oPð1Þ

given p/qj ! 0, where

Xn�1

j¼1

k2 j

p

� �
nj

Z
j~rð1;0Þqj ð0; vÞj2 dWðvÞ ¼ OPðpÞ

by Markov’s inequality and the fact that Ej~rð1;0Þqj ð0; vÞj2 � Cn�1
j : This completes the proof of Theorem A.2. h

PROOF OF THEOREM A.3. The proof follows closely the proof of Thm A.3 in Hong and Lee (2005) with feq,i,wq,i (v)g replaced by
feq,t � 1,/q,t (v)g, given q ¼ p1+(1/(4b�2)) (ln2n)1/(2b�1) and p ¼ cnk for 0 < k < ð3 þ 1

4b�2Þ
�1: h

PROOF OF THEOREM 2. We consider the proof of M̂d
1ðpÞ only; the proof for M̂d

0ðpÞ is similar and simpler. We shall show that
M̂d

1ðpÞ � M̂1ðpÞ!
p

0: The asymptotic normality of M̂d
1ðpÞ then follows immediately from Theorem 1. To show that

M̂d
1ðpÞ � M̂1ðpÞ!

p
0; it suffices to show that (i) p�1=2½Ĉd

1 ðpÞ � Ĉ1ðpÞ� ¼ OPðn�1=2Þ; (ii) p�1½D̂d
1ðpÞ � D̂1ðpÞ�!

p
0 and (iii)

p�1=2

Z Xn�1

j¼1

k2 j

p

� �
nj jĉð1;0Þj ð0; vÞj2 � jr̂ð1;0Þj ð0; vÞj2
h i

dWðvÞ!p 0; ðA35Þ

where D̂1ðpÞ ¼ pD
R1

0 k4ðzÞdz½1 þ oð1Þ� / p as noted in the proof of Theorem A.1. For space, we focus on the proof of (A35); the
proofs for (i) and (ii) here are relatively straightforward. Note that the convergence rate OP(n�1/2) for p�1=2½Ĉd

1 ðpÞ � Ĉ1ðpÞ� implies
that replacing Ĉd

1 ðpÞ with Ĉ1ðpÞ has asymptotically negligible impact given p/n ! 0.
To show (A35), we decomposeZ Xn�1

j¼1

k2 j

p

� �
nj½jĉð1;0Þj ð0; vÞj2 � jr̂ð1;0Þj ð0; vÞj2�dWðvÞ ¼ Â3 þ 2 ReðÂ4Þ;

where

Â3 ¼
Z Xn�1

j¼1

k2 j

p

� �
nj ĉð1;0Þj ð0; vÞ � r̂ð1;0Þj ð0; vÞ
��� ���2 dWðvÞ;

Â4 ¼
Z Xn�1

j¼1

k2 j

p

� �
nj½ĉð1;0Þj ð0; vÞ � r̂ð1;0Þj ð0; vÞ�r̂ð1;0Þj ð0; vÞ� dWðvÞ:

Then (A35) follows from Theorems A4 and A5, and p ! 1 as n ! 1. h

THEOREM A.4. Under the conditions of Theorem 2, Â3 ¼ OPð1Þ; and p�1=2Â3!p 0:

THEOREM A.5. Under the conditions of Theorem 2, p�1=2Â4!p 0:
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PROOF OF THEOREM A.4. By the definitions of ĉð1;0Þj ð0; vÞ and r̂ð1;0Þj ð0; vÞ; we have for j > 0,

ĉð1;0Þj ð0; vÞ � r̂ð1;0Þj ð0; vÞ ¼ in�1
j

Xn

i¼jþ1

êi � 1ð Þ ĥi�jðvÞ � /̂i�jðvÞ
h i

¼ �ib̂jðvÞ0n�1
j

Xn

i¼jþ1

Ĝi êi � 1ð Þ;

where ĥi�jðvÞ � /̂i�jðvÞ � Ĝ0i b̂jðvÞ; b̂jðvÞ � ð
Pn

i¼1 ĜiĜ
0
iÞ
�1Pn

i¼jþ1 Ĝi/̂i�jðvÞ; Ĝi � @
@h lnwðIyi�1; ĥÞ; /̂i�jðvÞ � eivêi�j � ûðvÞ and

ûðvÞ ¼ n�1
Pn

i¼1 eivêi : The proof of Theorem A.4 is analogous to the proof of Thm A.1 in Hong and Lee (2007), with /̂iðvÞ and
ûðvÞ here replacing ŵtðvÞ and ûjðvÞ in Hong and Lee (2007) respectively. We note that although we use the same notations, Ĝi and êi

denote @
@h lnwðIyi�1; ĥÞ and Yi=wðIyi�1; ĥÞ respectively here whereas Ĝt and êt denote @

