
Detection and Modeling of high-dimensional
Thresholds for Fault Detection and Diagnosis

Yuning He
UARC, NASA Ames Research Center

Moffett Field, CA 94035

Email: yuning.he@nasa.gov

Abstract—Many Fault Detection and Diagnosis (FDD) systems
use discrete models for detection and reasoning. To obtain
categorical values like ”oil pressure too high”, analog sensor
values need to be discretized using a suitable threshold. This
task is usually performed by the “wrapper code” of the FDD
system.

In practice, selecting the right threshold is very difficult, be-
cause it heavily influences the quality of diagnosis. In many cases,
proper thresholding needs to be performed using non-linear high-
dimensional threshold surfaces to accommodate dependencies
between system components and different sensors. Often those
dependencies are complex and can not handled analytically.

In this paper, we will describe a statistical modeling tech-
nique using hierarchical Bayesian methods for the detection of
threshold surfaces using a low number of necessary simulation
experiments.

I. INTRODUCTION

Many Fault Detection and Diagnosis (FDD) systems use

discrete models for detection and reasoning. To obtain cate-

gorical values like ”oil pressure too high”, analog sensor values

need to be discretized using a suitable threshold. Time series

of analog and discrete sensor readings are discretized as they

come in before processed by the diagnosis engine. This task is

usually performed by the “wrapper code” of the FDD system,

together with signal preprocessing and filtering.

In practice, selecting the right threshold is very difficult,

because it heavily influences the quality of diagnosis. If a

threshold causes the alarm trigger even in nominal situations,

false alarms will be the consequence. On the other hand, if

threshold setting does not trigger in case of an off-nominal

condition, important alarms might be missed, potentially caus-

ing hazardous situations.

Usually, each sensor is handled individually and different

threshold values might exist for different modes of the plant.

For example, the threshold for the oil pressure for a cold

engine (mode: cold) might be different from that for a hot

engine (mode: hot). For complex industrial systems with

hundreds of sensors and dozens of modes, a large number

of thresholds must be selected and validated.

The use of a threshold for the discretization of a sensor

signal, however, ignores any dependencies and correlations be-

tween different signals. Therefore, discretization with individ-

ual thresholds can only form a coarse approximation. Essen-

tially, the thresholds form a hypercube in the high-dimensional

space of sensor signals. This approach can easily lead to

over-conservative settings. In those cases, proper thresholding

would need non-linear high-dimensional threshold surfaces

to accommodate dependencies between system components

and different sensors. Often, however, dependencies between

system components and different sensors are complicated and

often not fully understood. Domain experts might have an idea

of the approximate shape of the envelope, but exact values are

unknown. Therefore, experiments need to be carried out to de-

termine the threshold curves. Because of high dimensionality

and lack of analytical solutions, straight-forward grid-based

methods are not applicable in general.

In this paper, describe an advanced statistical method that

uses Bayesian dynamic modeling and on-line learning tech-

niques to estimate threshold surfaces in a high-dimensional

space. Once a representation of the threshold surface has been

obtained, techniques for fitting its shape and estimate shape

parameters [1], [2] can be applied. This approach goes way

beyond traditional algorithms, which obtain thresholds in the

form of hyper surfaces. By selecting the most likely shape

of a surface from a domain-specific “library” and estimating

it’s parameters, the domain expert can immediately recognize

and understand that shape—a very important prerequisite for

Verification and Validation (V&V) of FDD systems. This is

in stark contrast to other well-known techniques like neural

networks, where this information is hidden in a representation

that is not suitable for human understanding. Here, however

we will focus on statistical modeling and active learning for

the detection of threshold surfaces.

The rest of this paper is structured as follows: in the next

section, we will briefly describe Fault Detection and Diagnosis

architecture and signal discretization. We also will introduce

our example, the analysis of the stall speed for an aircraft.

Section III is devoted to our statistical modeling approach

and architecture and Section IV focuses on active learning.

In Section V we present results of experiments. Section VI

concludes and discusses future work.

