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Abstract

The problem of maximizing the determinant of a matrix subject to linear matrix inequalities

arises in many �elds, including computational geometry, statistics, system identi�cation,

experiment design, and information and communication theory. It can also be considered as

a generalization of the semide�nite programming problem.

We give an overview of the applications of the determinant maximization problem, point-

ing out simple cases where specialized algorithms or analytical solutions are known. We then

describe an interior-point method, with a simpli�ed analysis of the worst-case complexity

and numerical results that indicate that the method is very e�cient, both in theory and

in practice. Compared to existing specialized algorithms (where they are available), the

interior-point method will generally be slower; the advantage is that it handles a much wider

variety of problems.
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1 Introduction

We consider the optimization problem

minimize cTx+ log detG(x)�1

subject to G(x) > 0

F (x) � 0;

(1)

where the optimization variable is the vector x 2 Rm. The functions G : Rm ! Rl�l and

F : Rm ! Rn�n are a�ne:

G(x) = G0 + x1G1 + � � �+ xmGm;

F (x) = F0 + x1F1 + � � � + xmFm;

where Gi = GT
i and Fi = F T

i . The inequality signs in (1) denote matrix inequalities, i.e.,

G(x) > 0 means zTG(x)z > 0 for all nonzero z and F (x) � 0 means zTF (x)z � 0 for all z.

We call G(x) > 0 and F (x) � 0 (strict and nonstrict, respectively) linear matrix inequalities

(LMIs) in the variable x. We will refer to problem (1) as a maxdet-problem, since in many

cases the term cTx is absent, so the problem reduces to maximizing the determinant of G(x)

subject to LMI constraints.

The maxdet-problem is a convex optimization problem, i.e., the objective function cTx+

log detG(x)�1 is convex (on fx j G(x) > 0g), and the constraint set is convex. In-

deed, LMI constraints can represent many common convex constraints, including linear

inequalities, convex quadratic inequalities, and matrix norm and eigenvalue constraints (see

Alizadeh[Ali95], Boyd, El Ghaoui, Feron and Balakrishnan[BEFB94], Lewis and Overton[LO96],

Nesterov and Nemirovsky[NN94, x6.4], and Vandenberghe and Boyd[VB96]).

The maxdet-problem (1) can be solved by several algorithms for general convex pro-

gramming that are e�cient in theory (i.e., worst case complexity), e.g., the ellipsoid method

(Yudin and Nemirovsky[YN77], Shor[Sho77]). It can also be solved by general nonlinear pro-

gramming methods, provided they are modi�ed to handle the (nonsmooth) LMI constraints.

In this paper we describe an interior-point method that solves the maxdet-problem very

e�ciently, both in worst-case complexity theory and in practice. The method we describe

shares many features of interior-point methods for linear and semide�nite programming. In

particular, our computational experience (which is limited to problems of moderate size |

several hundred variables, with matrices up to 100 � 100) indicates that the method we

describe solves the maxdet-problem (1) in a number of iterations that hardly varies with

problem size, and typically ranges between 5 and 50; each iteration involves solving a system

of linear equations.

Maxdet-problems arise in many �elds, including computational geometry, statistics, and

information and communication theory, so the duality theory and algorithms we develop have

wide application. In some of these applications, and for very simple forms of the problem, the

maxdet-problems can be solved by specialized algorithms or, in some cases, analytically. Our

interior-point algorithm will generally be slower than the specialized algorithms (when the

specialized algorithms can be used). The advantage of our approach is that it is much more

general; it handles a much wider variety of problems. The analytical solutions or specialized
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algorithms, for example, cannot handle the addition of (convex) constraints; our algorithm

for general maxdet-problems does.

In the remainder of x1, we describe some interesting special cases of the maxdet-problem,

such as semide�nite programming and analytic centering. In x2 we describe examples and

applications of maxdet-problems, pointing out analytical solutions where they are known,

and interesting extensions that can be handled as general maxdet-problems. In x3, we
describe a duality theory for maxdet-problems, pointing out connections to semide�nite

programming duality. Our interior-point method for solving the maxdet-problem (1) is

developed in x4{x9. We describe two variations: a simple `short-step' method, for which we

can prove polynomial worst-case complexity, and a `long-step' or adaptive step predictor-

corrector method which has the same worst-case complexity, but is much more e�cient in

practice. We �nish with some numerical experiments. The appendix contains key proofs

and formulas.

Let us now describe some special cases of the maxdet-problem.

Semide�nite programming

When G(x) = 1, the maxdet-problem reduces to

minimize cTx

subject to F (x) � 0;
(2)

which is known as a semide�nite program (SDP). Semide�nite programming uni�es a wide

variety of convex optimization problems, e.g., linear programming,

minimize cTx

subject to Ax � b

which can be expressed as an SDP with F (x) = diag(b�Ax). For surveys of the theory and
applications of semide�nite programming, see [Ali95], [BEFB94], [Lew96], [LO96], [NN94,

x6.4], and [VB96].

Analytic centering

When c = 0 and F (x) = 1, the maxdet-problem (1) reduces to

minimize log detG(x)�1

subject to G(x) > 0;
(3)

which we call the analytic centering problem. We will assume that the feasible set X =

fx j G(x) > 0g is nonempty and bounded, which implies that the matrices Gi, i = 1; : : : ;m,

are linearly independent, and that the objective �(x) = log detG(x)�1 is strictly convex on

X (see, e.g., [VB96] or [BE93]). Since the objective function grows without bound as x

approaches the boundary of X, there is a unique solution x? of (3). We call x? the analytic

center of the LMI G(x) > 0. The analytic center of an LMI generalizes the analytic center

of a set of linear inequalities, introduced by Sonnevend[Son86, Son91].
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Since the constraint cannot be active at the analytic center, x? is characterized by the

optimality condition r�(x?) = 0:

(r�(x?))i = �TrGiG(x
?)�1 = 0; i = 1; : : : ;m (4)

(see for example Boyd and El Ghaoui[BE93]).

The analytic center of an LMI is important for several reasons. We will see in x5 that

the analytic center can be computed very e�ciently, so it can be used as an easily computed

robust solution of the LMI. Analytic centering also plays an important role in interior-

point methods for solving the more general maxdet-problem (1). Roughly speaking, the

interior-point methods solve the general problem by solving a sequence of analytic centering

problems.

Parametrization of LMI feasible set

Let us restore the term cTx to the analytic centering problem:

minimize cTx+ log detG(x)�1

subject to G(x) > 0;
(5)

retaining our assumption that X is nonempty and bounded, so the matrices Gi are linearly

independent and the objective function is strictly convex. Thus, problem (5) has a unique

solution x?(c), which satis�es the optimality conditions c+r�(x?(c)) = 0, i.e.,

TrGiG(x
?(c))�1 = ci; i = 1; : : : ;m:

Thus for each c 2 Rm, we have a (readily computed) point x?(c) in the feasible set X.

Conversely, given a point x 2 X, de�ne c 2 Rm by ci = TrG(x)�1Gi, i = 1; : : : ;m.

Evidently we have x = x?(c). In other words, there is a one-to-one correspondence between

vectors c 2 Rm and vectors x 2 X: the mapping c 7! x?(c) is a parametrization of the

feasible set X of the strict LMI G(x) > 0, with parameter c 2 Rm.

This parametrization of X is related to the Legendre transform of the convex function

log detG(x)�1, de�ned by

L(y) = � inff�yTx+ log detG(x)�1 j G(x) > 0g:

Maximal lower bounds in the positive de�nite cone

Here we consider a simple example of the maxdet-problem. Let Ai = AT
i , i = 1; : : : ; L, be

positive de�nite matrices in Rp�p. A matrixX is a lower bound of the matricesAi ifX � Ai,

i = 1; : : : ; L; it is a maximal lower bound if there is no lower bound Y with Y 6= X, Y � X.

Since the function log detX�1 is monotone decreasing with respect to the positive semidef-

inite cone, i.e.,

0 < X � Y =) log detY �1 � log detX�1;

we can compute a maximal lower bound Amlb by solving

minimize log detX�1

subject to X > 0

X � Ai; i = 1; : : : ; L:

(6)
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This is a maxdet-problem with p(p + 1)=2 variables (the elements of the matrix X). The

constraints are the strict LMI X > 0, and L nonstrict LMIs Ai �X � 0, which we can also

consider as diagonal blocks of one single block diagonal LMI

diag(A1 �X;A2 �X; : : : ; AL �X) � 0:

Of course there are other maximal lower bounds; replacing log detX�1 by any other

monotone decreasing matrix function, e.g., �TrX or TrX�1, will also yield (other) maximal

lower bounds. The maximal lower bound Amlb obtained by solving (6), however, has the

property that it is invariant under congruence transformations, i.e., if the matrices Ai are

transformed to TAiT
T , where T 2 Rp�p is nonsingular, then the maximal lower bound

obtained from (6) is TAmlbT
T .

2 Examples and applications

In this section we catalog examples and applications. The reader interested only in duality

theory and solution methods for the maxdet-problem can skip directly to x3.

2.1 Minimum volume ellipsoid containing given points

Perhaps the earliest and best known application of the maxdet-problem arises in the problem

of determining the minimum volume ellipsoid that contains given points x1, . . . , xK in Rn

(or, equivalently, their convex hullCofx1; : : : ; xKg). This problem has applications in cluster

analysis (Rosen[Ros65], Barnes[Bar82]), and robust statistics (in ellipsoidal peeling methods

for outlier detection; see Rousseeuw and Leroy[RL87, x7]).
We describe the ellipsoid as E = fx j kAx+bk � 1g, where A = AT > 0, so the volume of

E is proportional to detA�1. Hence the minimum volume ellipsoid that contains the points

xi can be computed by solving the convex problem

minimize log detA�1

subject to kAxi + bk � 1; i = 1; : : : ;K

A = AT > 0;

(7)

where the variables are A = AT 2 Rn�n and b 2 Rn. The norm constraints kAxi + bk � 1,

which are just convex quadratic inequalities in the variables A and b, can be expressed as

LMIs "
I Axi + b

(Axi + b)T 1

#
� 0:

These LMIs can in turn be expressed as one large block diagonal LMI, so (7) is a maxdet-

problem in the variables A and b.

Minimum volume ellipsoid containing ellipsoids

There are many interesting variations and extensions of this problem. As an example, con-

sider the problem of �nding the minimum volume ellipsoid E0 containing K given ellipsoids
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Figure 1: Minimum volume ellipsoid containing �ve given ellipsoids. Finding such
an ellipsoid can be cast as a maxdet-problem, hence e�ciently solved.

E1; : : : ; EK . For this problem we describe the ellipsoids as sublevel sets of convex quadratic

functions:

Ei = fx j xTAix+ 2bTi x+ ci � 0g; i = 0; : : : ;K:

The solution can be found by solving the following maxdet-problem in the variablesA0 = AT
0 ,

b0, and K scalar variables �i:

minimize log detA�1
0

subject to A0 = AT
0 > 0

�1 � 0; : : : ; �K � 02
64 A0 b0 0

bT0 �1 bT0
0 b0 �A0

3
75� �i

2
64 Ai bi 0

bTi ci 0

0 0 0

3
75 � 0; i = 1; : : : ;K:

(c0 is given by c0 = bT0A
�1
0 b0�1.) See [BEFB94, p.43] for details. Figure 1 shows an instance

of the problem.

The ellipsoid of least volume containing a set is often called the L�owner ellipsoid (after

Danzer, Gr�unbaum, and Klee[DGK63, p.139]), or the L�owner-John ellipsoid (Gr�otschel,

Lov�asz and Schrijver[GLS88, p.69]). John in [Joh85] has shown that if one shrinks the

minimum volume outer ellipsoid of a convex set C � Rn by a factor n about its center, one

obtains an ellipsoid contained in C. Thus the L�owner-John ellipsoid serves as an ellipsoidal

approximation of a convex set, with bounds that depend only on the ambient dimension,

and not in any other way on the set C.
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2.2 Maximum volume ellipsoid in a polyhedron

A related problem is that of computing the maximum volume ellipsoid inside a polyhedron

described by linear inequalities,

P = fx j aTi x � bi; i = 1; : : : ; Lg:

Here we represent the ellipsoid as E = fCy + d j kyk � 1g, where we assume, without loss

of generality, C = CT > 0. The volume of E is proportional to detC, so the problem can be

expressed as
maximize log detC

subject to C = CT > 0

E � P:
(8)

The constraint E � P can be replaced by a set of LMIs

E � P () sup
x2E

aTi x � bi; i = 1; : : : ; L;

() sup
kyk�1

aTi Cy + aTi d � bi; i = 1; : : : ; L;

() kCaik+ aTi d � bi; i = 1; : : : ; L;

()
"
(bi � aTi d)I Cai

aTi C bi � aTi d

#
� 0; i = 1; : : : ; L;

so problem (9) can be cast as the maxdet-problem

maximize log detC

subject to C = CT > 0"
(bi � aTi d)I Cai

aTi C bi � aTi d

#
� 0; i = 1; : : : ; L;

(9)

with variables C = CT 2 Rn�n and d 2 Rn.

Nesterov and Nemirovsky[NN94, x6.5], and Khachiyan and Todd[KT93] describe interior-
point algorithms for computing the maximum-volume ellipsoid in a polyhedron described by

linear inequalities (as well as the minimum-volume ellipsoid covering a polytope described

by its vertices).

