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Abstract. The increasing volume of data generated and the shortage
of professionals trained to extract value from it, raises a question of
how to automate data analysis processes. This work investigates how to
increase the automation in the data interpretation process by proposing
a relevance classification heuristic model, which can be used to express
which views over the data are potentially meaningful and relevant. The
relevance classification model uses the combination of semantic types
derived from the data attributes and wvisual human interpretation cues
as input features. The evaluation shows the impact of these features in
improving the prediction of data relevance, where the best classification
model achieves a F1 score of 0.906.

Introduction

The growing availability of data brings the demand for methods to support
the automation of the data interpretation process, by automatically exploring
the search spaces of possible interpretations associated with the available data.
However, methods to support the automation of large-scale exploratory data
analysis are still limited.

The materialisation of the vision of an automated data analyst requires a
heuristic model which can optimise the exploration of the potential interpreta-
tion space of the data, detecting which data views and patterns are meaningful
and potentially relevant for data consumers.

This work aims at addressing this problem by proposing a relevance classi-
fication approach based on the composition of semantic types and visual data
interpretation cues. The main goal of the model is to provide a heuristic model
which can be used for pruning the search space associated with the interpretation
and identification of patterns of interest in the data.

The heuristic model is built upon the assignment of semantic types to data
attributes which, in combination with visual interpretation cues, define a data
relevance classification model. Both semantic types and visual interpretation
cues are input as features in order to build the final data interpretation relevance
classifier.
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The proposed model lies on the intuition that the semantic types associated
with attributes can be used to infer their compatibility to form a meaningful
data view. Additionally, coarse-grained visual interpretation cues over the final
visualisation output (mediated by a specific visualisation type) are used as evi-
dence to detect salient potential patterns of interest within the data. We assess
the human interpretation process by systematically and manually classifying
meaningful and relevant data views for different domains.

The contributions of this work are: (i) the definition of a data interpretation
relevance model based on the combination of semantic types and visual inter-
pretation cues; (i) an evaluation of the proposed model and of the impact of
semantic and visual cues and (%) the determination of the best classification
model through a systematic analysis of different classifiers.

1 Related Work

This work concentrates on the area of automated and intelligent data analysis.
In Grosse et al. (2012); Duvenaud et al. (2013); Lloyd et al. (2014) the concept
of an automatic statistician is introduced. The automatic statistician framework
introduces a process to explore the compositionality of a large space of models
structures to find the applicable model to predict, classify or extrapolate based
on new unseen data. Qur approach differs as we explore the compositionality
of data views and visual patterns to classify data relevance. Another proposed
model is AIDE, which provides a semi-automated process, which relies on plan-
ning data analyses steps by a determined combination of data type and user
interaction (St. Amant et Cohen (1998); St Amant et Cohen (1997)). AIDE
limits its application as a fully autonomous system, requiring corrections exe-
cuted by the user without training the system to correct itself automatically.
Our approach focuses on an automatic classification approach for the selection
of relevant data views.

Regarding exploratory data analysis, two works are considered. The first
work focuses on automated knowledge discovery workflow composition through
ontology-based planning (Zakova et al. (2011)). It differs from our approach in
the semantic representation model where the extraction of semantic features
from WordNet hypernyms and distributional word vectors target a more generic
semantic representation solution (open vocabulary). The proposed model in this
work builds upon Bremm et al. (2011) which focused on assisted data descrip-
tors selector based on visual comparative data analysis. It aims at facilitating
the user’s access to the data analysis process. This data is used to link the de-
scription of features combinations and resulting functions with clear meaning by
a human data analyst, selecting the views and output interpretability. This ap-
proach differs from our work as we explore the combination of semantic types and
high-level visual interpretation cues to classify data views representing relevant
meaning.
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2 Relevance Classification Model

2.1 Proposed Approach

The proposed relevance classification model consists of four main steps:

Automatic pair-wise selection of attribute combination into a data view.
Extraction of descriptive statistical features and semantic type features.
Extraction of visual interpretation cues.

Classification of the relevance of the data view.

Figure 1 presents an overview of the relevance classification model.
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Fig. 1. Overview of our proposed approach.