II. FAULT DETECTION AND DIAGNOSIS

Typically, Fault Detection and Diagnosis (FDD) systems are

used to continuously monitor complex systems, e.g., an aircraft

or spacecraft. Observable information obtained by sensors is

used to detect any off-nominal situation and to perform root

978-1-4799-1894-2/15/$31.00 c© 2015 IEEE

cause analysis. A number of different approaches for FDD or

vehicle health management exist, but for this paper we focus

on a very generic architecture as shown in Figure 1. The plant

is observed using a number of analog sensors (e.g., pressure,

temperature, battery voltage). Each signal is discretized by the

wrapper code using thresholds θ in order to obtain discrete

values comprising the outcome of a test. For example, for

pressure p, (p < θp) ≡ true might indicate a dangerously low

pressure. Often, one analog signal is discretized into various

discrete ranges like “too low”, “nominal”, and “too high”

using thresholds θlow and θhigh. The discrete outcomes of the

tests are then fed into the diagnosis engine where hypotheses

about the most likely set of failure modes (e.g., pump faulty,

fuse open) is produced. That information can then be used to

initiate mitigation and recovery actions. Diagnostic engines

could be, for example, TEAMS/RT,1 TFPG [3], [4], or a

Bayesian Network [5], just to mention a few. In practice,

discretization thresholds are, in most cases defined during

design time. There might be different thresholds for different

modes or configurations of the plant.

P
L

A
N

T

si
g
n

a
ls

se
n

so
r

w
ra

p
p

er

te
st

s

R
ea

so
n

in
g

F
D

D
R

d
ia

g
n

o
si

s
h

y
p

o
th

es
es

Fig. 1. High-level architecture of an FDD system

A. Example: stall speed

Throughout this paper, we will illustrate our approach

with the analysis of the stall speed vstall of an aircraft. For

stable flight, the airspeed must always be larger than vstall.

Otherwise, the flow over the wing separates and the aircraft

will loose altitude at a dramatic rate and is in severe danger

to crash. Fault detection and health management systems

therefore need to monitor the current speed of the aircraft;

discretization might use thresholds θ to determine “nominal”,

“low-speed”, and “very-low-speed” conditions. However, the

stall speed depends on numerous factors including altitude,

weight, position of flaps, thrust, just to mention a few. For each

aircraft, seven stall speeds are given, depending on the mode

of the aircraft, typically vS or vS1 for a clean configuration,

where flaps and landing gear are retracted, or vS0 for an

aircraft in landing configuration with fully extended flaps,

among others.2 Usually, the number of modes is kept small.

As the true threshold surface is non-linear, there are consid-

erable possibilities for false alarms as shown in Figure 2. This

graph shows airspeed v over a parameter p. The stall speed

1http://www.teamqsi.com
2http://en.wikipedia.org/wiki/Stall (fluid mechanics)

vstall is non-linear with respect to parameter p and shown as

a red curve. Using this curve, a discretization of sensor values

into “stable” and “stall” can be made: the aircraft is stalling if

its speed is below the red curve. The use of two mode-specific

thresholds (green in Figure 2) leaves a large space open for

false alarms (shaded): values of v in that range are tagged

as “stall” by the mode-specific constant threshold, but v is

actually below the true threshold.

v stable region (v > vstall)

mode−specific threshold

actual
threshold

mode−specific threshold

p

vstall

stall region

Mode 2Mode 1

false alarms

false alarms

Fig. 2. Mode-specific thresholds (green) for two modes for speed v over a
parameter p, curve for actual vstall (red). Areas, where false alarms occur
are shaded.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0.8

1

1.2

1.4

1.6

x 104

0

50

100

150

200

250

300

350

weight

altitude

s
ta

ll
s
p
e
e
d

Fig. 3. Threshold surface over airspeed, altitude, and aircraft weight for
three different values of thrust.

