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Abstract 

 

Mobile applications markets with App stores have introduced a new approach to define and sell 

software applications with access to a large body of heterogeneous consumer population. This 

research examines key seller- and App-level characteristics that impact success in an App store 

market. We tracked individual Apps and their presence in the top grossing 300 charts in Apple 

App Store and examined how factors at different levels affect the Apps’ survival in the top 300 

charts. We used a generalized hierarchical modeling approach to measure sales performance, 

and confirmed the results with the use of a hazard model and a count regression model. We find 

that broadening App offerings across multiple categories is a key determinant that contributes to 

a higher probability of survival in the top charts. App-level attributes such as free App offers, 

high initial ranks, investment in less popular (less competitive) categories, continuous quality 

updates, and high volume and high user review scores have positive impacts on Apps’ 

sustainability. In general, each diversification decision across a category results in 

approximately a 15% increase in the presence of an App in the top charts. Survival rates for free 

Apps are up to two times more than that for paid Apps. Quality (feature) updates to Apps can 

contribute up to a three-fold improvement in survival rate as well. A key implication of the 

results is that sellers must utilize the natural segmentation in consumer tastes offered by the 

different categories to improve sales performance. 

 

Keywords: App store market, mobile software sustainability, product portfolio management, 

survival analysis. 
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Determinants of Mobile Apps Success: 

Evidence from App Store Market 

Introduction 

 

Variety's the very spice of life, That gives it all its flavor  

- William Cowper, 1785 

Mobile applications are one of the fastest growing segments of downloadable software 

applications markets. Many mobile application markets such as Amazon Appstore, Blackberry 

App World, Google Play Store, and Apple App Store have emerged and grown rapidly in a short 

amount of time. Since Apple App Store (henceforth, AppStore) launched with only 500 Apps 

and a dozen developers in July 2008, the market has increased to over 845,900 Apps and 

226,500 unique sellers in April 2013
1
. This rapidly growing market has in turn led to over 500 

million AppStore users downloading around 40 billion Apps in 155 countries and the platform 

had paid out over 7 billion dollars to App developers in 2012
2
.  

Mobile App store markets exhibit key characteristics of “long tail market” [3] such as a large 

selection of digital products and relatively low user search costs. However, App store market 

structure has some key differentiating characteristics that set it apart from a number of previously 

examined long-tail market contexts such as books [13], music [29], and movies [26, 36]. First, 

sellers in mobile App markets have a single channel for selling their product (especially in case 

of Apple’s App market) and terms of access to the market are uniformly determined for all 

                                                        
1
 Apple’s App Store Report (April, 15

th
, 2013), 148Apps, available at http://148apps.biz/app-store-metrics/ 

2
 App Store Tops 40 Billion Downloads with Almost Half in 2012 (January 17

th
 , 2013), Apple, available at  

http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html 

http://148apps.biz/app-store-metrics/
http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html
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sellers. Second, unlike creators of music and DVDs, App developers/sellers have the opportunity 

to change not only price, but also the features and characteristics of the App based on user 

feedback and reviews. Third, sellers in mobile App markets compete more directly with other 

developers, irrespective of whether Apps are intended for hedonic consumption (such as 

crossword puzzles) or utilitarian purposes (e.g., teleprompters). Comparing competing Apps 

within a category is easier than, say, comparing music offerings within a genre. Fourth, while in 

many long-tail markets versioning is restricted to release times or superficial features (such as 

hard-cover vs. paperback), mobile Apps offer a greater range of flexibility to sellers in 

versioning strategies (e.g., feature based or price based differentiation, in-app purchases, 

subscription length, etc.). Finally, sellers can reuse features and codebase from one App to 

another, thereby quickly building a portfolio of Apps across various (and often unrelated) App 

categories. The portfolio perspective, in fact, is the most distinguishing facet of mobile App 

markets that we intend to explore in this research.   

It is evident from a quick look at mobile App offerings on the AppStore that a portfolio approach 

to mobile App offerings is quite common. Sellers in AppStore offer an average of 6.8 Apps 

across 2.7 categories. More interestingly, nearly 40% of sellers offer more than 10 Apps and 

about 60% of the sellers have Apps in more than one category (see Table 1). 

Number of Apps 
Cumulative 

Percent of Sellers 
Number of Categories 

Cumulative 

Percent of Sellers 

1 17.8% 1 38.0% 

2 ~ 5 45.7% 2 ~5 81.3% 

6 ~ 10 59.8% 6~10 94.1% 

10 ~100 88.5% 11~15 98.4% 

> 101         100.0% > 15        100.0% 

Table 1. Number of Apps and Categories in Apple App Store 

 While sellers can address heterogeneous consumer preferences by offering Apps across different 

categories [53], specialization within categories can allow sellers to develop distinct 
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competencies and benefit from scope economies through reduced product development costs [9]. 

Using key tenets of product portfolio management theory and theory of economies of scope, this 

study empirically investigates how sellers’ App portfolio strategies are associated with sales 

performance over time. Utilizing a longitudinal panel data of sales performance over 39 weeks, 

we model App survival in the weekly charts within App categories. We consider the impact of 

both seller-level and App-level properties on an App’s survival in the top charts. Our main 

research objective is to understand how sellers’ App portfolio affects sales sustainability in the 

AppStore. We also intend to develop insights into how App specific decisions (such as free 

offerings, price changes and updates) affect sales performance and sustainability of individual 

Apps.  

The key contributions of this research to the extant literature are as follows. First, we show that 

specific portfolio properties affect sales performance sustainability in high velocity software 

markets such as the Apple’s App Store. Using the rich data context of the App store market, we 

overcome key methodological barriers to understanding portfolio impacts on sustained sales 

performance. By utilizing three different types of models (a generalized hierarchical linear model, 

a hazard model, and a count regression model), we provide empirical evidence to show how 

sellers’ App portfolio management influences success in App markets. In general, we find that 

each diversification decision across a category results in approximately a 15 % increase in 

survival probability. Moreover, we find that free offering, higher debut rank, investment in less 

popular categories, continuous feature updates, and higher user review scores on Apps have 

positive impacts on Apps’ sustainability. 
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Theoretical Foundation  

Product Portfolio Management 

Day [25] defines product portfolio as “a decision on the use of managerial resources for 

maximum long-run gains.” Extant marketing literature identifies two different product portfolio 

management strategies: product proliferation and product concentration. By offering highly 

divergent product lines, firms can satisfy consumers’ desire for variety seeking [4, 49] and meet 

customer need in a manner superior to competitor’s product offerings [53]. However, in spite of 

these merits of product diversification, some firms successfully pursue the opposite strategy of 

concentrating on specific product lines. The narrower product line helps the firms to lower unit 

production costs when scale economies are present by lowering inventory costs, and reducing 

complexity in assembly. Hence, the success of product proliferation depends not only on the 

firm’s market, but also on firm specific properties.  

However, past research has found no evidence of a positive relationship between product 

concentration and sales performance [21].  Many studies applying financial portfolio theory to 

product portfolio management [17, 28] show that correlations across similar product categories 

lead to a higher risk profile for the firm. Therefore, diversification of Apps over selling 

categories has the potential to improve product portfolio’s risk-return profile.  

There is still lack of research in understanding the association between information goods 

portfolio management and sales performance. Extant research on long tail markets of 

information goods such as DVDs and books have not considered product portfolio effects, but 

only long tail properties and intermediation/disintermediation effects [13, 46]. Although 

Brynjolffson [14] suggested a research agenda that studies shifts in product variety and 

concentration patterns driven by information technology, their research focus is still limited to an 
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issue of shaping a long tail (broadening niche products for product variety) or Superstar effect 

(concentrating on a few popular products for product concentration). However, as Brynjolffson 

[14] suggest, technological (changes in search, personalization, and online community 

technologies) drivers and non-technological drivers (price premium and social interactions with 

other consumers) have shifted the consumption and production patterns of niche and popular 

products. In App store markets, technological drivers are playing an especially important role in 

increasing sellers’ incentives to create various Apps with a lower barrier to entry and a large 

network of users, while also increasing users’ incentives to purchase Apps that satisfy their tastes 

with lower search costs and a large selection of Apps.  

A key driver of portfolio decisions in App store markets will be the ability to create scope 

economies by developing and leveraging product development capabilities across a number of 

different categories of mobile App offerings. We argue that the lower barriers to entering 

different category segments enables sellers to expand their offerings beyond what has been 

considered in product portfolio literature. Additionally, the ability to alter App offerings based 

on specific information gleaned from sales, usage patterns, and user feedback enables sellers to 

update their product offerings almost on a constant basis, thus setting up a high velocity market 

environment. We expand on the notion of scope economy in the following paragraphs.  

