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Deterministic vs. Stochastic Models!

Deterministic models (differential equations):!

• the state is represented by continuous variables,!
• reactions/interactions are represented as continuous 
processes (production, decay, movement,…).!

This is appropriate when the numbers of each species and 
the frequency of reaction events are “sufficiently large”.!

This is not always the case."
e.g. transcription (1 or 2 copies of each gene); mRNA-
protein networks in prokaryotes; low-density populations, …!
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Reaction Rates vs. Events!

In deterministic models (differential equations) each process 
(e.g. transcription, degradation) has a rate (which is typically 
a function of the state).!

e.g. Rate of transcription = !

!

This gives a measure of how frequently each type of 
reaction is expected to occur (for a given state).!

Alternatively, we can develop models centred on individual 
reaction events (e.g. the production of a single mRNA 
molecule, or the binding of two protein molecules).!
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Reaction Rates vs. Events!

In a typical biological system, reaction events do not occur at 
regular intervals.!

e.g. in a “well-mixed” solution, molecular motion can be 
represented as Brownian motion; bimolecular reactions 
occur when two reactant molecules approach closely 
enough (and in the correct orientation). !

e.g. transcription depends on the assembly of a polymerase 
complex and then sequential addition of nucleotides.!

The timing of these events is essentially stochastic rather 
than deterministic.!

4!

Deterministic" Stochastic"

Ordinary differential equations! Continuous time Markov chains!

Concentrations of molecules! Numbers of molecules!

Future is �predictable� given 
present knowledge!

Includes randomness; every 
simulation is different!

Wide range of techniques 
available for analysis!

Not as many techniques for 
analysis; often rely on simulations!

Good for large number of 
individuals; qualitative analysis!

Better for simulating dynamics with 
small numbers of molecules!

Represents population average! Represents population variability!

Deterministic vs. Stochastic Models!

5!

Stochastic kinetics!
• Assume homogeneity:!

•  P(molecule in volume δV) is equal for each δV on the timescale of 
the chemical reactions that change the state.!

•  In other words, we assume that the “reaction mixture” (i.e. the 
inside of the cell) is well-mixed. This may be questionable.!

• Then the state of a cell can be represented by a vector n, 
where!

!!

!and ni is the (integer) number of molecules of species i in 
the cell (i = 1, 2,…, N). Note that we could equally well use 
concentrations rather than numbers.!

  

€ 

n = n1,n2,…nN[ ],
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The stoichiometric matrix!

• Elementary reaction j changes the state:!

!where νij is the stoichiometric matrix. !
• The state vector n changes by νj (the state change vector) 

when reaction j occurs:!

!

• Note that the elements of the state change vector are 
integers (νij is just the change in the number of molecules 
of type i when reaction j occurs). !

!

  

€ 

n→ n+ ν j , ν j = ν1 j ,ν 2 j ,…νNj( ).
€ 

ni → ni + ν ij ,
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The stoichiometric matrix!
For example, consider transcription of a gene, translation of 
the mRNA, reversible dimerisation of the resulting protein, 
and degradation of each species.!

State: n = [M, P, D] = [mRNA, protein, dimer]!

€ 

∅→ M1.  Transcription:!
2.  Translation:!
3.  Dimerisation:!
4.  Dissociation:!
5.  M degradation:!
6.  P degradation:!
7.  D degradation:!

€ 

∅→ P

€ 

P + P→ D

€ 

D→ P + P

€ 

M→∅

€ 

P→∅

€ 

D→∅

Reactions:!
 !

State change vectors:!
 !

€ 

ν1 = 1, 0, 0[ ]

€ 

ν 2 = 0,1, 0[ ]

€ 

ν 3 = 0, − 2,1[ ]

€ 

ν 4 = 0, 2, −1[ ]

€ 

ν 5 = −1, 0, 0[ ]

€ 

ν 6 = 0, −1, 0[ ]

€ 

ν 7 = 0, 0, −1[ ]
8!

The Master Equation!

• Let the rate of reaction j be rj(n). !

!In other words, the probability that reaction j occurs in a 
small time interval Δt is rj(n) Δt.!

• Note that this probability depends on the network state.!

• Note also that it is assumed that the reaction occurs 
instantaneously.!

• Let P(n,t) be the probability that that the network is in state 
n at time t. The master equation describes how this 
probability changes in time, given a set of elementary 
reactions.!

9!
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The Master Equation!

• Parrive = Prob. that network arrives in state n in time [t, t+Δt].!

• Pleave = Prob. that network leaves state n in time [t, t+Δt].!
• Pstay = Prob. that network stays in state n in time [t, t+Δt].!