Many other geometrical problems involving ellipsoidal approximations can be formulated

as maxdet-problems. References [BEFB94, x3.7] and [Che80] give several examples, including

the maximumvolume ellipsoid contained in the intersection or in the sum of given ellipsoids,

and the minimumvolume ellipsoid containing the sum of given ellipsoids. For other ellipsoidal

approximation problems, suboptimal solutions can be computed via maxdet-problems.

Ellipsoidal approximations of convex sets are used in control theory and signal processing

in bounded-noise or set-membership techniques. These techniques were �rst introduced for

state estimation (see, e.g., Schweppe[Sch68, Sch73], Witsenhausen[Wit68], Bertsekas and

Rhodes[BR71], Chernousko[Che80, Che94]), and later applied to system identi�cation (Fogel

and Huang[Fog79, FH82], Norton [Nor86, Nor87, x8.6], Walter and Piet-Lahanier[WPL90],

6



Cheung, Yurkovich and Passino[CYP93]), and signal processing (Deller [Del89]. For a survey

emphasizing signal processing applications, see Deller et al. [DNO93]).

Other applications include the method of inscribed ellipsoids developed by Tarasov,

Khachiyan, and Erlikh[TKE88], and design centering (Sapatnekar[Sap92]).

2.3 Maximum volume rectangle in a polyhedron

Let P = fx 2 Rn j Ax � bg be a polyhedron in Rn, where A 2 Rm�n. We consider the

problem of inscribing the rectangle R(x; x) = fx j x � x � xg of maximum volume in

P. (The inequalities x � x � x are componentwise inequalities: x � x means xi > xi,

i = 1; : : : ; n.) The optimization variables are the two vectors x and x.

The volume of R(x; x) is equal to Qi(xi � xi), so the problem can be expressed as

maximize
nY
i=1

(xi � xi)

subject to R(x; x) � P
x < x:

The constraint R(x; x) � P can be cast as a set of m inequalities

A+x�A�x � b;

where A+
ij = maxf0; Aijg and A�

ij = maxf0;�Aijg. Therefore we can compute the maximum

volume rectangle enclosed in the polytope by solving

maximize
nY
i=1

(xi � xi)

subject to A+x�A�x � b

x < x:

(10)

This can be cast as a maxdet-problem, with variable x =
h
xT xT

iT
, and G(x) = diag(x�x).

This problem can be extended in many ways. For example, we can require that the

rectangle contains L given points yi, i = 1; : : : ; L, by adding the linear inequalities x � yi �
x.

2.4 Matrix completion problems

Positive de�nite matrix completion

In a positive de�nite matrix completion problemwe are given a symmetricmatrixAf 2 Rn�n,

some entries of which are �xed; the remaining entries are to be chosen so that the resulting

matrix is positive de�nite.

Let the positions of the free (unspeci�ed) entries be given by the index pairs (ik; jk),

(jk; ik), k = 1; : : : ;m. We can assume that the diagonal elements are �xed, i.e., ik 6= jk for

all k. (If a diagonal element, say the (l; l)th, is free, we take it to be very large, which makes
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the lth row and column of Af irrelevant.) The positive de�nite completion problem can be

cast as an SDP feasibility problem:

�nd x 2 Rm

such that A(x)
�
= Af +

mX
k=1

xk (Eikjk + Ejk ik) > 0;

where Eij denotes the matrix with all elements zero except the (i; j) element, which is equal

to one. Note that the set X = fx j A(x) > 0g is bounded since the diagonal elements of

A(x) are �xed.

Maximum entropy completion

The analytic center of the LMI A(x) > 0 is sometimes called the maximum entropy comple-

tion of Af . From the optimality conditions (4), we see that the maximumentropy completion

x? satis�es

2TrEikjkA(x
?)�1 = 2

�
A(x?)�1

�
ikjk

= 0; k = 1; : : : ;m;

i.e., the matrix A(x�)�1 has a zero entry in every location corresponding to an unspeci�ed

entry in the original matrix. This is a very useful property in many applications; see, for

example, Dempster[Dem72], or Dewilde and Ning[DN90].

Parametrization of all positive de�nite completions

As an extension of the maximum entropy completion problem, consider

minimize TrCA(x) + log detA(x)�1

subject to A(x) > 0;
(11)

where C = CT is given. This problem is of the form (5); the optimality conditions are

A(x�) > 0;
�
A(x�)�1

�
ikjk

= Cikjk ; k = 1; : : : ;m; (12)

i.e., the inverse of the optimal completion matches the given matrix C in every free en-

try. Indeed, this gives a parametrization of all positive de�nite completions: a positive

de�nite completion A(x) is uniquely characterized by specifying the elements of its inverse

in the free locations, i.e., (A(x)�1)ikjk . Problem (11) has been studied by Bakonyi and

Woerdeman[BW95].

Contractive completion

A related problem is the contractive completion problem: given a (possibly nonsymmetric)

matrix Af and m index pairs (ik; jk), k = 1; : : : ;m, �nd a matrix

A(x) = Af +
mX
k=1

xkEik ;jk :
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with spectral norm (maximum singular value) less than one.

This can be cast as a semide�nite programming feasibility problem [VB96]: �nd x such

that "
I A(x)

A(x)T I

#
> 0: (13)

One can de�ne a maximum entropy solution as the solution that maximizes the determinant

of (13), i.e., solves the maxdet-problem

maximize log det(I �A(x)TA(x))

subject to

"
I A(x)

A(x)T I

#
> 0:

(14)

See N�vdal and Woerdeman[NW92], Helton and Woerdeman[HW93]. For a statistical in-

terpretation of (14), see x2.5.

Specialized algorithms and references

Very e�cient algorithms have been developed for certain specialized types of completion

problems. A well known example is the maximum entropy completion of a positive de�nite

banded Toeplitz matrix (Dym and Gohberg[DG81], Dewilde and Deprettere[DD88]). Davis,

Kahan, and Weinberger[DKW82] discuss an analytic solution for a contractive completion

problem with a special (block matrix) form. The methods discussed in this paper solve the

general problem e�ciently, although they are slower than the specialized algorithms where

they are applicable. Moreover they have the advantage that other convex constraints, e.g.,

upper and lower bounds on certain entries, are readily incorporated.

Completion problems, and specialized algorithms for computing completions, have been

discussed by many authors, see, e.g., Dym and Gohberg[DG81], Grone, Johnson, S�a and

Wolkowicz[GJSW84], Barrett, Johnson and Lundquist[BJL89], Lundquist and Johnson[LJ91],

Dewilde and Deprettere[DD88], Dembo, Mallows, and Shepp[DMS89]. Johnson gives a sur-

vey in [Joh90]. An interior-point method for an approximate completion problem is discussed

in Johnson, Kroschel, and Wolkowicz[JKW95].

We refer to Boyd et al. [BEFB94, x3.5], and El Ghaoui[El 96], for further discussion and

additional references.

2.5 Risk-averse linear estimation

Let y = Ax+ w with w � N(0; I) and A 2 Rq�p. Here x is an unknown quantity that we

wish to estimate, y is the measurement, and w is the measurement noise. We assume that

p � q and that A has full column rank.

A linear estimator bx = My, with M 2 Rp�q, is unbiased if Ebx = x, i.e., MA = I. The

minimum-variance unbiased estimator is the unbiased estimator that minimizes the error

variance

EkMy � xk2 = TrMMT =
pX
i=1

�2i (M);

9



where �i(M) is the ith largest singular value of M . It is given by M = Ay, where Ay =

(ATA)�1AT is the pseudo-inverse of A. In fact the minimum-variance estimator is optimal in

a stronger sense: it not only minimizes
P

i �
2
i (M), but each singular value �i(M) separately:

MA = I =) �i(A
y) � �i(M); i = 1; : : : ; p: (15)

In some applications estimation errors larger than the mean value are more costly, or less

desirable, than errors less than the mean value. To capture this idea of risk aversion we can

consider the objective or cost function

2
2 logE exp

 
1

2
2
kMy � xk2

!
(16)

where the parameter 
 is called the risk-sensitivity parameter. This cost function was intro-

duced by Whittle in the more sophisticated setting of stochastic optimal control; see [Whi82,

x19]. Note that as 
 !1, the risk-sensitive cost (16) converges to the cost EkMy�xk2, and
is always larger (by convexity of exp and Jensen's inequality). We can gain further insight

from the �rst terms of the series expansion in 1=
2:

2
2 logE exp

 
1

2
2
kbx� xk2

!
' Ekbx� xk2 + 1

4
2

�
Ekbx� xk4 �

�
Ekbx� xk2

�2�

= Ez +
1

4
2
var z;

where z = kbx�xk2 is the squared error. Thus for large 
, the risk-averse cost (16) augments

the mean-square error with a term proportional to the variance of the squared error.

The unbiased, risk averse optimal estimator can be found by solving

minimize 2
2 logE exp
�

1
2
2
kMy � xk2

�
subject to MA = I;

which can be expressed as a maxdet-problem. The objective function can be written as

2
2 logE exp

 
1

2
2
kMy � xk2

!
= 2
2 logE exp

 
1

2
2
wTMTMw

!

=

(
2
2 log det(I � (1=
2)MTM)�1=2 if MTM < 
2I

1 otherwise

=

8><
>:

2 log det

"
I 
�1MT


�1M I

#�1
if

"
I 
�1MT


�1M I

#
> 0

1 otherwise

so the unbiased risk averse optimal estimator solves the maxdet-problem

minimize 
2 log det

"
I 
�1MT


�1M I

#�1

subject to

"
I 
�1MT


�1M I

#
> 0

MA = I:

(17)
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This is in fact an analytic centering problem, and has a simple analytic solution: the least

squares estimator M = Ay. To see this we express the objective in terms of the singular

values of M :


2 log det

"
I 
�1MT


�1M I

#�1
=

8><
>:
�
2

pX
i=1

log(1 � �2i (M)=
2)�1 if �1(M) < 


1 otherwise.

It follows from property (15) that the solution is M = Ay if kAyk < 
, and that the problem

is infeasible otherwise. (Whittle refers to the infeasible case, in which the risk-averse cost is

always in�nite, as `neurotic breakdown'.)

In the simple case discussed above, the optimal risk-averse and the minimum-variance

estimators coincide (so there is certainly no advantage in a maxdet-problem formulation).

When additional convex constraints on the matrix M are added, e.g., a given sparsity pat-

tern, or triangular or Toeplitz structure, the optimal risk-averse estimator can be found by

including these constraints in the maxdet-problem (17) (and will not, in general, coincide

with the minimum-variance estimator).

2.6 Experiment design

Optimal experiment design

As in the previous section, we consider the problem of estimating a vector x from a mea-

surement y = Ax + w, where w � N(0; I) is measurement noise. The error covariance of

the minimum-variance estimator is equal to Ay(Ay)T = (ATA)�1. We suppose that the rows

of the matrix A = [a1 : : : aq]
T
can be chosen among M possible test vectors v(i) 2 Rp,

i = 1; : : : ;M :

ai 2 fv(1); : : : ; v(M)g; i = 1; : : : ; q:

The goal of experiment design is to choose the vectors ai so that the error covariance (A
TA)�1

is `small'. We can interpret each component of y as the result of an experiment or measure-

ment that can be chosen from a �xed menu of possible experiments; our job is to �nd a set

of measurements that (together) are maximally informative.

We can write ATA = q
PM

i=1 �iv
(i)v(i)

T
, where �i is the fraction of rows ak equal to

the vector v(i). We ignore the fact that the numbers �i are integer multiples of 1=q, and

instead treat them as continuous variables, which is justi�ed in practice when q is large.

(Alternatively, we can imagine that we are designing a random experiment: each experiment

ai has the form v(k) with probability �k.)

Many di�erent criteria for measuring the size of the matrix (ATA)�1 have been pro-

posed. For example, in E-optimal design, we minimize the norm of the error covariance,

�max((A
TA)�1), which is equivalent to maximizing the smallest eigenvalue of ATA. This is

11



readily cast as the SDP
maximize t

subject to
MX
i=1

�iv
(i)v(i)

T � tI

MX
i=1

�i = 1

�i � 0; i = 1; : : : ;M

in the variables �1; : : : ; �M , and t. Another criterion is A-optimality, in which we minimize

Tr(ATA)�1. This can be cast as an SDP:

minimize
pX

i=1

ti

subject to

2
4 PM

i=1 �iv
(i)v(i)

T
ei

eTi ti

3
5 � 0; i = 1; : : : ; p;

�i � 0; i = 1; : : : ;M;

MX
i=1

�i = 1;

where ei is the ith unit vector in Rp, and the variables are �i, i = 1; : : : ;M , and ti, i =

1; : : : ; p.

InD-optimal design, we minimize the determinant of the error covariance (ATA)�1, which

leads to the maxdet-problem

minimize log det

 
MX
i=1

�iv
(i)v(i)

T

!�1

subject to �i � 0; i = 1; : : : ;M
MX
i=1

�i = 1:

(18)

In x3 we will derive an interesting geometrical interpretation of the D-optimal matrix A,

and show that ATA determines the minimum volume ellipsoid, centered at the origin, that

contains v(1), . . . , v(M).

Fedorov[Fed71], Atkinson and Donev[AD92], and Pukelsheim[Puk93] give surveys and

additional references on optimal experiment design.

Extensions of D-optimal experiment design

The formulation of D-optimal design as an maxdet-problem has the advantage that one can

easily incorporate additional useful convex constraints. For example, one can add linear

inequalities cTi � � �i, which can re
ect bounds on the total cost of, or time required to carry

out, the experiments.