 

   Scope Economies 

The theory of scope economies provides a rationale for associating broadening product selections 

with sales performance. Economies of scope refer to the cost and revenue benefits through the 

production of a wider variety of products across related settings rather than specializing in the 

production of a single product [39, 48]. A firm’s ability to leverage investment experience and 
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knowledge from one setting to another can confer significant performance benefits.  Bailey and 

Friedlaender [8] argue that firm-level scope economies are crucial for multi-product industries 

and present that, in a competitive market, multi-product firms better survive as compared to 

single-product competitors since the economies of scope bring about a significant cost advantage 

(e.g., transaction costs) to those firms. In this context, Cottrell and Nault [22] utilized the theory 

of scope economies in production and consumption to examine the association between product 

variety and scope economies in the microcomputer software industry in the 1980s by using firm- 

and product-level information on bundling of functionalities over application categories and 

computing platforms. The main results indicate that there are scope economies in the 

consumption of microcomputer software, and so firms with software that includes more 

application categories (e.g., database, graphics, and word processor) have better sales 

performance and product survival since a customer may prefer to purchase a variety of products 

from the same vendor. There are several distinctive characteristics of the App market that 

warrant examination of scope economies in App markets. For example, at the outset, scope 

economies in production appear to be much stronger in App markets because of the predominant 

focus on hedonic consumption as opposed to utilitarian consumption [5].  On the other hand, 

hedonic consumption can also contribute to a diminished importance of scope economies in 

consumption since interoperability between Apps may not yet be of great importance to 

consumers [20, 35]. App markets are also distinct from software markets of the 80’s in that there 

is a single distribution channel today for Apps and channel access is not constrained for any 

single type of sellers. Examination of App portfolio related issues is still nascent in IS literature. 

Most recently, Lee and Raghu [40] used a cross-sectional analysis of portfolio decisions in the 

App market to demonstrate that App portfolio diversification over multiple categories is 
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positively correlated with success in App sales. In this research, we utilize data at multiple levels 

(seller and App properties) to examine longitudinal impacts on sales performance.  

In summary, consistent with main tenets in theory of product portfolio management and theory 

of scope economies, we predict that a large selection of mobile Apps (i.e., the number of 

products) and diversification across selling categories (i.e., product diversity) increase the 

success of App sales. In the following section, we outline our research approach by describing 

the empirical models and data collection.  

 

Empirical Approach and Data Descriptions  

  Survival Analysis 

The main empirical question in this study is the sustainability of sales over time. To establish the 

association between a seller’s App portfolio characteristic and Apps’ sustainability in the top 

charts, we utilize multiple approaches. Our definition of success is restricted to 

appearance/reappearance of Apps in the top-charts over time. Since Apps can frequently appear 

and disappear on top charts, both survival duration (between an appearance and disappearance) 

and the total length of time spent on the top charts are relevant measures of success. Therefore, 

we use survival analysis techniques to measure sales performance [22, 56]. We observe survival 

(or exit) for all products and all sellers, and survival of the App in the top charts is a necessary 

condition for success. Finally, the exit of an App for extended durations from the top charts can 

indicate poor performance [54]. 

In our empirical model, the success of App sales is influenced by a seller’s decisions at two 

levels. At the App-level, seller decisions frame certain App-specific properties before launch 

such as category, price, and certain properties after launch such as quality and price updates. A 
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seller’s effort on App development is reflected in users’ review scores and initial popularity [26]. 

For example, an App’s initial popularity (a debut rank) could be influenced by a seller’s 

promotion and advertising efforts prior to the release of App, and users’ reviews on Apps also 

could be affected by sellers’ ability to manage consumer expectations and preferences.  

For seller-level decisions, a seller having multiple Apps formulates a macro-level sales strategy. 

Determining whether to create Apps across various categories or in a few categories is made at 

the seller-level. We summarize the main aspects of our empirical approach in Figure 1. 

 

Figure 1.Sustainability of App Sales: Empirical Approach 

   Data Description 

Data for our analysis were collected for the top 300 Apps provided by the AppStore. AppStore 

provides three different charts of Apps: Free, Paid, and Top Grossing charts. Although Apple 

does not release the specific way it computes the rankings, it reveals how ranking is usually 

determined. The rank is calculated based on downloads in the most recent window of time 

(typically a week, but the window itself creates a moving average) for free and paid Apps, 

overall and within the 20 offered App categories.
3
 A large portion of free Apps (80%) also 

                                                        
3 Apple App Store provides 20 different categories (as of September 2011): Book, Business, Education, 

Entertainment, Finance, Games, Healthcare-fitness, Lifestyle, Medical, Music, Navigation, News, Photography, 

Productivity, Reference, Social-networking, Sports, Travel, Utilities, and Weather. 
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includes in-app-purchase options. In order to complement the limitations of free and paid charts, 

we used the top grossing charts, thus combining free and paid Apps in a single chart.  

We collected the top-charts data for each week, on a specific day of the week, from December 

2010 to September 2011. During this period of 39 weeks, a total of 17,697 Apps offered by 

8,627 unique sellers appeared on the chart (a total of 530,503 observations). To observe an App’s 

and a seller’ discrete survival at a specific study week and survival duration in the top 300, 200 

and 100 charts, we tracked an individual App’s (seller’s) elapsed time to list in the top 300 by 

using data from Apple’s iTunes. Every App in the dataset has its release time and the first time to 

hit the top 300. The Apps released before the starting date of data collection were censored since 

we are not able to observe key App properties in the past. Therefore, Apps that made the top 300 

chart before the study period were dropped from the dataset.  However, an App released after our 

data collection date (Week 1) has both (1) valid released date and (2) the first date to hit the top 

chart. Time (1) and time (2) could be the same when an App was ranked in the top 300 at its 

debut week.  

The iTunes store provides individual App’s rank, seller (or publisher), title, price, category, 

released date, updated date, description, user review score, and number of user reviews. From 

given information on Apps, we tracked the survival of individual App at each study week, 

calculated elapsed time of individual App to exist in the top charts, and obtained data on each 

seller’s specific properties such as total number of Apps and number of categories in the top 300, 

200, and 100 charts. Finally, we validated our data by comparing the actual figures (e.g., a 

portion of free Apps, a seller’s number of Apps/categories, and a portion of (un)popular 

categories in AppStore) produced by popular mobile application tracking websites: App148.biz 

(information on the number of Apps under different categories and prices) and AppStoreHQ.com 
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(seller’s information), and we confirmed our descriptive statistics were very close to those 

figures. 

 

    Data for Survival Analysis  

We created two different sets of data for analyzing App success (an App’s survival) at each 

discrete point in time and survival duration in the top charts). To record the survival of an App as 

a discrete time event, we tracked all Apps that Appeared in the top 300 charts during the study 

period, and coded an App that appeared in the chart as a survival (“1”), or otherwise as an exit 

(“0”) if the App dropped from the charts. The discrete event approach does not pose censoring 

issues. 

 Survival duration relied on a continuous time scale and therefore had to censor some 

observations. When survival data is analyzed on a continuous time scale (e.g., hazard models), 

all observations in the sample may not have terminated or the exact initial times of all events 

may not be known [45]. This was an issue in our data as well. For the 300 top grossing charts, 

we censored 66.3% from the observed Apps as follows: Apps that already appeared before the 

study (left-censoring), were still alive at the end of study (right-censoring), and exited and 

reappeared over the study period (interval-censoring) were cut off. Thus, the final dataset for 

continuous survival time analysis consisted of 7,579 Apps in the top 300 charts provided by 

3,882 sellers. The set of variables extracted from our dataset is shown in Table 2. 
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       Variable Names                     Description of Variables Mean (S.D.) Min.      Max. 

