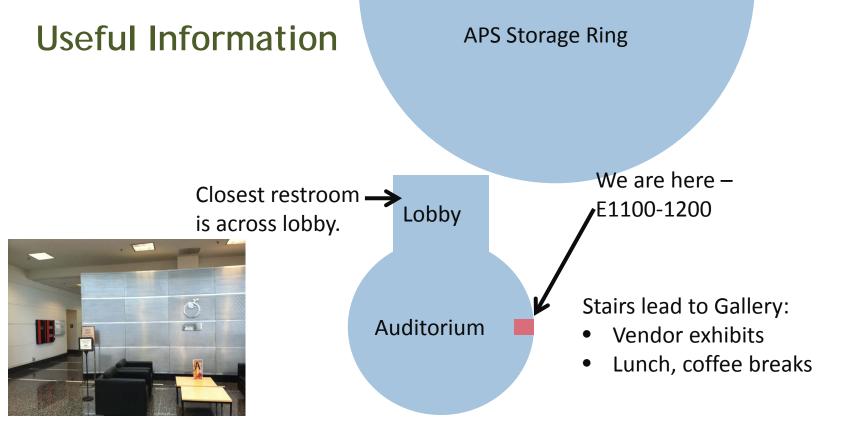


Detector Development and Support at the Advanced Photon Source

Robert Bradford, for the APS Detectors Group

Detectors Workshop ESRF/PETRA-III/Spring-8/APS 3-Way Meeting 31 July, 2013

Welcome to APS!


 First detectors workshop at a 3-Way Meeting!

APS Conference Center

Wireless: Please use "APS Guest" network!

Questions?

- **Registration Desk**
- Any APS attendee ۲

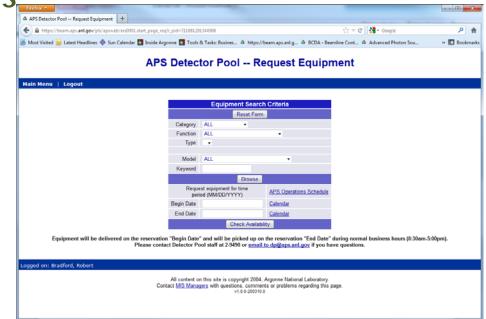
R. Bradford, APS Detectors Group

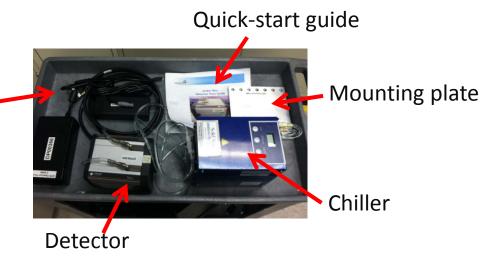
So...APS Detectors Group

- Vital Statistics:
 - 13 full-time members: 3 scientists, 5 engineers (mainly EE), 1 post-doc, and 4 technical/support staff
 - Interim Group Leader: Chris Jacobsen
 - Open search
 - Activities: Beamline support and detector development

Detector Pool: Equipment and technical support

- Equipment loan service made available to all beamlines:
 - 50+ detector systems
 - Sample environments
 - Electronics
- ...and so much more
 - On-call technical support
 - Set-up of new detectors
 - Characterization and testing
 - Advice
 - Help with special applications
 - Emergency equipment needs
- 3 FTE + support from all group members
 - 1/3 of group resources
 - Matt Moore, Russell Woods, Chris Piatak, Lisa Gades
 - Everyone contributes

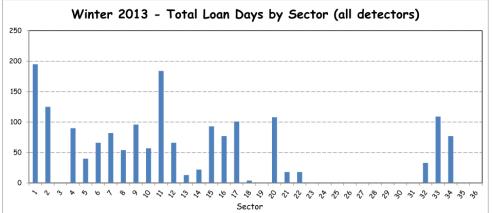


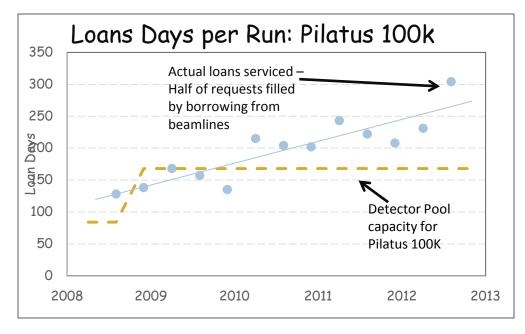

Detector Pool Operations

- Beamline staff or users request equipment before run starts
 - Online form
- Oracle database key to scheduling and tracking equipment
 - Broker loans between beamlines
- On-call person:
 - Carries Pager for support calls
 - Responsible for equipment moves