We say that a data view is relevant when a visual interpretation provides a
clear trend or pattern which is easily recognisable by a human, with or without
previous knowledge about the data being analysed from two or more attributes
in a dataset.
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To classify the relevance when analysing plots of pairs of attributes (data
views) we defined target classes based in the human process of data analysis.
During the data analysis the analyst explore visualisations in order to understand
the data. To achieve a clear meaning the analyst should take decisions, such as
the application of operations (e.g. group by, sort by), changing the visualization
plot type, and including more data attributes or dimensions. Thus, the classes
defined are the representation of decisions required by the data analyst at each
step of the exploration process. These classes are:

— Class 1 - Clear meaning - Generic (Very intuitive - you do not need to know
the dataset/context to understand)

— Class 2 - Clear meaning - Dataset Context (you should know the dataset to
understand)

— Class 3 - Data non-relevant for data analysis (or for the analysis in question)

— Class 4 - Label not equal to data semantics (Inconsistent data)

— Class 5 - Change visualisation (plot type or axis - makes sense, but if change
it’s better )

— Class 6 - Add operations (ex: group by, sort by, etc.)

— Class 7 - Additional data attributes needed for the interpretation

— Class 8 - Add operations and/or more data attributes and/or visualisation

Figure 2 shows an example of a plot that requires additional attributes to
present a clear meaning. Figure 3 shows an example of a plot requiring an ad-
ditional attribute, and/or an additional operation, and/or a change in the vi-
sualisation plot to present a clear meaning. Figure 4 shows an example of clear
meaning.

Fig.2. Mobile devices and desk- Fig.3. Mobile devices and desk-
top/laptop devices by country sorted. top/laptop devices by country without
a sort operation.

In our approach we assume that the datasets have no missing values. Any
missing values from the collected data is striped out before we start processing
them.
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2.2 Semantic Features

To represent the semantic type of an attribute, this work considers two ap-
proaches. The first one uses WordNet! hypernyms. WordNet is a lexical the-
saurus for the English language, where words are organized into a lexical seman-
tic network. WordNet also specifies the sets of hypernyms associated to a word
(its taxonomical structure), where Y is a hypernym of X if every X is a (kind
of) Y. We use these hypernyms as the semantic feature of words.

The other approach is the use of distributional vectors, extracted using the
Word2vec framework (Mikolov et al. (2013)). These vectors encode co-occurrence
statistics of words, relying on the linguistic notion that the context of a word
defines the semantics of it (Harris (1954)). Distributional vectors are normally
used as semantic representation of words.

For our work, we always assume that an attribute label has a descriptive
meaning. For example, a label will never be X1’ or Y’. This assumption is
necessary if we want to automatically assign semantic features to a label.

2.3 Attribute Feature Extraction

In order to simulate the data analysis steps executed by humans, we developed
a feature extraction process. The process explores the compositionality of sta-
tistical data types, the semantic representation of attributes, associated data
operations and basic plotting resources.

For the extraction of descriptive statistical features, we consider the univariate
analysis for description of the distribution, central tendency and the dispersion
for each data attribute, also classifying the measurement scale and statistical
data type. Examples of extracted features are presented in Table 1.

The set of semantic features are the attribute labels, the WordNet hypernyms
of the labels and the distributional vectors of each label. Table 2 exemplifies some
hypernyms used.

We end up with the following features:

— Statistical features:
e Mean, median, first quartile, third quartile, mode (for categorical data),
standard deviation, variance;
e Measurement scale (nominal, ordinal, continuous interval, continuous ra-
tio);
e Statistical data type (categorical, ordinal, real, binary, multiclass, count);
— Semantic features:
e Data labels;
e WordNet hypernyms;
e Distributional vector representations of data attributes labels;

The process of assigning hypernyms to the attributes consists in the identifi-
cation of the head word of the phrase associated with the attribute label (when

! nttp://wordnet.princeton.edu
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Table 1. Examples of extracted descriptive statistical features.