      Dependent Variables 

Generalized Mixed Model (Model I) 

App_survival_top100 1 if an App was listed in the top 100 at time t                  .109(.312) 0 1 

App_survival_top200 1 if an App was listed in the top 200 at time t                  .223(.416) 0 1 

App_survival_top300 1 if an App was listed in the top 300 at time t                  .338(.473) 0 1 

Survival Analysis Model (Model II) 

Seller_survival_time_top300 Seller survival time in the top 300 charts 30.372(8.267) 1 39 

Seller_censor_top300 1 if a seller is censored in the top 300 charts .554(.497) 0 1 

App_survival__time_top300 App survival time in the top 300 charts 19.708(9.009) 1 39 

App_censor_top300 1 if an App is censored in the top 300 charts .662 (.475) 0 1 

Count Regression Model (Model III) 

Seller_num_apps_top100 Number of Apps in the top 100 charts .976(2.169) 0 22 

Seller_num_apps_top200 Number of Apps in the top 200 charts 2.334(4.371) 0 37 

Seller_num_apps_top300 Number of Apps in the top 300 charts 4.211(7.007) 1 55 

     Seller-specific Explanatory Variables 

Seller_num_app Total number of Apps offered by the same seller  128.721(751.947) 1 6049 

Seller_num_cate Total number of categories offered by the same seller 3.425(3.165)    1 20 

Seller_num_app * num_cate 
An interaction of Seller_num_app and 

Seller_num_cate 
 1075.145(7193.508) 1 83623 

     App-specific Explanatory Variables 

App_free _price 1 if an App offered is for free .121 (.296) 0 1 

App_initial_rank An App’s initial debut rank. 182.679(87.049) 1   300  

App_popular_cate 1 if an App is in the most 3 popular categories .149 (.342) 0 1 

App_unpopular_cate 1 if an App is in the least 3 popular categories .138 (.356) 0 1 

App_price_promotion 1 if an App’s price was decreased in week t .110 (.344) 0 1 

App_quality_update 
1 if an App’s quality indicators were updated 

(adding more App features or fixing bugs)  
.250 (.433) 0 1 

App_review_avr Averaged user review points (1 to 5 scale)  2.437 (1.230) 0 5 

App_review_num Total number of user reviews 1561.362 (14153.106) 0 626439 

App_age_of_app Time elapsed after initial release date 412.074(270.454) 0 1162 

App_util_hedonic 
1 if an App is in the hedonic categories 

0 if an App is in the utilitarian categories 
       .593(.491)  0 1 

Table 2. Summary Statistics of the Dataset 

   Definition of Measures 

    Dependent Variables 

Since Apple does not release actual sales figures to the public, our measures for sales 

performance and App’s sustainability are based on rank information. Many recent studies show 

that the demand (or sales amount) can be estimated from publicly available rank information [15, 

19]. Consistent with these findings, we measure an App’s ranking as a proxy for an Apps’ actual 

sales performance.  

App_survival: An App’s survival in the top charts (a dichotomous variable).  



14 
 

Seller(App)_survival_time_top 300: A dependent variable indicating the elapsed time since the 

first appearance of the seller/App on the top 300 chart.  On average, seller/Apps have a survival 

time of 30.4/19.7 weeks.  

Seller(App)_censor_top300:  A dummy variable representing whether an App is considered in 

the survival analysis. In the top 300 chart, Apps having unknown initial times (31%), exit times 

(43%), and exited and reappeared (19%)-discontinuous survival times-were considered censored 

(these properties overlapped). As a result, 55% of sellers (66.3% of Apps) in the charts were 

censored.   

Seller_num_apps_top: A variable measuring a seller’s sales performance. We evaluate a seller’s 

sales performance (or sales success) by counting the total number of Apps in the top grossing 

100, 200, and 300 charts across all 20 categories.  

 

     Explanatory Variables of Product Portfolio Management 

Several seller-level attributes related to App portfolio management were utilized to examine the 

marginal impact of increasing one more App and category on sales performance.  

Seller_num_app: The total number of Apps offered by a seller on AppStore.  

Seller_num_cate: The total number of categories that include a seller’s Apps. This is computed 

by the sum of categories that contain at least one App. This measure is used as a proxy for 

measuring the diversification of Apps over multiple categories (i.e., categories scope). 

Seller_ num_app*num_cate: An interaction term between Seller_num_app and Seller_num_cate. 

It was used for examining the marginal impact of adding one more App/category on App success. 

Since the creation of a new App (i.e., increase in the number of Apps) entails a decision on 

whether to stick with existing category(ies) or expand to a new category, the model includes the 
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interaction term of Seller_num_app and Seller_num_cate to address how this decision on App 

portfolio is associated with App sales. 

 

    App-Specific Control Variables 

Presumably, the sales performance of a seller/App can be affected by App-specific attributes in 

addition to seller’s App portfolio. Therefore, we include App-level properties that are potentially 

associated with the survival time of a seller/App. 

App_free_price: A dummy variable representing whether an App is offered for free. While 

34.5% of all Apps in the AppStore are free Apps, around 80% of free Apps include in-app-

payments. In our sample 12% of Apps are completely free of charge, but we do not separate 

purely free Apps from those having in-app-purchase options. 

 App_Minus_initial_rank: The popularity achieved on the first appearance on the top 300 (i.e., 

reversed rank). This measures the initial popularity of an App (i.e., the amount of downloads in 

the first week). 

App_popular_cate and App_unpopular_cate: A dummy variable revealing whether an App is in 

the most (least) three popular categories. According to 148 apps.biz, three popular categories 

take around 40% of all Apps in AppStore: 17.26% Apps for games, 10.97% Apps for books, and 

10.32% Apps for entertainment. The three least popular categories take only 4%: 1.85% for 

medical, 1.64% for navigation, and 0.42% for weather. 

App_price_promotion: A dummy variable representing whether an App had a promotional offer 

over its survival time. Generally, the App has three price update processes. First, a seller lowers 

the App’s price for a short time period. Second, the seller keeps the same price as in the previous 

week. Third, the seller returns it to the original price.  These price update processes for all Apps 
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in the dataset were recorded, and we considered the first case of price update as a price 

promotion. 

App_quality_update: A dummy variable indicating whether an App had at least one update. Any 

change in Apps was defined as a quality update (with a version number change). App users can 

observe the update of an App without downloading. For example, AppStore provides an updated 

date of every App. If the update date is different from the released date, the App was updated at 

least once. Furthermore, each App’s description includes the update information (sometimes 

even including a lengthy description of what new updates/features have been added). Therefore, 

the latest update can be a signal reflecting quality of App and a seller’s effort.  

App_review_avr and App_review_num: Those two variables indicate the weekly averaged review 

scores (on a scale of 1-5) and the cumulative number of user reviews respectively.  

App_age_of_app: the number of days elapsed after an App was released. This variable controls 

the endogenous time effects on an App’s survival. 

 

Empirical Models 

In order to investigate the association between a seller’s App portfolio management strategy on 

successful App sales (product-level) and overall sales performance (producer-level), we have 

utilized three different models: a generalized hierarchical linear model (GHLM), a Cox hazard 

model with frailty, and a count regression model. Since many Apps move in and out of the top 

charts, modeling just the survival without re-entry can limit the analysis. Further, since sales 

performance is affected by variables at multiple levels (e.g., time, App properties and seller level 

properties), a hierarchical approach to analyzing performance would be appropriate. Thus, we 

mainly rely on GHLM approach. The other two models are used here to augment and support the 

main results from GHLM.  
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   Generalized Hierarchical Linear Model 

Generalized hierarchical linear model is widely used in social and behavior research that have a 

hierarchical data structure, with individual observations nested within groups. The multilevel 

regression model is most appropriate for data structures that have many levels because it is more 

flexible and more parsimonious than analysis of variance-type models [31].  

Our data at the first level include the repeated measures (survival of an App in the top charts) 

over 39 weeks, the second level predictors account for the variation in mean of survival within 

Apps, and the third level accounts for variation in intercepts and slopes among sellers. 

Consequently, we set up a logistic mixed linear regression to predict the survival of an App from 

the multilevel explanatory variables: 

                          

tLevel-1(Time ): _ ln (1)
ijt

ijt

App_survival

ijt ijt

App_survival

P
logit(App survival )=

1- P


 
  
 
 

       
                                               

 

Equation (1) is a binomial model with a logit link function (i.e., a logit transformation function) 

providing the relationship between the linear model and the mean of the logit distribution 

function.  In other words, this transformational link connects the untransformed dependent 

variable, which is bounded by 0 and 1 and is non-normal (i.e., App_survivalijt), to a new 

transformed variable πijt. App_survivalijt indicates the survival of App i offered by a seller j at 

time t. Since for binary variables, the variance is determined by the mean, there is no residual 

term for the first-level error variance.  

One of the biggest challenges with a logistic model is that the results of this analysis are highly 

vulnerable to the assumption that observation (measures) is independent. Since the data involves 

39 repeated measures of an App’s survival in the chart, there might exist correlations among the 

observations made from the same App. If the independence of observations fails to hold but a 
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maximum likelihood logistic regression is used to estimate the standard errors of parameter 

estimates one may conclude that something is significant when it actually is not. Thus, we 

introduce a correlation structure among the repeated measures to account for correlations among 

the events of an App. The correlation among the repeated observations made from the same App 

(nested within an App) was assumed to be autoregressive. We assume that the current survival of 

an App at t is influenced by predictors at t-1, autoregressive (1). Therefore this model 

specification controls for whether an App is shown in the top chart in the last period.  

The regression coefficient (πijt) varies across the App, and we model this variation with 

predictors at the App level. Then, model for the (πijt) becomes: 

i

5 6

Level-2 (App ) _ ) _ _

_ _ _ (2)

ijt 00j 01j ijt 02j ijt 03j ijt-1

04j ijt-1 0 j ijt 0 j ijt

0

: = + (App free_price + (App_minus initial_rank) + (App price_promotion)

+ (App quality_update) + (App popular_cate) + (App unpopular_cate)

    

  

 7 8 9 0( _ ) ( _ _ ) _ _ _j ijt-1 0 j ijt-1 0 j ijt-1 ijApp review_avr + App log review_num + (App age of app) +  

 

In equation (2), β00j and β0ij are the intercept and slopes for the regression equation used to 

predict (πijt). τ0ij is error term for Appi and assumed to be normally distributed (i.e., mean of 0 and 

variance of σ2
τ).  It accommodates un-modeled variability for the App-level part. 