Cables

- Equipment delivered to beamline on date of request
 - Detector
 - Control PC
 - Quick-start guide
 - Any required accessories

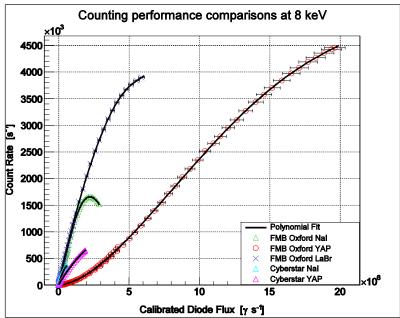




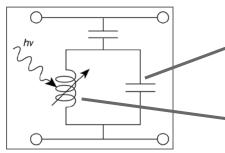
Detector Pool Operations

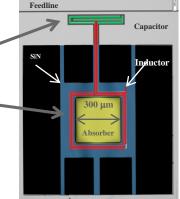
- 24/7 support:
 - Help line forwarded to pager or cell phone
 - Service both Detector Pool and beamline equipment
 - Typical week sees ~10 calls, with standard deviation of ~5
 - Wide breadth of problems
- Served ~550 equipment loans in 2012
- Most popular equipment over last few years:
 - Pilatus 100K
 - 4-element Vortex SDD
 - Mar 165 CCD

Characterization: Test beamline


- Optics and detectors testing program at 1-BM commissioned in 2012
 - Bending magnet line
 - Beamline retrofit summer 2012
- Facilities:
 - White or mono beam, up to 30 KeV
 - Two experimental hutches
 - Flux: $9 \times 10^{11} \gamma/s @ 10 \text{ keV}$
- Shared resource detectors, optics, and HEDM at Sector 1
 - 25% of beamtime each run + possibility of rapid access
 - See Al Macrander's talk today at 1:25 in Optics Workshop

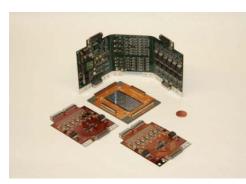
1-BM Detectors Testing


- Purposes:
 - Calibrate existing equipment
 - Evaluation of commercial detectors prior to purchase
 - Complement group's development effort
- Planned capabilities:
 - Counting detectors (flux calibration, linearity, dead time)
 - Scintillator (temporal response, light output, etc)
 - Area Detectors (Gain uniformity, linearity, etc).
- Past year
 - PyEpics/PyRoot scripts for control of data acquisition and analysis
 - Evaluation of new Oxford scintillation counters



Detector Development: Microwave Kinetic Inductance Detectors (MKIDS)

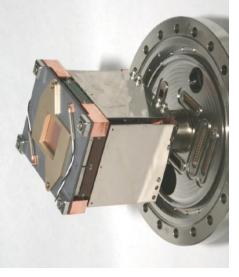
- High resolution energy dispersive detectors based on superconducting resonators
 - Targeted Resolution: <5 eV at 10 keV
 - Straightforward to multiplex with microwave readout
 - Pixelated detectors for high count rates and large solid angle
- DOE Early Career Award to Nino Miceli
 - Tom Cecil, Orlando Quaranta, Lisa
 Gades, Tim Madden
 - Complete simulation, fabrication, and test facilities at APS
- Nino Miceli's talk later today