The stall speed substantially depends on shape and size of

wings, the engine nacelle characteristics, as well as fuselage,

weight, thrust, and other factors (see Figure 3 for dependency

on weight and altitude). In practice, the stall speed for a few

different configurations and scenarios, is usually determined

using high-fidelity simulators or even test flights. Our goal is

therefore to provide statistical methods to estimate the non-

linear vstall threshold surface in a high-dimensional space

using as few experiments (e.g., simulation runs) as possible.

III. STATISTICAL MODELING

A. Algorithm Overview

We propose a sequential method for the estimation of

parameterized threshold surfaces in high dimensional spaces.

We represent our problem as learning the response surface for

the function f , where f(x) = 1 − ǫ for some small ǫ > 0 if

the experiment succeeds and f(x) = 0 + ǫ otherwise. In this

representation a threshold surface is determined by points x

with f(x) = 0.5. This representation allows us to formulate

a powerful method to select the next data point, which is

explained later.

Matlab/Simulink
result

x
point

new

θ

Detection

Shape Estimation

Xn

Experimental Design

Computer

0
D

Active Learning

DynaTree

Boundary

Fig. 4. Overview of active learning architecture

Given an initial set of labeled data D0, our approach builds

a hierarchical Bayesian representation. Using active learning

and computer experimental design, the number of required

experiments and simulation runs can be kept minimal. The hi-

erarchical representation provides information and confidence

intervals for subsequent estimation of shape parameters Θ for

the threshold surface. For shape estimation see [2].

The overall process is depicted in Figure 4. The active

learning algorithm builds an initial classifier based upon D0.

Then, candidate points (i.e., sets of input parameters) are

selected by the algorithm and handed over to the computer

experiment, which executes the system under consideration

using the given parameters and returns a categorical result

(success or failure). Since each run of the simulator can re-

quire substantial computational resources, the overall number

of new data points should be kept as small as possible. For

example, in Figure 4, the experiment is depicted as a Simulink

simulation.

Our algorithm is based upon the sequential classification

and regression framework as given by DynaTree [6], [7]. It

features dynamic regression trees and a sequential tree model.

Particle learning for posterior simulation makes Dynatrees

a good candidate for applications, where new data points

are processed sequentially. At any given point in time, the

classifier is represented by a DynaTree. Figure 5 shows the

stop

models (shapes): M1, ..., Mk

initial data set: D0 = (X0, y0)

inital parameter guesses: theta1, ..., thetak

Initialize DT with linear model and D0

1. Estimate most likely parameters thetai

for Mi over a set of data points Dx

Changes in

2. Select candidate point which

 maximizes E(I(X,a,alpha))

3. Run simulation with candidate point

 and obtain actual label

4. Update DT with the candidate point

theta?

with y_hat close to 1/2

Fig. 5. Overview of active learning procedure

individual steps of our overall algorithm. In the initial phase,

a classifier using the data set D0 is constructed. It provides an

initial partitioning of the space and provides the information

to estimate posteriors over given sets of data points. The main

body is an iterative loop where, by adding new data points,

the classifier will be extended and improved with the main

goal of identifying and characterizing the threshold surfaces.

In the first step, the current classifier is used to estimate a set

of data points, which are close to the current prediction of

the threshold. These comprise a subset of data points from a

regular grid or a Latin hyper square, for which their entropy

measure is high (classification representation) or the estimated

response value is close to 0.5. The location of these points do

not only depend on the actual boundary, but also on the shape

of the dynamic tree and the size of the partitions, because

points in the same partition have the same values. This set

of data points is then used to estimate the best parameters Θ
for each of the boundary shapes, together with a confidence

interval for each of the parameters.

The candidate point selection in this active learning al-

gorithm can use as much information as is available at the

current stage, for example, information and entropy of the

current data set. It then selects a new point (i.e., set of input

parameters), for which the label is obtained by running the

system simulator. Next we present the individual steps in

detail.