It is also desirable to construct a time-lagged dataset through which the impacts of App-level 

explanatory variables on a subsequent survival event could be longitudinally assessed. Time-

varying variables at t-1 were used to examine whether an Appi is listed in the top chart at t. It 

takes account of the effect of endogeneity (reverse causation) into the presented model. 

Similarly, equation (3) includes seller-level predictor variables and accounts for variation among 

sellers.  
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Equation (3) indicates that while seller-level predictors for App portfolio management only 

influence the mean of App’s survival (β00), App-level predictors have unconditional random 

intercepts (μ) and slopes (γ) at seller-level to examine how App-specific properties vary under 

different sellers. Thus, we assume that App-specific decisions are not affected by variables at the 

seller-level. The residual term of u00j accommodates the un-modeled variability at the seller-level. 

 Finally, substituting (2) and (3) into (1) yield a combined multilevel model as follows:         
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The combined equation shows the single mixed-model equation and reveals that our model has 

13 fixed effects (coefficients of ϒ) and 11 random effects (coefficients of μ and τ). Notice that 

there is no cross-level interaction effect, because seller-level predictors are allowed to affect only 

the intercept in Level-2.  

 

   Hazard Model 

We measure the impact of a seller’s product portfolio strategy and App-level properties on Apps’ 

and sellers’ survival times in the charts by using a set of hazard models. Traditional survival 

analysis approaches assume homogenous populations and the same hazard of having an event for 

individuals. Consequently, they do not account for the problem of dependence caused by 

unobserved heterogeneity [58]. Thus, the standard errors may become too small, and may 

subsequently lead to misleading significance of estimates and high p-values [1]. Therefore, we 
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conduct the survival analysis of nested data, and use a frailty term to account for unobserved 

heterogeneity at seller level. We utilize four distinct hazard models. The first two models are 

Cox semi-parametric models, and the other two are parametric models with Weibull and logit 

functions.  

A Cox proportional hazards (PH) model assesses the relationship of predictor variables to 

survival time t of App i.  Cox PH model allows us to handle both continuous and categorical 

variables and to estimate the parameters for each covariate without specifying the baseline 

hazard [23].  

The first model is a reference model that examines the net effect of each explanatory variable on 

the hazard function to measure the App’s survival in the chart. The hazard function of App in the 

top 300 is presented as: 

      hi(t | Xj, Zij) = exp(βXj + δZij) ∙ h0 (t)                               (5)
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h0(t) is a non-parametric baseline hazard, and Xj  and Zij are the vectors of the covariates for the 

seller j and App i offered by seller j, β and δ are coefficients of the covariates estimated from 

Maximum Partial Likelihood Estimates (MPLE) and it represents the effect of the covariates on  

hazard rate.  When the parameter estimate of an explanatory variable is positive (negative), we 

can conclude that an App i’s hazard rate (or rates of exiting from the top charts) increases 

(decreases) with the variable.  

The second model is a Cox model with a frailty term. It examines how Apps’ survivals in the top 
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charts vary at the seller level. The hazard rate for Cox model with frailty is as follows: 

     hi(t | Xj, Zij) = exp(βXj + δZij) ∙ rj∙ h0(t)                               (6) 

rj represents the random (frailty) term for a seller j who offers individual App i. The frailty 

components of rj are assumed to be distributed as gamma with mean one and an unknown 

variance θ [2, 30, 34]. The penalized partial likelihood approach was used for fitting the frailty 

model [50]. Since the baseline hazard for the first two models is not specified (i.e., non-

parametric baseline hazard) and the true underlying model is not given, we introduce two 

parametric hazard models (a Weibull random-effects hazard model and a discrete-time logit 

random-effects hazard model) with frailty to check if the frailty term in a Cox frailty model (i.e., 

the third model) is significant. The random terms in the Weibull hazard model and the discrete-

time logit model are assumed to follow the gamma distribution [43] and the normal distribution 

[1] respectively. For a hazard model, the inclusion of time-varying variables can introduce 

endogeneity [10, 11, 37]. Endogenous time-varying covariates cause bias in coefficient estimates 

[33]. Since our hazard models include both time-independent (e.g., App_free_price, 

App_popular cate, and App_minus_initial_rank) and time-varying (e.g., Seller_num_app, 

Seller_num_cate, and App_review_num) covariates, the estimates from those time-dependent 

covariates are subject to the effect of endogeneity.   

Goodliffe [33] suggested a set of approaches that fix the problem of endogenous time-varying 

covariates in a hazard model based on relevant prior literature: (1) drop the covariate only; (2) 

ignore the problem [6]; (3) jointly model the duration and the time varying covariate [24]; (4) use 

the ideas of simultaneous equations to duration models [7]; (5) include the covariate, but drop the 

time-varying portion [33]. While the first four approaches have statistical problems of omitted 

variables, bias in coefficient estimates, complexity in modeling, and difficulty in finding a true 
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instrument, the fifth approach works best by “taking away the part of the covariate that is mostly 

likely to be tainted by reverse causation” [33].  In line with his suggestion, we used the time-

invariant explanatory variables. In other words, we used the averaged values of time-dependent 

covariates (e.g., averaged review score and review number) over an App’s survival duration and 

introduced dummies for time-varying variables such as App_price_promotion and 

App_quality_update (i.e., if an App’s quality indicators / price were changed at least once), and 

ignore the changes in those covariates. This approach resulted in no major changes to parameter 

estimates and therefore we conclude that endogeneity bias is not likely impacting our results.  

 

   Count Regression Model 

In order to reexamine the main results from GHLM, we have run a pooled count regression 

model for individual sellers across 39 weeks. One-week time lag is used for estimating 

associations between seller-level explanatory variables at t-1 (Xjt-1) and a seller’s number of Apps 

in the top chart at t, Seller_num_apps_topjt.  

                        E [Seller_num_app_topjt | Xjt-1] = βX jt-1 + εj                                                (7)            

The two supplemental models have some potential limitations for fitting the data into a 

multilevel framework. The hazard model censors Apps not having continuous durations over the 

study period (55% of the Apps were censored). Hierarchical survival analysis approach has not 

been well established due to its complex estimation procedure where the solutions are not usually 

expressed in closed form [51]. With GHLM, it is possible to utilize a discrete survival time 

approach, in which the survival to an event at a discrete time is a binary dependent variable, and 

incorporate hierarchical structure in the data [1]. 
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Since the dependent variable of a count regression model is numbers of Apps in the charts of 

individual seller, the model does not include App-level explanatory variables, and so the App-

specific properties that may affect the sales performance are ignored in the modeling setting. In 

the GHLM, since the survival time of a seller in the top chart does not consider the presence of 

multiple Apps in the top chart, the seller’s exact sales performance in a specific period may not 

be taken into account. The count regression model allows us to examine how a seller’s 

assortment of Apps across various categories affects the total number of Apps in the top charts. 

 

Results  

The results from fitting a generalized hierarchical linear model appear in Table 3. While we have 

not reported the correlation matrix, we did not find any strong correlations between explanatory 

variables; the highest correlation (ρ=-.350) among explanatory variables is between 

App_minus_initial_rank and App_price_promotion. Further, we tested for the presence of 

multicollinearity by means of Variance Influence Factors (VIF) of each explanatory variable. 

The largest VIF was below 2.0, which indicates that multicollinearity was not a problem in the 

models.   

In order to examine model explanation power due to the addition of random and fixed 

explanatory variables, we sequentially ran Model I in five iterations. Model I(0) is a confound 

logistic regression model that included all predictor variables without controlling cross-level 

interactions. As a baseline (null) model, Model I(1) includes an unconditional intercept only. 

Model I(2) and Model I(3) incorporate level-2 and level-3 fixed and random effects respectively. 

Finally, Model I(4) combines all fixed and random effects across Level-2 and Level-3.  

The ability of a model to predict better than a baseline model was used as an index of Goodness 

of Fit. In hierarchical linear model, the deviance test is mostly used to compare the fixed and 

random effects of competing models [44]. Improvements in predictability were determined by 

the proportional reduction of deviance compared with the null (baseline) model [16]. 
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We also compared the resulting model with no lag effect to one with a one-week lag effect in 

explanatory variables. The model with a lag effect had a lower deviance (from 391687.24 to 

387891.21) as compared to the model with no lag. Since larger sample size generally leads to 

increased significance, we used a more stringent p <.005 as the significance limit. Additionally, 

we considered practical significance of the coefficients in interpreting the findings.  