€ 

Parrive = Δt rj
j=1

M

∑ n−ν j( )P n−ν j ,t( ),

Pleave = Δt rj
j=1

M

∑ n( )P n,t( ),

Pstay = 1−Δt rj
j=1

M

∑ n( )
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The Master Equation!

€ 

P n,t + Δt( ) = Pstay + Parrive

€ 

= 1−Δt rj
j=1

M

∑ n( )
% 

& 
' 
' 

( 

) 
* 
* 
P n,t( ) + Δt rj

j=1

M

∑ n−ν j( )P n−ν j ,t( )

€ 

P n,t + Δt( ) − P n,t( ) = Δt rj n−ν j( )P n−ν j( ) − rj n( )P n( )[ ]
j=1

M

∑ .

In the limit Δt → 0, we get !

€ 

dP n,t( )
dt

= rj n−ν j( )P n−ν j( ) − rj n( )P n( )[ ]
j=1

M

∑ .
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Simulating paths of the Master Equation!

• The master equation encodes a continuous time, discrete 
state Markov process. !

• The master equation is hard to solve, so often rely on 
simulating “paths” (i.e. stochastic realisations of the 
evolution of the state via elementary reactions that occur 
with probabilities in accordance with the master equation).!

• First determine the probabilities of reactions occurring.!
• Determine from this the next reaction time (drawn from an 

exponential distribution).!

• Choose the reaction type to implement, according to 
fractional rates.!

12!
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Simulating paths of the Master Equation!

• Prob that some reaction will occur in time Δt =  !

€ 

Δt rj n( )
j=1

M

∑

€ 

≡ Δt.r0 .

• Let p(t) = prob that the system has not left state n at time t 
given that it was at n at t = 0.!

• Then!

€ 

p t + Δt( ) − p t( ) = −r0p t( )Δt

•  In the limit:!

€ 

dp
dt

= −r0p t( )⇒ p(t) = exp −r0t( ).

• Prob that a reaction has occurred at time t is!

€ 

F(t) =1− p(t) =1− exp −r0t( ).
13!

The stochastic simulation algorithm (SSA)!
• Prob that a reaction has occurred at time t is!

€ 

F(t) =1− p(t) =1− exp −r0t( ).

• Therefore, the system residence time in state n (i.e. the 
time to the next reaction) is exponentially distributed with 
average = 1/r0.!

• The probability that the first reaction to occur is of type j is 
its relative contribution to the total rate, i.e. rj(n)/r0.!

• Algorithm (Doob, 1945; Gillespie, 1976,77):!
•  Pick the next reaction time from an exponential distribution,!

•  Choose a reaction type according to the fractional rates.!

14!

The stochastic simulation algorithm (SSA)!

• Algorithm (Doob, 1945; Gillespie, 1976,77):!
•  Pick the next reaction time from an exponential distribution,!

•  Choose a reaction type according to the fractional rates.!

•  In practice:!
•  Draw two random numbers s1 and s2 from the uniform distribution 

in the unit interval.!
•  Reaction time = !

•  Reaction type j is the smallest integer such that!

€ 

1
r0(n)

ln 1
s1

" 

# 
$ 

% 

& 
' 

€ 

r " j 
" j =1

j

∑ n( ) > s2r0 n( ).
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1.  Specify reaction stoichiometry (state update vectors νj), reaction 
propensities and simulation time.!

2.  Specify initial state n = n0 and time t = t0.!

3.  Calculate the sum of all reaction propensities [= r0(n)].!

4.  Generate two random numbers s1 and s2 from the uniform distribution 
in the unit interval.!

•  Time to next reaction!

•  Reaction type j is the smallest integer such that!

5.  Update time t  t + θ.  "

6.  Update state n  n + νj  according to reaction j.!

7.  Recalculate propensities.!

8.  Go to 3.        !

€ 

θ =
1

r0(n)
ln 1

s1

# 
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% 
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' 
( 

€ 

r " j 
" j =1

j

∑ n( ) > s2r0 n( ).

The stochastic simulation algorithm (SSA)!

16!

•  A constitutively expressed protein!
•  Two types of reaction:!

Protein synthesis (constant rate)!

Protein degradation !

k

γ

Simple Example!

€ 

dP
dt

= k − γ P

ODE Model:" Parameters:!
–  k = 1 Ms-1!

�  γ = 1/1800 s-1!

–  P0 = 0!

17!

•  Parameters:!
–  k = 1 s-1!

�  γ = 0.01 s-1!

–  P0 = 0!
•  Random fluctuations 

in numbers of 
molecules!

Stochastic Simulation!

18!



Stochastic Models! September 7, 2011!

7!