We can also consider the case where each experiment yields several measurements, i.e.,

the vectors ai and v
(k) become matrices. The maxdet-problem formulation (18) remains the

12



Without 90-10 constraint With 90-10 constraint

Figure 2: A D-optimal experiment design involving 50 test vectors in R2, with
and without the 90-10 constraint. The circle is the origin; the dots are the test
vectors that are not used in the experiment (i.e., have a weight �i = 0); the crosses
are the test vectors that are used (i.e., have a weight �i > 0). Without the 90-10
constraint, the optimal design allocates all meaurements to only two test vectors.
With the constraint, the measurements are spread over ten vectors, with no more
than 90% of the measurements allocated to any group of �ve vectors. See also
Figure 3.

same, except that the terms v(k)v(k)T can now have rank larger than one. This extension is

useful in conjunction with additional linear inequalities representing limits on cost or time:

we can model discounts or time savings associated with performing groups of measurements

simultaneously. Suppose, for example, that the cost of simultaneously making measurements

v(1) and v(2) is less than the sum of the costs of making them separately. We can take v(3)

to be the matrix

v(3) =
h
v(1) v(2)

i
and assign costs c1, c2, and c3 associated with making the �rst measurement alone, the

second measurement alone, and the two simultaneously, respectively.

Let us describe in more detail another useful additional constraint that can be imposed:

that no more than a certain fraction of the total number of experiments, say 90%, is con-

centrated in less than a given fraction, say 10%, of the possible measurements. Thus we

require
b0:1McX
i=1

�[i] � 0:9; (19)

where �[i] denotes the ith largest component of �. The e�ect on the experiment design will be

to spread out the measurements over more points (at the cost of increasing the determinant

of the error covariance). (See Figures 2 and 3.)

The constraint (19) is convex; it is satis�ed if and only if there exists x 2 RM and t such

13
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Figure 3: Experiment design of Figure 2. The curves show the sum of the largest k
components of � as a function of k, without the 90-10 constraint (`�'), and with the
constraint (`�'). The constraint speci�es that the sum of the largest �ve components
should be less than 0.9, i.e., the curve should avoid the area inside the dashed
rectangle.

that

b0:1Mc t+
MX
i=1

xi � 0:9

t+ xi � �i; i = 1; : : : ;M

x � 0

(20)

(see [BV95, p.318]). One can therefore compute the D-optimal design subject to the 90-10

constraint (19) by adding the linear inequalities (20) to the constraints in (18) and solving

the resulting maxdet-problem in the variables �, x, t.

2.7 Maximum likelihood (ML) parameter estimation

ML estimation of Markov chain parameters

Consider an N -state Markov chain with transition probabilities pij , i; j = 1; : : : ; N ,

pij = Prob(s(k + 1) = j j s(k) = i);

where s(k) 2 f1; : : : ; Ng denotes the state at time k. Suppose that the probabilities pij are

a�ne functions of some unknown parameters x: pij = fij(x), i; j = 1; : : : ; N . The maximum

likelihood estimate of the parameters x, based on an observed state sequence a1, a2, . . . , an,

14



is the solution of the optimization problem

maximize
n�1Y
i=1

faiai+1(x)

subject to fij(x) � 0; i; j = 1; : : : ; N;
NX
j=1

fij(x) = 1; i = 1; : : : ; N;

which is a maxdet-problem with diagonal matrix G(x).

ML estimation of the parameters of an exponential distribution

Let y(1),. . . , y(N) 2 Rn
+ be N vectors drawn independently from a probability distribution

with density

p(x) =

 
nY
i=1

�i

!
e��

Tx

on Rn
+, where � > 0. The maximum likelihood estimate for � based on these N samples,

i.e., the value of � that maximizes the log-likelihood function

log
NY
i=1

p(y(i)) = ��T
NX
i=1

y(i) +N
nX
i=1

log �i (21)

can be easily found by di�erentiation: �j = N=
PN

k=1 y
(k)
j , j = 1; : : : ; n. Note that prob-

lem (21) is an example of an unconstrained maxdet-problem (5). We can therefore add LMI

constraints that express prior information, as in

maximize �
 
1

N

NX
i=1

y(i)
!T

� +
nX
i=1

log �i

subject to � > 0

A� = b

C� � d:

ML estimation of structured covariance matrices

A related example is the ML estimation of structured covariance matrices of a normal dis-

tribution. This problem has a long history; see e.g., Anderson[And69, And70].

Let y(1), . . . , y(N) be N samples from a normal distribution N(0;�). The ML estimate

for � is the positive de�nite matrix that maximizes the log-likelihood function
QN
i=1 p(y

(i)),

where

p(x) = ((2�)p det�)
�1=2

exp

�
�1

2
xT��1x

�
:

In other words, � can be found by solving

maximize log det��1 � 1
N

NX
i=1

y(i)
T
��1y(i)

subject to � > 0:

(22)
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This can be expressed as a maxdet-problem in the inverse R = ��1:

minimize TrSR+ log detR�1

subject to R > 0;
(23)

where S = 1
N

Pn
i=1 y

(i)y(i)
T
. Problem (23) has the straightforward analytical solution R =

S�1 (provided S is nonsingular).

It is often useful to impose additional structure on the covariance matrix � or its in-

verseR (Anderson[And69, And70], Burg, Luenberger, Wenger[BLW82], Scharf[Sch91, x6.13],
Dembo[Dem86]). In some special cases (e.g., � is circulant) analytical solutions are known;

in other cases where the constraints can be expressed as LMIs in R, the ML estimate can be

obtained from a maxdet-problem. To give a simple illustration, bounds on the variances �ii

can be expressed as LMIs in R

�ii = eTi R
�1ei � �()

"
R ei
eTi �

#
� 0:

The formulation as a maxdet-problem is also useful when the matrix S is singular (for

example, because the number of samples is too small) and, as a consequence, the maxdet-

problem (23) is unbounded below. In this case we can impose constraints (i.e., prior infor-

mation) on �, for example lower and upper bounds on the diagonal elements of R.

2.8 Gaussian channel capacity

The Gaussian channel and the water-�lling algorithm

The entropy of a normal distribution N(�;�) is, up to a constant, equal to 1
2
log det� (see

Cover and Thomas[CT91, Chapter 9]). It is therefore not surprising that maxdet-problems

arise naturally in information theory and communications. One example is the computation

of channel capacity.

Consider a simple Gaussian communication channel: y = x + v, where y, x, and v are

random vectors in Rn; x � N(0;X) is the input; y is the output, and v � N(0; R) is additive

noise, independent of x. This model can represent n parallel channels, or one single channel

at n di�erent time instants or n di�erent frequencies.

We assume the noise covariance R is known and given; the input covariance X is the

variable to be determined, subject to constraints (such as power limits) that we will describe

below. Our goal is to maximize the mutual information between input and output, given by

1

2
(log det(X +R)� log detR) =

1

2
log det(I +R�1=2XR�1=2)

(see [CT91]). The channel capacity is de�ned as the maximum mutual information over all

input covariances X that satisfy the constraints. (Thus, the channel capacity depends on R

and the constraints.)

The simplest and most common constraint is a limit on the average total power in the

input, i.e.,

ExTx=n = TrX=n � P: (24)
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The information capacity subject to this average power constraint is the optimal value of

maximize 1
2
log det(I +R�1=2XR�1=2)

subject to TrX � nP

X � 0

(25)

(see [CT91, x10]). This is a maxdet-problem in the variable X = XT .

There is a straightforward solution to (25), known in information theory as the water-

�lling algorithm (see [CT91, x10], [CP89]). Let R = V �V T be the eigenvalue decomposition

of R. By introducing a new variable ~X = V TXV , we can rewrite the problem as

maximize 1
2
log det(I + ��1=2 ~X��1=2)

subject to Tr ~X � nP
~X � 0:

Since the o�-diagonal elements of ~X do not appear in the constraints, but decrease the

objective, ~X will be diagonal at the optimum. Using Lagrange multipliers one can show

that the solution is ~Xii = max(� � �i; 0), i = 1; : : : ; n, where the Lagrange multiplier � is

to be determined from
P ~Xii = nP . The term `water-�lling' refers to a visual description of

this procedure (see [CT91, x10], [CP89]).

Average power constraints on each channel

Problem (25) can be extended and modi�ed in many ways. For example, we can replace the

average total power constraint by an average power constraint on the individual channels,

i.e., we can replace (24) by Ex2k = Xkk � P , k = 1; : : : ; n. The capacity subject to this

constraint can be determined by solving the maxdet-problem

maximize 1
2
log det

�
I +R�1=2XR�1=2

�
subject to X � 0

Xkk � P; k = 1; : : : ; n:

The water-�lling algorithm does not apply here, but the capacity is readily computed by

solving this maxdet-problem in X. Moreover, we can easily add other constraints, such

as power limits on subsets of individual channels, or an upper bound on the correlation

coe�cient between two components of x:

jXijjq
XiiXjj

� �max ()
" p

�maxXii Xij

Xij
p
�maxXjj

#
� 0:

Gaussian channel capacity with feedback

Suppose that the n components of x, y, and v are consecutive values in a time series. The

question whether knowledge of the past values vk helps in increasing the capacity of the

channel is of great interest in information theory [CT91, x10.6]). In the Gaussian channel

with feedback one uses, instead of x, the vector ~x = Bv+x as input to the channel, where B
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is a strictly lower triangular matrix. The output of the channel is y = ~x+ v = x+(B + I)v.

We will assume there is an average total power constraint: E~xT ~x=n � P .

The mutual information between ~x and y is

1

2

�
log det((B + I)R(B + I)T +X) � log detR

�
;

so we maximize the mutual information by solving

maximize 1
2

�
log det((B + I)R(B + I)T +X) � log detR

�
subject to Tr(BRBT +X) � nP

X � 0

B strictly lower triangular

over the matrix variables B and X. To cast this problem as a maxdet-problem, we introduce

a new variable Y = (B + I)R(B + I)T +X (i.e., the covariance of y), and obtain

maximize log detY

subject to Tr(Y �RBT �BR�R) � nP

Y � (B + I)R(B + I)T � 0

B strictly lower triangular

(26)

The second constraint can be expressed as an LMI in B and Y ,"
Y B + I

(B + I)T R�1

#
> 0;

so (26) is a maxdet-problem in B and Y .

Capacity of channel with cross-talk

Suppose the n channels are independent, i.e., all covariances are diagonal, and that the noise

covariance depends on X: Rii = ri + aiXii, with ai > 0. This has been used as a model of

near-end cross-talk (see [AC92]). The capacity (with the total average power constraint) is

the optimal value of

maximize
1

2

nX
i=1

log

�
1 +

Xii

ri + aiXii

�

subject to Xii � 0; i = 1; : : : ; n
nX
i=1

Xii � nP;

which can be cast as a maxdet-problem

maximize 1
2

nX
i=1

log(1 + ti)

subject to Xii � 0; ti � 0; i = 1; : : : ; n;"
1� aiti

p
rip

ri aiXii + ri

#
� 0; i = 1; : : : ; n;

nX
i=1

Xii � nP:
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The LMI is equivalent to ti � Xii=(ri + aiXii). This problem can be solved using standard

methods; the advantage of a maxdet-problem formulation is that we can add other (LMI)

constraints on X, e.g., individual power limits. As another interesting possibility, we could

impose constraints that distribute the power across the channels more uniformly, e.g., a

90-10 type constraint (see x2.6).

2.9 Problems involving moments

Bounds on expected values via semide�nite programming

Let t be a random real variable. The expected values Etk are called the (power) moments

of the distribution of t. The following classical result gives a characterization of a moment

sequence: There exists a probability distribution on R such that xk = Etk, k = 0; : : : ; 2n, if

and only if x0 = 1 and

H(x0; : : : ; x2n) =

2
6666666664

x0 x1 x2 : : : xn�1 xn
x1 x2 x3 : : : xn xn+1
x2 x3 x4 : : : xn+1 xn+2
...

...
...

...
...

xn�1 xn xn+1 : : : x2n�2 x2n�1
xn xn+1 xn+2 : : : x2n�1 x2n

3
7777777775
� 0: (27)

It is easy to see that the condition is necessary: let xi = Eti, i = 0; : : : ; 2n be the moments

of some distribution, and let y = [y0 y1 � � � yn]T 2 Rn+1. Then we have

yTH(x0; : : : ; x2n)y =
nX

i;j=0

yiyjEt
i+j = E

�
y0 + y1t

1 + � � �+ ynt
n
�2
� 0:

Su�ciency is less obvious. The proof is classical (and based on convexity arguments); see

e.g., Krein and Nudelman[KN77, p.182] or Karlin and Studden[KS66, p.189{199]. There are

similar conditions for distributions on �nite or semi-in�nite intervals.

Note that condition (27) is an LMI in the variables xk, i.e., the condition that x0, . . . ,

x2n be the moments of some distribution on R can be expressed as an LMI in x. Using this

fact, we can cast some interesting moment problems as SDPs and maxdet-problems.