 

Model I (0) 

(Confound model) 
N=530,503 

Model I (1) 

(Intercept only) 
N=530,503 

Model I (2) 

(+ Level-2) 
N=530,503 

Model I (3) 

(+ Level-3) 
N=530,503 

Model I (4) 
(+ Level-2 

+Level-3) 

N=530,503 

Fixed Effects      

  Intercept (r000)   -.993(.012)***   -.909 (.017)***     -.673(.040)*** -1.161(.022)***    -.404(.041)*** 

  Seller_num_app (r001)    .000(.000)     -.001(.000)***     .002(.000)*** 

  Seller_num_cate(r002)    .024(.001)***     -.054(.003)***     .152(.006)*** 

  Seller_num_app*num_cate (r003)   -.000(.000)***      .000(.000)***  -.0002(.000)*** 

  App_free_price (r010)    .408(.016)***        .573(.067)***          .536(.067)*** 

  App_minus_initial_rank(r020)   . 004(.000)***        .004(.000)***       .004(.000)*** 

  App_price_promotion(r030)    .687(.093)***        .322(.104)      .321(.104) 

  App_quality_update( r040)  1.775(.010)***      1.069(.023)***    1.077(.023)*** 

  App_popular_cate(r050)  -.533(.013)***       -.531(.075)***     -.504(.075)*** 

  App_unpopular_cate(r060)    .262(.011)***        .346(.069)***      .365(.069)** 

  App_review_avr (r070)    .127(.006)***        .061(.012)**      .046(.012)* 
  App_log_review_num (r080)    .281(.004)***        .332(.009)***      .328(.009)*** 

  App_age_of_app(r090)   -.000(.000)***       -.006(.000)***     -.006(.000)*** 

Random Effects      

Intercept-1 (σ2τ)      2.330(.041)***      2.708(.102)***     1.876(.050)*** 

Intercept-2 (σ2
u00)     2.732(.034)***  3.459(.062)***    2.397(.091)***  

 App_free_price (σ2
u01)      60.594(.000)***     1.979(.179)***   

 App_minus_initial_rank (σ2
u02)          .139(.000)***       .000(.000) 

 App_price_ promotion (σ2
u03)          .000(.000)       .334(.293) 

 App_quality_update (σ2
u04)    485.811(.002)***       .842(.038)*** 

 App_popular_cate (σ2
u05)          .000(.000)     1.706(.192)*** 

 App_unpopular_cate (σ2
u06)          .000(.000)     1.867(.189)*** 

 App_review_avr (σ2
u07)    126.030(.000)***       .048(.004)*** 

 App_log_review_num (σ2
u08)    101.870(.001)***       .034(.002)*** 

 App_age_of_app(σ2
u09)          .000(.000)       .000(.000) 

Deviance     397535.01  502897.05       388464.19  462559.23     387891.21 
*= p <.005, ** =p <.001, ***= p <.0001 

Table 3. Analysis Results from Model I 
 

Overall, the deviance decreases when we incorporate the hierarchical structure into the baseline 

model. The unconstrained model, Model I(1), provides empirical and statistical evidence of the 

need for multilevel model. The intra-class correlation (ICC) between the App-level variability 

and the seller-level variability, 
2

00

2 2

00



 



 
=.53, represents that 53% of the variance in the 

presence of Apps in the top charts can be accounted for by sellers (Level-3).  This moderately 

high ICC suggests not only the violation of the independence assumption (i.e., the observations 

are not independent from one another due to a nested data structure), but also the need for a 
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multilevel model incorporating seller-level properties [44]. 

Model I(2) explains the association between App-specific properties and an App’s success 

consistent with our expectation. When only seller level variables are considered (Model I(3)), 

coefficients of Seller_num_app and Seller_num_cate are negative, thus contradicting theoretical 

prediction. This result indicates how a mis-specified multi-level model can lead to erroneous 

conclusions [55]. It also shows the effect of number of Apps to be insignificant. However, the 

deviance in this model was relatively high. Finally, the combined three-level Model I(4) allows 

us to obtain the correct estimates by incorporating intra-class random effects with the lowest 

deviance. The coefficient signs in Model I(4) confirm the theoretical predictions related to 

portfolio characteristics in that the number of Apps and number of categories both improve 

outcome. It clearly demonstrates the need to consider both sellers’ portfolio decisions and App 

characteristics in sales performance measurement. However, a user’s unobservable self-selection 

for buying an App, which is not controlled in this research setting, is also likely to affect the 

success of App sales. For example, a user may purchase a paid App after trying its free version 

[41].  In addition, strong ranking effects in the App markets could form a bias among users to 

predominantly fixate on hit products [32], and subsequently, users may download the Apps in the 

top charts. 

Because this model specification assumes that seller-level explanatory variables are not 

correlated with unobserved seller-level fixed properties in the error term, controlling for seller-

level heterogeneity is important. In the context of our study, however, it is difficult to identify 

strong and valid instruments that are correlated with seller-level App assortment decisions. A 

fixed effects modeling approach might be a technique to correct for such omitted variables at the 

seller-level, but this is generally difficult to accomplish for a model with a nested data structure. 

Inclusion of seller-level dummies for fixed effects will introduce the incidental parameters 

problems [59]. We employed a conditional fixed effect logistic regression model to account for 



26 
 

seller-level fixed effects
4
. The estimation results showed that the signs and significance levels 

across the models are qualitatively identical. Although the estimates of App-level estimates are 

slightly different from that of GHLM, these differences are likely due to differing model 

assumptions. It leads us to confirm that our estimates from GHLM on seller-level Apps portfolio 

decisions are highly robust to an alternative model specification that handles seller-level 

endogeneity problems. The results of the other two supporting models are presented in Tables 4 

and 5. Model II examines the impact of explanatory variables on survival time of an App i and a 

seller j using a hazard modeling approach. Table 4 presents the estimates of App/seller-level 

covariates of the six hazard models. 

Explanatory  

Variables 

Model II (0) Model II (1) Model II (2) Model II (3) Model II (4) 

Cox Main Effect 
(Survival of Sellers) 

Cox Main 

Effect 
(Survival of Apps) 

Cox with 

Gamma Frailty 
(Survival of Apps) 

Weibull with  

Gamma Frailty 
(Survival of Apps) 

Logit with 

Normal Frailty 
(Survival of Apps) 

Total Cases  7,579 sellers (100%) 17,697 Apps (100%) 
Events 3,426 sellers (45.2%)    5,964 Apps (33.7%) 
Censored Cases 4,153 sellers (54.8%)  11,733 Apps (66.3%) 

Intercept      -2.481(.155)***    5.632(.657)*** 

Seller_num_app -.0033(.000)*** -.0035(.000)***  -.0062(.000)***    .0017(.000)***    .0012(.000)*** 

Seller_num_cate -.1180(.006)*** -.1218(.006)***  -.1893(.004)***    .2070(.007)***    .1470(.005)*** 

Seller_num_app*num_cate  .0012(.000)***  .0005(.000)***   .0008(.000)***   -.0001(.000)***   -.0001(.000)*** 

App_price_free    -.254(.055)**    -.190(.003)***      .651(.081)***      .565(.055)*** 

App_minus_initial Rank    -.002(.000)***    -.003(.000)***      .005(.000)***      .004(.000)*** 

App_price_promotion  -1.407(.105)***  -1.590(.126)***     2.606(.157)***    1.935(.105)*** 

App_quality_update  -2.814(.082)***  -3.108(.104)***    4.844(.129)***    3.486(.082)*** 

App_popular_cate     .186(.035)**     .199(.048)**     -.398(.052)***     -.328(.035)*** 

App_unpopular_cate    -.265(.047)***    -.250(.062)**      .608(.069)***      .499(.047)*** 

App_review_score    -.070(.012)***    -.067(.016)**      .124(.019)***      .088(.013)*** 

App_log_reivew_num    -.179(.013)***    -.199(.014)***      .042(.020)***      .350(.014)*** 

App_age_of_app     .000(.000)***     .000(.000)***     -.002(.000)***     -.000(.000)*** 

Random Effect      2.034(.032)***     9.188(.324)***    8.176 (.053)*** 

AIC    149484.59    96719.92      52478.41      31403.18       32855.63 

BIC    149505.63    96792.17      52485.58      31504.80       32949.43 

*= p <.005, **=p <.001, ***=p <.0001 

Table 4. Analysis Results from Model II 

                                                        
4
 Since the data includes 8,627 unique sellers (a total of 530,503 observations), the estimation of seller-level fixed 

effects is not tractable and requires enormous computational power. As a result, we randomly sampled sellers from 

our original dataset based on unique identification numbers (AppIDs) of Apps. We selected sellers who have apps 

ending in ‘7’ in their IDs. The resulting sample for a fixed effects model includes 1,015 sellers (a total of 51,599 

observations). Given the smaller dataset, we used the bootstrapping procedure to derive estimated standard errors 

with 500 replications of the sample. 