•  Two simulations show 
different time courses 
because of stochasticity!

•  Statistical properties are 
the same!

•  Average of many 
stochastic simulations 
can look like the 
deterministic model!
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Each Simulation Run is Different!

19!

•  Both models have same 
mean and rise to that 
mean!

•  Stochastic model 
includes fluctuations 
about mean!

•  In this case, the mean is 
as given by the 
deterministic model!

Comparison to Deterministic Simulation!

20!

0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

0
0

T ime / s

P
ro

te
in

 A
b

u
n

d
a

n
c

e

Transient!

Equilibrium distribution:!
Defined by statistical properties!

Equilibrium Distribution!

•  Noise associated with protein synthesis is 
(approximately) Poisson!

•  Key property: variance of equilibrium distribution is 
proportional to mean!

21!
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Bar-Even, A. et al. (2006). Nature Genetics 38, 636–643. !

Equilibrium Protein Expression in Yeast!

22!

Percentage error in mean (coefficient of variability) 
proportional to 1/sqrt(mean)."
"
Stochasticity is particularly important in systems 
with low numbers of reactants"

Number of 
molecules"

Molar (bacterial 
cell) "

Processes" c.v."

1! 1nM! Genetic! 100%!

10!
!

10nM! 32%!

100! 100nM! 10%!
1000! 1µM! 3%!
106! 1mM! Metabolic! 0.1%!

How Important is Poisson Noise?!

23!

kp"

γp"

km"

γm"

mRNA Synthesis!

mRNA Degradation!

Protein Synthesis!

Protein Degradation!

Transcription-Translation Model!

24!



Stochastic Models! September 7, 2011!

9!

0 10000 20000 30000 40000

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

T ime

P
ro
te
in

Supra-Poisson variability!
!
•  Mean (mRNA) = 10.1!
•  Var (mRNA) = 11.0!
•  Mean (protein) = 1015!
•  Var (protein) = 11033!

Example Simulation: Supra-Poisson Variability!
Protein noise can be greater than Poisson if synthesis is 
much faster than degradation.!
!

25!

•  As system volume gets large, mean of stochastic 
model can behave like deterministic model!

!

•  But individual realizations can be quite different!!
–  Oscillations in stochastic model not seen in deterministic 

model!

–  Mean of stochastic system different from deterministic model!

–  Stochastic switching between (quasi) steady states!

Examples of Behaviour!

26!

A simple model for circadian oscillations!

Gonze, Halloy, Goldbeter. Proc. Natl. Acad. Sci. USA 99, 673–678 (2002).!

Single gene negative feedback with protein phosphorylation 
and nucleo-cytoplasmic movement of protein (�clock protein�).!

27!
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A simple model for circadian oscillations!

Note the nonlinear functional forms for degradation of mRNA and P2.!

28!

Numerical simulation of ODE model!

29!

Elementary reactions: transcription!
Need to represent binding of transcription factor PN to multiple 
sites on the DNA. These are the elementary reactions that we 
need for the SSA. !
Consider 4 binding sites. Transcription is blocked only if all 4 
sites are bound by PN.!

30!
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Elementary reactions: kinetics!

31!

Varying the total number of molecules!

• The probabilities are derived from the rates in the 
deterministic version of the model.!

• The total number of molecules in the system can be varied 
using the parameter Ω.!

• Large Ω corresponds to large numbers of molecules.!
• Bimolecular reaction rates depend on Ω (they are 

concentration dependent — cf. ODE models).!

• Check that the stochastic scheme gives solutions that 
resemble the deterministic simulations when Ω is large.!

• Study the effect of reducing Ω.!
32!

Stochastic simulation (Ω = 500)

33!
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Stochastic simulation (Ω = 100, 50)

34!

Stochastic simulation (Ω = 10)

•  For small numbers of molecules, the limit cycle oscillations 
become very irregular.!

•  However, the period histogram shows that some periodicity 
is preserved. !

35!

Representing transcription in SSA!

• The SSA assumes that all reactions are elementary (i.e. 
instantaneous mass-action kinetics).!

• Regulated transcription is not an elementary reaction; how 
can we represent it?!

1.  Model multiple transcription factor binding events as 
elementary reactions (but can we parameterise this?)!

2.  Relax the requirement for only elementary reactions 
and use a nonlinear propensity function.!

36!
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Representing transcription in SSA!
• We have already seen an example of representing multiple 

transcription factor bindings:!

! !transcription rate = !

Gonze, Halloy, Goldbeter. Proc. Natl. Acad. Sci. USA 99, 673–678 (2002).!

€ 

Kn

Kn + Pn

37!