Attribute label Measurement scale [Statistical Data Type Median|Mean |First quart|Third quart|Mode|Std.Deviation|Variance
Access Through Mobile Device continuous _interval|real-valued _additive 2 2.125 |1.575 2.525 1.9 |0.689 0.475
SepalLength continuous_ interval|count 5.8 5.843 |5.1 6.4 5 0.828 0.685
Intentional Homicides Total Count|ordinal count 88 89.53 |48 130 28 47.18 2226.037
Intentional Homicides Year ordinal ordinal-integer number 2012 2011.7(2012 2012 2012 |0.569 0.324
Country nominal categorical B - B B -k B
having IP Address nominal binary 1 0.314 |-1 1 1 0.949 0.901
URL Length nominal multiclass -1 -0.633 |-1 -1 -1 0.766 0.586
Price continuous _ratio real-valued _multiplicative|6.985 [7.042 |6.508 7.441 6.204 |0.634 0.402
alcohol-use continuous _ratio count 2 2.176 (0.5 77.5 49.3 |26.878 722.473

Table 2. Examples of extracted semantic features.

Label WordNet Hypernym
Access Through Mobile Device activity
Country area, social unit
Intentional Homicides Rate rate

Intentional Homicides Total Count|count
Intentional Region area
Intentional Homicides Year time period
Homicides Total total sum

Gun Homicides Sources and Notes |source, note
GDP Rank rank

GDP Int.dolar monetary unit

the label contains multiple words). A word sense disambiguation process selects
the associated sense of the word considering the other words within the phrase
as its context. Afterwards, the associated hypernym is assigned. The level of
taxonomic abstraction is assigned to two taxonomic hops.

2.4 Visual Interpretation Cues

Another fundamental component of the proposed model consists in simulating
the human visual interpretation process when analysing a data view (the com-
bination of pairs of attributes).

The visual attention mechanism associated with the process of human data
interpretation focuses on targeting the detection of outliers, coarse-grained varia-
tion regimes, clusters, periodicity, among others. These are examples of high-level
visual features which provide an entry point to the interpretation of the data.

For the purpose of this approach, we identified a set of ten high-level visual
interpretation cues described below. These cues are then used as features for our
classifiers.

— Whether the function is a pair of numerical data or a pair containing at least
one categorical data;

Gaps;

Quantity of existent gaps;

— Measure of numerical correlation;

— Whether the correlation is positive or negative;
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— Whether the function is linear or nonlinear;
— Derivative regimes;

Quantity of derivative regimes;
Maxima,/minima,;

— Periodicity.

We define a gap as any considerable difference of value magnitude between
consecutive data points. We call a "considerable difference" any value greater
than the arithmetic mean of all the differences from consecutive or non consec-
utive data points.

Figure 4 show some high-level visual cues in the context of a data view.

Tuberculosis Cases - 1990 - 2007

Maxima

4s00) Gap

—1

Regime 2 |Regime 4

Regime 0 |Regime 1

7092 R 7996

Regime 3 [Regime 5 Minima
2002 o0 0% 2008

Years

Fig. 4. Example of a two-dimensional numerical function describing the number of
tuberculosis cases since 1990 up to 2007 with examples of visual interpretation cues.

3 Evaluation

Twenty-three machine learning models were trained to address the relevance clas-
sification problem, considering as an outcome one of the eight classes previously
presented. We applied machine learning models based on (i) linear, (i) non-
linear, (4ii) non-linear with decision trees, (iv) non-linear with boosting and (v)
neural networks approaches. The application of more than one machine learning
model is intended to assess the behaviour of our dataset and evaluate the impact
of semantic and visual features in the predictive modelling.
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3.1 Creation of the Relevance Gold-standard

Our gold-standard dataset consists of 20 open datasets commonly used for data
analysis and machine learning tasks?, available at the UCI repository®, Plotly?,
EDX Analytics Edge®, and William B. King R Tutorials®. All attribute pairs
from the collected datasets are then plotted and classified as one of the eight
classes already presented previously, resulting in 2989 attribute pairs.

Two types of visualization plots were applied, the bar plot and scatterplot
with lines, following the rules: (i) bar plot is applied when at least one data
type is qualitative and (7)) scatterplot with lines is applied when the X axis is
a quantitative data type and Y axis is a quantitative data type. Based on the
plotting, a human classified the relevance class of each attribute pair.