IV. ACTIVE LEARNING AND EXPECTED IMPROVEMENT

A. Finding threshold surfaces

Each data point describing one simulation run (experiment)

is defined as x = 〈P1, . . . , Pp〉, where Pi are the input

parameter settings and the outcome o(x) ∈ {pass, fail}. Thus

these data points define a classification problem with C = 2
classes. Informally, a boundary can be found between regions,

where all experiments yield passing tests p(x = pass) = 1
and those, where the experiments do not meet the success

criterion p(x = fail) = 1. Therefore, we can define a point x

to be on the boundary if p(x = pass) = p(x = fail) = 0.5.

Although this condition can easily be generalized to more than

two classes, in this work, we will focus on C = 2.

A common metric to characterize points on the bound-

ary is based upon the entropy. The entropy entr =
−
∑

c∈c1,..,cC
p(x = c) log p(x = c) becomes maximal at the

boundary. In cases of more than two classes, [8] uses a BVSB

(Best vs. Second Best) strategy. [9] defines a metric advantage

as essentially adv(x) = |p(x = pass) − p(x = fail)| and

considers points with minimal advantage to be close to the

boundary.

In general, there are two basic methods: explicitly from

knowledge of the classification function, or by treating the

classifier as a black box and finding the boundaries numeri-

cally. For some classifiers it is possible to find a simple para-

metric formula that describes the boundaries between groups,

for example, LDA or SVM. Most classification functions can

output the posterior probability of an observation belonging to

a group. Much of the time we do not look at these, and just

classify the point to the group with the highest probability.

Points that are uncertain, i.e., have similar classification

probabilities for two or more groups, suggest that the points

are near the boundary between the two groups. For example,

if a point is in Group 1 with probability 0.45, and in Group 2

with probability 0.55, then that point will be close to the

boundary between the two groups. We can use this idea to

find the boundaries. If we sample points throughout the design

space we can then select only those uncertain points near

boundaries. The thickness of the boundary can be controlled

by changing the value, which determines whether two proba-

bilities are similar or not. Ideally, we would like this to be as

small as possible so that our boundaries are accurate. Some

classification functions do not generate posterior probabilities.

In this case, we can use a k-nearest neighbors approach.

Here we look at each point, and if all its neighbors are of

the same class, then the point is not on the boundary and

can be discarded. The advantage of this method is that it is

completely general and can be applied to any classification

function. The disadvantage is that it is slow (O(n2)), because

it computes distances between all pairs of points to find

the nearest neighbors. In general, finding of the boundaries

faces the “curse of dimensionality”: as the dimensionality of

the design space increases, the number of points required

to make a perceivable boundary (for fitting or visualization

purposes) increases. This problem can be attacked in two

ways, by increasing the number of points used to fill the design

space (uniform grid or random sample), or by increasing the

thickness of the boundary.

B. Active Learning

Computer simulation of a complex system like those dis-

cussed above, is frequently used as a cost-effective means to

study complex physical and engineering processes. It typically

replaces a traditional mathematical model in cases where such

models do not exist or cannot be solved analytically.

Active learning, or sequential design of experiments (DOE),

in the context of estimating response surfaces (in our case

boundaries), is called adaptive sampling. Adaptive sampling

starts with a relatively small space-filling input data, and then

proceeds by fitting a model, estimating predictive uncertainty,

and then choosing future samples with the aim of minimizing

some measure of uncertainty, or trying to maximize infor-

mation. We perform active learning with new data until

the boundary is characterized with sufficient accuracy and

confidence, and the whole space has been sufficiently explored

to not miss any boundary areas in the space.

Consider an approach which maximizes the information

gained about model parameters by selecting the location x

which has the greatest standard deviation in predicted output.

This approach has been called ALM for Active Learning-

Mackay, and has been shown to approximate maximum ex-

pected information designs [10]. An alternative algorithm is to

select Σ2 minimizing the expected reduction in squared error

averaged over the input space [11], called ALC for Active

Learning-Cohn. Rather than focusing on design points which

have large predictive variance, ALC selects configurations that

would lead to a global reduction in predictive variance.

The ALM/ALC algorithms are suitable for classification but

not primarily for boundary detection [12]. These heuristics are

in general not suited for the boundary-finding task because

they do not take the specifics of the boundaries into account

and they tend to also explore sparsely populated regions far

away from current boundaries.