Representing transcription in SSA!
• Alternatively, we can represent transcription as a single 

reaction with a nonlinear propensity:!

! !transcription rate =!

!

! !reaction:   G + P  G + P + M!

!

! !propensity =!

!

! !where NP is the number of molecules of transcription factor.  !

€ 

ν
Kn

Kn + Pn

€ 

ν
Kn

Kn + NP
n

38!

Simpler Oscillator Model (after Goodwin)!

• Single gene negative feedback loop with dimerisation!

! !!

€ 

dm
dt

=
k1

1+ p2 p0( )n
− d1m

dp1
dt

= k2m− 2k3p1
2 + 2k4p2 − d2p1

dp2
dt

= k3p1
2 − k4p2 − d3p2.

39!
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Simpler Oscillator Model (after Goodwin)!

€ 

ν =

1 −1 0 0 0 0 0
0 0 1 −2 −1 2 0
0 0 0 1 0 −1 −1

$ 

% 

& 
& & 

' 

( 

) 
) ) 

Stoichiometric matrix:!

40!

Simulations: Stochastic Resonance!
k1 = 2, k2 = 0.5, k3 = 0.0001, k4 = 0.001, d1 = 0.03, d2 = d3 = 0.02, p0 = 50 !

! !!
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!

n = 7 !

!
!

n = 10!

!
!

Stochastic model can show sustained oscillations even 
when the ODE model has damped oscillations!

41!

Simulations!
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Even when the ODE model has sustained oscillations (n = 10) 
the stochastic oscillations can have a significantly greater 
amplitude!

42!
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gene!promoter!

protein!

protein! protein!

protein!+!
Synthesis!

Degradation!

Degradation!
Dimerisation!

Binding!
Dissociation!

Activation!

Simple Genetic Switch Model!

�"

�"

43!

Process" Reaction" Parameter"
Basal synthesis! DNA � DNA + Prot! k0!

Dimerization! Prot + Prot � Dimer! kdim!

Degradation! Prot � � ! µ#

Degradation!
Dimer � �  ! µ#

Binding! DNA + Dimer � Complex! kass!

Dissociation! Complex � DNA + Dimer! kdis!

Activated 
synthesis!

Complex � Complex + Prot! k1!

Elementary Reactions!

44!

Parameter" Value" Comment"
k0! 0.03 s-1! Molecules per cell!
kdim! 0.0001 s-1! Diffusion limited!
µ& 0.01 s-1! Rapidly turned over protein 

(monomer and dimer)!
kass! 0.01 s-1! Diffusion limited: faster 

because of 1D diffusion!
kdis! 0.08 s-1! Binding site affinity is 8nM!

k1! 1 s-1! Transcription, translation and 
mRNA stability!

Realistic Parameters (1 µm cell)!

45!
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Stochastic Simulation!

46!

€ 

dP1
dt

= k0D+ k1C − kdimP1
2 −µP1

dP2
dt

=
1
2
kdimP1

2 −µP2 − kassDP2 + kdisC

dC
dt

= kassDP2 − kdisC

C + D = D0

ODE Model!

47!

•  ODE steady state 
= 3.81!

!
•  Stochastic mean 

= 6.65!
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S tochastic

O D E

S tochastic M ean

Stochastic vs. ODE Simulations!
ODE steady state not necessarily equal to stochastic mean!

48!
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Reduce Affinity to 6nM!

49!
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Higher Protein Initial Value in ODE!

50!

•  Stochastic model switches between!
–  �on� state in which protein is produced under self-

activation!
–  �off� state in which protein is produced at basal level!
!

•  ODE simulation with a low (0) initial protein value 
goes to a low steady state!

!
•  ODE simulation with a higher initial protein value 

goes to a higher steady state!

Stochastic Switching!

51!
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S table

U nstable

Subcritical region: 
stochastic excursions!

Bistable region: 
stochastic switching!

(slightly modified parameters)!

Always on! Always off!

Steady State Analysis: Bistability!

•  When the ODE has two 
steady states, the stochastic 
system can flip randomly 
between these states.!

!
•  Just below the bifurcation, 

the stochastic system can 
still enter larger state 
(transiently).!

!
•  Genetically identical cells can 

display different phenotypes!
–  Stress response e.g. 

sporulation in B. subtilis!

52!

•  Direct method (�Gillespie�)!
–  Can be slow, especially for frequent events and events with 

very different probabilities!
!

•  Gibson-Bruck algorithm!
–  Much more efficient: compute only one random variable per 

step and fast search for next event!
!

•  Time-step algorithms!
–  Not exact but further gains in speed!
!

•  Methods to handle rare events, stiffness etc.!

Types of Stochastic Simulation Algorithms!
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