Suppose t is a random variable on R. We do not know its distribution, but we do know

some bounds on the moments, i.e.,

�
k
� Etk � �k

(which includes, as a special case, knowing exact values of some of the moments). Let

p(t) = c0+ c1t+ � � �+ c2nt
2n be a given polynomial in t. The expected value of p(t) is linear

in the moments Eti:

Ep(t) =
2nX
i=0

ciEt
i =

2nX
i=0

cixi:

We can compute upper and lower bounds for Ep(t),

minimize (maximize) Ep(t)

subject to �
k
� Etk � �k; k = 1; : : : ; 2n;
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over all probability distributions that satisfy the given moment bounds, by solving the SDPs

minimize (maximize) c1x1 + � � �+ c2nx2n

subject to �
k
� xk � �k; k = 1; : : : ; 2n

H(1; x1; : : : ; x2n) � 0

over the variables x1, . . . , x2n. This gives bounds on Ep(t), over all probability distributions

that satisfy the known moment constraints. The bounds are sharp in the sense that there

are distributions, whose moments satisfy the given moments bounds, for which Ep(t) takes

on the upper and lower bounds found by these SDPs.

A related problem was considered by Dahlquist, Eisenstatt and Golub[DEG72], who

analytically compute bounds on Et�1 and Et�2, given the moments Eti, i = 1; : : : ; n. (Here

t is a random variable in a �nite interval.) Using semide�nite programming one can solve

more general problems where upper and lower bounds on Eti, i = 1 : : : ; n, (or the expected

value of some polynomials) are known.

Another application arises in the steady-state analysis of continuous-time Markov pro-

cesses, in which some (multivariable) moments can be computed cheaply (Schwerer[Sch96]).

Upper bound on the variance via semide�nite programming

As another example, one can maximize the variance of t, over all probability distributions

that satisfy the moment constraints (to obtain a sharp upper bound on the variance of t):

maximize Et2 � (Et)
2

subject to �
k
� Etk � �k; k = 1; : : : ; 2n;

which is equivalent to the SDP

maximize y

subject to

"
x2 � y x1
x1 1

#
� 0

�
k
� xk � �k; k = 1; : : : ; 2n

H(1; x1; : : : ; x2n) � 0

with variables y, x1, . . . , x2n. The 2 � 2-LMI is equivalent to y � x2 � x21. More generally,

one can compute an upper bound on the variance of a given polynomial Ep(t)2 � (Ep(t))
2
.

Thus we can compute an upper bound on the variance of a polynomial p(t), given some

bounds on the moments.

A robust estimate of the moments

Another interesting problem is the maxdet-problem

maximize log detH(1; x1; : : : ; x2n)

subject to �
k
� xk � �k; k = 1; : : : ; 2n

H(1; x1; : : : ; x2n) > 0:

(28)
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The solution can serve as a `robust' solution to the feasibility problem of �nding a probability

distribution that satis�es given bounds on the moments. While the SDPs provide lower and

upper bounds on Ep(t), the maxdet-problem should provide a reasonable guess of Ep(t).

Note that the maxdet-problem (28) is equivalent to

maximize log detEf(t)f(t)T

subject to � � Ef(t) � �
(29)

over all probability distributions on R, where f(t) = [1 t t2 : : : tn]
T
. We can interpret this

as the problem of designing a random experiment to estimate the coe�cients of a polynomial

p(t) = c0 + c1t+ � � �+ cnt
n. (We ignore numerical issues such as ill-conditioning.)

2.10 Quasi-Newton updates

In quasi-Newton methods for unconstrained minimization of a convex function f , the Newton

step �r2f(x)�1rf(x) is replaced by �H�1rf(x), where H = HT > 0 is an approximation

of the Hessian matrix, based on prior information and previous gradient evaluations. In each

iteration, as the algorithm moves from x to the next point x+, a new approximation H+ is

determined, based on the current H, and on the di�erence between the gradients at x+ and

x. A good updating rule for H should satisfy several properties: H+ should be close to H, it

should be easy to compute (or, more precisely, the search direction �H+�1rf(x+) should be
easy to compute), and it should incorporate the new information obtained by evaluating the

gradient rf(x+). This last property is usually enforced by imposing the secant condition

H+(x+ � x) = rf(x+)�rf(x): (30)

Byrd and Nocedal[BN89] have proposed to measure the di�erence between H and H+

by using the Kullback-Leibler divergence (or relative entropy), given by

1

2

�
TrH�1=2H+H�1=2 � log detH�1=2H+H�1=2 � n

�

(see also Dennis and Wolkowicz[DW93] and Lewis[Lew96]). The Kullback-Leibler divergence

is nonnegative for all positive de�nite H and H+, and zero only if H+ = H. Computing the

update that satis�es the secant condition and minimizes the Kullback-Leibler divergence is

a maxdet-problem in H+:

minimize TrH�1=2H+H�1=2 � log detH�1=2H+H�1=2 � n

subject to H+ > 0

H+(x+ � x) = rf(x+)�rf(x):
(31)

Fletcher[Fle91] has shown that the solution is given by

H+ = H � HssTH

sTHs
+
ggT

sTg
; (32)

assuming that sT g > 0, where s = x+ � x and g = rf(x+) �rf(x). Formula (32) is well
known in unconstrained optimization as the BFGS (Broyden, Fletcher, Goldfarb, Shanno)

quasi-Newton update.
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Fletcher's observation opens the possibility of adding more complicated LMI constraints

to the maxdet-problem (31), and solving the resulting problem numerically. For example,

one can impose a certain sparsity pattern on H+, or one can relax the secant condition as

kH+(x+ � x)�rf(x+) +rf(x)k � �;

where � is a given tolerance.

Updating H+ by numerically solving a maxdet-problem will obviously involve far more

computation than the BFGS update. Thus, a general maxdet-problem formulation for quasi-

Newton updates is only interesting when gradient evaluations are very expensive.

3 The dual problem

We associate with (1) the dual problem

maximize log detW �TrG0W �TrF0Z + l

subject to TrGiW +TrFiZ = ci; i = 1; :::;m;

W = W T > 0; Z = ZT � 0:

(33)

The variables are W 2 Rl�l and Z 2 Rn�n. Problem (33) is also a maxdet-problem, and

can be converted into a problem of the form (1) by elimination of the equality constraints.

We say W and Z are dual feasible if they satisfy the constraints in (33), and strictly

dual feasible if in addition Z > 0. We also refer to the maxdet-problem (1) as the primal

problem and say x is primal feasible if F (x) � 0 and G(x) > 0, and strictly primal feasible

if F (x) > 0 and G(x) > 0.

Let p� and d� be the optimal values of problem (1) and (33), respectively (with the

convention that p� = +1 if the primal problem is infeasible, and d� = �1 if the dual

problem is infeasible).

Theorem 1 p� � d�. If (1) is strictly feasible, the dual optimum is achieved; if (33) is

strictly feasible, the primal optimum is achieved. In both cases, p� = d�.

The theorem follows from standard results in convex analysis (Rockafellar[Roc70]), so we

will not prove it here. We will, however, show the �rst part, i.e., that p� � d� always holds.

Suppose x is primal feasible, and W , Z are dual feasible. We will show that the primal

objective evaluated at x is greater than the dual objective evaluated at W , Z:

cTx+ log detG(x)�1 � log detW �TrG0W �TrF0Z + l;

and as a consequence, p� � d�. We have

cTx+ log detG(x)�1 + log detW�1 +TrG0W +TrF0Z � l

=
mX
i=1

xiTrGiW +TrG0W +
mX
i=1

xiTrFiZ +TrF0Z � log detG(x)W � l

= TrG(x)W � log detG(x)W � l+TrF (x)Z: (34)
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This expression is always nonnegative: the last term, TrF (x)Z, is nonnegative because

TrAB � 0 when A = AT � 0 and B = BT � 0; the sum of the �rst three terms can be

written as

TrG(x)W � log detG(x)W � l = TrW 1=2G(x)W 1=2 � log detW 1=2G(x)W 1=2 � l;

which is twice the Kullback-Leibler divergence betweenW and G(x). It is nonnegative since

log detA�1 � �TrA + l for positive de�nite A = AT 2 Rl�l (as can be veri�ed by taking

the eigenvalue decomposition of A and using the inequality log x � x� 1 for x > 0).

The di�erence between the primal and dual objective, i.e., expression (34), is called the

duality gap associated with x, W and Z. Theorem 1 states that the duality gap is always

nonnegative, and zero only if x, W and Z are optimal.

Note that zero duality gap (34) implies G(x)W = I and F (x)Z = 0. This gives the

optimality condition for the maxdet-problem (1): a primal feasible x is optimal if there

exists a Z � 0, such that F (x)Z = 0 and

TrGiG(x)
�1 +TrFiZ = ci; i = 1; : : : ;m:

This optimality condition is always su�cient; it is also necessary if the primal problem is

strictly feasible.

In the remainder of the paper we will assume that the maxdet-problem is strictly primal

and dual feasible. By Theorem 1, this assumption implies that the primal problem is bounded

below and the dual problem is bounded above, with equality at the optimum, and that the

primal and dual optimal sets are nonempty.

Example: semide�nite programming dual

As an illustration, we derive from (33) the dual problem for the SDP (2). Substituting

G0 = 1, Gi = 0, n = 1, in (33) yields

maximize logW �W �TrF0Z + 1

subject to TrFiZ = ci; i = 1; : : : ;m;

W > 0; Z � 0:

The optimal value of W is one, so the dual problem reduces to

maximize �TrF0Z

subject to TrFiZ = ci; i = 1; : : : ;m;

Z � 0;

which is the dual SDP (in the notation used in [VB96]).

Example: D-optimal experiment design

As a second example we derive the dual of the experiment design problem (18). After a few

simpli�cations we obtain

maximize log detW + p � z

subject to W = W T > 0

v(i)
T
Wv(i) � z; i = 1; : : : ;M;

(35)
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where the variables are the matrix W and the scalar variable z. Problem (35) can be

further simpli�ed. The constraints are homogeneous in W and z, so for each dual feasible

W , z we have a ray of dual feasible solutions tW , tz, t > 0. It turns out that we can

analytically optimize over t: replacing W by tW and z by tz changes the objective to

log detW + p log t + p � tz, which is maximized for t = p=z. After this simpli�cation, and

with a new variable ~W = (p=z)W , problem (35) becomes

maximize log det ~W

subject to ~W > 0

v(i)
T ~Wv(i) � p; i = 1; : : : ;M:

(36)

Problem (36) has an interesting geometrical meaning: the constraints state that ~W deter-

mines an ellipsoid fx j xT ~Wx � pg, centered at the origin, that contains the points v(i),

i = 1; : : : ;M ; the objective is to maximize det ~W , i.e., to minimize the volume of the ellip-

soid.

There is an interesting connection between the optimal primal variables �i and the points

v(i) that lie on the boundary of the optimal ellipsoid E. First note that the duality gap

associated with a primal feasible � and a dual feasible ~W is equal to

log det

 
MX
i=1

�iv
(i)v(i)

T

!�1
� log det ~W;

and is zero (hence, � is optimal) if and only if ~W =
�PM

i=1 �iv
(i)v(i)

T
��1

. Hence, � is optimal

if

E =

8<
:x 2 Rp

������ xT
 

MX
i=1

�iv
(i)v(i)

T

!�1
x � p

9=
;

is the minimum-volume ellipsoid, centered at the origin, that contains the points v(j), j =

1; : : : ;M . We also have (in fact, for any feasible �)

MX
j=1

�j

0
@p � v(j)

T

 
MX
i=1

�iv
(i)v(i)

T

!�1
v(j)

1
A = p�Tr

0
@ MX
j=1

�jv
(j)v(j)

T

1
A
 

MX
i=1

�iv
(i)v(i)

T

!�1
= 0:

(37)

If � is optimal, then each term in the sum on the left hand side is positive (since E contains

all vectors v(j)), and therefore the sum can only be zero if each term is zero:

�j > 0 =) v(j)
T

 
MX
i=1

�iv
(i)v(i)

T

!�1
v(j) = p;

Geometrically, �j is nonzero only if v
(j) lies on the boundary of the minimumvolume ellipsoid.

This makes more precise the intuitive idea that an optimal experiment only uses `extreme'

test vectors. Figure 4 shows the optimal ellipsoid for the experiment design example of

Figure 2.
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Figure 4: In the dual of the D-optimal experiment design problem we compute
the minimum-volume ellipsoid, centered at the origin, that contains the test vectors.
The test vectors with a nonzero weight lie on the boundary of the optimal ellipsoid.
Same data and notation as in Figure 2.

The duality between D-optimal experiment designs and minimum-volume ellipsoids also

extends to non-�nite compacts sets (Titterington[Tit75], Pronzato and Walter[PW94]). The

D-optimal experiment design problem on a compact set C � Rp is

maximize log detEvvT (38)

over all probability measures on C. This is a convex but semi-in�nite optimization problem,

with dual ([Tit75])

maximize log det ~W

subject to ~W > 0

vT ~Wv � p; v 2 C:
(39)

Again, we see that the dual is the problem of computing the minimum volume ellipsoid,

centered at the origin, and covering the set C.

General methods for solving the semi-in�nite optimization problems (38) and (39) fall

outside the scope of this paper. In particular cases, however, these problems can be solved

as maxdet-problems. One interesting example arises when C is the union of a �nite number

of ellipsoids. In this case, the dual (39) can be cast as a maxdet-problem (see x2.1) and
hence e�ciently solved; by duality, we can recover from the dual solution the probability

distribution that solves (38).

4 The central path

In this section we describe the central path of the maxdet-problem (1), and give some of

its properties. The central path plays a key role in interior point methods for the maxdet-

problem.