C. Our New Boundary Expected Improvement

Finding a boundary between two classes can be considered

as finding a contour with a = 0.5 in the response surface of

the system response. Inspired by [13] and work on contour

finding algorithms, we loosely follow [14], and define our

heuristics by using an improvement function. In order to use

the available resources as efficiently as possible for our con-

tour/boundary finding task, one would ideally select candidate

points which lie directly on the boundary, but that is unknown.

Therefore, new trial points x are selected, which belong to

an ǫ-environment around the current estimated boundary. This

means that 0.5 − ǫ ≤ ŷ(x) ≤ 0.5 + ǫ for ǫ > 0. ŷ(x) is

the learned estimate of the response function at x. New data

points should maximize the information in the vicinity of the

boundary. Following [13] and [14], we define an improvement

function for x as

I(X) = ǫ2(x)−min{(y(x)− 0.5)2, ǫ2(x)} (1)

A B C

D E F

Fig. 6. Selection of candidate points during active learning. Shown is normalized airspeed over normalized altitude, starting from a random initialization
(A). Different selection strategies are: random selection (B), ALC (C), ALM (D), EI (E), and our boundary-EI (F)

here, y(x) ∼ N(ŷ(x), σ2(x)), and ǫ(x) = ασ(x) for a

constant α ≥ 0. This term defines an ǫ-neighborhood around

the boundary as a function of σ(x). This formulation makes

it possible to have a zero-width neighborhood around existing

data points. For boundary sample points, I(X) will be large

when the predicted σ(x) is largest.

The expected improvement E[I(x)] can be calculated easily

following [14] as

E[I(x)] = −

0.5+ασ(x)
∫

0.5−ασ(x)

(y − ŷ(x))2φ

(

y − ŷ(x)

σ(x)

)

dy (2)

+2(ŷ(x)− 0.5)σ2(x) [φ(z+(x))− φ(z−(x))]

+(α2σ2(x)− (ŷ(x)− 0.5)2) [Φ(z+(x))− Φ(z−(x))] ,

where z±(x) =
0.5−ŷ(x)

σ(x) ± α, and φ and Φ are the standard

normal density and cumulative distribution, respectively. Each

of these three terms are instrumental in different areas of the

space. The first term summarizes information from regions of

high variability within the ǫ-band. The integration is performed

over the ǫ-band as ǫ(x) = ασ(x). The second term is

concerned with areas of high variance farther away from the

estimated boundary. Finally, the third term is active close to

the estimated boundary. After the expected improvement has

been calculated, the candidate point is selected as the point,

which maximizes the expected improvement.

V. EXPERIMENTS AND RESULTS

We illustrate the evaluation of our learning architecture

using the above stall speed example. For simplicity of exper-

iments, we did not use a full aircraft simulator but rather an

analytic approximation [15]. Figure 6 visualizes our approach

in two dimensions (airspeed over altitude). We start with a

low number of randomly selected points, which are shown as

circles in Figure 6A. From there, the active learning procedure

selects N = 500 new data points. Experiment outcomes are

shown in cyan (failure) and magenta (pass). N has been

selected this large for visualization purposes. The figure shows,

how the different selection algorithms behave in this situation.

Our goal is to find many data points near the threshold curve

in order to enable accurate representation and to facilitate

subsequent shape estimation. On the other hand, the entire

area should be considered as well in order not to miss any

other boundary curve.

The random Monte-Carlo style selection (Figure 6B) meets

both requirements but needs a prohibitively large N for rea-

sonable results. The classical approach ALC ([11], Figure 6C)

finds many points near the threshold curve, but still too many

data points are away from the curve, demanding large N .

Other algorithms are too localized and do not even explore

the entire threshold curve (Figure 6D, E). Our approach (F)

tries to find a suitable balance between both requirements.

There is a trade-space between closeness of selected points

to the threshold surface and a good curve coverage. For

example, a greedy algorithm might always select the same

point near the threshold (high closeness) but extremely low

coverage. Figures 7 and 8 show visualizations of this trade

space. For each of the newly added points, we calculate d as

the minimal distance of that point to the threshold surface.