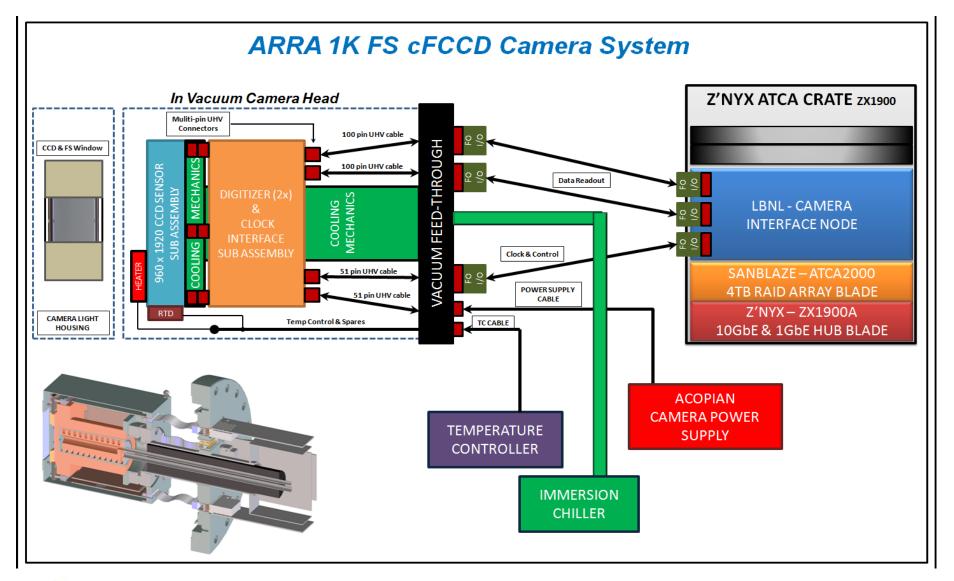
One pixel MKID schematic (above) is shown next to a microscope image of a device designed, fabricated, and tested at APS.

Detector Development: Fast CCD

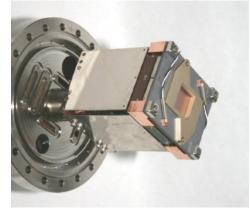
- High frame rate direct-detection CCD
 - Chip: 250-350 µm thick backilluminated direct detection CCD; 30 µm pixels
 - Near column-parallel readout
 - Full well: ~900k e⁻/pixel
 - Custom 13-bit ADC
- Collaboration with LBNL
 - APS: clock boards, data acquisition, software
 - John Weizeorick and Tim Madden



2nd generation: 1K Frame Store Fast CCD (1KFSFCCD):


- 2K X 1K pixels
- frame-store capability to increase frame rate to 200 Hz

1st generation: 480 X 480 pixels capable of reading out at 125 Hz used at Sector 8 of APS.

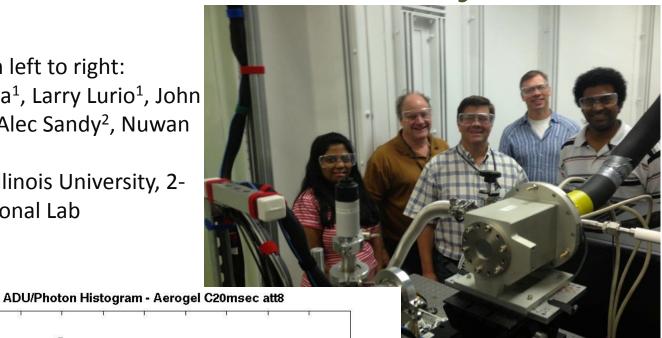

R. Bradford, APS Detectors Group

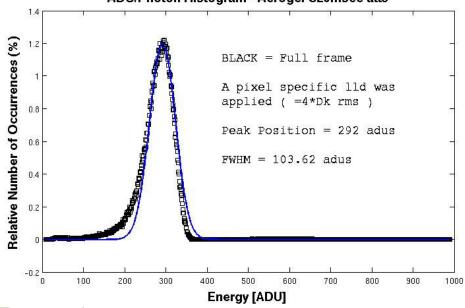
Fast CCD: 1kFSCCD - System Block Diagram

Fast CCD

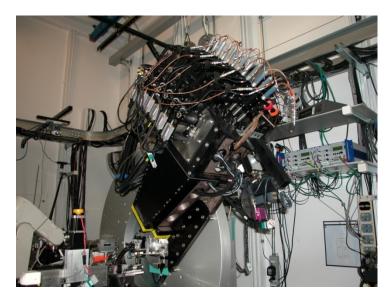
Detector Head

Detector Assembly in Vacuum


ATCA Crate


- APS applications and status:
 - APS now has one of two 1kFSCCD which will be used at 8id for XPCS
 - Detector has been in commissioning for most of 2013, but first run was in July 2013
- At ALS it has been used at the Nanosurveyor for Ptychography
- There are plans for the detectors to also be used at LCLS and NSLS II