25



De�nition

For strictly feasible x and t � 1, we de�ne

'p(t; x)
�
= t

�
cTx+ log detG(x)�1

�
+ log detF (x)�1: (40)

This function is the sum of two convex functions: the �rst term is a positive multiple of the

objective function in (1); the second term, log detF (x)�1, is a barrier function for the set

fx j F (x) > 0g. For future use, we note that the gradient and Hessian of 'p(x; t) are given

by the expressions

(r'p(t; x))i = t
�
ci �TrG(x)�1Gi

�
�TrF (x)�1Fi; (41)�

r2'p(t; x)
�
ij

= tTrG(x)�1GiG(x)
�1Gj +TrF (x)�1FiF (x)

�1Fj; (42)

for i; j = 1; : : : ;m.

It can be shown that 'p(t; x) is a strictly convex function of x if themmatricesdiag(Gi; Fi),

i = 1; : : : ;m, are linearly independent, and that it is bounded below (since we assume the

problem is strictly dual feasible; see the appendix). We de�ne x?(t) as the unique minimizer

of 'p(t; x):

x?(t) = argminf'p(t; x) j G(x) > 0; F (x) > 0g :
The curve x?(t), parametrized by t � 1, is called the central path.

The dual central path

Points x?(t) on the central path are characterized by the optimality conditionsr'p(t; x?(t)) =
0, i.e., using the expression (41)

TrG(x?(t))�1Gi +
1

t
TrF (x?(t))�1Fi = ci; i = 1; : : : ;m:

From this we see that the matrices

W ?(t) = G(x?(t))�1; Z?(t) =
1

t
F (x?(t))�1 (43)

are strictly dual feasible. The duality gap associated with x?(t), W ?(t) and Z?(t) is, from

expression (34),

TrF (x?(t))Z?(t) +TrG(x?(t))W ?(t)� log detG(x?(t))W ?(t)� l =
n

t
;

which shows that x?(t) converges to the solution of the maxdet-problem as t!1.

It can be shown that the pair (W ?(t); Z?(t)) actually lies on the dual central path, de�ned

as

(W ?(t); Z?(t)) = argmin

(
'd(t;W;Z)

����� W =W T � 0; Z = ZT > 0;

TrGiW +TrFiZ = ci; i = 1; : : : ;m

)

where

'd(t;W;Z)
�
= t

�
log detW�1 +TrG0W +TrF0Z � l

�
+ log detZ�1:

The close connections between primal and dual central path are summarized in the fol-

lowing theorem.
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Theorem 2 Let x be strictly primal feasible, and W , Z strictly dual feasible. Then

'p(t; x) + 'd(t;W;Z) � n(1 + log t) (44)

with equality if and only if x = x?(t), W = W ?(t), Z = Z?(t).

Proof. If A = AT 2 Rp�p and A > 0, then � log detA � �TrA + p (by convexity of

� log detA on the cone of positive semide�nite matrices). Applying this inequality, we �nd

'p(t; x) + 'd(t;W;Z) = t (TrG(x)W +TrF (x)Z � log detG(x)W � l)� log detF (x)Z

= t
�
� log detW 1=2G(x)W 1=2 +TrW 1=2G(x)W 1=2

�
� log det tZ1=2F (x)Z1=2+TrtZ1=2F (x)Z1=2+ n log t� tl

� tl + n+ n log t� tl = n(1 + log t):

The equality for x = x?(t), W = W ?(t), Z = Z?(t) can be veri�ed by substitution.

Tangent to the central path

We conclude this section by describing how the tangent direction to the central path can

be computed. Let �1(x) = � log detG(x) and �2(x) = � log detF (x). A point x?(t) on the

central path is characterized by

t (c+r�1(x?(t))) +r�2(x?(t)) = 0:

The tangent direction @x?(t)
@t

can be found by di�erentiating with respect to t:

(c+r�1(x?(t))) +
�
tr2�1(x

?(t)) +r2�2(x
?(t))

� @x?(t)
@t

= 0;

so that
@x?(t)

@t
= �

�
tr2�1(x

?(t)) +r2�2(x
?(t))

��1
(c+r�1(x?(t))): (45)

The tangent direction can also be expressed as the solution of a least-squares problem; see

Appendix A.

By di�erentiating (43), we obtain the tangent to the dual central path,

@W ?(t)

@t
= �G(x?(t))�1

 
mX
i=1

@x?i(t)

@t
Gi

!
G(x?(t))�1; (46)

@Z?(t)

@t
= � 1

t2
F (x?(t))�1 � 1

t
F (x?(t))�1

 
mX
i=1

@x?i(t)

@t
Fi

!
F (x?(t))�1: (47)

5 Newton's method

In this section we consider the problem of minimizing 'p(t; x) for �xed t, i.e., computing

x?(t), given a strictly feasible initial point:

minimize 'p(t; x)

subject to G(x) > 0

F (x) > 0:

(48)
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This includes, as a special case, the analytic centering problem (t = 1 and F (x) = 1). Our

main motivation for studying (48) will become clear in next section, when we discuss an

interior-point method based on minimizing 'p(t; x) for a sequence of values t.

Newton's method with line search can be used to solve problem (48) e�ciently.

Newton method for minimizing 'p(t; x)

given strictly feasible x, tolerance � (0 < � � 0:5)

repeat

1. Compute the Newton direction �xN = � (r2'p(t; x))
�1r'p(t; x)

2. Compute � = (�xNr2'p(t; x)�x
N)1=2

3. if (� > 0:5), compute bh = argmin 'p(t; x+ h�xN)

else bh = 1

4. Update: x := x+ bh�xN
until � � �

The quantity

� = (�xNr2'p(t; x)�x
N)1=2 (49)

is called the Newton decrement at x. The cost of Step 3 (the line search) is very small,

usually negligible compared with the cost of computing the Newton direction; see x8 for

details.

It is well known that the asymptotic convergence of Newton's method is quadratic. Nes-

terov and Nemirovsky in [NN94, x2.2] give a complete analysis of the global speed of conver-

gence. The main result is the following theorem.

Theorem 3 The algorithm terminates in less than

11('p(t; x
(0))� 'p(t; x

?(t))) + log2 log2(1=�) (50)

iterations, and when it terminates, 'p(t; x)� 'p(t; x
?(t)) � �.

A self-contained proof is given in the appendix.

Note that the right-hand side of (50) does not depend on the problem size (i.e., m, n, or

l) at all, and only depends on the problem data through the di�erence between the value of

the function 'p(t; �) at the initial point x(0) and at the central point x?(t).

The term log2 log2(1=�), which is characteristic of quadratic convergence, grows extremely

slowly with required accuracy �. For all practical purposes it can be considered a constant,

say, �ve (which guarantees an accuracy of � = 2:33 � 10�10). Not quite precisely, then,

the theorem says we can compute x?(t) in at most 11('p(t; x
(0))� 'p(t; x

?(t))) + 5 Newton

steps. The precise statement is that within this number of iterations we can compute an

extremely good approximation of x?(t). In the sequel, we will speak of `computing the

central point x?(t)' when we really mean computing an extremely good approximation. We

can justify this on several grounds. It is possible to adapt our exposition to account for

the extremely small approximation error incurred by terminating the Newton process after

11('p(t; x
(0))� 'p(t; x

?(t))) + 5 steps. Indeed, the errors involved are certainly on the same
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Figure 5: Number of Newton iterations to minimize log detA(x)�1 versus

log detA(x(0))�1 � log detA(x?)�1 (with � = 2:33 � 10�10, i.e., log2 log2(1=�) = 5).
Random matrix completion problems of three sizes (`+': m = 20; l = 20, `�':
m = 20, l = 100, `�': m = 50, l = 100). The dotted line is a least-squares �t of the

data and is given by 3 + 0:67(logdetA(x(0))�1 � log detA(x?)�1). The dashed line

is the upper bound of Theorem 3 (5 + 11(log detA(x(0))�1 � log detA(x?)�1)).

scale as computer arithmetic (roundo�) errors, so if a complexity analysis is to be carried

out with such precision, it should also account for roundo� error.

We will see during the course of the proof (in the appendix) that Theorem 3 holds for an

`implementable' version of the algorithm as well, in which an appropriate approximate line

search is used instead of the exact line search.

Numerical experiment

The bound provided by Theorem 3 on the number of Newton steps required to compute

x?(t), starting from x(0), will play an important role in our path-following method. It is

therefore useful to examine how the bound compares to the actual number of Newton steps

required in practice to compute x?(t).

Figure 5 shows the results of a numerical experiment that compares the actual conver-

gence of Newton's method with the bound (50). The test problem is a matrix completion

problem
minimize log detA(x)�1

subject to A(x) = Af +
mX
k=1

xk (Eikjk + Ejk ik) > 0;

which is a particular case of (48) with c = 0, G(x) = A(x), F (x) = 1, and 'p(t; x) =

log detA(x)�1. We considered problems of three di�erent sizes: m = 20, l = 20 (indicated

by `+'); m = 20, l = 100 (indicated by `�'); m = 50, l = 100 (indicated by `�'). Each point
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on the �gure corresponds to a di�erent problem instance, generated as follows.

� The matrices Af were constructed as Af = UUT with the elements of U drawn from

a normal distribution N(0; 1). This guarantees that x = 0 is strictly feasible. The m

index pairs (ik; jk), ik 6= jk, were chosen randomly with a uniform distribution over

the o�-diagonal index pairs. For each of the three problem sizes, 50 instances were

generated.

� For each problem instance, we �rst computed x? using x = 0 as starting point. We

then selected a value 
 (uniformly in the interval (0; 30)), generated a random bx 2 Rm

(with distribution N(0; I)), and then computed x(0) = x? + t(bx� x?) such that

log det(A(x(0)))�1 � log det(A(x�))�1 = 
:

This point x(0) was used as starting point for the Newton algorithm.

Our experience with other problems shows that the results for this family of random problems

are quite typical.

From the results we can draw two important conclusions.

� The quantity log det(A(x(0)))�1 � log det(A(x?))�1 not only provides an upper bound

on the number of Newton iterations via Theorem 3; it is also a very good predictor of

the number of iterations in practice. The dimensions m and l on the other hand have

much less in
uence (except of course, through log det(A(x(0)))�1 � log det(A(x?))�1).

� The average number of Newton iterations seems to grow as

�+ �
�
log det(A(x(0)))�1 � log det(A(x?))�1

�
;

with � ' 3, � ' 0:7. This is signi�cantly smaller than the upper bound of Theorem 3

(� = 5, � = 11).

In summary, we conclude that the di�erence 'p(t; x
(0)) � 'p(t; x

?(t)) is a good measure,

in theory and in practice, of the e�ort required to compute x?(t) using Newton's method,

starting at x(0).

A computable upper bound on the number of Newton steps

Note that 'p(t; x
?(t)) is not known explicitly as a function of t. To evaluate the bound (50)

one has to compute x?(t), i.e., carry out the Newton algorithm. (Which, at the very least,

would seem to defeat the purpose of trying to estimate or bound the number of Newton steps

required to compute x?(t).) Therefore the bound of Theorem 3 is not (directly) useful in

practice. From Theorem 2, however, it follows that every dual feasible point W ,Z provides

a lower bound for 'p(t; x
?(t)):

'p(t; x
?(t)) � �'d(t;W;Z) + n(1 + log t):

and that the bound is exact if W = W ?(t) and Z = Z?(t).
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We can therefore replace the bound (50) by a weaker, but more easily computed bound,

provided we have a dual feasible pair W , Z:

11('p(t; x
(0))� 'p(t; x

?(t))) + log2 log2(1=�) � 11 ub(t; x
(0);W;Z) + log2 log2(1=�); (51)

where

 ub(t; x;W;Z) = 'p(t; x) + 'd(t;W;Z)� n(1 + log t): (52)

This is the bound we will use in practice (and in our complexity analysis): it gives a readily

computed bound on the number of Newton steps required to compute x?(t), starting from

x(0), given any dual feasible W , Z.

6 Path-following algorithms

Path-following methods for convex optimization have a long history. In their 1968 book [FM68],

Fiacco and MacCormick work out many general properties, e.g., convergence to an optimal

point, connections with duality, etc. No attempt was made to give a worst-case convergence

analysis, until Renegar[Ren88] proved polynomial convergence of a path-following algorithm

for linear programming. Nesterov and Nemirovsky[NN94, x3] studied the convergence for

nonlinear convex problems and provided proofs of polynomial worst-case complexity. See

[NN94, pp.379{386] and Den Hertog[dH93] for a historical overview.

We will present two variants of a path-following method for the maxdet-problem. The

short-step version of x6.2 is basically the path-following method of [FM68, NN94], with a

simpli�ed, self-contained complexity analysis. In the long-step verion of x6.3 we combine the
method with predictor steps to accelerate convergence. This, too, is a well known technique,

originally proposed by Fiacco and MacCormick; our only addition is a new step selection

rule.

6.1 General idea

One iteration proceeds as follows. The algorithm starts at a point x?(t) on the central path.

As we have seen above, the duality gap associated with x?(t) is n=t. We then select a new

value t+ > t, and choose a strictly feasible starting point bx (which may or may not be equal

to x?(t)). The point bx serves as an approximation of x?(t+) and is called the predictor of

x?(t+). Starting at the predictor bx, the algorithm computes x?(t+) using Newton's method.

This reduces the duality gap by a factor t+=t. The step from x?(t) to x?(t+) is called an

outer iteration.