3.2 Experiments

For the training of the machine learning models, we represented the extracted
features in five scenarios:

— using only statistical features;

— using visual interpretation cues;

— using WordNet hypernym and visual interpretation cues;

— using distributional vectors of the attribute labels and visual interpretation
cues;

— using distributional vectors of random words and visual interpretation cues.

We use the last two scenarios to validate our assumption that semantic vec-
tors of the labels would improve the predictability accuracy of classification.
The variation of the semantic types is used to evaluate the impact of different
semantic features representations.

In all of the experiments we used 80% of our dataset instances in the training
phase, using the remaining 20% to validate the resulting models.

3.3 Results

The best classification results are achieved with the feature combination of hyper-
nyms as semantic types and visual interpretation cues (Random Forest achieves
a 11.87% improvement in F1 score over the best result of the scenario without
these features). Distributional semantic vectors also impact in the classification
of the results (5.1% improvement in F1 score over the best result of the scenario
without distributional semantic vectors). The best F1 score (0.906) was achieved

2 https://github.com/ekamioka/unipassau-ada

3 http://archive.ics.uci.edu/ml/

4 https://plot.1ly/

® https://www.edx.org/course/analytics-edge-mitx-15-071x-2#!

S http://ww2.coastal.edu/kingw/statistics/R-tutorials/multregr.html
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Table 3. Results of the relevance classification. Best AUC and F1 score for each classi-
fier is highlighted. HypVis - With hypernyms and visual interpretation cues, Vis - Just
with visual interpretation cues, WO - No semantic features and no visual interpretation
cue, VecVis - With distributional representations of the labels and visual interpreta-
tion cues, VecrVis - With distributional representations of random words and visual
interpretation cues. The last line shows the percentual improvement for each feature
set.

HypVis Vis WO VecVis VecrVis
Algorithm AUC |F1 Score| AUC |F1 Score| AUC |F1 Score| AUC [F1 Score| AUC |F1 Score
Latent Discriminant Analysis 0.742 | 0.658 [0.664| 0.578 [ 0.469 | 0.323 | 0.735 | 0.667 [ 0.659 | 0.531
Linear Support Vector Classification 0.455 | 0.430 |0.398| 0.517 | 0.399 | 0.502 | 0.384 | 0.536 0.283 | 0.554
Stochastic Gradient Descent 0.522 | 0.035 [0.478] 0.055 [ 0.466 | 0.065 | 0.518 | 0.014 0.394 | 0.017
SGDClassifier with kernel approximation 0.496 | 0.380 |0.470| 0.385 | 0.423 | 0.460 | 0.492 | 0.373 0.485 0.344
R Kernel Support Vector Machine 0.868 | 0.754 |0.687| 0.622 | 0.811 | 0.656 | 0.807 | 0.623 - -
Naive Bayes 0.647 | 0.617 |0.671| 0.543 | 0.632 | 0.545 | 0.680 | 0.530 0.644 | 0.500
R k-Nearest Neighbors 3 (k=5) 0.798 0.698 [0.723| 0.603 0.687 | 0.426 0.782 | 0.610 0.866 | 0.767
Sklearn k-Nearest Neighbors (k-10) 0.320 | 0.680 |0.314| 0.665 |0.330 | 0.645 | 0.320 | 0.680 | 0.320 | 0.680
R Classification and Regression Trees(CART) 0.793 | 0.620 |0.784| 0.629 [ 0.713 | 0.571 | 0.651 | 0.538 | 0.797 | 0.652
Sklearn DecisionTreeClassifier 0.272 | 0.763 |0.276| 0.741 [0.301| 0.751 | 0.273 | 0.762 0.330 0.688
ExtraTreesClassifier 0.282 | 0.752 ]0.306| 0.699 | 0.322 | 0.651 | 0.268 | 0.762 | 0.326 | 0.534
C4.5 Weka 0.633 | 0.074 ]0.658| 0.074 | 0.729 | 0.667 |0.873| 0.825 | 0.679 | 0.082
PART Weka 0.688 | 0.540 ]0.892| 0.738 | 0.804 | 0.657 |0.905| 0.702 0.510 | 0.346
R Random Forest, 0.969 | 0.895 [0.882] 0.765 [ 0.915 | 0.779 | 0.919 | 0.794 0.781 | 0.667
Sklearn RandomForestClassifier 0.263 | 0.792 |0.282| 0.762 | 0.287 | 0.757 | 0.263 | 0.775 | 0.349 | 0.614
R Gradient Boosted Machine 0.646 | 0.375 |0.543| 0.757 [ 0.551 | 0.425 | 0.577 | 0.170 0.625 | 0.318
R Boosted C5.0 0.904 | 0.767 ]0.932| 0.862 | 0.899 | 0.800 | 0.925 | 0.906 | 0.951 | 0.875
R eXtreme Gradient Boosting 0.916 0.759 |0.914| 0.783 | 0.878 | 0.772 | 0.925 | 0.851 | 0.926 | 0.818
Sklearn AdaBoostClassifier with: 10 max_depth| 0.278 | 0.780 ]0.275| 0.778 | 0.288 | 0.777 | 0.261 | 0.791 | 0.340 | 0.667
R Simple Neural Networks - nnet 0.559 | 0.757 |0.759| 0.729 | 0.716 | 0.518 - - - -
H20 Deep Learning 0.958 0.867 |0.944| 0.741 |0.968| 0.731 0.875 | 0.642 - -
Multi Layer Perceptron - tanh 0.538 | 0.358 [0.536| 0.076 [ 0.457 | 0.431 | 0.341 | 0.490 [ 0.508 | 0.237
Multi Layer Perceptron - relu 0.452 | 0.428 ]0.362| 0.485 | 0.522 | 0.020 | 0.483 | 0.394 | 0.500 | 0.376