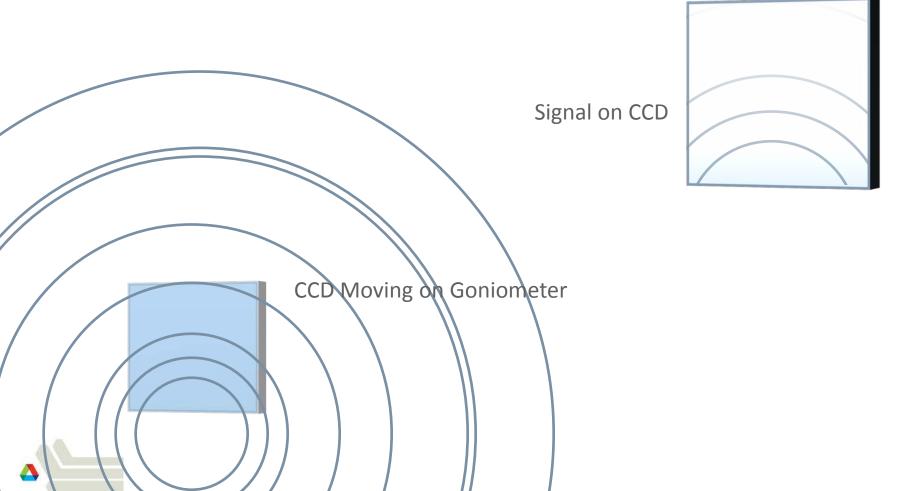
Fast CCD: 1KFSFCCD First run, July 2013


Pictured from left to right: Preeti Vodnala¹, Larry Lurio¹, John Weizeorick², Alec Sandy², Nuwan Karunaratne¹

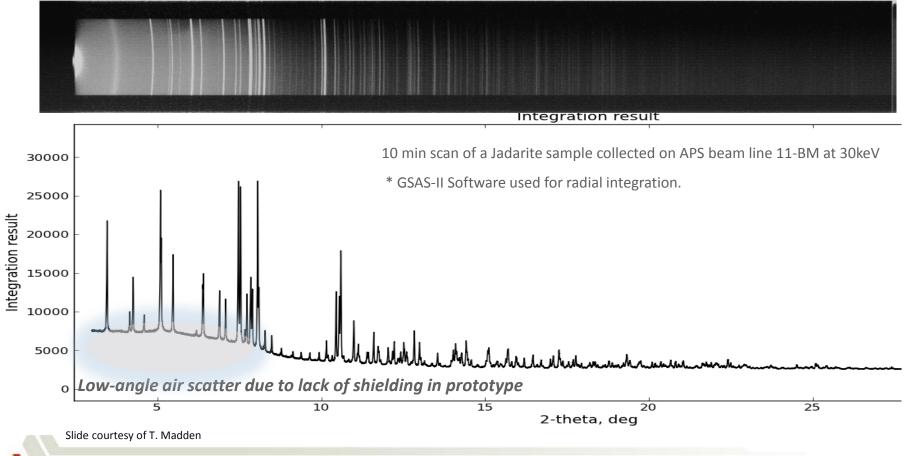
1- Northern Illinois University, 2-Argonne National Lab

Detector Development: Powder Diffraction CCD

- Small CCD for acquisition of powder diffraction data
 - Mounts on diffractometer arm
 - Kodak KAF-16801 CCD
 - 9μm x 9μm pixel
 - 4096 x 4096 pixels
 - 1:1 Fiber Optic Faceplate
 - Scint-X Structured Phosphor
- Tim Madden

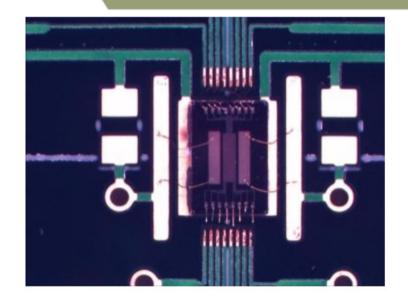

Currently at 11-BM:

- Crystal analyzers with scintillation counters
- ~\$1M
- ~1 hour to scan


Synchronizing CCD Readout with Movement

- CCD moves through diffraction rings projected in space
- CCD readout sync' ed with movement.
- Area of CCD allows integration of signal as it moves through projected diffraction rings.