The choice of t+ and bx involves a tradeo�. A large value of t+=t means fast duality gap

reduction, and hence fewer outer iterations. On the other hand it makes it more di�cult

to �nd a good predictor bx, and hence more Newton iterations may be needed to compute

x?(t+).

In the method discussed below, we impose a bound on the maximum number of Newton

iterations per outer iteration, by requiring that the predictor bx and the new value of t+

satisfy

'p(t
+; bx)� 'p(t

+; x?(t+)) � 
: (53)
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This implies that no more than 5 + 11
 Newton iterations are required to compute x?(t+)

starting at bx. Of course, the exact value of the left hand side is not known, unless we carry

out the Newton minimization, but as we have seen above, we can replace the condition by

 ub(t
+; bx; cW; bZ) = 
; (54)

where cW and bZ are conveniently chosen dual feasible points.

The parameters in the algorithm are 
 > 0 and the desired accuracy �.

Path-following algorithm

given 
 > 0, t � 1, x := x?(t)

repeat

1. Select t+, bx, cW , bZ such that t+ > t and  ub(t
+; bx; cW; bZ) = 


2. Compute x?(t+) starting at bx, using the Newton algorithm of x5
3. t := t+, x := x?(t+)

until n=t � �

Step 1 in this outline is not completely speci�ed. In the next sections we will discuss in

detail di�erent choices. We will show that one can always �nd bx, cW , bZ and t+ that satisfy

t+

t
� 1 +

s
2


n
: (55)

This fact allows us to estimate the total complexity of the method, i.e., to derive a bound on

the total number of Newton iterations required to reduce the duality gap to �. The algorithm

starts on the central path, at x?(t(0)), with initial duality gap �(0) = n=t(0). Each iteration

reduces the duality gap by t+=t. Therefore the total number of outer iterations required to

reduce the initial gap of �(0) to a �nal value below � is at most

2
666

log(�(0)=�)

log(1 +
q
2
=n)

3
777 �

&p
n

log(�(0)=�)

log(1 +
p
2
)

'
:

(The inequality follows from the concavity of log(1+x).) The total number of Newton steps

can therefore be bounded as

Total #Newton iterations � d5 + 11
e
&p

n
log(�(0)=�)

log(1 +
p
2
)

'
= O

�p
n log(�(0)=�)

�
: (56)

This upper bound increases slowly with the problem dimensions: it grows as
p
n, and is

independent of l and m. We will see later that the performance in practice is even better.

Note that we assume that the minimization in Step 2 of the algorithm is exact. The

justi�cation of this assumption lies in the very fast local convergence of Newton's method:

we have seen in x5 that it takes only a few iterations to improve a solution with Newton

decrement � � 0:5 to one with a very high accuracy.

Nevertheless, in a practical implementation (as well as in a rigorous theoretical analysis),

one has to take into account the fact that x?(t) can only be computed approximately. For
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example, the stopping criterion n=t � � is based on the duality gap associated with exactly

central points x?(t), W ?(t), and Z?(t), and is therefore not quite accurate if x?(t) is only

known approximately. We give a suitably modi�ed criterion in Appendix A, where we show

that dual feasible points are easily computed during the centering step (Step 2) once the

Newton decrement is less than one. Using the associated duality gap yields a completely rig-

orous stopping criterion. We will brie
y point out some other modi�cations, as we develop

di�erent variants of the algorithm in the next sections; full details are described in Ap-

pendix A. With these modi�cations, the algorithm works well even when x?(t) is computed

approximately. (We often use a value � = 10�3 in the Newton algorithm.)

It is also possible to extend the simple worst-case complexity analysis to take into account

incomplete centering, but we will not attempt such an analysis here.

6.2 Fixed-reduction algorithm

The simplest variant uses bx = x?(t), cW = W ?(t), and bZ = Z?(t) in Step 1 of the algorithm.

Substitution in condition (54) gives

 ub(t
+; bx; cW; bZ)

= t+(TrG(x?(t))W ?(t) +TrF (x?(t))Z?(t)� log detG(x?(t))W ?(t)� l)

� log detF (x?(t))Z?(t)� n(1 + log t+)

= n(t+=t� 1 � log(t+=t)) = 
; (57)

which is a simple nonlinear equation in one variable, with a unique solution t+ > t. We call

this variant of the algorithm the �xed-reduction algorithm because it uses the same value of

t+=t | and hence achieves a �xed duality gap reduction factor | in each outer iteration.

The outline of the �xed-reduction algorithm is as follows.

Fixed-reduction algorithm

given 
 > 0, t � 1, x := x?(t)

Find � such that n(� � 1 � log�) = 


repeat

1. t+ := �t

2. Compute x?(t+) starting at x, using the Newton algorithm of x5
3. t := t+, x := x?(t+)

until n=t � �

We can be brief in the convergence analysis of the method. Each outer iteration reduces

the duality gap by a factor �, so the number of outer iterations is exactly&
log(�(0)=�)

log�

'
:

The inequality (55), which was used in the complexity analysis of previous section, follows

from the fact that for y � 1

n(y � 1� log y) � n

2
(y � 1)2;
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and hence � � 1 +
q
2
=n.

This convergence analysis also reveals the limitation of the �xed reduction method: the

number of outer iterations is never better than the number predicted by the theoretical

analysis. The upper bound on the total number of Newton iterations (56) is also a good

estimate in practice, provided we replace the constant 5+11
 with an empirically determined

estimate such as 3+0:7
 (see Figure 5). The purpose of next section is to develop a method

with the same worst-case complexity as the �xed-reduction algorithm, but a much better

performance in practice.

6.3 Primal-dual long-step algorithm

It is possible to use much larger values of t+=t, and hence achieve larger gap reduction per

outer iteration, by using a better choice for bx, cW , and bZ in Step 1 of the path-following

algorithm.

A natural choice for bx is to take a point along the tangent to the central path, i.e.,

bx = x?(t) + p
@x?(t)

@t
;

for some p > 0, where the tangent direction is given by (45). Substitution in (54) gives a

nonlinear equation from which t+ and p can be determined. Taking the idea one step further,

one can allow cW and bZ to vary along the tangent to the dual central path, i.e., take

cW = W ?(t) + q
@W ?(t)

@t
; bZ = Z?(t) + q

@Z?(t)

@t

for some q > 0, with the tangent directions given by (46) and (47). Equation (54) then has

three unknowns: t+, the primal step length p, and the dual step length q. The �xed-reduction

update of previous section uses the solution t+ = �t, p = q = 0; an e�cient method for

�nding a solution with larger t+ is described below.

The outline of the long-step algorithm is as follows.

Primal-dual long-step algorithm

given 
 > 0, t � 1, x := x?(t), W :=W ?(t), Z := Z?(t)

Find � such that n(� � 1 � log�) = 


repeat

1. Compute tangent to central path. �x := @x?(t)

@t
, �W := @W ?(t)

@t
, �Z := @Z?(t)

@t

2. Parameter selection and predictor step.

2a. t+ := �t

repeat f
2b. bp; bq = argminp;q  ub(t

+; x+ p�x;W + q�W;Z + q�Z)

2c. Compute t+ from  ub(t
+; x+ bp�x;W + bq�W;Z + bq�Z) = 


g
2d. bx = x+ bp�x

3. Centering step. Compute x?(t+) starting at bx, using the Newton algorithm of x5
4. Update. t := t+, x := x?(t+), W :=W ?(t+), Z := Z?(t+)

until n=t � �
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Figure 6: Parameter selection and predictor step in long-step algorithm alternates
between minimizing  ub(t

+; p; q) over primal step length p and dual step length q,
and then increasing t+ until  ub(t

+; p; q) = 
.

Again we assume exact centering in Step 3. In practice, approximate minimization works,

provided one includes a small correction to the formulas of the tangent directions; see Ap-

pendix A.

Step 2 computes a solution to (54), using a technique illustrated in Figure 6. The �gure

shows four iterations of the inner loop of Step 2 (for an instance of the problem family

described in x9). With a slight abuse of notation, we write  ub(t
+; p; q) instead of

 ub(t
+; x?(t) + p�x;W ?(t) + q�W;Z?(t) + q�Z): (58)

We start at the value t(0) = t, at the left end of the horizontal axis. The �rst curve

(marked  ub(t
+; 0; 0)) shows (58) as a function of t+, with p = q = 0, which simpli�es to

 ub(t
+; x?(t);W ?(t); Z?(t)) = n(t+=t� 1 � log(t+=t))

(see x6.2). This function is equal to zero for t+ = t, and equal to 
 for the short-step update

t+ = �t. We then do the �rst iteration of the inner loop of Step 2. Keeping t+ �xed at its

value t(1), we minimize the function (58) over p and q (Step 2b). This produces new valuesbp = p(1) and bq = q(1) with a value of  ub < 
. This allows us to increase t+ again (Step

2c). The second curve in the �gure (labeled  ub(t
+; p(1); q(1))) shows the function (58) as a

function of t+ with �xed values p = p(1), q = q(1). The intersection with  ub = 
 gives the

next value t+ = t(2).

These two steps (2b, 2c) are repeated either for a �xed number of iterations or until t+

converges (which in the example of Figure 6 happens after four or �ve iterations). Note
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that in each step 2c, we increase t+, so that in particular, the �nal value of t+ will be at

least as large as its initial (short-step) value, t+ = �t. Thus, the complexity analysis for the

short-step method still applies.

In practice, the inner loop (2b, 2c) often yields a value of t+ considerably larger than the

short-step value �t, while maintaining the same upper bound on the number of Newton step

required to compute the next iterate x?(t+). In the example shown in the �gure, the �nal

value of t+ is about a factor of 2:5 larger than the short-step value; in general, a factor of 10

is not uncommon.

Using some preprocessing we will describe in x8, the cost of the inner loop (2b, 2c) is very
small, in most cases negligible compared with the cost of computing the tangent vectors.

Finally, we note that the dual variables Z and W in the primal-dual long-step algorithm

are only used to allow larger step sizes.

7 Preliminary phases

The algorithm starts at a central point x?(t), for some t � 1. In this section we discuss how

to select the initial t, and how to compute such a point.

Feasibility

If no strictly primal feasible point is known, one has to precede the algorithm with a �rst

phase to solve the (SDP) feasibility problem: Find x that satis�es G(x) > 0, F (x) > 0.

More details can be found in [VB96].

Choice of initial t

We now consider the situation where a strictly primal feasible point x(0) is known, but x(0)

is not on the central path. In that case one has to select an appropriate initial value of t

and compute a central point by Newton's method starting at x(0). In theory (and often in

practice) the simple choice t = 1 works.

It is not hard, however, to imagine cases where the choice t = 1 would be ine�cient in

practice. Suppose, for example, that the initial x(0) is very near x?(100), so a reasonable

initial value of t is 100 (but we don't know this). If we set t = 1, we expend many Newton

iterations `going backwards' up the central path towards the point x?(1). Several outer

iterations, and many Newton steps later, we �nd ourselves back near where we started,

around x?(100).

If strictly dual feasible points W (0), Z(0) are known, then we start with a known duality

gap � associated with x(0), W (0) and Z(0). A very reasonable initial choice for t is then

t = maxf1; n=�g, since when t = n=�, the centering stage computes central points with

the same duality gap as the initial primal and dual solutions. In particular, the preliminary

centering stage does not increase the duality gap (as it would in the scenario sketched above).

We can also interpret and motivate the initial value t = n=� in terms of the function

 ub(t; x
(0);W (0); Z(0)), which provides an upper bound on the number of Newton steps re-
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quired to compute x?(t) starting at x(0). From the de�nition (52) we have

 ub(t; x
(0);W (0); Z(0)) = t�+ log detF (x(0))�1 + log detZ(0)�1 � n(1 + log t);

which shows that the value t = n=� minimizes  ub(t; x
(0);W (0); Z(0)). Thus, the value

t = n=� is the value which minimizes the upper bound on the number of Newton steps

required in the preliminary centering stage.

A heuristic preliminary stage

When no initial dual feasible Z, W (and hence duality gap) are known, choosing an ap-

propriate initial value of t can be di�cult. We have had practical success with a variation

on Newton's method that adapts the value of t at each step based on the (square of) the

Newton decrement �(x; t),

�(x; t)2 = r'p(t; x)T
�
r2'p(t; x)

��1
r'p(t; x);

which serves as a measure of proximity to the central path. It is a convex function of t, and

is readily minimized in t for �xed x.

Our heuristic preliminary phase is:

Preliminary centering phase

given strictly feasible x

t := 1

repeat f
1. t := maxf1; argmin�(x; t)g
2. �x = � (r2'p(t; x))

�1r'p(t; x)
3. bh = argmin 'p(t; x+ h�xN)

g until � � �

Thus, we adjust t each iteration to make the Newton decrement for the current x as small

as possible (subject to the condition that we not decrease t).

8 E�cient line and plane searches

In this section we describe some simple preprocessing that allows us to implement the line

search in the Newton method of x5 and the plane search of x6.3 very e�ciently.