@h gðIyt�1; ĥÞ and Yt � gðIyt�1; ĥÞ respectively in Hong
and Lee (2007). However, the proof is similar given Assumptions A.1–A.10. The detailed proof of Theorem A.4 can be obtained from
the authors on request. h

PROOF OF THEOREM A.5. The proof is analogous to the proof of Thm A.2 in Hong and Lee (2007) given Assumptions A.1–A.10, with
the same explanations of notations as in the proof of Theorem A.4. The detailed proof of Theorem A.5 can be obtained from the
authors on request. h

PROOF OF THEOREM 3(I). We consider the proof for M̂1ðpÞ only. It consists of the proofs of Theorems A.6 and A.7 that follow. h

THEOREM A.6. Under the conditions of Theorem 3(i), ðp1=2=nÞ½M̂1ðpÞ � ~M1ðpÞ�!p 0; where ~M1ðpÞ is as in Theorem A.1.

THEOREM A.7. Let ~M1ðpÞ be as in Theorem A.6. Under the conditions of Theorem 3(i),

ðp1=2=nÞ~M1ðpÞ!
p

2D

Z 1
0

k4ðzÞ dz

� 	�1=2X1
j¼1

Z
jrð1;0Þj ð0; vÞj2 dWðvÞ:

PROOF OF THEOREM A.6. It suffices to show that

n�1

Z Xn�1

j¼1

k2 j

p

� �
nj jr̂ð1;0Þj ð0; vÞj2 � j~rð1;0Þj ð0; vÞj2
h i

dWðvÞ!p 0; ðA36Þ

p�1½Ĉ1ðpÞ � ~C1ðpÞ� ¼ OPð1Þ; p�1D̂1ðpÞ � ~D1ðpÞ!
p

0 and ~D1ðpÞ ¼ pD
R1

0 k4ðzÞ dz½1 þ oð1Þ�: Since the proofs for
p�1½Ĉ1ðpÞ � ~C1ðpÞ� ¼ OPð1Þ; p�1½D̂1ðpÞ � ~D1ðpÞ�!

p
0 and ~D1ðpÞ ¼ pD

R1
0 k4ðzÞdz½1 þ oð1Þ� are relatively straightforward, we

focus on the proof of (A36). From (A9), the Cauchy–Schwarz inequality, and the fact that

n�1

Z Xn�1

j¼1

k2 j

p

� �
njj~rð1;0Þj ð0; vÞj2 dWðvÞ ¼ OPð1Þ

as is implied by Theorem A.7 (the proof of Theorem A.7 does not depend on Theorem A.6), it suffices to show that n�1Â1!
p

0; where
Â1 is defined as in (A8). Given the decomposition in (A10), we shall show that

n�1

Z Xn�1

j¼1

k2 j

p

� �
njjB̂cjðvÞj2 dWðvÞ!p 0

for c ¼ 1,…,5.
We first consider c ¼ 1. By the Cauchy–Schwarz inequality and jd̂iðvÞj � 2; we have

jB̂1jðvÞj2 � n�1
j

Xn

i¼jþ1

ðêi � eiÞ2
" #

n�1
j

Xn

i¼jþ1

jd̂iðvÞj2
" #

� 4n�1
j

Xn

i¼1

ðêi � eiÞ2:

It follows from (A6) and (A11) that

n�1

Z Xn�1

j¼1

k2 j

p

� �
njjB̂1jðvÞj2 dWðvÞ � 4

Xn

i¼1

ðêi � eiÞ2
" #Xn�1

j¼1

anðjÞ
Z

dWðvÞ
� 	2

¼ OP
p

n

� �
:

For c ¼ 2, by the Cauchy–Schwarz inequality and the inequality that |eiz1 � eiz2| � |z1 � z2| for any real-valued variables z1 and z2,
we have
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jB̂2jðvÞj2 � v2 n�1
j

Xn

i¼jþ1

ðei � 1Þ2
" #

n�1
j

Xn

i¼jþ1

ðêi � eiÞ2
" #

:

It follows from (A6), (A11) and Assumption A.7 that

n�1

Z Xn�1

j¼1

k2 j

p

� �
njjB̂2jðvÞj2 dWðvÞ �

Xn�1

j¼1

anðjÞ
Xn

i¼1

ðêi � eiÞ2
" #Z

v2 dWðvÞ ¼ OP
p

n

� �
:

Next, we consider c ¼ 3. By the Cauchy–Schwarz inequality and |/i(v)| � 2, we have

jB3jðvÞj2 � 4n�1
j

Xn

i¼1

ðêi � eiÞ2:

It follows that

n�1

Z Xn�1

j¼1

k2 j

p

� �
njjB̂3jðvÞj2 dWðvÞ � 4 n�1

Xn

i¼1

ðêi � eiÞ2
" #Xn�1

j¼1

k2 j

p

� �Z
dWðvÞ ¼ OP

p

n

� �
:

For c ¼ 4, given jûðvÞ � uðvÞj � 2; we have

B̂3jðvÞ
�� ��2� 4n�1

Xn

i¼1

ðêi � eiÞ2;

and so

n�1
Xn�1

j¼1

k2 j

p

� �
nj

Z
jB̂4jðvÞj2 dWðvÞ � 4n�1

Xn�1

j¼1

k2 j

p

� �
n�1

Xn

i¼1

ð̂ei � eiÞ2
" #Z

dWðvÞ ¼ OP
p

n

� �

by (A6), (A11) and Assumption A.7.
Finally, for c ¼ 5, we have

jB5jðvÞj2 � jûðvÞ � uðvÞj2n�1
j

Xn�1

j¼1

ðei � 1Þ2:

It follows that

n�1

Z Xn�1

j¼1

k2 j

p

� �
njjB̂5jðvÞj2 dWðvÞ � jûðvÞ � uðvÞj2

Xn�1

j¼1

k2 j

p

� �
n�1

Xn�1

j¼1

ðei � 1Þ2
" #

¼ OP
p

n

� �

from Markov’s inequality, (A11) and (A27). This completes the proof for Theorem A.6. h

PROOF OF THEOREM A.7. The proof is very similar to Hong (1999, proof of Thm 5), for the case (m,l) ¼ (1,0) and W1(Æ) ¼ d(Æ), the Dirac
delta function. h

PROOF OF THEOREM 3(II). Recall that hi�jðvÞ ¼ /i�jðvÞ � G0ibjðvÞ; where bj ¼ ½EðGiG
0
iÞ�
�1E½Gi/i�jðvÞ�: We define the following

pseudo test statistic

~Md
1ðpÞ ¼

Pn�1

j¼1

k2 j
p

� �
nj

R
~cð1;0Þj ð0; vÞ
��� ���2 dWðvÞ � ~Cd

1 ðpÞ
" #

ffiffiffiffiffiffiffiffiffiffiffiffi
~Dd

1ðpÞ
q ;

where

~cð1;0Þj ð0; vÞ ¼ n�1
j

Xn

i¼jþ1

iðei � 1Þhi�jðvÞ;

and
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~Cd
1 ðpÞ ¼

Xn�1

j¼1

k2 j

p

� �Z
n�1

j

Xn

i¼jþ1

ðe2
i � 1Þ hi�jðvÞ

�� ��2 dWðvÞ;

~Dd
1ðpÞ ¼

Xn�2

j¼1

Xn�2

l¼1

k2 j

p

� �
k2 l

p

� �Z Z ���� 1

n�maxðj; lÞ
Xn

i¼maxðj;lÞþ1

ðe2
i � 1Þhi�jðvÞhi�lðvÞ

����
2

dWðuÞdWðvÞ:

The proof of Theorem 3(ii) consists of the proofs of Theorems A.8 and A.9, where Theorem A.8 shows that replacing the estimated
residuals fêign

i¼1 with the unobservable sample feign
i¼1 and replacing the OLS estimators fb̂jðvÞgn�1

j¼1 with their population
counterparts fbjðvÞgn�1

j¼1 do not affect the asymptotic behaviour of ðp1=2=nÞM̂d
1ðpÞ under HA: Theorem A.9 shows that ðp1=2=nÞ~Md

1ðpÞ
converges to a well-defined probability limit under HA from which the M̂d

1ðpÞ test gains its power. h

THEOREM A.8. Under the conditions of Theorem 3, ðp1=2=nÞ½M̂d
1ðpÞ � ~Md

1ðpÞ�!p 0:

THEOREM A.9. Under the conditions of Theorem 3,

ðp1=2=nÞ~Md
1ðpÞ!

p
2Dd

Z 1
0

k4ðzÞ dz

� 	�1=2X1
j¼1

Z
jcð1;0Þj ð0; vÞj2 dWðvÞ:

PROOF OF THEOREM A.8. The proof of Theorem A.8 is analogous to the proof of Theorem A.3 in Hong and Lee (2007), with the same
explanations for some notations as in the proof of Theorem A.3 of this article. The detailed proof is available from the authors on
request. h

PROOF OF THEOREM A.9. See Hong (1999, proof of Thm 5) for the case of (m,l) ¼ (1,0). We note that following reasoning analogous to
the proof of Hong and Lee (2005, proof of Thm 1), we can obtain ~Cd

1 ðpÞ ¼ OPðpÞ and p�1 ~Dd
1ðpÞ!

p
2Dd

R1
0 k4ðzÞ dz; where Dd is as in

Theorem 3(ii). h
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