Testing of Scan CCD at APS 11-BM


- Detector returns a series of 4k x 4k pixel images, 16 bit data. 32MB images.
 - Separate images out of convenience.
 - Data are actually single 40k x 4k pixel image.
- Images are then stitched into a Debye-Scherrer filmstrip replica.
 - Below, 10 images stitched. Images can be stitched without any fancy math.

* Toby, B. H. & Von Dreele, R. B. (2013). Journal of Applied Crystallography 46

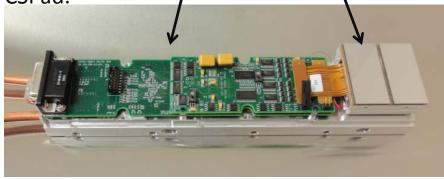
Other initiatives

- Fuel Spray Detector:
 - Steve Ross, Dave Kline
 - Integrating silicon strip detector
 - 25 μm x 1500 μm pixels,
 0.5mm thick
 - 6.5 MHz frame rate
- Control electronics:
 - Dave Kline
 - FPGA with microcontroller
 - User has some control over parameters in FPGA logic
 - Flexible architecture
 - Applications: Detector trigger, device synchronization, scalar and other beamline devices
- Steve Ross with industry:
 - Hi-Z scintillator, diamond beam position monitors

Future initiatives: APS Upgrade

- APS working towards major facility upgrade:
 - Storage ring upgrade:
 - 100 milli-Amps to 150 milli-Amps
 - Short Pulse X-ray Facility:
 - RF cavity will vertically deflect electron bunch
 - Slit can then control temporal width of x-ray pulses
 - Suite of new and upgraded beamlines
- See George Srajer's talk tomorrow at 11:50.
- Detector development:
 - Not initially included
 - My job: Develop plans for complementary initiatives
 - Have looked at fast hybrid pixel area detetors

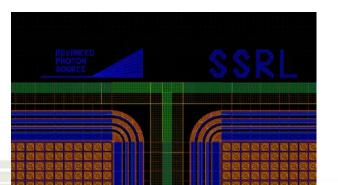
Backstory: Had considered joining AGIPD ~one year ago, but DOE preferred domestic initiatives.



CPix2: Unique capabilities for pump-probe experiments

- Dual Gating: Two counters per pixel that can be independently gated
- Upper and lower discriminators in each pixel separate scattered, Compton, and fluorescent signals.

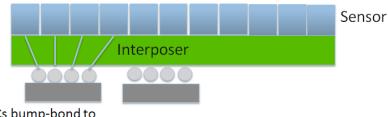
Developed with SLAC:


Mechanics and software adapted to APS, but does leverage electronics and sensor from CSPad.

Detector Properties	
Counting rate	6.5 MHz
Processing time	96 ns
Counter length	14 bits
Readout dead time	< 3 ms
Pixel size	100 µm
Minimum energy	5 keV

Potential applications:

- Scattering and emission spectroscopy at SPX
- Pump-probe experiments at Sectors 7 and 11


APS and SSRL logos on a sensor layout drawing.

FASPAX: Fermi-Argonne Semi-conducting Pixel Array X-ray detector

- Verastile, fast integrating detector:
 - Stores 48 images in 100 µm pixel
 - Novel passive integrators based on current splitters perrmits 10⁵ photons/pixel/pulse
 - **Edgeless sensor**
- Possible applications:
 - **Dynamic Compression Sector**
 - **High Flux Pump Probe**
- Collaborative development with Fermilab and ANL HEP
- Two funding proposals:
 - UChicago seed grant just funded
 - ANL Laboratory Directed Research and Development

Edgeless sensor:

Pixelated sensor bonds directly to silicon interposer

ASICs bump-bond to interposer

Detector Properties	
Charge handling	Integration
Max photons/pixel/pulse	10 ⁵
Burst image rate	48 images at 6.5 MHz
Sensor type	Pixelated silicon
Pixel size	100 μm

Conclusion

- APS Detectors Group has strong emphasis on beamline support
 - Detector Pool
 - Test beamline program at 1-BM
 - 1/3 of Group effort
- Detector Development:
 - New effort in MKIDS
 - Historical expertise in CCDS
 - Fast CCD
 - Novel CCDs for specific applications
 - Fuel-spray detector
 - Beamline electronics
- Immediate future concerned with complementing the scientific program of the APS Upgrade
 - Collaborative efforts in hybrid pixel detectors
 - CPix2 with SLAC
 - FASPAX with FNAL and ANL HEP