Line search in Newton's method

We �rst consider the line search in Newton's method of x5. Let �k, k = 1; : : : ; l, be the

generalized eigenvalues of the pair
Pm

i=1 �x
N
i Gi, G(x), and �k, k = l + 1; : : : ; l + n, be the
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generalized eigenvalues of the pair
Pm

i=1 �x
N
i Fi, F (x), where �x

N is the Newton direction at

x. We can write 'p(t; x+ h�xN) in terms of these eigenvalues as

f(h) = 'p(t; x+ h�xN) = 'p(t; x) + hcT�xN + t
lX

k=1

log
1

1 + h�k
+

l+nX
k=l+1

log
1

1 + h�k
:

Evaluating the �rst and second derivatives f 0(h), f 00(h) of this (convex) function of h 2 R

requires only O(n+ l) operations (once the generalized eigenvalues �i have been computed).

In most cases, the cost of the preprocessing, i.e., computing the generalized eigenvalues �i,

exceeds the cost of minimizing over h, but is small compared with the cost of computing the

Newton direction. The function 'p(t; x+h�x
N) can therefore be e�ciently minimized using

standard line search techniques.

Plane search in long-step path-following method

A similar idea applies to the plane search of x6.3. In Step 2c of the primal-dual long-step

algorithm we minimize the function  ub(t; x+ p�x;W + q�W;Z + q�Z) over p and q, where

�x, �W , �Z are tangent directions to the central path. We can again reduce the function to

a convenient form

 ub(t; x+ p�x;W + q�W;Z + q�Z)

=  ub(t; x;W;Z) + p�1 + q�2 + t
lX

k=1

log
1

1 + p�k
+

l+nX
k=l+1

log
1

1 + p�k

+ t
lX

k=1

log
1

1 + q�k
+

l+nX
k=l+1

log
1

1 + q�k
; (59)

where �k, k = 1; : : : ; l, are the generalized eigenvalues of the pair
Pm

i=1 �xiGi, G(x) and

�k, k = l + 1; : : : ; l + n, are the generalized eigenvalues of the pair
Pm

i=1 �xiFi, F (x); �k,

k = 1; : : : ; l, are the generalized eigenvalues of the pair �W , W , and �k, k = l+1; : : : ; l+ n,

are the generalized eigenvalues of the pair �Z, Z. The coe�cients �1 and �2 are

�1 = cT �x; �2 = TrG0�W +TrF0�Z:

The �rst and second derivatives of the function (59) with respect to p and q can again be

computed at a low cost of O(l + n), and therefore the minimum of  ub over the plane can

be determined very cheaply, once the generalized eigenvalues have been computed.

In summary, the cost of line or plane search is basically the cost of preprocessing (com-

puting certain generalized eigenvalues), which is usually negligible compared to the rest of

algorithm (e.g., determining a Newton or tangent direction).

One implication of e�cient line and plane searches is that the total number of Newton

steps serves as a good measure of the overall computing e�ort.

38



0 5 10 15 20 25 30 35 40
10�9
10�8
10�7
10�6
10�5
10�4
10�3
10�2
10�1
100

Newton iterations

d
u
a
li
ty
g
a
p

0 5 10 15 20 25 30 35 40
10�9
10�8
10�7
10�6
10�5
10�4
10�3
10�2
10�1
100

Newton iterations

d
u
a
li
ty
g
a
p

Figure 7: Duality gap versus number of Newton steps for randomly generated
maxdet-problems of dimension l = 10, n = 10, m = 10. Left: 
 = 10. Right:


 = 50. The crosses are the results for the �xed-reduction method; the circles are
the results for the long-step method. Every cross/circle represents the gap at the
end of an outer iteration.

9 Numerical examples

Typical convergence

The �rst experiment (Figure 7) compares the convergence of the �xed-reduction method and

the long-step method. The lefthand plot shows the convergence of both methods for 
 = 10;

the righthand plot shows the convergence for 
 = 50. Duality gap is shown vertically on a

logarithmic scale ranging from 100 at the top to 10�9 at the bottom; the horizontal axis is the

total number of Newton steps. Each outer iteration is shown as a symbol on the plot (`�' for
the long-step and `�' for the short-step method). Thus, the horizontal distance between two

consecutive symbols shows directly the number of Newton steps required for that particular

outer iteration; the vertical distance shows directly the duality gap reduction factor t+=t.

Problem instances were generated as follows: G0 2 Rl�l, F0 2 Rn�n were chosen random

positive de�nite (constructed as UTU with the elements of U drawn from a normal distri-

bution N(0; 1)); the matrices Gi, Fi, i = 1; : : : ;m, were random symmetric matrices, with

elements drawn from N(0; 1); ci = TrGi +TrFi, i = 1; : : : ;m. This procedure ensures that

the problem is primal and dual feasible (x = 0 is primal feasible; Z = I, W = I is dual

feasible), and hence bounded below. We start on the central path, with initial duality gap

one.

We can make the following observations.

� The convergence is very similar over all problem instances. The number of iterations

required to reduce the duality gap by a factor 1000 ranges between 5 and 50. As

expected, the long-step method performs much better than the �xed-reduction method,

and typically converges in less than 15 iterations.

� The �xed-reduction method converges almost linearly. The duality gap reduction t+=t
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per outer iteration can be computed from equation (57): t+=t = 3:14 for 
 = 10,

and t+=t = 8:0 for 
 = 50. The number of Newton iterations per outer iteration is

less than �ve in almost all cases, which is much less than the upper bound 5 + 11
.

(Remember that this bound is a combination of two conservative estimates: Theorem 3

is conservative; see Figure 5. In addition we have replaced (53) with the weaker

condition (54).)

� The long-step method takes a few more Newton iterations per centering step, but

achieves a much larger duality gap reduction. Moreover the convergence accelerates

near the optimum.

� Increasing 
 has a large e�ect on the �xed-reduction method, but only little e�ect on

the long-step method.

Complexity versus problem size

Figure 8 shows the in
uence of the problem dimension on the convergence. For each triplet

(m, n, l) we generated 10 problem instances as above. We plot the number of Newton

iterations to reduce the duality gap by a factor 1000, starting with duality gap 1. The plot

shows the average number of Newton steps and the standard deviation. The top curve shows

the results for the �xed-reduction method, the lower curve is for the long-step method.

� The number of Newton iterations in the short-step method depends on n as O(
p
n).

This is easily explained from the convergence analysis of x6.2: We have seen that

the number of outer iterations grows as
p
n, in theory and in practice, and hence

the practical behavior of the �xed-reduction method is very close to the worst case

behavior.

� We see that the number of iterations for the long-step method lies between 5 and 20,

and is very weakly dependent on problem size.

Figure 9 shows similar results for a family of experiment design problems (18) in R10,

including an 90-10 constraint (19). The points v(i), i = 1; : : : ;M , were generated from a

normal distribution N(0; I) on Rp. Note that the dimensions of the corresponding maxdet-

problem are m = 2M , n = 3M +1, l = p. Figure 9 con�rms the conclusions of the previous

experiment: It shows that the complexity of the �xed-reduction method grows as
p
n, while

the complexity of the long-step method is almost independent of problem size.

10 Conclusion

The maxdet-problem (1) is a (quite speci�c) convex extension of the semide�nite program-

ming problem, and hence includes a wide variety of convex optimization problems as special

cases. Perhaps more importantly, maxdet-problems arise naturally in many areas, including

computational geometry, linear algebra, experiment design, linear estimation, and informa-

tion and communication theory. We have described several of these applications.
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Figure 8: Newton iterations versus problem size for family of random problems.
Fixed reduction method (top curve) and long-step method (lower curve). 
 = 10.
Left. l = 10, n = 5{50, m = 10. Middle. l = 5{50, n = 10, m = 10. Right. l = 10,
n = 10, m = 5{50. The curves give the average over 10 problem instances. The
error bars indicate the standard deviation.
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Figure 9: Newton iterations versus problem size for family of experiment design
problems of x2.6 including 90-10 rule. Fixed reduction method (top curve) and
long-step method (lower curve). 
 = 10, p = 10, M = 15{50. The curves show the
average over 10 problem instances. The error bars indicate the standard deviation.
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Some of the applications have been studied extensively in the literature, and in some cases

analytic solutions or e�cient specialized algorithms have been developed. We have presented

an interior-point algorithm that solves general maxdet-problems e�ciently. The method can

be applied to solve maxdet-problems for which no specialized algorithm is known; in cases

where such a method exists, it opens the possibility of adding useful LMI constraints, which

is an important advantage in practice.

We have proved a worst-case complexity of O(
p
n) Newton iterations. Numerical experi-

ments indicate that the behavior is much better in practice: the method typically requires a

number of iterations that lies between 5 and 50, almost independently of problem dimension.

The total computational e�ort is therefore determined by the amount of work per iteration,

i.e., the computation of the Newton directions, and therefore depends heavily on the prob-

lem structure. When no structure is exploited, the Newton directions can be computed from

the least-squares formulas in Appendix A, which requires O((n2 + l2)m2) operations, but

important savings are possible whenever we specialize the general method of this paper to a

speci�c problem class.
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A Formulas

This appendix contains some additional computational details. We give alternative expres-

sions for the Newton direction, for the dual update, and for the tangent directions to the

primal and dual central paths. These expressions are valid even when the centering step is

incomplete.

Newton direction

We �rst derive a least-squares formula for the Newton direction. Let C1 = CT
1 2 Rl�l and

C2 = CT
2 2 Rn�n be two matrices that satisfy

tTrC1Gi +TrC2Fi = tci; i = 1; : : : ;m:

Such matrices C1 and C2 exist since we assume that the matrices diag(Gi; Fi), i = 1; : : : ;m,

are linearly independent. A possible choice is C1 = W and C2 = tZ, where W and Z are a

dual feasible pair. Note however that C1 and C2 do not have to be positive de�nite.

The Newton direction vN can be computed as the solution of the least-squares problem

minimize t







I � ~C1 �
X
j

vj ~Gi








2

F

+







I � ~C2 �
X
j

vj ~Fi








2

F

(60)

where
~C1 = G(x)1=2C1G(x)

1=2; ~C2 = F (x)1=2C2F (x)
1=2;

and for j = 1; : : : ;m

~Gj = G(x)�1=2GjG(x)
�1=2; ~Fj = F (x)�1=2FjF (x)

�1=2:

The norm kAkF in (60) is the Frobenius-norm, kAkF =
�
TrATA

�1=2
.
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One can verify that the solution of (60) is the Newton direction by writing out the

optimality conditions (normal equations). For i = 1; : : : ;m, we have

0 = tTr ~Gi

0
@I � ~C1 �

mX
j=1

vNj
~Gj

1
A+Tr ~Fi

0
@I � ~C2 �

mX
j=1

vNj
~Fj

1
A

= tTrGiG(x)
�1 � tTrGiC1 � t

mX
j=1

vNj TrGiG(x)
�1GjG(x)

�1

+TrFiF (x)
�1 �TrFiC2 �

mX
j=1

vNj TrFiF (x)
�1FjF (x)

�1

or

�t
�
ci �TrGiG(x)

�1
�
�TrFiF (x)�1 =

mX
j=1

vNj

�
tTrGiG(x)

�1GjG(x)
�1 +TrFiF (x)

�1FjF (x)
�1
�
:

(61)

This last equation is the de�nition of the Newton direction �r'p(x; t) = r2'p(x; t)v
N.

The Newton decrement at x is de�ned as

� =
�
(vN)Tr2�p(x; t)v

N
�1=2

=

0
@t






mX
i=1

vNi G(x)
�1=2GiG(x)

�1=2







2

F

+







mX
i=1

vNi F (x)
�1=2FiF (x)

�1=2







2

F

1
A
1=2

=

 
t

nX
i=1

�2i +
lX

i=1


2i

!1=2

(62)

where �i are the generalized eigenvalues of the pair
P

j v
N
j Gj , G(x) and 
i are the generalized

eigenvalues of the pair
P

j v
N
j Fi, F (x).

Dual update

The least-squares problem (60) can also be written as a set of linear equations with as

variables vN , and two symmetric matrices UN 2 Rl�l, V N 2 Rn�n:

1

t
G(x)UNG(x) +

mX
i=1

vNi Gi = �G(x)C1G(x) +G(x) (63)

F (x)V NF (x) +
mX
i=1

vNi Fi = �F (x)C2F (x) + F (x) (64)

TrGiU
N +TrFiV

N = 0; i = 1; : : : ;m: (65)

The equivalence of this system of m + l(l + 1)=2 + n(n + 1)=2 equations with the least-

squares problem (60) follows from the optimality conditions of (60). One obtains the normal

equations (61) by eliminating WN and ZN from (63) and (64) and substituting in (65).
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Equations (63){(64) can be rewritten as

1

t
UN + C1 = G(x)�1 �

mX
i=1

vNi G(x)
�1GiG(x)

�1 (66)

V N + C2 = F (x)�1 �
mX
i=1

vNi F (x)
�1FiF (x)

�1: (67)

From this we can make the following observations. Equation (65) and the de�nition of C1

and C2 imply that the matrices W
�
= 1

t
UN + C1, Z

�
= 1

t
(V N + C2) satisfy the equalities

TrGiW +TrFiZ = ci; i = 1; : : : ;m:

Moreover, W and Z are also positive de�nite if the Newton decrement is less than one:

by (62), � < 1 implies that all generalized eigenvalues of the matrix pairs
P

j v
N
j Gj, G(x)

and
P

j v
N
j Fj, F (x) are less than one, and therefore the matrices on the right-hand side of

equations (66) and (67) are positive de�nite.