Obviously, small values should be preferred, as such points

close to the threshold help to accurately estimate its shape.

0 1 2 3 4 5 6 7

x 10
4

10
0

10
1

10
2

10
3

altitude [ft]

n
u
m

b
e
r

o
f
d
a
ta

 p
o
in

ts

random

EI

ALC

ALM

boundary−EI

Fig. 7. Histograms for distance d of candidate points from the threshold
surface for different update rules (2D). Leftmost bars are cropped for better
visibility.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
4

0

50

100

150

200

250

300

350

altitude [ft]

n
u

m
b

e
r

o
f

d
a

ta
 p

o
in

ts

random

EI

ALC

ALM

boundary−EI

Fig. 8. Histograms of curve coverage (number of candidate points at given
parameter value for different update rules (2D).

Figures 7 shows a histogram of distance d for various update

rules. Whereas random and ALC have a large number of points

that are far away from the threshold surface, ALM seems to

perform best for this metric. However, Figure 8 reveals that

ALM only covers a very small portion of the threshold surface.

Random selection provides the best coverage here. With our

analysis goal in mind, our boundary-aware EI metric features

a good overall coverage and a high density of points close to

actual threshold surface.

Our metric is parameterized by the parameter α, see Equa-

tion (2). This parameter influences the width of the ”band”

around the threshold surface that is considered for the selection

of the candidate point. Figure 9 shows runs with several values

of α. It seems that values around α = 0.8 produce the best

results; values of α that are too small or too large tend to lead

to a situation, where the new points are located too far from

the threshold surface.

The detection and characterization of a (high-dimensional)

threshold surface requires a substantially larger overhead dur-

ing design time and during actual diagnosis than a constant

A B

C D

Fig. 9. Boundary-EI with different parameters for α = 0.2, 0.5, 0.8, 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate (1−Specificity)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
S

e
n
s
it
iv

it
y
)

random

0.5..1.5

0.9..1.1

0.7..1.3

0.8..1.2

Fig. 10. ROC curves for different weight deviations from w0 = 12000lbs. A
simple constant threshold must tolerate more false alarms for larger deviations
of the weight.

threshold. Therefore, it needs to be considered if the im-

provement in detection accuracy justifies the additional effort.

Detection accuracy is usually defined in terms of false and

missed alarms. A false alarm is a situation where the selected

threshold is crossed, but the value is still acceptable with

respect to the true threshold surface. For analysis of this

behavior, Receiver Operating Characteristic (ROC) curves [16]

can be used. For a given set of experiment, they show the true

positive rate over the false positive rate. For a perfect classifier,

the curve immediately rises to 1 and continues horizontally. A

random classifier produces the black diagonal line. Figure 10

shows the ROC curves with respect to variability in one

parameter, the aircraft weight w. We assume a nominal weight

of w0 = 12, 000lbs. All other input parameters are kept

fixed. If the aircraft weight is known and fixed and we use a

constant threshold or we use our nonlinear threshold surface,

then the classifier is perfect. Possible variations in the aircraft

weight lead to a situation as indicated in Figure 2: the actual

threshold surface deviates from the constant threshold. Thus,

false alarms are possible. The more the actual value can

deviate from w0, more false alarms will occur, reducing the

accuracy. In this figure, we let the weight deviate up to (an

unrealistic) ±50%.

This ROC analysis can be used as an important tool during

FDD design to see if constant thresholds are sufficient for the

required detection accuracy and to assess the quality of the

detected thresholding surfaces.

VI. CONCLUSION

In this paper, we focused on the discretization of sensor

values for discrete Fault Detection and Diagnosis systems. In

many cases, threshold surfaces are nonlinear and have com-

plex dependencies between system components and different

sensors. Therefore, in practice, selecting the right threshold is

very difficult to avoid false or missed alarms.