 



27 
 

Model II (0) involves only seller-level covariates to examine the main effect of App portfolio 

management on a seller’s survival in the top 300 chart, where a seller was considered to have 

survived (App_survivaljt = 1) if at least one App of a seller appeared in the chart at t.  

Other four survival models include both seller/App-level covariates as discussed in Section 4.2. 

The estimates from Model II(1) and Model II(2) present similar results. The random (frailty) 

term in Model II(2) is significant and shows the variability among sellers. The estimates in other 

two parametric random models show similar pattern and significant random effect at the seller-

level, but inconsistent with the COX models. Such differences are mainly due to (1) the 

unspecified baseline hazards of a Cox model, (2) the approximation of the true parametric 

models (i.e., different distribution assumptions), and (3) the shape parameters in the two 

parametric models [58]. Moreover, the sign reversal of estimates is because of different 

estimation formats. While the estimates from a Cox regression model are in log-hazard format, 

the estimates from a parametric survival model are in log-survival time format [1]. In other 

words, a Cox model with a frailty term and the two parametric models have the same sign 

implications for hazard rates and trends. Finally, the estimates of the Cox hazard model with a 

frailty term (i.e., Model II (2)) are validated by the parametric survival models, so we use the 

estimates from Model II (2) for explaining the association between a seller’ App portfolio 

management and corresponding App survival in the top chart. Model III (a count regression 

model) only considers seller-level properties under the different rank charts (top 100, 200, and 

300) as shown in Table 5. 

Explanatory 

Variables 

Model III 

Parameter Estimate (S.D.) 

N=3,882 sellers 

              Top 100                   Top 200               Top 300 

Constant -.698(.014)*** .349(.008)*** 1.037(.006)*** 

Seller_num_app .001(.000)*** .001(.000)*** .001(.000)***
 

Seller_num_cate .081(.003)*** .077(.002)*** .075(.001)*** 

Seller_ num_app* num_cate .0017(.000)*** -.0013(.000)*** -.0008(.000)*** 

AIC 
BIC 

61267.09 

61306.17 

     107235.80 

107274.88 

   142212.15 

142251.24 
*= p <.05, **=p <.01, ***=p<.001 

Table 5. Analysis Results from Model III 
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In Model III, the large ratio of deviance to degree of freedom (12.229) indicated the problem of 

overdispersion. In other words, observed variance is greater than the mean since the mean of 

Poisson distribution is equal to its variance. Although we expect the residual deviance / degree of 

freedom to be approximately 1.0, the deviance is almost 10 times as large as the degree of 

freedom. In order to adjust the problem of over-dispersion, we used a negative binomial 

regression model. By allowing for more variability in the data, this approach accounted for over-

dispersion. Overall, the deviance / degree of freedom value is much closer to 1.0 than that in 

Poisson regression model. As shown in Tables 4 and 5, the results from a Cox hazard model with 

frailty and a count regression model support our findings in Model I.  

  Seller-level Properties (App Portfolio Management) 

The positive and significant estimates of r001 and r002 in Model I(4) indicate that there is a 

positive association between broadening App offerings over multiple categories and an App’s 

presence in the top 300 chart. When it comes to the negative and significant interaction effect 

(r003) of these two predictors, there is a relatively small diminishing marginal impact. To 

examine the marginal effects of seller-level covariates, we converted the log odds (i.e., estimates) 

to predicted probabilities. Then we computed the marginal effects of Seller_num_cate (and 

Seller_num_app) on the survival of Apps at different values of Seller_num_app (and 

Seller_num_cate) holding the App-level explanatory variables at their means.  Table 6 

summarizes how much the effect of seller_num_cate for an App’s survival changes according to 

seller_num_app, and vice versa in GHLM and Cox hazard models. 

Marginal Effects 
Number of 

Apps / Categories 
Model I (4) Model II (2) 

A one-unit increase in 

number of categories 

       2 Apps   .1514 -.1877 

       5 Apps   .1509 -.1851 

     10 Apps   .1500 -.1809 

     20 Apps   .1482 -.1724 

A one-unit increase in 

number of Apps 

       1 Category   .0014 -.0054 

       5 Categories   .0007 -.0019 

     10 Categories -.0002  .0023 

     20 Categories -.0019  .0107 

* Note: the predicted marginal probabilities in Model II (2), a Cox hazard model, are presented as 

probabilities exiting the top charts with negative signs. 

Table 6. Changes in Sales Performance with Increases in Number of an App and a Category 
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The predicted probabilities provide the changes in the probability of an App’s survival with a 

one-unit increase in Seller_num_app or Seller_num_cate. Overall, the marginal effects are 

largely stable at different numbers of Apps and categories. The marginal effects of adding a 

category, ijt

ijt-1

Prob(App_survival = 1)

Seller_num_cate





,  are positive at different numbers of Apps. The marginal effects 

of adding an additional App, ijt

ijt-1

Prob(App_survival = 1)

Seller_num_app





, are much smaller than those of Sell_num_cate 

and practically insignificant.  

Overall, the results indicate that expanding across categories has greater practical significance to 

sellers. The scope economy argument seems to therefore apply to the Apps market quite 

significantly. 

The hazard model also supports the positive association between broadening Apps over multiple 

categories and successful App sales. The marginal effects of seller-level App portfolio decisions 

in this case are expressed in terms of predicted probability of exiting the top charts. A one-unit 

increase in seller_num_cate decreases an App’s probability of exit by 18.77% when a seller 

offers the second App in a new category as compared to doing nothing.  

Thus, sellers who provide Apps in various categories (i.e., diversify Apps over multiple 

categories) and have larger variations in choosing categories (i.e., large selection of selling 

categories) survive longer on the top charts and as a result have better sales performance. The 

marginal effects remain stable as the number of Apps increase.  

A look at some notable sellers supports this observation as well. Table 7 illustrates App vendors’ 

App portfolio management (number Apps/ categories) and their overall performance. While first 

three sellers have lower overall sales performance and offer multiple Apps in a few categories, 

other sellers have relatively higher sale performance with Apps diversified over various 
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categories.  For instance, Iceberg Reader, an online media publisher, offers 6,049 Apps on 

AppStore with only 6 categories, and has 55 Apps in the top 300 charts. Meanwhile, Oceanhouse 

Media, an individual developer, has listed 49 of her 141 Apps in the top chart by selling Apps in 

12 categories. 

App Vendors 
Number of 

Published Apps 

Number of Selling 

Categories 

Number of Apps 

in the Top 300 

Overall Sales Performance 

Number of Apps in the Top Charts

Total Number of Published Apps

 
 
 

 

Libriance Inc 1,038 1 1 .10% 

Iceberg Reader 6,049 6 55 .91% 

Deadly Dollar 53 1 4 7.55% 

Oceanhouse Media 141 12 49 34.75% 

SIS Software 17 10 6 35.29% 

iHandy soft 22 5 8 36.36% 

Table 7. App Portfolio Management and Sellers’ Sales Performance   

 

  App-level Properties 

The estimates from App- and seller-level analysis in Model I and Model II present the 

relationship between App-specific properties decided by a seller and an App’s survival periods in 

the top chart. These results highlight the main features of Apps that help sellers to strategize their 

Apps for better sales. To interpret a one-unit change in app-level covariates on the success of 

Apps, we utilized odds ratios and hazard ratios of the estimates. 

The estimate of App_free_price is positive in Model I(4), as expected, and strongly significant. It 

indicates that free Apps are around 1.7 (=exp(.536)) times more likely to survive in the top charts 

as compared to paid Apps. The estimate from Model II (2) also supports this finding. It suggests 

that when Apps are offered free of charge, the hazard ratio decreases by 17.2% (=100*[1-exp(-

.1896)]) as compared to the paid Apps. Around 20% of top 300 Apps are free and most of them 

are either lite-version of paid Apps or require additional payments (e.g., in-app purchases) for 

more features (e.g., game money or network supports) when running Apps. Even most pure free 
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Apps retain advertising proceeds. That is, free Apps do not mean the absence of revenues. From 

our observation around 8% of observed Apps in the top grossing 300 were offered for purely free. 

Thus, as with other information goods contexts, free Apps create opportunities for larger network 

of users [12] and increased demand in a complementary premium good [47]. 

Initial popularity is an important determinant of survival. The estimate of 

App_Minus_initial_rank is positive and significant. However, the improvement due to initial 

rank lacks practical significance (one rank higher at its first week increases the presence of an 

App in the charts by nearly 0.4% in the models). The positive association of initial rank with 

survival is consistent with the findings from prior studies with digital goods [52, 57, 60]. Thus, 

there is limited evidence for returns to efforts on App advertising and promotion before release 

[26].   