The important conclusion is that we do not need the exact value of x?(t) to obtain dual

feasible points. As soon as the Newton decrement is less than one, dual feasible solutions

W , Z result as a byproduct of computing the Newton direction. On the central path the

Newton decrement is zero and the dual variables reduce to W ?(t) = G(x?(t))�1, Z?(t) =
1
t
F (x?(t)x)�1. In practice it is impossible to compute x?(t) exactly, and one should therefore

use the formulas (66) and (67) instead of (43).

Tangent to primal central path

There is a similar least-squares formula for tangent direction to the central path. Let x =

x?(t), W = W ?(t), and Z = Z?(t). The vector vp = @x?(t)
@t

is the solution of the least-squares

problem

minimize t







I � ~W �
mX
j=1

vj ~Gj








2

F

+







�t ~Z �
mX
j=1

vj ~Fj








2

F

: (68)

where ~W = G(x)1=2WG(x)1=2 and ~Z = F (x)1=2ZF (x)1=2. This can be veri�ed by working

out the normal equations: for i = 1; : : : ;m, we have

0 = tTr ~Gi

0
@I � ~W �

mX
j=1

v
p
j
~Gj

1
A +Tr ~Fi

0
@�t ~Z � mX

j=1

v
p
j
~Fj

1
A

= t

0
@TrGiG(x)

�1 �TrGiW �
mX
j=1

v
p
jTrG(x)

�1GiG(x)
�1Gj

1
A

� tTrFiZ �
mX
j=1

v
p
jTrF (x)

�1FiF (x)
�1Fj

or

�t(ci �TrGiG(x)
�1) =

mX
j=1

v
p
j

�
tTrGiG(x)

�1GjG(x)
�1 +TrFiF (x)

�1FjF (x)
�1
�

which is, up to the factor t, equal to (45).
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Tangent to dual central path

The tangent to the dual central path can be derived from the solution vp in a very similar

way as the dual update above. We write the least-squares problem as a set of linear equations

in the variables vp, Up and V p,

1

t
G(x)UpG(x) +

mX
i=1

v
p
iGi = �G(x)WG(x) +G(x)

F (x)V pF (x) +
mX
i=1

vpiFi = �tF (x)ZF (x)

TrGiU
p +TrFiV

p = 0; i = 1; : : : ;m:

We can write Up, V p as

Up = t

0
@�W +G(x)�1 �

X
j

vpjG(x)
�1GjG(x)

�1

1
A (69)

V p = �tZ �
X
j

v
p
jF (x)

�1FjF (x)
�1; (70)

and using the expressions W = G(x)�1 and Z = (1=t)F (x)�1, we see that Up and V p are are

identical to @W ?(t)

@t
and @Z?(t)

@t
(see (46) and (47)), again up to a factor t.

Note in deriving the expressions for primal and dual tangent directions we have assumed

that the current x, W , and Z are exactly centered. If x, W , and Z are not exactly on the

central path, we can still compute a primal search direction from (68), and a dual search

direction from (69){(70).

B Complexity of Newton's method

In this appendix we analyze the complexity of Newton's method for minimizing

�p(t; x) = t(cTx+ log detG(x)�1) + log detF (x)�1

subject to F (x) > 0 and G(x) > 0, and for �xed t � 1. We follow Nesterov and Todd[NT94],

and Nesterov and Nemirovsky[NN94].

Region of quadratic convergence

Theorem 4 Let � be the Newton decrement at x. If � < 1, then x+ = x�r2�p(t; x)
�1r�p(t; x)

is strictly feasible, and �+ � �2, where �+ is the Newton decrement at x+.

In other words we have quadratic convergence in the region � < 1.

Proof. Let vN = �r2�p(t; x)
�1r�p(t; x) be the Newton step. As before, we write

�i, i = 1; : : : ; l, for the generalized eigenvalues of the matrix pair
P

j v
N
j Gj , G(x), and 
i,

i = 1; : : : ; n, for the generalized eigenvalues of the matrix pair
P

j v
N
j Fj, F (x).
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It follows from (62) that the eigenvalues �i and 
i are less than one if � < 1. Therefore,

we also have that

G(x+) = G(x)1=2
 
I +

mX
i=1

vNi G(x)
�1=2GiG(x)

�1=2

!
G(x)1=2 > 0

F (x+) = F (x)1=2
 
I +

mX
i=1

vNi F (x)
�1=2FiF (x)

�1=2

!
F (x)1=2 > 0:

This proves the �rst part of the theorem (x+ is strictly feasible).

To prove the second part of the theorem, note that equations (63){(65) are also the

optimality conditions for a least-squares problem in U and V ,

minimize t



I �G(x)1=2C1G(x)

1=2 � 1
t
G(x)1=2UG(x)1=2




2
F

+



I � F (x)1=2C2F (x)

1=2� F (x)1=2V F (x)1=2



2
F

subject to TrGiU +TrFiV = 0; i = 1; : : : ;m:

The solution is UN and V N , and the optimal value is �2. The same is true for �+ if we

replace UN , V N , x by (UN )+, (V N )+, and x+, respectively. Therefore,

(�+)2 = t





I �G(x+)1=2C1G(x
+)1=2 � 1

t
G(x+)1=2(UN )+G(x+)1=2






2

F

+



I � F (x+)1=2C2F (x

+)1=2 � F (x+)1=2(V N )+F (x+)1=2



2
F

� t





I �G(x+)1=2C1G(x
+)1=2 � 1

t
G(x+)1=2UNG(x+)1=2






2

F

+



I � F (x+)1=2C2F (x

+)1=2 � F (x+)1=2V NF (x+)1=2



2
F

Without loss of generality, we can assume that G(x+) = I and F (x+) = I. Then

(�+)2 � t





I � C1 �
1

t
UN






2

F

+



I � C2 � V N




2
F

= t






I �G(x)�1 +
X
i

vNi G(x)
�1GiG(x)

�1







2

F

+






I � F (x)�1 +
X
i

vNi F (x)
�1FiF (x)

�1







2

F

= t



I �G(x)�1 +G(x)�2 �G(x)�1




2
F
+



I � F (x)�1 + F (x)�2 � F (x)�1




2
F

= t





�G(x)�1 � I
�2



2

F

+





�F (x)�1 � I
�2



2

F

�
�
t



G(x)�1 � I




2
F
+



F (x)�1 � I




2
F

�2

=

�
t



G(x)�1=2 �G(x+)�G(x)

�
G(x)�1=2




2
F
+



F (x)�1=2 �F (x+)� F (x)

�
F (x)�1=2




2
F

�2
= �4:
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Theorem 5 If � < 1 then

�(x) � �(x?)� � � log(1� �): (71)

As a consequence, we have �(x) � �(x?) + � if � � 0:81.

Proof. The problem dual to

minimize t
�
cTx+ log detG(x)�1

�
+ log detF (x)�1

subject to G(x) > 0; F (x) > 0
(72)

is
maximize t log detW + log detZ � tTrG0W �TrF0Z + l + nt

subject to tTrGiW +TrFiZ = tci; i = 1; : : : ; ;m

W > 0; Z > 0:

(73)

The duality gap associated with an x feasible in (72) and a W and Z feasible in (73) is

�t log detG(x)W + tTrG(x)W � log detF (x)Z +TrF (x)Z � l � nt:

We will establish (71) by showing that the matrices

~W = C1 +
1

t
UN ; ~Z = C2 + V N

are dual feasible in (73) with a duality gap less than ��� log(1� �).

From (63){(65) it is clear that ~W and ~Z satisfy the equality constraint in (73). If � < 1

then ~W and ~Z are also positive de�nite. This can be seen from (63) and (64):

G(x)1=2 ~WG(x)1=2 = I �G(x)�1=2
 

mX
i=1

vNi Gi

!
G(x)�1=2

F (x)1=2 ~ZF (x)1=2 = I � F (x)�1=2
 

mX
i=1

vNi Fi

!
F (x)�1=2:

If � < 1 then all eigenvalues of G(x)�1=2
�Pm

i=1 v
N
i Gi

�
G(x)�1=2 and F (x)�1=2

�Pm
i=1 v

N
i Fi

�
F (x)�1=2

are less than one, and therefore ~W and ~Z are positive de�nite.

We conclude that ~W and ~Z are strictly dual feasible in (73). The duality gap associated

with x, ~W , and ~Z is

�t log detG(x) ~W + tTrG(X) ~W � log detF (x) ~Z +TrF (x) ~Z � l� nt

= �t log det
 
I �G(x)�1=2

 
mX
i=1

vNi Gi

!
G(x)�1=2

!
� tTrG(x)�1=2

 
mX
i=1

vNi Gi

!
G(x)�1=2

� log det

 
I � F (x)�1=2

 
mX
i=1

vNi Fi

!
F (x)�1=2

!
�TrF (x)�1=2

 
mX
i=1

vNi Fi

!
F (x)�1=2

= t
nX
i=1

(��i � log(1� �i)) +
lX

i=1

(�
i � log(1 � 
i))

� ��� log(1� �):

The last inequality follows from the power series expansion of log(1 � x) around zero (see

also [VB95]).
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Number of steps to reach region of quadratic convergence

We �rst derive an upper bound for �(x+ pv) as a function of p. No assumption is made on

v, i.e., it is not necessarily the Newton direction at x.

Let �i, i = 1; : : : ; l, be the generalized eigenvalues of (
P

i viGi; G(x)), and let 
i, i =

1; : : : ; n, be the generalized eigenvalues of (
P

i viFi; F (x)). Let � = max(0; �max; 
max), and

� = min(0; �min; 
min). Then x+pv is feasible for p 2 (���1;���1) (if � = 0, then the upper

bound of the interval is plus in�nity; if � = 0, then the lower bound of the interval is minus

in�nity).

We have the following property [NT94].

Theorem 6 For p 2 (���1;���1),
1

(1 + p�)2
r2�(x) � r2�(x+ pv) � 1

(1 + p�)2
r2�(x): (74)

Proof. We need to show that for all z 2 Rm,

1

(1� p�)2
zTr2�(x)z � zTr2�(x� pv)z � 1

(1� p�)2
zTr2�(x)z:

Let R1 2 Rl�l be a matrix that simultaneously diagonalizes G(x) and
P

i viGi,

RT
1G(x)R1 = I; RT

1

 X
i

viGi

!
R1 = �;

and let R2 2 Rn�n be a matrix that simultaneously diagonalizes F (x) and
P

i viFi,

RT
2 F (x)R2 = I; RT

2

 X
i

viFi

!
R2 = �:

As a consequence, we have RT
1G(x + pv)R1 = I + p�, and RT

2 F (x + pv)R2 = I + p�. Let
~V = RT

1 (
P

i ziGi)R1, and ~W = RT
2 (
P

i ziFi)R2. Then

zTr2�(x+ pv)z

= tTr

 
mX
i=1

ziGi

!
G(x + pv)�1

0
@ mX
j=1

zjGj

1
AG(x+ pv)�1

+Tr

 
mX
i=1

ziFi

!
F (x+ pv)�1

0
@ mX
j=1

zjFj

1
AF (x+ pv)�1

= tTrRT
1

 
mX
i=1

ziGi

!
R1R

�1
1 G(x+ pv)�1R�T

1 RT
1

0
@ mX
j=1

ziGi

1
AR1R

�1
1 G(x+ pv)�1R�T

1

+TrRT
2

 
mX
i=1

ziFi

!
R2R

�1
2 F (x+ pv)�1R�T

2 RT
2

0
@ mX
j=1

zjFj

1
AR2R

�1
2 F (x+ pv)�1R�T

2

= tTr ~W (I + p�)�1 ~W (I + p�)�1 +Tr ~Z(I + p�)�1 ~Z(I + p�)�1

� 1

(1 + p�)2

�
tTr ~W 2 +Tr ~Z2

�
=

1

(1 + p�)2
zTr2�(x)z:
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This proves the upper bound in the theorem. The lower bound is derived in a similar way.

By integrating the upper bound twice we obtain an upper bound on f(p) = �(x+ pv),

f(p) � f(0) + pf 0(0) +
f 00(0)

�2
(p� � log(1 + p�)) ; (75)

assuming � < 0. The upper bound (75) reaches its minimum for

bp = �f 0(0)
�f 0(0) + f 00(0)

:

If v is the Newton direction, we have f 0(0) = �f 00(0), and the expressions simplify: bp =

1=(1 � �), and the corresponding upper bound is

f(bp) � f(0) +
f 00(0)

�2
(� + log(1� �)) :

To obtain an expression in terms of the Newton decrement �, we use the fact that f 00(0) = �2

and 0 > � � ��, which yields

f(bp) � f(0) � (�� log(1 + �)) : (76)

Proof of Theorem 3

We are now in a position to prove Theorem 3. For simplicity, we write '(0) = 'p(t; x
(0)), and

'? = 'p(t; x
?(t)). We will prove that the Newton algorithm of x5 terminates within

10:7('(0) � '?) + log2 log2(1=�)

iterations.

We �rst consider the initial stage of the algorithm (� � 0:5). By (76) we know that the

function �p(t; x) decreases by at least

�� log(1 + �) � 0:5 � log(1:5) = 0:094

at each iteration. The number of iterations required to reach � � 0:5 is therefore bounded

above by

(1=0:094)('(0) � '?) � 10:7('(0) � '?):

During the second stage the algorithm converges quadratically and �(k+1) � (�(k))2.

Hence �(k) � � after at most

log2(log2(1=�)) + 10:7('(0) � '?)

iterations. To complete the proof, we note that by Theorem 5

'(x)� '? � �� � log(1� �) � �

if � � 0:5.
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