Wins percentage [34.78%] 34.78% [4.35%] 13.04% [13.04%] 8.69% [13.04%]34.78% [34.78%] 17.39%

by using a Boosted C5.0 classifier, using distributional vectors of attributes la-
bels and visual interpretation cues. The full comparative analysis of different
classification methods and features are fully presented in Table 3.

Considering the imbalanced problem in the classification dataset, we noted a
better classification performance in nonlinear models and ensemble-based mod-
els, which implements resampling techniques and combinations, thus rebalancing
the classes at learning time (Chawla (2005)).

Other classifiers that do not implement some type of rebalancing have a hard
time classifying some instances. For instance, the samples labeled as Class 7, a
class that has only 7 occurrences in our dataset, are rarely classified correctly.
On the other hand, our most common class (Class 2), represents 52.12% of our
dataset.

To further interpret our classifier results we hand-picked some examples.
Those examples are presented in figures 5, 6 and 7.

4 Conclusion and Future Work

This work proposes a classification model for data relevance using the combina-
tion of semantic types and high-level visual interpretation cues. After perform-
ing a systematic comparative analysis of different classifiers, the proposed model
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Fig. 5. Country by Fig. 6. CPI all by Unemployment in

Access_Through Desktop Laptop.
Correct classification of Class 1 (Clear
meaning and very intuitive).

Fig.7. website traffic by SSLfi-
nal state in a dataset about detection
of phishing attack in webpages. Cor-
rect classification of Class 8 (Requires

a dataset about Elantra Sales. Correct
classification of Class 2 (Clear meaning
dependent of dataset context).

Fig.8. TAX by TOWN in dataset
about Boston price location. Class 5
(Change visualisation) misclassified as
Class 2 (Clear meaning dependent of

additional operations and/or data
attributes/dimensions and/or different
plot type to depict a clear meaning).

dataset context).

achieves a 0.906 F1 score using a Boosted C5.0 classifier, using distributional
vectors of attributes labels and visual interpretation cues. The relevance classi-
fication model can be used to classify relevance of new data views. Additionally,
the evaluation shows that semantic features and visual interpretation cues have
a clear impact on classification performance.

Our approach currently does not cover use cases where missing values are
present. The treating of missing values is crucial for real-world applications.
This limitation should be addressed in future work.

Also, in practice, relevant patterns can be found in higher than 2-dimensional
data views. We intend to apply the same proposed approach to higher dimen-
sional data views and analyze the results.
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