Quality updates appear to have a bigger impact on App survival than price changes. In GHLM, 

the estimate of App_price_promotion is not significant while that from the hazard model is 

negative and significant. Apps that had offered at least one quality update (or promotional price) 

during the study period increased the chance of survival in the top charts 2.9 (or 1.3) times as 

compared to non-updated Apps, and lowered hazard rate of 95.5% (or 79.6%) than when they 

made no updates. Moreover, these updates have differing impact based on seller. Even though 

further studies on this issue are required, we empirically confirm that sellers can impact the 

success of Apps by making targeted updates to price and quality in mobile App markets.  

The estimates from App_popular_cate and App_unpopular_cate in Model I (4) indicate that 

Apps offered in the popular categories have relatively lower odds of survival and shorter survival 

periods as compared to those in unpopular categories. In Model II (2), the estimated risk of 

exiting the top chart increases 1.22 times if an App is offered in the popular categories. Therefore, 
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from the literature on long tail effects [13, 29], we can divide categories into popular-App 

categories (head) and niche-App categories (tail) based on their popularity in the AppStore 

market. Even though the Apps offered in the popular categories may have more downloads, they 

could have shorter periods in the top charts since these Apps would compete with numerous 

popular Apps. For instance, around 716 Apps are released a day and 40% of them are provided 

in the popular categories (i.e., Games, Books, and Entertainments). It implies that there exists 

severe competition among sellers and impacts survival in top charts.
5
   

Finally, Apps that gained higher volume and higher review scores have higher success and lower 

hazard ratios. As evidenced in prior literature, positive user reviews have the potential to increase 

product demand [27, 42]   Similarly, Apps offered by reputable sellers, who have overall higher 

average user review scores across their Apps in the top 300, have lower hazard rates, but the 

volume of reviews does not influence App’s survival time. These results reveal that existing 

users’ satisfaction from Apps can bring about new user interests to the Apps. Furthermore, we 

can argue that users tend to trust (purchase) Apps offered by reputable sellers who had good 

review scores associated with other Apps. 

 

  Sensitivity and Robustness Analysis  

Our main results are restricted to the probability of an App’s survival in the top 300 charts. We 

conducted three different post-hoc analyses with GHLM to test the sensitivity and validity of our 

model.  

                                                        
5
 We also tested if different combination of (un)popular categories have the same results.  The most / least popular 

categories (Game vs. Weather) and the four most/least popular ones (Game, Book, Entertainment, Lifestyle vs. 

Medical, Navigation, Weather, Finance) were selected into the analyses. The results present that the different 

selections of categories do not change the sign and significance of estimates from our original selection. Also, these 

selections do not significantly change other estimates as well.      
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First, we compared the estimates under different ranking charts. Since AppStore only provides 

Apps’ information in the top 300 ranks, we could observe neither other Apps ranked outside the 

top 300 charts nor their properties (e.g., price, review score, and developer). Thus, to test if 

sampling bias is influential to our main results, we compare the estimates of a seller’s App 

portfolio management on the successful App sales under different ranking charts. 

Table 1 in Appendix I shows that seller-level predictors are more critical in the higher rank 

charts. Table 8 shows the impacts of a seller’s App portfolio plan on the probability of an App 

under different ranking charts. The impacts of category diversification strategy on the survival of 

an App increase in the top 100 chart as compared to the top 200 and 300. Moreover, App-level 

properties like free price, user review score, and initial rank are more highly associated with 

survival probability in the higher rank charts.  

Marginal Effects 
Number of 

Apps / Categories 
Top 300 Top 200 Top100 

A one-unit increase in 

number of categories 

       2 Apps .1520 .1523 .1747 

       5 Apps .1515 .1517 .1735 

     10 Apps .1506 .1506 .1716 

     20 Apps .1487 .1484 .1677 

A one-unit increase in 

number of Apps 

       1 Category .0018 .0032 .0030 

       5 Categories .0010 .0023 .0014 

     10 Categories .0001 .0012     -.0005 

     20 Categories .0018     -.0009     -.0044 

 

Table 8. The Impact of a Seller App Portfolio Management under different Ranking Charts 

 

Second, we investigated how the association between seller’s App management and an App’s 

survival differs over time. We divided the data into two periods. The first period includes the 

first 19 weeks, and the second period last 20 weeks. During second period Apple released a new 

iOS version and a new white iPhone for AT&T and Verizon. In addition, the number of iPhone 

users significantly increased by around 44 million compared to the first period. Thus, we expect 
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more severe competition among sellers (or developers) in the second period. The estimates are 

presented in Table 2 in Appendix I. Since we used time-varying explanatory variables in GHLM, 

the negative intercept terms indicate the overall decrease of App survival (i.e., the mean of 

survival when all of explanatory variables take on the value zero) in the second period. 

Furthermore, the seller-level decisions play more important role in the second period.  

 

Marginal Effects 
Number of 

Apps / Categories 

Period I 

(Week 1 ~ 19) 

Period II 

(Week 20~39) 

A one-unit increase in 

number of categories 

       2 Apps .1446 .1685 

       5 Apps .1444 .1682 

     10 Apps .1441 .1678 

     20 Apps .1434 .1668 

A one-unit increase in 

number of Apps 

       1 Category .0013 .0066 

       5 Categories .0010 .0062 

     10 Categories .0007 .0057 

     20 Categories .0000 .0048 

 

Table 9. The Impacts of Increases in Number of an App and a Category  

 

 

Finally, we also incorporated App users’ hedonic and utilitarian uses of Apps into the model. By 

adding a hedonic dummy (coded “1” if an App is offered in hedonic categories
6
 and coded “0” if 

an App is offered in utilitarian categories), we looked for the association between App’s hedonic 

or utilitarian uses and Apps’ survival. In the first model, we included a hedonic dummy instead 

of (un) popular dummies, and in the second model both category-related variables were added 

(see Table 3 in Appendix I). The results show that the estimate of a hedonic dummy is not 

significant in both models and Goodness of Fit worsened. Since App_popular_cate (games, 

books, and entertainment) and App_unpopular_cate (medical, navigation, and weather), in 

                                                        
6
 - Hedonic Categories: Book, Entertainment, Games, Healthcare-fitness, Lifestyle, Music, Navigation, News,  

                                       Photography,  Social-networking, Sports, and Travel  

  - Utilitarian Categories: Business, Education, Finance, Medical, Productivity, Reference, Utilities, and Weather 
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general, reflect the hedonic and utilitarian Apps, our main model incorporated competitive 

pressures adequately. Consequently, the results from sensitivity and robustness analysis give us 

more confidence in the proposed empirical models. 

 

Conclusion  

Our findings demonstrate how mobile App seller product portfolio is associated with sales 

performance. Specifically, diversification across selling categories is a key determinant of high 

survival probability in the top charts and contributes to sales performance. Furthermore, we find 

that offering free Apps, higher initial popularity, investment in less popular categories, 

continuous updates on App features and price, and higher user feedbacks on Apps are positively 

associated with sales performance. Therefore, these App-level attributes lead to further potential 

user demand and increase the longevity of Apps. 

  Contribution and Managerial Implications 

The results of this study have several significant implications to extant literature on digital 

product management and business practice. From an academic perspective, our research creates 

new knowledge about mobile App seller’s strategic decisions on product portfolio management 

and its impact on success in mobile App markets. Our findings firmly establish the importance of 

scope economies as an ingredient for success in mobile App market. Survival and sales 

performance was greatly higher for sellers when participating across multiple categories than 

otherwise. We also find that product price and quality upgrades are quite important in mobile 

Apps market contexts. Prior studies in software management have been restricted to cost 

reduction in software upgrades: optimal frequency of security patch updates [18] and the 

expected time to perform major upgrade to software systems [38]. However, developers in App 
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markets can easily change price and features with lower costs and efforts than in traditional 

software markets. It appears that the opportunity for frequent changes should indeed be exploited. 

 

  Limitations and Future Research Directions 

The findings of this study are based on the survival of Apps only over 39 weeks in the top 300 

chart. We continue to track and monitor the Apps to examine if there are reasons to expect 

different results over a longer duration. The analytic approach used in the study does not allow 

us to make causal predictions. Future research can examine the causal linkage between product 

portfolio decisions and App performance. In addition, appearing in the top charts itself may have 

a potential to facilitate purchase decision making at the point users initially search for Apps. 

However, data availability restrictions prevent us from such App users’ potential preferential 

attachment mechanisms.  Furthermore, we estimated the sales amount of an App (or a seller) 

with survival in the top charts and total number of Apps in the chart. However, there may exist 

several alternatives to estimate actual sales amount instead of ranking. We also did not 

specifically examine App specific features or seller specific characteristics. Further examination 

of these attributes will be necessary in developing deep insights into mobile App markets. 