We described the underlying statistical modeling techniques

using hierarchical Bayesian models and an active learning

algorithm to obtain data for a potentially high-dimensional

threshold surface with a low number of necessary experiments.

We developed a candidate selection rule that is aware of the

specific threshold surface. Using a small aeronautics example,

we illustrated the behavior of the active learning procedure

and discussed metrics on the quality of the set of data points

for subsequent shape estimation. We have used ROC curves

to demonstrate the effect of using constant thresholds (or

mode-dependent thresholds) versus an approximated threshold

surface with respect to missed and false alarms.

Future work will address the synergistic combination our

approach with techniques to extract a compact representation

of the threshold surface that can be easily integrated into

the wrapper code of real-time diagnostic systems. Of major

importance will be the development of effectiveness metrics

in the high-dimensional case. Finally, we aim to evaluate our

approach with a realistic FDD application.

REFERENCES

[1] Y. He, “Online Detection and Modeling of Safety Boundaries for
Aerospace Applications using Active Learning and Bayesian Statistics,”
Proc. IJCNN, 2015.

[2] Y. He, “Variable-length Functional Output Prediction and Boundary
Detection for an Adaptive Flight Control Simulator,” Ph.D. dissertation,
University of California at Santa Cruz, 2012.

[3] S. Abdelwahed, A. Dubey, G. Karsai, and N. Mahadevan, “Model-based
tools and techniques for real-time system and software health manage-
ment,” Machine Learning and Knowledge Discovery for Engineering

Systems Health Management, p. 285, 2011.
[4] N. Mahadevan and G. Karsai, “FACT Tool Suite,” https://fact.isis.

vanderbilt.edu/, 2000–2014.
[5] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.
[6] M. A. Taddy, R. B. Gramacy, and N. G. Polson, “Dynamic Trees for

Learning and Design,” Journal of the American Statistical Association,
vol. 106, no. 493, pp. 109–123, 2011. [Online]. Available: http:
//EconPapers.repec.org/RePEc:bes:jnlasa:v:106:i:493:y:2011:p:109-123

[7] R. B. Gramacy, “TGP: An R package for Bayesian nonstationary,
semiparametric nonlinear regression and design by treed Gaussian
process models,” Journal of Statistical Software, vol. 19, no. 9, pp.
1–46, Jun. 2007, http://www.jstatsoft.org/v19/i09/paper. [Online].

[8] R. Gramacy and N. Polson, “Particle learning of Gaussian process mod-
els for sequential design and optimization,” Journal of Computational

and Graphical Statistics, vol. 20, no. 1, pp. 467–478, 2011.
[9] H. Wickham, “Practical tools for exploring data and models,” Ph.D.

dissertation, Iowa State, 2008.
[10] D. J. C. MacKay, “Information–based objective functions for active data

selection,” Neural Computation, vol. 4, no. 4, pp. 589–603, 1992.
[11] D. A. Cohn, “Neural network exploration using optimal experimental

design,” Advances in Neural Information Processing Systems, vol. 6,
no. 9, pp. 679–686, 1996.

[12] R. B. Gramacy, “Bayesian treed Gaussian process models,” Ph.D.
dissertation, University of California at Santa Cruz, Dec. 2005, http:
//faculty.chicagobooth.edu/robert.gramacy/papers/gra2005-02.pdf.

[13] D. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization
of expensive black box functions,” Journal of Global Optimization,
vol. 13, pp. 455–492, 1998.

[14] P. Ranjan, D. Bingham, and G. Michailidis, “Sequential experiment
design for contour estimation from complex computer codes,” Techno-

metrics, vol. 50, no. 4, pp. 527–541, 2008.
[15] B. P. Anderson, “Equations for stall speed,” 2007. [On-

line]. Available: http://www.electraforge.com/brooke/flightsims/aces
high/stallSpeedMath/stallSpeedMath.html

[16] T. Fawcett, “An introduction to {ROC} analysis,” Pattern Recognition

Letters, vol. 27, no. 8, pp. 861 – 874, 2006, ROC Analysis in Pattern
Recognition. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S016786550500303X