While this study only considers a seller (or a developer) as a decision maker for App portfolio 

management, many individual sellers provide Apps through big mobile software publishers such 

as Gameloft or Chillingo. Thus, for such big publishers, the management of various developers 

and much larger selections of mobiles Apps could be crucial for successful sales performance. In 

the regard, it is important to investigate how publisher-level properties affect App-/seller-level 

variables.   

The results in this study are based on sellers in a single mobile App market. A seller’s mobile 

App portfolio management and its impact on sales performance can vary under distinct App 
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market structures. For example, each market has a different number of categories (e.g., Apple: 20 

categories; Blackberry: 18 categories; Google: 34 categories) and a different proportion of free 

Apps (Apple: 25 percent; Google: 57 percent).  As a result, future studies exploring sellers’ 

portfolio management in different mobile App markets and potential for platform competition 

among the markets are necessary.  
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Appendix I: Sensitivity Analysis 

 

1. GHLM with Different Ranking Charts 

 
 Model 1 

(Top 300) 

Model 2 

(Top 200) 

Model 3 

(Top 100) 

Fixed Effects    

  Intercept (r000)   -.404(.041)*** -.479(.040)***   -1.632(.050)*** 

  Seller_num_app (r001)                             .002(.000)***                             .003(.000)***                        .004(.000)*** 

  Seller_num_cate(r002)                             .152(.006)***                             .153(.006)***                        .175(.008)*** 

  Seller_num_app*num_cate (r003)  -.0002(.000)*** -.0002(.000)*** -.0004(.000)*** 

  App_free_price (r010)   .536(.067)***  .601(.067)***        .761(.093)***    

  App_minus_initial_rank(r020)    .004(.000)***  .009(.000)***         .016(.000)*** 

  App_price_ promotion (r030)                             .321(.104)*                            .357(.091)*                         .282(.089) 

  App_quality_update( r040) 1.077(.023)*** 1.077(.022)***     .922(.031)*** 

  App_popular_cate(r050)  -.504(.075)***  -.652(.075)***       -.774 (.099)*** 

  App_unpopular_cate(r060)                              .365(.069)**                             .236(.071)                         .057(.085) 

  App_review_avr (r070)                             .046(.012)*   .166 (.014)***         .238(.019)*** 

  App_review_num (r080)   .328(.009)***    .445(.010)***                       .511 (.013)*** 

  App_age_of_app(r090)  -.006(.000)***   -.004(.000)***        -.003(.000)*** 

Random Effects    

Intercept-1 (σ2τ)      1.876(.050)***   1.987(.078)***                      1.920(.094)*** 

Intercept-2 (σ2
u00)      2.397(.091)***    2.330(.041)*** 2.184(.034)*** 

 App_free_price (σ2
u01)      1.979(.179)***       1.72(.070)*** 2.623(.277)*** 

 App_minus_initial_rank (σ2
u05)                             .000(.000)                             .000(.000)                           .000(.000) 

 App_price_ promotion (σ2
u03)                             .334(.293)                             .366(.211)                           .223(.173) 

 App_quality_update (σ2
u02)        .842(.038)***     .865(.040)***  1.189 (.064)*** 

 App_popular_cate (σ2
u06)     1.706(.192)***   1.440(.174)*** 1.665(.250)*** 

 App_unpopular_cate (σ2
u07)      1.867(.189)***  1.800 (.185)*** 1.195(.202)*** 

 App_review_avr (σ2
u08)        .048(.004)*** .    074(.006)*** .122(.009)*** 

 App_log_review_num (σ2
u09.)        .034(.002)***     .044 (.003)*** .054(.004)*** 

 App_age_of_app(σ2
u10)                             .000(.000)                             .000(.000)                         .000(.000) 

        Deviance                            387891.27                            391771.08                        388409.86 

*= p <.005, **=p <.001, ***=p <.0001 

 Table 1. Analysis Results from Different Ranking Charts 
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2. GHLM with Two Periods  
 

 Period 1 
(Week 1 ~ 19) 

N=231,968 

                   Period 2 
             (Week 20 ~ 39) 

                 N=356,535 

Fixed Effects   

  Intercept (r000)     -1.307(.045)***               -1.619(.033)*** 

  Seller_num_app (r001)       .001(.000)***                  .007(.000)** 

  Seller_num_cate(r002)       .145(.008)***                 . 168(.005)*** 

  Seller_num_app*num_cate (r003) -.00006 (.000)**             -.00009(.000)*** 

  App_free_price (r010)       .175(.065)                  .344(.078)** 

  App_minus_initial_rank(r050)       .011(.000)***                 . 004(.000)*** 

  App_price_ promotion (r030)       .028(.128)                  .695(.182)* 

  App_quality_update( r020)       .759(.023)***                1.917(.323)*** 

  App_popular_cate(r060)      -.339(.069)**                 -.529(.057)*** 

  App_unpopular_cate(r070)       .296(.059)**                  .294(.049)*** 

  App_review_avr (r080)       .017(.014)                  .026(.014) 

  App_review_num (r090)       .204(.009)***                  .261(.010)*** 

  App_age_of_app(r0100)      -.001(.000)***                 -.001(.000)*** 

                           Random Effects 

Intercept-1 (σ2τ)       1.274(.052)***                  .890(.042)*** 

Intercept-2 (σ2
u00)       2.003(.014)***                1.388(.021)*** 

 App_free_price (σ2
u01)       1.005(.141)***                  .648(.093)*** 

 App_minus_initial_rank (σ2
u05)         .000(.000)                  .000(.000) 

 App_price_ promotion (σ2
u03)         .000(.000)                1.418(.571) 

 App_quality_update (σ2
u02)         .000(.000)                1.698(.076)*** 

 App_popular_cate (σ2
u06)         .184(.155)                  .907(.132)*** 

 App_unpopular_cate (σ2
u07)         .944(.124)***                  .851(.106)*** 

 App_review_avr (σ2
u08)         .037(.004)***                  .024(.004)*** 

 App_review_num (σ2
u09.)         .013(.002)***                  .016(.002)*** 

 App_age_of_app(σ2
u10)         .000(.000)                  .000(.000) 

        Deviance        152411.88                  207329.54 

*= p <.005, **=p <.001, ***=p <.0001 

Table 2. Analysis Results from Different Periods 
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3. GHLM with a Hedonic / Utilitarian Variable 

 
                  Model 1 

     ( Hedonic Dummy only) 
N=530,503 

Model 2 

 (+ Hedonic Dummy) 
N=530,503 

Fixed Effects   

  Intercept (r000)             -.442 (.017)***              -.385(.047)*** 

  Seller_num_app (r001)               .003(.000)***               .003(.000)*** 

  Seller_num_cate(r002)               .148(.006)***               .152(.006)*** 

  Seller_num_app*num_cate (r003)            -.0002(.000)***            -.0002(.000)*** 

  App_free_price (r010)             .579(.0682)***               .536(.068)***     

  App_minus_initial_rank(r020)               .004(.000)***              .004 (.000)*** 

  App_price_ promotion (r030)               .306(.104)               .312(.104) 

  App_quality_update( r040)             1.074(.021)***           1.069(.0208)*** 

  App_popular_cate(r050)                        .              -.541(.047)** 

  App_unpopular_cate(r060)                        .               .372(.071)*** 

  App_review_avr (r070)             -.046(.012)*               .047(.012)* 

  App_review_num (r080)               .325(.009)***                .326(009)*** 

  App_age_of_app(r090)             -.006(.000)***              -.003(.000)*** 

  App_hedonic_cate(r0100)              .033(.044)               .111(.045) 

Random Effects   

Intercept-1 ( σ2τ)            2.438(.104)***             2.229(.102)*** 

Intercept-2 (σ2
u00)            2.732(.034)***             3.363(.058)*** 

 App_free_price (σ2
u01)            2.101(.187)***             2.017(.184)*** 

 App_minus_initial_rank (σ2
u02)              .000(.000)               .000(.000) 

 App_price_ promotion (σ2
u03)              .332(.294)               .323(.292) 

 App_quality_update (σ2
u04)              .853(.038)***               .831(.038)*** 

 App_popular_cate (σ2
u05)                        .             1.678(.201)*** 

 App_unpopular_cate (σ2
u06)                        .             1.782(.197)*** 

 App_review_avr (σ2
u07)              .047(.004)***               .047(.004)*** 

 App_log_review_num (σ2
u08.)              .034(.002)***               .034(.002)*** 

 App_age_of_app(σ2
u09)              .000(.000)               .000(.000) 

  App_hedonic_cate(σ2
u10)            1.518(.106)***             1.318(.104)*** 

         Deviance             396976.95              385245.89 

*= p <.005, ** =p <.001, ***= p <.0001 

Table 3. Analysis Results from Hedonic Use 
  


